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Signal-Detection Analysis of Group Decision Making

Robert D. Sorkin, Christopher J. Hays, and Ryan West
University of Florida

How effectively can groups of people make yes-or-no decisions? To answer this question, we used

signal-detection theory to model the behavior of groups of human participants in a visual detection task.

The detection model specifies how performance depends on the group's size, the competence of the

members, the correlation among members' judgments, the constraints on member interaction, and the

group's decision rule. The model also allows specification of performance efficiency, which is a measure

of how closely a group's performance matches the statistically optimal group. The performance of our

groups was consistent with the theoretical predictions, but efficiency decreased as group size increased.

This result was attributable to a decrease in the effort that members gave to their individual tasks rather

than to an inefficiency in combining the information in the members' judgments.

How effectively can groups of people perform yes-or-no deci-

sion tasks, and how does their performance depend on the abilities

of the individual members and the way they interact? We at-

tempted to answer these questions by using signal-detection theory

to model the behavior of groups of human participants in a visual

detection task. The signal-detection model specifies how the ac-

curacy of a group's performance depends on the group's size, the

detection abilities of the individual members, the correlation

among member judgments, the constraints on member interaction,

and the group's decision rule. The model also allows specification

of the efficiency of group performance; that is, it yields a measure

of how closely the group's performance matches that of a hypo-

thetical, statistically optimal group. This efficiency measure can be

factored into separate components that describe how well the

individual members performed their tasks and how effectively the

group combined the information from the members into a group

decision. The results of our experiments provide support for the

signal-detection analysis and allow interesting conclusions to be

made about the sources of inefficiency in the decision-making

behavior of human groups.

Statistical arguments about the effects of group size and member

competence on group performance have existed for more than

200 years, since Condorcet (1785) and, more recently, Einhorn,

Hogarth, and Klempner (1977). According to the statistical argu-

ment, group performance should increase with group size, with the
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most rapid increase occurring when the competence of the group's

members is high and when independent information is available to

each member. These models assume that there is a statistically

effective way to combine the members' judgments. If the expertise

of the members varies within the group, each member's input

should be weighted proportionally by the member's competence at

the task (Grofman, Feld, & Owen, 1984; Grofman, Owen, & Feld,

1983; Nitzan & Paroush, 1982, 1984; Shapley & Grofman, 1984).

The empirical data on group performance indicate that human

groups are generally less effective than would be predicted by

statistical models that assume the optimal use of member infor-

mation. In a fascinating sketch of 40 years of research on group

decision making, Davis (1992) pointed out that most research has

found group performance to be relatively inefficient. Group per-

formance usually is superior to the average of individual perfor-

mance but less than the statistical expectation (see also Hastie's,

1986, review). Moreover, many studies found that group perfor-

mance either is insensitive to group size or that the advantage of

size declines more rapidly than would be predicted from the

statistical argument. All of these results can be attributed to inef-

ficiencies in group function, such as might be caused by difficul-

ties in member interaction or coordination, reduced member effort

such as social loafing (Latane, Williams, & Harkins, 1979; Shep-

perd, 1993), or problems in combining judgments from multiple

sources (Myung, Ramamoorti, & Bailey, 1996; Wallsten, Budescu,

Erev, & Diederich, 1997).

Attempts to model group performance have used signal-

detection theory (Batchelder & Romney, 1986; Erev, Gopher,

Itkin, & Greenshpan, 1995; Metz & Shen, 1992; Pete, Pattipati, &

Kleinman, 1993a, 1993b; Sorkin & Dai, 1994; Sorkin, West, &

Robinson, 1998). In the group signal-detection situation, a group

of observers is presented with an input that may have been either

signal plus noise or noise alone. Each group member makes an

observation and the group must then decide which of the two

possible events gave rise to the input. Metz and Shen (1992)

analyzed the gains in the detection accuracy of reading x-ray

images that resulted from replicated readings by the same or

multiple readers. Erev et al. (1995) examined the strategic inter-

action between two observers in a signal-detection task (i.e., when
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each observer's payoff structure was contingent on the outcome

and the response of the other observer). Pete et al. (1993b) con-

sidered the case of multiple team members working in an uncer-

tain, binary choice detection situation. They generalized the signal-
detection model to consider the individuals' as well as the group's

prior probability and payoff structure; that is, their model allowed

joint optimization of the group aggregation rule and the individual

decision rules of the group members.

Sorkin and Dai (1994) took a somewhat simpler approach to

group signal detection than did Erev et al. (1995) and Pete et al.

(1993b). Sorkin and Dai assumed that each group member could

provide an estimate of the signal's likelihood of having occurred

on a trial, and that the expertise of the members was known a priori

to the group. These assumptions allowed them to sidestep the

problem of how to aggregate binary responses from individuals

who might have different biases toward the decision alternatives.

Sorkin and Dai computed the performance accuracy that would

result from the optimal aggregation of the members' likelihood

estimates; this specified the performance of the ideal group. Later,

we review the specific predictions of the ideal group analysis.

Because the performance level of the ideal group is the highest

that may be achieved by any group, the ideal analysis specifies an

upper bound on the performance that may be obtained from any

group of human participants. Because the ideal model prescribes

how the individual estimates of the group's members should be

combined for a detection decision, the model also serves as a

normative description of the behavior of human groups. For ex-

ample, the ideal model assumes that each member of the group

makes a continuous or graded estimate of the signal's likelihood,

and that these estimates are then weighted by the member's de-

tection ability. The weighted member estimates are then combined

in an appropriate and noiseless fashion. We might expect that the

decision-making process used by a group of human participants

would violate some of these assumptions. Therefore, it is useful to

consider the consequences of some specific (and perhaps drastic)

violations of the ideal assumptions. For example, what are the

performance consequences of requiring discrete rather than graded

member judgments or of limiting the exchange of information

among the members? The performance of specific suboptimal

groups might define reasonable lower bounds on the performance

to be expected from a group of human participants.

Consider a suboptimal group that arrives at a decision without

any interaction or communication among the members. Suppose

further that the group decision is determined by the aggregation of

the members' unweighted binary (yes-no) votes; specifically, by

application of a majority rule to the members' yes votes. We would

expect that if a group used such a curtailed decision process, its

performance would be well below the ideal level. Sorkin et al.

(1998) used signal-detection theory to analyze the performance of

such groups, known as Condorcet groups.1 Condorcet groups are

of interest because they provide an interesting kind of degenerate

case of the optimal signal-detection group.

The inefficiency of a Condorcet group's performance is due to
several factors. First, because there is no group interaction before
voting, the group decision must be based on the unweighted

combination of the members' decisions. Thus, information will be
lost because the judgment of the least competent member counts as

much as the judgment of the most competent member. Second,
detailed information about the member estimates is lost because

the member estimates are binary votes rather than graded judg-

ments of signal likelihood. Additional potential losses occur be-

cause each member uses an independently determined criterion for

making a binary yes response. Because members cannot use

knowledge about other members' criteria, they cannot adjust (or

readjust) their own response criterion for an optimal group setting.

Suboptimal models such as the Condorcet group may be useful

for describing the behavior of some groups of human participants.

This may be the case even when there are no externally imposed

constraints on participant interaction or voting. That is, human

groups may adopt aspects of the Condorcet decision mode even

though more efficient modes of decision interaction are possible.

Our initial hypothesis was that the upper bound on the perfor-

mance of human groups would be given by the ideal group model,

and that lower bounds on performance would be given by the

Condorcet group model. (We assume that the members of the

theoretical group have detection competencies equivalent to their

counterparts in the human group.)

The psychophysical literature includes many studies that con-

sider similar models, albeit in a different context (Green & Swets,

1966; Swets, 1984). The goal in many of these studies was to

describe how a human observer aggregates stimulus information

that arrives simultaneously or sequentially on multiple sources or

on multiple channels. For an auditory task, these multiple sources

might be different frequency bands or different earphone channels.

For a visual task, these sources might be different spatial frequen-

cies or different spatial positions. Can an observer perform this

task with perfect efficiency? That is, can a person integrate all the

relevant information that arrives on multiple channels (i.e., by

performing the optimal statistical processing of the inputs as

specified by an ideal signal-detection observer; see Green &

Swets, 1966)? Alternatively, the observer's detection process may

be suboptimal in a particular way. Perhaps the observations on

different channels must be processed sequentially or first con-

verted to separate binary (i.e., threshold) decisions, which are then

combined.

Many of the multichannel psychophysical models are formally

identical to putative models of group signal detection. Consider the

following multichannel detection task. On a given trial, all of the

multiple channels contain either noise alone or signal plus noise.

The observer must observe all of the channels and make a single

yes or no response to the possible occurrence of the (multiple-

channel) signal. That is, the set of channel observations must be

mapped to a yes or no response. The observations on the channels

may or may not be correlated. The reader will see the similarity of

this situation to the group detection case in which an array of

multiple observers must monitor a single channel for the possible

occurrence of either a noise-alone or signal-plus-noise condition

on that channel. Each observer in the group makes an observation

(possibly correlated) of the input, and the set of observations must

be mapped to a single yes-no group decision.

Green and Swets (1966) and Swets (1984) discussed two ge-

neric classes of these psychophysical models: the observation-
integration (OI) model and the decision-combination (DC) model.

In the Ol model, graded estimates of the signal's occurrence in

1 For a broader definition of Condorcet-like groups, see Austen-Smith
and Banks (1996).
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each channel are available to be weighted and summed to form a

final decision statistic. In the DC model, only binary responses are

available from each channel, and these are combined for the final

decision by applying a combination rule. To arrive at an overall yes

decision, the combination rule could require (a) a single yes vote

from any of the channels (the "union" rule), (b) yes votes from a

specific majority of the channels, or (c) yes votes from all of the

channels (the "intersection" rule). The channel signal-to-noise

levels and the individual decision criteria used by each channel are

important interacting variables in the DC model, and widely dif-

ferent performance can be obtained by changing the assumptions
about their values.

It is clear that the different group models have counterparts in

the multichannel psychophysical models and that the class of

Condorcet models is equivalent to the DC models. When we

discuss the results of our experiments, we make some further

comparisons between these two classes of model. Durlach, Braido,

and Ito (1986) reported a very elegant development of the OI class

of psychophysical model. They developed a detailed model of the

single-observer, multiple-channel auditory signal-detection situa-

tion, and their formulation provided the foundation for Sorkin and

Dai's (1994) analysis of ideal group signal detection.

In this article we first describe the general detection task that is

used in all of our experiments with human participants. Second, we

provide a formal description of the group detection problem and of

the ideal and Condorcet groups and briefly review their properties.

Third, we report on experiments that assessed the detection per-

formance of groups of human participants in different conditions.

We compare the resulting performance to the predictions of the

ideal and Condorcet models and argue that these models can

account for much of the variance observed in the performance of

the human participants. Finally, we report on a refined version of

the experimental task that enables us to quantify the sources of

inefficiency in group detection performance.

Signal-Detection Task

The basic task in our experiments was to judge whether the

stimulus in an experimental trial was due to a signal-plus-noise or

noise-alone condition. Participants were presented with a graphic

display consisting of nine analog gauges similar to those shown in

Figure 1, and they had to respond whether the display was due to

a signal-plus-noise or noise-alone condition. The setting displayed

on each gauge was generated from a normal distribution whose

noise ™

Figure 1. An example of the stimulus array presented to a participant on

a signal-plus-noise trial of the experiment. On each trial, the values

displayed on the nine gauges were drawn from either the signal-plus-noise

or the noise-alone distribution. The thick ticks labeled "signal" and "noise"

indicate, respectively, the means of these distributions. The value of the

common standard deviation determined the difficulty of the task (see text).

mean depended on the nature of the trial. On a signal-plus-noise

trial, the settings on all of the gauges were drawn from the

signal-plus-noise distribution, and on a noise-alone trial all the

settings were drawn from the noise-alone distribution. The signal-

plus-noise distribution had a higher mean than the noise-alone

distribution, and both distributions had the same variance. In

Figure 1, the means of the respective distributions are indicated by

the labeled markers on the left-hand side of the display. Figure 1

illustrates a typical trial when a signal-plus-noise condition was

present.

Single-observer versions of this task have been studied exten-

sively in our laboratory (Elvers & Sorkin, 1989; Montgomery &

Sorkin, 1993, 1996; Sorkin, Mabry, Weldon, & Elvers, 1991;

Sorkin, Robinson, & Berg, 1987). The difficulty of this task is

determined by the display's physical and statistical parameters.

The major physical parameters are the display duration and the

visual angle subtended by the display. The statistical factors are the

difference between the means of the signal-plus-noise and noise-

alone distributions and the value of their standard deviation. If the

physical parameters are fixed, the difficulty of a single-gauge

display is directly proportional to the difference between the

distribution means and inversely proportional to the standard de-

viation. If the nine gauge settings are generated independently,

observer performance with the nine-element array should be \/9

better than performance with a single gauge (Sorkin et al, 1991).

This assumes that the information from all of the nine gauges is

available to the observer, which is the case when the display

duration is sufficiently long. Sorkin et al. (1991) studied the effects

of the display duration, the size of the display, and the type of

gauge used. They showed that short durations (less than 180 ms)

prevent the observer from gaining information from gauges near

the visual periphery. Their experiments also indicated that if the

physical conditions are constant, most of the variance in an ob-

server's performance is determined by the means and standard

deviation of the gauge distributions.

In the present study, we tested both individual participants and

groups of from 5 to 10 participants under different display and

member interaction manipulations. Our experiments allowed

group members to communicate their estimates of signal likeli-

hood and did not impose constraints on the particular decision rule

that the group used. After a group or individual decision was made

on a trial, full feedback about the correct answer was provided to

the participants. In certain group conditions, information about the

responses of other participants was provided. In the single-

participant conditions, the participant received a monetary payoff

that depended on the accuracy of his or her performance. In the

group task conditions, the monetary payoff to the participants

depended on the accuracy of the group's detection performance. In

the next section, we review the theoretical analyses of the ideal and

Condorcet groups.

Group Signal-Detection Theory

An important benefit of applying signal-detection theory to a
decision task is that it enables the experimenter to compute, from

the obtained group or individual data, separate indices of perfor-

mance accuracy (d') and bias (criterion or c). The accuracy mea-
sure, d', is expressed in standard deviate units. The d' index can

vary between 0, for a chance level of performance, and approxi-
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mately 4, for errorless performance. The criterion measure, c, is

expressed in similar units. A value of c equal to 0 indicates that

there is no preference toward a signal-plus-noise or noise-alone

response, and a positive value indicates that there is a preference

for the noise-alone response (Macmillan & Creelman, 1991). We

used these measures to describe both individual and group perfor-

mance in our experiments.

The general group signal-detection paradigm is shown in Fig-

ure 2. There are m members of the group. On each trial, the array

of m members is presented either with a signal-plus-noise event or

noise-alone event, and the group must decide which was presented.

Each member has an individual index of detection accuracy, d\. On

a signal-plus-noise trial, each member receives an input equal to

/u,,., and on a noise-alone trial each member receives an input equal

to 0. The task is made difficult by the presence of two Gaussian,

zero-mean noise sources to each member, o^om and erf. The first

noise component, o^om, is the variance of a noise source that is

common to all the members, and the second, erf, is the variance of

a noise source that is unique to each member. To arrive at a group

decision, the members' judgments must be combined in some

manner. In a specific decision situation, the members might ex-

press their judgments as binary responses (yes, no), continuous

(graded) ratings of estimated signal likelihood or in other ways.

The group decision process might include the exchange of infor-

mation among the members about member likelihood estimates,

confidence, and biases.

Ideal Group Model

An additional benefit of detection theory is that it enables one to

specify the behavior of the statistically optimal or ideal detection

system (Green & Swets, 1966; Tanner & Birdsall, 1958). By

definition, an ideal detection system uses an optimal decision rule

(one based on a likelihood ratio statistic) and suffers from no

additional sources of noise or error. On average, an ideal detection

system will produce the most accurate detection performance. The

ideal analysis informs us about important task variables and how

they may influence human performance.

Figure 3 shows how the general group signal-detection para-

digm is modified to arrive at the ideal detection system of Sorkin

and Dai (1994). They assumed that, although the unique noise

source to each member is independent of the noise to any other

member, the magnitude of the unique sources is constant across the

array of members and is equal to ofnd; that is, <J\ — of = • • • =

ofnd. Then each member's estimate, Xt, will be normally distrib-

uted with a mean of ju, or 0 (respectively, depending on whether

the trial was a signal-plus-noise or noise-alone trial) and with a

variance equal to the sum of the common and unique noise

variances. The index of detection sensitivity, d\, for an individual

member is the difference between the means of the input on

signal-plus-noise and noise-alone trials, divided by the square root

of the total noise variance:

d'^^(crlom + crid)
1
'
2
. (1)

By definition, the correlation p between any pair of members is

p = oiom/(c75om + o-L). (2)

Normalizing the total variance,

Then,

= P. ofnt = 1 - p. (4)

input {signal, no signal)

Group Decision Process

Figure 2. Diagram of a group signal-detection system composed of m members. Each member is subjected to
two sources of Gaussian noise: one unique (of) and one common (ofotnmon) to the other members. The member
outputs are combined to form the group decision (see text).
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{yes, no}

Figure 3. Diagram of an ideal group signal-detection system composed of m members (after Sorkin & Dai,

1994). Each member is subjected to two sources of Gaussian noise: one unique (of) and one common (<^0mmon)

to the other members. The decision variable, Z, is formed from the weighted sum of the member estimates (see

text).

How should the member estimates be combined to make the
signal-plus-noise/noise-alone decision? A decision statistic that is

equivalent to a likelihood ratio statistic can be formed by summing
the weighted estimates of the individual members (see, e.g., Ashby

& Maddox, 1992; Berg & Green, 1990; Durlach et al, 1986;
Green, 1992; Sorkin & Dai, 1994). The group decision statistic is

where the {at} are optimal decision

mates of the individual members. To
on a trial, the aggregate judgment, Z,
value, Zc. When Z > =ZC, the group
signal-plus-noise decision, and when
indicating noise-alone. The optimal
(Durlach et al., 1986; Sorkin & Dai,

r,, (5)

weights applied to the esti-

arrive at the group response
is compared with a criterion
response is yes, indicating a
Z < Zc, the response is no,

weights {dt} are specified
1994) by

a,•• = [1 + p(m — l)]d'i — m p mean(rf'). (6)

where mean(rf') is the mean of the members' individual indices of
detectability, d',. From Equation 6, it can be seen that the optimal
weights are proportional to the individual indices of detectability.

Therefore, the estimates of members having high d's should be
afforded higher weights than members having small d's. Using the

optimal weights yields the ideal group performance (Sorkin & Dai,

1994),

TVar(d') [mean(J')]2

(7)

When the correlation is 0, Equation 7 reduces to the expression

(Green & Swets, 1966):

(8)

Equation 7 specifies the maximum performance to be expected
from a group of m members that have a specified mean, variance,
and correlation. The equation also suggests what to expect from
groups whose performance is similar to but less than the ideal's:
(a) Group performance will increase when m increases; (b) per-
formance will increase as \/m when p = 0; (c) performance will
increase when the variance in member ability increases; and (d)
much of the advantage of group size will be lost when p > 0.25.
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The top curve of Figure 4 shows ideal group performance as a

function of group size, for a group with p = 0 and the member

parameters mean(d') = 0.78 and var(rf') = 0.014. Although not

shown on Figure 4, the ideal function flattens as p differs from 0
(see Sorkin & Dai, 1994). The ideal function defines the upper

bound on the performance of any group that has the same member

statistics.
What are the consequences of using nonoptimal weights when

the members have different detection indices? If uniform weights

are used (i.e., if a,- = Urn), performance is given by the right-hand

term of Equation 7:

anything other than uniform weights. Finally, the performance of

a group that uses the set of arbitrary weights, {a,}, is given by2

^uniform

mean(rf') ^Jm

Vl +p(m- 1)'
(9)

It follows that Equation 9 is the best performance predicted for a

simple version of the Delphi group (Hillman, Hessel, Swensson, &

Herman, 1977). For such groups, we assume that the members'

judgments are not identified with individual members, and that the

group decision is not informed about the detection competence of

the individual members. The group thus lacks a basis for using

•o
a.
13

4 5 6 7 8

Group Size (m)

10 11

Figure 4. The performance (group detection indices) of the ideal and

Condorcet groups is plotted as a function of group size. The solid line

shows the performance of the ideal group with member parameters—

mean(d') = 0.78, var(d') = 0.014—and assuming p = 0 and optimal

weights. The dashed lines represent the performance of groups whose

members do not interact and whose group decision is based on a majority

of the (unweighted) binary votes of the members (see text). The group

labeled mil requires yes votes from at least half of its members; the m - 1

group requires yes votes from all members but one; and the m group

requires a unanimous yes vote. These groups have the same distribution of

member sensitivities as the ideal group, and its members are neutrally

biased (c = 0). The diamond symbols are the average group performance

obtained from the uniform display signal-to-noise ratio = 1, p = 0

conditions (see text: Experiment 1, Results and Discussion). The brackets
indicate ±1 SEM.

ight (10)

-p)

Condorcet Group Model

Figure 5 shows the member array for a Condorcet group. Sorkin

et al. (1998) called this group a Condorcet group after the Marquis

de Condorcet's (1785) analysis of similar groups. To arrive at

detection theory predictions, Sorkin et al. assumed that the group's

members do not interact with each other before voting, and that the

members' only motivation is to maximize the payoff for correct

group decisions. As in the ideal case, the group is composed of m

members, and each group member is characterized by a detection

sensitivity, d\. In addition, each member has a response criterion,

c,. Each member observes the stimulus input and makes an esti-

mate of the likelihood that the input on that trial was caused by a

signal-plus-noise event. This estimate is then compared with the

member's response criterion, c,, to make a binary judgment of yes

or no. A single ballot is taken, and the group decision is deter-

mined by application of a majority rule to the binary votes of the

members.

To calculate the performance of these groups, Sorkin et al.

(1998) assumed values for the mean and standard deviation of the

members' detection indices in a hypothetical detection situation.

They generated receiver operating characteristic (ROC) curves for

the group's behavior by varying the mean of the members' re-

sponse criteria. The ROC is a plot of the hit probability (the

probability of responding yes given signal plus noise) versus the

false-alarm probability (the probability of responding yes given

noise alone) at a given level of display difficulty. The ROC is the

locus of all hit and false-alarm probabilities that are possible to

achieve with a fixed detection accuracy; thus, the properties of the

ROC determine the system's index of sensitivity.

The Sorkin et al. (1998) analysis showed that the Condorcet

group ROCs resembled ideal ROCs in shape but were lower than

the ideal curve and dependent on the particular majority rule that

the group used. That is, Condorcet hit rates were lower than the

ideal hit rates and the Condorcet false-alarm rates were higher than

the ideal false-alarm rates. In addition, ROCs for Condorcet groups

that used stringent majority rules, such as a three-quarters majority

or a unanimous rule, were slightly distorted in shape and below the

curves that used less stringent rules. As a consequence, the detec-

tion sensitivity of a Condorcet group is lower than the ideal

function and is dependent on the particular majority rule used.

The dashed curves in Figure 4 show the predicted performance

of Condorcet groups having the same individual detection prop-
erties as the ideal curve plotted. The lower two dashed curves
specify the performance of the Condorcet group operating with

more stringent majority decision rules. The highest dashed curve

1 See Appendix for derivations of Equation 10.
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{yes,no}

Number of YES votes > required majority?

T
{yes, no}

Figure 5. Diagram of a Condorcet group signal-detection system composed of m members (after Sorkin, West,

& Robinson, 1998). The {d-} are the member detection indices and the {cj are the member response criteria.

The decision is based on the majority rule of the members' binary votes (see text).

specifies the performance of the group that uses a simple majority
rule (at least half of the members, m/2, must vote yes); the next
lower dashed curve is produced by the more stringent rule (all but
one member must vote yes); and the lowest dashed curve is
produced by the unanimous rule (all members must vote yes).

Nonzero levels of p produce qualitatively similar curves with
smaller absolute differences between the performance of the dif-

ferent majority rules (not shown).
We have replotted the ideal and Condorcet curves on logarith-

mic coordinates in Figure 6, along with those for a higher average
detection index of 1.5. Plotting these curves on log-log coordinates

allows one to compare the growth rate of the functions with earlier

psychophysical models. In the ideal case, the group detection
sensitivity increases with group size with an exponent of 0.5, the
square root. The OI model, of course, has a slope that is identical
to the ideal. The detection index increases at a lesser rate for the
Condorcet model; the slopes in the simple majority, m - I , and
unanimous cases are approximately 0.43, 0.31, and 0.16, respec-
tively, and are approximately the same for the two different d'

levels considered. Citing an analysis by T. Birdsall, Swets (1984)
estimated that, at midlevel signals and midrange criterion values,
the DC model produces slopes of about one third. These slopes are

very close to the Condorcet, m — 1 case.
In addition to their theoretical analysis of the Condorcet group,

Sorkin et al. (1998) asked several questions about the performance

of groups of human observers under Condorcet-type task con-
straints. First, would one obtain the predicted decreases in the
performance of the human groups as the majority rule was made
more stringent? Second, would a more stringent rule produce a
change in the behavior of the individual participants? A more
stringent rule should cause the group hit and false-alarm rates to
decrease, resulting in more conservative overall performance. The
question was whether this would have an effect on the member's
individual detection sensitivities or decision criteria. Specifically,
would forcing the group decision to be more conservative cause
the members to shift toward more liberal response criteria? Sorkin
et al. (1998) ran groups of from 5 to 7 people in a visual signal-
detection task in which the group members did not communicate
with each other and the group decision was automatically deter-
mined by the majority rule of the binary votes of the members. The
groups of human participants exhibited the same behavior as the
model. Performance was best for the simple majority rule and
worst for the unanimous rule. Two-third and three-quarter majority
rules produced appropriately ordered intermediate levels of per-
formance. Some participants adopted more liberal response criteria
when the majority rule was more strict. Sorkin et al. (1998) noted
that group members can reduce the effect of a strict majority rule
on the group criterion by making their individual criteria more
liberal, but they cannot undo the deleterious effect of a stricter
majority rule on the group's performance accuracy.
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Figure 6. The performance (group detection indices) of the ideal and

Condorcet groups is plotted as a function of group size for two levels of

display difficulty (log-log coordinates). In each case the upper solid line

shows the performance of the ideal group and the shorter lines show the

Condorcet groups. The diamond symbols (and dashed line) show the

average group performance from the uniform display signal-to-noise ra-

tio = 1, p = 0 conditions (see text: Experiment 1, Results and Discussion).

The brackets indicate ± 1 SEM.

Group Efficiency

It is useful to have a summary measure that describes how much

the observed performance of a group of human observers differs

from that of a hypothetical reference group such as the ideal group

or the Condorcet group. The degree to which the performance of

the real group is less than a reference optimal level is given by the

efficiency measure, t) (Tanner & Birdsall, 1958), where

17 =
"observed I

did,
(11)

Efficiency is defined as a ratio of squared rf's, because in many

sensory situations (4'deai)2 is proportional to signal energy. Thus,
an efficiency of 0.60 means that an optimal detector could match

the human's performance with a signal that contained only 60% of
the energy needed by the human.

Obtaining a measure of a human group's efficiency depends on

having an appropriate definition of the "ideal" reference group to

be compared with the human group. The first piece of information
needed to specify the reference group is the set of individual

detection indices of the human group's members. In some exper-

iments, it may be difficult to determine these indices from the
members' or group's behavior. The second piece of information

needed is the extent to which the observations of the human

members are correlated, so that the appropriate correlation can be

specified for the members of the reference group. Again, it may be

difficult to determine the nature of this correlation without making

additional assumptions or performing additional experiments. The

last piece of information needed concerns the presence of any

external constraints on the interaction and decision making of the

human members in the task. For example, if group members were

not allowed to interact and their decision was determined by a

binary vote, it would be reasonable to define optimal performance

by using the Condorcet rather than the ideal group model as a

reference. Once the member indices, correlation among observa-

tions, and interaction constraints have been specified for the ref-

erence group, one can compare the performance of the human and

reference groups and calculate a measure of the overall efficiency

of the human group's performance.

Given that one has obtained a measure of overall efficiency, it

may be possible to factor this measure into subordinate factors that

describe different aspects of the group's performance. For exam-

ple, one may wish to specify how much of the loss in overall

detection efficiency is due to changes in the individual detection

efforts of the members or to inefficiencies in combining the

members' judgments into a group decision. Different members

may make numerical judgments of signal likelihood in different

ways, and this variability may lead to decreased accuracy in the

group's decision. Perhaps the group gives inappropriate weight to

the estimates from some members. Rather than weight each mem-

ber's judgment in proportion to that member's expertise, the group

may weight all members' judgments equally or even pathologi-

cally (e.g., by giving higher weights to the least competent or

loudest members). Later, we develop a technique for quantifying

these different sources of inefficiency.

In Experiment 1 of this study, we intentionally manipulated the

correlation between member judgments by controlling the corre-

lation between the stimuli presented to different members. This

allowed us to examine the effects of member correlation on group

performance. We also tested the possibility that the group's per-

formance would be degraded by use of an inappropriate weighting

strategy. To assess that possibility, we calculated the weights given

to the judgments of individual members of different groups. In

addition, we varied the difficulty of the detection task (i.e., the

display signal-to-noise ratio) for each member of a group so that

the detection performance of some of the group's members would

be approximately twice that of the others. The group was able to

sense this discrepancy in member competence and use appropriate
weights in its decisions.

The performance of the larger groups in Experiment 1 suggested

that they might have been operating under some restrictions in

between-member interaction, possibly because of the way the

experiment was conducted. Therefore, Experiment 2 was designed

to optimize the effectiveness of between-member communication.

We also measured detection efficiency much more accurately by
assessing the detection effort of each member of the group while

performing the group task. A major interest in Experiment 2 was

to observe the effect of group size on efficiency. We were able to

calculate a precise measure of overall efficiency and to separately
quantify losses in efficiency caused by (a) changes in the individ-

ual detection efforts of the members and (b) the inefficient aggre-
gation of member judgments.
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Experiment  1

The Sorkin et al. (1998) study  showed  that the level of detection

performance  specified  by  the Condorcet  model  is  very  similar to

that exhibited  by  groups of noninteracting human participants. The

constraints  on  information  sharing  in  this  task  impose  a  perfor-

mance  ceiling  that  is  far  below  what  could  be  achieved  by  an

interacting  ideal  group.  In  Experiment  1  we  removed  any  con-

straints  on member  interaction  and tried to assess how  much of an

increase  in group  performance  could  be  achieved  by  allowing  the

group  to communicate their estimates  of  signal  likelihood  freely.

We  also  investigated  the effects  of  nonzero  correlation  among the

judgments  of  the  members,  and  we  tested  whether  interacting

groups  could  improve  the  efficiency  of  their  decision  making  by

using information about differences  in the detection abilities  of  the

individual  group  members.

Method

Observers  performed  a graphic  signal-detection  task, either individually

or  in  groups  of  5  or  7  members.  On  each  trial, observers  were  presented

with  a  multiple-element visual  display  consisting  of  nine analog  gauges,

similar  to  those  shown  in  Figure  1.  After  the  display,  observers  had  to

indicate whether  the display  represented  a signal-plus-noise  or noise-alone

condition.  The  values  displayed  on  the  nine gauges  were  determined  by

sampling  from one of two  normal distributions: for signal,  jx
5
 =  5, and for

noise-alone  jx
n
  = 4. The value of  the common  standard deviation,  a,  was

set  equal  to  1.5,  2,  2.5,  or  3  in  different conditions of  the  experiment.

Because  the  difference  between  the  signal-plus-noise  and  noise-alone

means  was  fixed,  the magnitude of  o- determined  the display  detectability.

A  high  value  for  cr  indicates  that  the  detection  task  will  be  difficult.

Consider  the  best  detection  performance  that  might  be  obtained  with  a

single-element  display,  when  cr  =  3.  Detection  performance  (<f)  based

only on this element would be equal  to (fi
s
  — t^

n
)/cr  = 0.33,  which is a very

low  value.  With  nine  independent  display  elements,  the  best  detection

performance  would  be  \/9  times  the  element  detectability  (i.e.,  0.33

V9  =  1-0).  In  this  article,  we  use  the  value  of  3(/x,  —  №„)/&  =  3/cr  to

specify  the display  signal-to-noise ratio (DSNR) to characterize the  detect-

ability  of  different  experimental  conditions. Thus, element  standard  devi-

ation  values  of  3,  2.5,  2,  and  1.5  yield  DSNR conditions of  1,  1.2,  1.5,

and  2,  respectively.

Normally, we  would  not expect  that a human observer  would achieve a

d'  of  2  when  detecting  a  signal  presented  at  a  DSNR  equal  to  2.  In

experiments  using  similar  graphical  materials,  Sorkin  et  al.  (1991)  and

Montgomery  and  Sorkin  (1996)  showed  that  limitations  on  human  pro-

cessing, primarily caused  by  the display's  brief  duration, resulted  in  per-

formance  that  was  about 75%  to  80%  of  the  predicted  values  (i.e.,  TJ  be-

tween  0.56  and 0.64).

Participants.  Eight  University of  Florida  students,  seven  women  and

one  man, participated  in  the  study.  All  of  the  participants  had  normal  or

corrected-to-normal  visual  acuity.  Participants were  paid  $4.25  per  hour

plus an incentive bonus that  was  based  on the accuracy  of  performance. In

the  individual  conditions,  the  bonus  depended  on  the  accuracy  of  the

individual's  performance.  In the group  conditions, the bonus  depended  on

the  accuracy  of  the  group's  performance.  In  Experiment  1  the  bonus

averaged  approximately  $0.40 per  person  per hour.

Apparatus  and  stimuli.  Stimulus  generation  and  presentation  were

done  with  Insight  4086-33  computers  arranged  in  a  small  local  area

network,  synchronized  by  a  separate  4086  computer.  The  stimuli  were

displayed  on  14-in.  CTX  color  monitors  (1024  X  768  SVGA  monitor,

72-Hz  refresh  rate  at  640  X  480  resolution).  The  monitors  were  set  for

maximum  contrast,  with  the  intensity  at  approximately  100  cd/m
2
  mea-

sured  from  a uniform field. Participants sat approximately  27 in. away from

the  monitor  in  a  quiet,  fluorescent-lit  laboratory  room;  the  nine gauges

subtended  a visual angle of approximately 8 degrees vertical by 22 degrees

horizontal.  Responses  were  made  on  a  standard computer keyboard. Dur-

ing  the  group  phase  of  the  experiment, participants were  seated  close  to

each  other, but  they could not see  monitors  other than  their own.

The  individual  display  elements,  shown  in  Figure  1,  consisted  of  two

parallel  vertical  lines  with tick  marks  on  the  left  line, dividing  the  gauge

into  20  intervals. A  value of  0  was  represented  at the bottom of  the  gauge

and  a  value of  10 at  the top. Two  larger  tick marks  on the  leftmost  gauge

marked  the  mean  of  the  noise  and  signal-plus-noise distributions. On  a

given  trial,  all  of  the  elements  displayed  values  that  had  been  drawn,

independently,  from  the  same  distribution. Half  of  the  trials  (randomly)

were drawn  from  the  signal  and half  from the noise  distribution.  Stimulus

duration  was  370  ms  during  practice  sessions  and  320  ms  during  all

experimental  trials.  A  centered  cross  (0.5  in.)  fixation  stimulus (200  ms)

preceded  the  stimulus, and  a  white  masking  screen  (200  ms)  followed

presentation  of  the  stimulus.  After  the  masker,  the  screen  was  blank for  a

short  time period  before  the response.  After  the  response,  feedback about

the  correctness  of  the response  was  given.

Procedure.  Each  participant  was  first  tested  alone  in  the  individual

detection  sessions.  The  individual  sessions  were  run  before  any  group

conditions and then  rerun again after all  the group conditions. A  trial block

consisted  of  125  trials  at  a  given  DSNR  level.  An  experimental  session

consisted  of  16  blocks,  presented  in  sequences  of  four  blocks  at  a  given

DSNR.  The  DSNR  levels  were  randomized  both  within  and  across  ses-

sions. After two practice sessions, participants performed the task for 2,000

trials  at  each  of  the  four  DSNR  conditions.  A  session  took  approxi-

mately  1.5  hr,  and  participants  were  encouraged  to  take  rest  breaks  after

each  block.

After  the individual session,  participants were tested in groups  of 2, 4, 6,

and 7 members.  Individuals were  randomly assigned  to one group of 6 or 7

members,  two  groups  of  4  members,  or  two  groups  of  2  members.  The

2-member  groups  were  randomly  chosen  from  the  4-member  groups.

However,  the  male  subject  was  purposely  excluded  from  the  2-member

groups  to  minimize any  chance  that  his  presence  would  bias  that  group's

decision  (Clement  &  Schiereck,  1973). We  had planned  to use  8  individ-

uals  in  the  largest  group.  As  a  result  of  absenteeism  and  scheduling

problems,  the  large  groups  tested  consisted  of  only  6  or  7,  rather  than  8,

members.

The  trial blocks  in the group  sessions  consisted  of  100  trials, run in  two

four-block  sets,  randomized  within  and  across  sessions  with  respect  to

DSNR  and  correlation.  The  trial  procedure  was  the  same  as  for  the

individual  sessions, except  for  important differences  in the group  response

procedure.  In  the  individual  sessions,  the  participant  had  up  to  1,000  ms

after  the  masking  screen  to  make  a  response.  In  the  group  sessions,  a

700-ms  blank  screen  was  presented  after  the  masking  screen.  After  this

screen,  one  member  of  the  group  was  randomly  selected  and  received  a

screen  message  telling her  that  she  was  to give  the group's  answer.  There

was  no time limit  for  a response. The  other  members  of  the group did not

make any manual response.  Group members were encouraged  to talk about

their judgments both during  the 700-ms  blank period  and  the period  after

the  group responder  had been  selected.  Usually, members  began announc-

ing  their estimates  as  soon  as  the display ended. These were  usually  in the

form  of  a  short  binary  statement,  such  as  "I  think  signal"  or  "I'm  sure

signal,"  from  each  of  the  members.  After  the  responder  entered  the  re-

sponse,  each member received  feedback  about the nature of  the trial and the

correctness  of  the  response.

In addition  to changing DSNR, two  additional manipulations were made

during the group  sessions.  First, the distribution of DSNR was  set either the

same for all members  of the group (the equal DSNR condition) or, for  some

4-person  groups,  intentionally varied  so  that  the  task  difficulty  for  two

members  was  twice  that  for  the  others  (the  unequal  DSNR  condition).

Second, the  stimulus  displays  were either  independent (p  =  0 condition)

for  all  group  members  or  were  partially  correlated  (p  =  0.25)  between
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group members. Table 1 summarizes the conditions for the group sessions.

(Some of the low-difficulty conditions were omitted for the larger groups,

because the group performance would have been too high to measure

accurately.)
The correlation between group members was manipulated using a

method described by Jeffress and Robinson (1962) and Sorkin (1990) in

auditory experiments. The method can be understood by considering how

the values were generated for Element 1 (the left-most element) in Partic-

ipant A's and Participant B's displays. In the independent condition (p =

0), each of the elements was drawn from a separate normal distribution as

follows: For Participant A, the value of Element 1 was equal to xa', for

Participant B, Element 1 was equal to xb, where xa and xh were normally

distributed, independent, zero-mean, equal variance, random variables.

However, in the correlated condition (p = 0.25), the value for each

participant's display element was generated as follows: For Participant A,

the value of Element 1 was set equal to Q.87xa + 0.5xc. For Participant B,

Element 1 was set equal to Q.87xb + 0.5xl:, where xa, xh, and xc were

independent, normal, zero-mean, equal variance, random variables (i.e., the

principle is the same as stated by Equation 2). In the correlated condition,

the corresponding elements in all pairs of displays were generated in a

similar fashion.

Results and Discussion

We evaluated performance in all conditions of the experiment

by calculating detection indices (d
r
) and criterion (c) measures

based on the obtained individual and group hit and false-alarm

rates (Macmillan & Creelman, 1991). The criterion measures were

Table 1

Experimental Conditions for the Group Sessions of Experiment 1

Size Correlation
(m) (p)

2 »
2
2
2
2
2

2
2
4
4
4
4
4
4
4
4
4U
4U
4U
6
7
6
6
7
7
7
7
7
6

0
0
0
0
0.25
0.25
0.25
0.25
0
0
0
0
0.25
0.25
0.25
0.25
0
0
0
0
0
0
0
0
0
0.25
0.25
0.25
0.25

DSNR

1
1
2
2
1
1
2
2

1
1
1.5
1.5
1
1
1.5
1.5

1, 1 ,2 ,2
1,2, 1, 2
2, 2, 1, 1

1
1
1
1.2
1.2
1.2
1
1
1.2
1.2

Number of
blocks of

Group membership 100 trials

SI S2
S5 S6
SI S2
S5S6
SI S2
S5S6
SI S2
S5 S6
SI S2 S3 S4
S5 S6 S7 S8
SI S2 S3 S4
S5 S6 S7 S8
SI S2 S3 S4
S5 S6 S7 S8
SI S2 S3 S4
S5 S6 S7 S8
S2 S5 S7 S8
S2 S5 S7 S8
S2 S5 S7 S8
SI S3 S5 S6 S7 S8
S2 S3 S4 S5 S6 S7 S8
S2 S3 S4 S6 S7 S8
SI S3 S5 S6S7S8
S2 S3 S4 S5 S6 S7 S8
SI S2 S3 S4S5 S6S7
SI S2 S3 S5 S6 S7 S8
SI S2 S3 S4 S5 S6S7
S2 S3 S4 S5 S6 S7 S8
S2 S3 S4 S6 S7 S8

12
8
8
8
8
8
8
8
8
8
8

12
8
8
8

11
8
4
4
4
4
4
4
4
4
4
4
4
4

generally near zero, indicating an absence of response bias, and

they did not vary consistently across conditions, participants, or

groups.3 Therefore, our analysis consider (a) the individual and

group detection indices and (b) the weighting strategies used in the

group conditions.

Figure 7 is a plot of group performance as a function of the

DSNR for all groups in which the DSNR was equal for each

member. The dashed curve on Panels A and B (1 symbols) in

Figure 7 shows the average detection performance of individuals

as a function of DSNR. Individual performance was essentially a

linear function of DSNR, consistent with the predictions of tradi-

tional, single-observer, detection theory. The absolute level of

performance also was consistent with previous results using a

similar task (Montgomery & Sorkin, 1996; Sorkin et al., 1991).

Average individual detectability at a DNSR equal to 1 was 0.78

with a standard deviation of 0.12. There was no significant differ-

ence between individual performance in the test (pregroup ses-

sions) and retest (postgroup sessions) conditions.

The indices of observer performance obtained in the individual

conditions can be converted to measures of individual detection

efficiency (Equation 11). Observer efficiency in the individual

sessions averaged 0.61, was moderately consistent across partici-

pants (the largest standard deviation in 77,. across participants at any

DSNR was 0.17), and was highly consistent across DSNRs (the

largest standard deviation in 17,. across conditions for any partici-

pant was 0.1). These efficiencies are consistent with those obtained

in our previous single-observer experiments.

The solid lines in Figure 7 show the effect of DSNR on the

performance of groups of 2, 4, 6, and 7 members (indicated by the

plotted symbols 2, 4, 6, 7); the left and right panels of the figure,

respectively, show the results for the uncorrelated and correlated

conditions. As in the individual case, performance increased with

DSNR (the increase with DSNR for 6- and 7-member groups did

not reach statistical significance). Group performance increased

with group size; for the p = 0 condition, F(4, 51) = 4.56, p <

.003. The small decrease in performance in the p = 0.25 condition

was consistent with Equation 7.

The nature of the increase in group performance with group size

is evident in Figures 4 and 6; the average group detection indices

(diamond symbols) are plotted as a function of group size for all

the zero correlation conditions having a DSNR of 1.0. The figures

also show the predictions of the ideal and Condorcet models that

assume groups having the same detection properties as the partic-

ipant groups. The performance of the human groups increased with

group size, but at a rate that was less than either the ideal model or

the simple majority Condorcet model. In Figure 6, the best fitting

line (on log-log) coordinates has a slope of 0.26 and is positioned

Note. DSNR = display signal-to-noise ratio.

3 The average criterion in the group conditions was 0.021 with a stan-

dard deviation of 0.17. The lack of criterion effects was consistent with our

previously reported data on individual participants in similar tasks (Sorkin

et al., 1991) and generally consistent with results reported by Pete et al.

(1993a) in their study of distributed detection by 3-person groups. The

criteria used by Pete et al.'s observers (operating points) reflected a
relatively neutral bias and were somewhat insensitive to experimental
manipulation of event probability and cost structure. However, the direc-

tion of the observers' criterion shifts was in the direction of the optimal

criterion. In all of our experimental conditions, the optimal group criterion
was 0 (c = 0).
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Figure 7. The obtained performance (</') of all groups, plotted as a function of the display signal-to-noise ratio.

Panels A arid B show, respectively, the data for the p = 0 and p = 0.25 correlation condition. The plotted

symbols (1, 2, 4, 6, 7) indicate the group size. The dashed line shows the data for the individual (1) condition

(repeated in each panel). The brackets indicate ±SEM.

above the Condorcet-unanimous function and just below the Con-
dorcet-(m — 1) function. It is clear that the overall efficiency of

human group performance decreased with group size.
We calculated the overall efficiency of detection performance in

the group conditions by using an ideal reference group whose

individual members had the same detection indices as obtained
from our human participants in their individual detection sessions.

That is, the d' indices obtained in the members' individual sessions

were taken to specify the putative values for those members in the
group conditions. For example, to calculate the ideal performance

of the 4-person group that consisted of Participants SI, S2, S5, and

S6, the d' values that had been obtained in the individual sessions

for these individuals were used to evaluate Equation 7. The cor-

relation among group members for the ideal group was assumed to

be the experimental value.
This calculation of group efficiency was made for all the groups

in Experiment 1. As in the individual participant conditions, effi-
ciency in the group conditions was highly consistent across dif-

ferent DSNR levels and somewhat consistent across groups of

similar size. The solid line and circle symbols in Figure 8 show the

obtained group efficiency measures as a function of group size, for
the p = 0 conditions. The figure shows clearly that overall effi-
ciency started out at a very high level, 90% for the 2-person
groups, but fell rapidly as group size was increased. In the next
section we consider the possibility that the decrease in efficiency

was due to the use of a nonoptimal weighting strategy.
Efficiency of decision weights. A correlational technique de-

veloped by Lutfi (1995) and Richards and Zhu (1994) was used to
determine the relative weights assigned to each member during the
response deliberation process. This technique is based on Berg's
(1989, 1990) conditional on single-stimulus (COSS) analysis of

decision weights in individual sensory tasks. Sorkin et al. (1991)
utilized the COSS technique in a study of visual displays using
stimuli similar to those in the present experiment. The basic idea
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Figure 8. A plot of performance efficiency as a function of group size for

the p = 0 conditions (circles). The triangles (and dashed line) show the

weighting efficiency, the group's ability to weight a member's contribution

by the member's expertise.
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of the correlational analysis is to compute the point-biserial cor-

relation between the stimulus presented to each observer and the

group's response over trials. Because we had recorded the mean

value of the nine-element display presented to each observer on

each trial, we could compute the correlation between this value and

the group's response. This correlation (scaled by the variance of

the stimulus data and using partial correlations when p > 0)

provides a measure of the relative impact of that observer's stim-

ulus on the group's decision. In previous applications of this

method, the goal was to assess the relative influence of different

components of the stimulus on the response of a single observer.

In the present experiment, we assessed the relative influence of

different observers on the response of the group.

Using the correlational technique, we estimated the weights

given to each observer in each condition. In some of the equal

DSNR conditions (6 person, p = 0, DSNR = 1.2; 7 person,

p = 0.25, DSNR = 1; 4 person, p = 0, DSNR = 1; and 4 person,

p = 0.25, DSNR = 1.5), the magnitude of the obtained decision

weights had approximately the same ordering as the ideal weights.

That is, the largest weights were given to the most sensitive

observers. In other conditions (7 person, p = 0.25, DSNR = 1.2; 7

person, p = 0, DSNR = 1.2; 4 person, p = 0, DSNR = 1.5; and 4

person, p = 0.25, DSNR = 1), the ordering appeared to be

random. However, in most cases, the variation in the obtained

decision weights for a condition was approximately the same as

the variation in the ideal weights for that condition. In only one

case (7 person, p = 0, DSNR = 1.2) was a negative weight given

to an observer. The particular observer was late for two consecu-

tive experimental sessions, thereby forcing the group to wait

before being able to start the session. Apparently, this behavior

resulted in her being given a negative weight.4 Figure 9 shows the

consistent weighting pattern that was obtained in the unequal

DSNR conditions (4 person, p = 0). Here, the weights corre-

sponded closely to the ideal values. In all three conditions, the two

highest weights were given to the two members with the highest

d's (and highest DSNRs).

We estimated that the standard deviation, cra, of the obtained

weights was approximately 0.04 (based on a statistical argument

and a separate computer simulation that produced essentially the

same result). Using that estimate, 24 of the 29 conditions tested

produced weights that were within a 99% confidence interval

around the set of optimal weights (i.e., 5 of 29 weights differed

significantly from the ideal). This result is not very surprising,

given the small variation in the ideal weights for the equal DSNR

conditions. This variation was due entirely to the variance in the

participants' d's; at a constant DSNR = 1, ad. = 0.12. In the

unequal DSNR condition, where <jd. > 0.45, none of the unequal

DSNR conditions produced weights that were significantly differ-

ent from the ideal.

Berg (1990) coined the term weighting efficiency (T)weight) to

describe how accurately weights were assigned in a detection task.

Weighting efficiency is equal to

^weight
"actual-weights

at-weights
(12)

index that would have been obtained using optimal weights. This

index is calculated by entering Equation 10 with the d\ indices

obtained in the individual sessions and the weights derived from

the correlational analysis of the group session (and the calculated

optimal weights). The dashed line and triangle symbols on Fig-

ure 8 show the obtained weighting efficiencies and allow compar-

ison with the overall detection efficiencies (circle symbols). Al-

though there was an apparent drop in weighting efficiency with

group size, the decrease cannot account for the large decrease in

overall efficiency with size. In Experiment 2 we extended Berg's

analysis to the general group decision situation, and we partitioned

the overall efficiency measure into several additional sources of

efficiency in the group's decision process.

The analysis of weighting efficiency indicated that the groups

were effective at weighting the judgments of individual members

according to the members' detection competence. Appropriate

weighting by member d' was very clear in the unequal DSNR

conditions and also was evident in many of the equal difficulty

conditions, even though there was no strong payoff consequence

for using an optimal weighting strategy in the uniform DSNR

conditions. We should point out that it is not necessary for the

group to make an accurate estimate of the d', of every other member

because most of the time the group members will convey confi-

dence information along with their judgments. A member having

a high-difficulty display will find it difficult to make signal-plus-

noise/noise-alone discriminations and will, if honest, communicate

that uncertainty to the group. For example, a member who has a

low-difficulty display may be very emphatic about conveying her

judgment. Furthermore, a group soon would lose confidence in,

and hence lower the weights given to, a member whose estimates

were consistently at odds with the trial-by-trial feedback.

The preceding weights analysis may not have revealed one

nonoptimal weighting effect that could have decreased overall

efficiency. Suppose that the person designated to make the group

response consistently gave a higher weight to her own judgment,

and that every member followed that same strategy.5 Because the

choice of responder was random and the higher weight for each

responder would be averaged across every member who re-

sponded, this higher-weight-to-responder strategy would be hidden

from our weighting analysis. We tested for this strategy by com-

paring the correlation between a member's stimulus and the

group's response when that member was the responder and when

that member was not the responder.

The data from the 4-member equal DSNR (p = 0) condition

were partitioned into the trials when a member was the designated

responder and the trials when that member was not the designated

responder. We then calculated the correlation between the group

where ^actual-weights K me index of detectability that would have
been obtained if the group's only inefficiency was due to using the

obtained, rather than the ideal, weights, and <,ptimai-Weights is tne

4 It is interesting that the group did not simply ignore this individual's

input by giving it a zero weight. Instead, they "punished" her by making

group responses that were contrary to her advice. Alternatively, she may

have responded to social ostracism by intentionally providing bad esti-
mates.

5 Harvey and Harries (1999) found that people put more weight on

forecasts that were their own (whether or not they were labeled as such) or

were labeled as their own (when they were not) than on forecasts that were

neither their own nor labeled as their own. They discussed several factors

that may be involved in the overweighting of one's own estimates.
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Figure 9. The average relative weights for each member of the 4-member groups in the unequal difficulty

conditions. The 5 and N symbols show the weights calculated separately on signal-plus-noise and noise-alone

trials. The ordering of obtained weights is close to the ordering of ideal weights.

response and that member's stimulus (separately) for the two sets
of partitioned trials. Two drawbacks of this analysis are the very
small number of trials on which the weight is computed and the
necessity to compare weights computed from different sets of
trials. However, the results were unambiguous: weights were con-
sistently higher when a participant was responder than when not.
The size of the responder effect, in terms of average difference in
decision weight, was approximately 0.15.

How much of a drop in efficiency would be produced by a
responder effect of this magnitude? Using Equation 10, we esti-
mated the drop in performance that would result from a consistent

weight increment of 0.15 given to the responder over the other
members. The uniform weight case was used as a comparison,
because the effect was assumed to be averaged across all group
members. In all cases, the estimated decrease in efficiency (for
equal DSNR and p = 0) was less than 0.10. This decrement is
much less than the observed drop in efficiency with group size.
Therefore, we reject inefficiency in assigning decision weights as
a major source of group detection inefficiency in this task.

Possible causes of decreased efficiency with size. One possible
cause of the decreased detection efficiency that we observed is that
the participants used a noninteractive, binary voting strategy such
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as used by a Condorcet group. It is difficult to test this hypothesis
directly. When plotted as a function of group size, the data do
resemble the (m - 1) Condorcet function. We monitored the
interactions of our groups and noted that many groups took binary
ballots during their deliberations. However, it was apparent that
members often communicated graded likelihood information when
they conveyed their binary votes; that is, they varied the tone of
their voices from tentative to emphatic and they included descrip-
tive phrases such as "I think," "definitely a signal," and "not sure."
Furthermore, the observed performance was well below that of the
Condorcet simple majority rule, and there is no reason to expect
that the group would have used a more stringent majority rule.

We believe that there are two likely causes and one unlikely
cause for the observed decrease in group efficiency with size. The
first likely cause is that as the group size was increased, the group
members were more rushed, less complete in their deliberations,
and effectively more Condorcet like. This possibility is supported
by the fact that there was a small incentive for completing the
deliberations rapidly. We did not record the average deliberation
time in the experiment, but we know that it took much longer to
complete a 100-trial block with the larger groups. If participants
were attempting to finish the same number of trial blocks per
session—to maximize their per hour pay—they would have
worked more hurriedly in the larger groups. To remedy this short-
coming in Experiment 2, we attempted to make the number of
trials per hour independent of group size.

The second possible explanation for the efficiency decrease is
simply that individual members may have worked less hard and
decreased their detection effort as a function of the group size.
Because of the statistical advantage of aggregating observations,
even a very small decrement in the detection index for the indi-
vidual members will produce a moderate to large decrement in
group performance. Such small decrements would be very difficult
to observe without running a large number of trials. Furthermore,
we did not have a precise estimate of the detection index for
individual members during the group sessions. Recall that to
calculate group efficiency we used the individual detection indices
that had been obtained in separate, individual detection sessions
with each participant. Thus, we had no way of knowing whether
the individual detection indices varied in different group size
conditions.

Finally, an unlikely explanation for the observed decrease in
group efficiency is that the correlation between member observa-
tions was actually not zero as set in the experiment. Perhaps the
judgments of members was correlated at some small but signifi-
cant level. Experiment 2 was designed to answer all these
questions.

Experiment 2

The decision task in Experiment 1 had at least two weaknesses.
First, it placed a slight premium on making decisions rapidly, and
this may have led the group deliberations to decrease in effective-
ness as the groups increased in size. Second, it did not require the
individual members to make a formal signal-noise response on
each trial. We did not require individual responses because we
wanted to minimize the chance that members would have a strong
commitment to a particular yes or no decision before the group's
deliberation on each trial. We thought that the absence of manda-

tory individual decisions would increase the likelihood that mem-
bers would contribute graded estimates of signal likelihood to the
group discussion. We also thought that members would be more
open to the influence of other members' opinions if they had not
committed themselves to a binary decision. This turned out to be
a weakness in the experiment's design, because, without any
formal response from a member, we could not accurately calculate
the level of detection performance for members in different con-
ditions. If a member's detection effort changed as a consequence
of some aspect of the group test situation, such as the group's size,
we could not easily detect that result. As a consequence, we were
unable to attribute the observed loss in group efficiency with size
to a particular cause. However, we were reasonably confident in
ruling out losses in efficiency resulting from inappropriate weight-
ing strategies.

These design limitations were addressed in Experiment 2. First,
we revised the task contingencies so that there was no financial
advantage to completing a block of trials in a shorter period of
time. Second, we required each group member to make a numer-
ical estimate of the likelihood of signal occurrence on each trial.
These estimates were recorded and displayed to every member of
the group so that they could be used during the group deliberations.
These estimates could be checked to determine the actual corre-
lation between the judgments of any pair of group members. As in
Experiment 1, we also recorded the mean value of the nine-
element stimulus display that was presented to each member on
each trial. These two pieces of information were used to calculate
measures of virtual performance in each condition: (a) the best
(ideal) group performance that was possible in the condition, and
(b) the best performance that would be possible from a hypothet-
ical group that used the information available in its members'
estimates of signal likelihood. In the next sections, we show how
these virtual measures of performance enabled us to calculate
the component efficiencies of the group's decision-making
performance.

Method

Participants. Twenty-one people from the university and community

(11 females and 10 males) participated as paid volunteers. Participants

were recruited by advertising in the school newspaper and from under-

graduate psychology classes. As in Experiment 1, all participants were paid

$4.25 an hour plus a bonus for correct responses, but the bonus in

Experiment 2 was approximately $1 per hour. Before testing, participants

were given extensive training to ensure task competency and minimize

learning effects during the experiment.

Procedure. The basic task, apparatus, and stimuli were the same as in

Experiment 1, except that the stimulus duration was 160 ms. After pre-

sentation of the stimulus display and before group deliberation, each

member was required to provide a rating, using a horizontal slider, of the

estimated likelihood of signal occurrence on that trial. After all of a group's

members had generated a rating, the ratings were rank ordered and dis-

played graphically to all members of the group. The ratings were presented

in a way designed to facilitate their use during the group decision process.

Figure 10 shows a sample display of the ratings displayed to members of

the group before deliberation. The ratings were ordered from the smallest

(noise alone most likely) to the largest (signal plus noise most likely) and

presented in a graphic display so that each member could quickly estimate

the degree of consensus favoring the noise-alone and signal-plus-noise

hypotheses. After the onset of this display, one of the members was

randomly selected to respond with the group decision. There was no time
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noise (NO)
member ratings

signal (YES)

Figure 10. An example of the display of member estimates of signal
likelihood on a trial. The members' estimates were displayed from top to
bottom in order of their favoring the likelihood of signal-plus-noise on that
trial.

limit to the deliberation process. The number of trial blocks run in each
group size condition and the number of trial blocks per experimental
session were fixed. Participants knew that there was adequate time in the
session for completing the required number of trial blocks. As in Experi-
ment 1, the incentive payoff to the individual members was determined
only by the accuracy of the group's decision. Conversation among group
members was allowed and occasionally occurred after the likelihood esti-
mates were displayed and until the presentation of the fixation stimulus on
the next trial.

A benefit of the rating display was that the group had an immediate
indication whenever a respondent made a response that appeared to be
inconsistent with the members' ratings. Such responses, although very rare,
often were noted by verbal comment or complaint from group members.
Because the graphic display ordered the responses in terms of rating
magnitude, it may have been difficult for the group members to identify
ratings with particular members. In most cases, however, the authorship of
an apparently deviant rating was often either volunteered or otherwise
evident by the end of the trial.

Table 2 summarizes the groups and conditions run. There were two
8-person groups. All groups were run for a total of 200 trials and at a
display correlation equal to 0 except for the 4-person group, which was run
for 300 trials. The DSNR was set at 1.33 except in the 10-member
condition and in one of the 8-member conditions, where it was set at 1 .
This was done to avoid obtaining excessively high group detection indices

(^group > 3) fr°m tne large groups.

Results and Discussion

Table 3 summarizes the obtained group performance averaged

over each size group (3, 4, 5, 8, and 10 members). The first column

in the table shows the group size and the second shows the DSNR

used. The third column shows the values of DSNR \/m for each

condition. These values predict the detection index for a hypothet-

ical ideal group of m members, based on Equation 8, the group

size, and the DSNR parameters. As in Experiment 1, the obtained

group performance d'group was based on the yes-no responses of the

randomly designated responder for the group. The resulting per-

formance is shown in column 4. In general, the obtained group

performance increased with group size and DSNR. An analysis of

the ratings of signal likelihood provided no evidence of a corre-

lation between any two members' ratings or of a nonuniform

Table 2

Experimental Conditions and Group Membership

for Experiment 2

Size Correlation
(m) (p) DSNR

3
4
5
8
8

10

0
0
0
0
0

0

1.33
1.33
1.33
1.33
1

1

Number of
100-trial

Group membership blocks

SI S2 S3
S4 S5 S6 S7
SI S2 S3 S8 S9
S2S3 S4S5 S6S7 S10 Sll
S12S13 S14S15 S16 S17

S18 S19
S12S13 S14S15 S16S17

S18 S19S20S21

2
3
2

2

2

Note. DSNR = display signal-to-noise ratio.

correlation between members' ratings and the group response.

Thus, there was no evidence of a correlation between member

judgments or for the use of nonuniform weights.

Although the DSNRV'w values provide an estimate of optimal

group performance, an improved estimate can be obtained from the

actual sequence of stimuli presented to the groups of participants

during the experiment. We determined this optimal level of per-

formance by assuming a virtual ideal group; this group bases its

decisions on a statistic, Xj, that is the sum of the actual stimuli

presented to the participants on each experimental trial:

Xj /, Xy, (13)
m

where xtj is the mean of the nine-element display presented to

member i on trial j. Xj is formed by summing the Xy values over the

m members. Because the Xy values contain all of the relevant

information in the members' displays, the Xj statistic summarizes

all of the information available on a trial. Thus, the theoretical best

performance obtainable from a group that used all of the informa-

tion in its displays is given by the performance of this statistic.

To specify the performance of the virtual statistic Xj,- we calcu-

lated the detection index d'x based on Xj. On each trial we summed

the recorded mean displays and compared the value of that statistic

Table 3

Indices of Group Detection Performance in Experiment 2

as a Function of Group Size and Display

Signal-to-Noise Ratio (DSNR)

Size (m) DSNR DSNRVm ^group < d'R

3
4
5
8
8

10

1.33
1.33
1.33
1.33
1
1

2.30
2.66
2.97
3.76
2.83
3.16

1.47
1.99
1.67
2.55
1.06
1.42

2.00
2.94
2.32
4.12
2.33
2.79

1.69
2.19
1.59
2.50
1.28
1.55

1.59
2.61
1.99
2.50
1.58
1.62

Note. The dgroup index is based on the accuracy of the human group's
decision on each trial. The d'x index would be expected from a statistically
optimal group that observed the same stimuli as the human group. The d'R
and d'AX, indices are component detection indices based on the members'
ratings (see text).
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to a criterion value, Xcrit. If X7 > Xcrit, the virtual group was con-

sidered to have made a signal-plus-noise response; otherwise, the

group was considered to have made a noise-alone response. A virtual

hit was scored if the statistic exceeded the criterion on a signal-plus-

noise trial, and a virtual false alarm was scored if the statistic exceeded

the criterion on a noise-alone trial. Thus, this procedure yielded a hit

and false-alarm rate for a block of trials of the experiment We

repeated the procedure using a range of values for Xcrit. The resulting

indices were averaged to arrive at the virtual measure of performance

d'x shown in column 5 of the table.6 All our subsequent calculations

of efficiency will use d'x as the estimate of d[deai. Note that if we had

used displays with different signal-to-noise levels for each member, it

would have been appropriate to use a weighted rather than an un-

weighted version of the X, statistic:

(14)

where {a,} is the set of optimal weights based on each member's
DSNR.

To calculate the overall efficiency of the obtained group per-

formance levels, we calculated the squared ratio of the obtained

group and ideal detection indices:

Coverall

"group 1 "group
(15)

These computed efficiency values are shown in column 2 of

Table 4 and are also plotted as a function of group size (the solid

curve and circle symbols) in Figure 11. (The two 8-member

conditions have been combined in Figure 11.) As in Experiment 1,

there was a significant drop in overall group efficiency with size,

F(l, 11) = 9.27, p < .012. Because of the limited number of

100-trial blocks (2, 3, or 4) on which to base an estimate of the

standard error of the efficiency measure, we ran Monte Carlo

simulations based on the obtained values of d'x and dgroup. From

each d' value, we generated a set of hits and false alarms and

computed the squared ratio of the resulting d' indices. The simu-

lation allowed an improved estimate of the standard deviation of

the efficiency measures. These values are shown as the error

brackets in Figure 11 and are approximately equal to or larger than
those based on the actual trial blocks.

A major objective of Experiment 2 was to factor overall group

efficiency into separate efficiency components that characterize

the individual detection efforts of the members and the efficiency

of the groups' aggregation of member information. In the next

several paragraphs, we show how this partitioning was accom-

plished and how one can perform a more detailed analysis of the
component efficiencies.

Recall that on each trial we had recorded the group's response

and the mean of each member's individual display. In addition to

those measures, we recorded the estimate of signal likelihood, rif

made by member i on trial j. We wished to calculate how much of

the information in the aggregated member judgments was pre-
served in the group's decision. Suppose that the only information

available to the group on a trial is the set of member ratings {r^}.

A virtual statistic based on these ratings would provide a measure
of the performance based on this information. We formed the
statistic

it
LLJ

0.9

0.8
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Figure 11. A plot of the efficiency of group performance as a function of

group size. The lower solid line (circles) shows the average overall effi-

ciency of the groups in Experiment 2. The brackets indicate ± 1 SEM. The

upper solid line (triangles) indicates the component efficiency associated

with the group decision process. The dashed line (diamonds) indicates the

component efficiency associated with the individual detection effort of the

group's members. (See text.)

(16)

where Rj is the summed rating of signal likelihood obtained from

the members on trial j. This statistic was then evaluated in a

manner similar to that used with the X, statistic. That is, we

calculated a virtual detection index based on Rj in the following

way: A response from R} was defined as a signal-plus-noise

response if and only if Rj > Rcrit. The resulting virtual hit and

false-alarm rates were used to calculate the ratings-based index,

d'R, shown in column 6 of Table 3.

The ratio (d'^TOUt/d'K)
2 provides a crude measure of how effi-

ciently the members' raw estimates {r^} were combined to form

the group's decision. If the obtained d'group and d'R indices were

equal, we would conclude that all of the information in the mem-

bers' ratings had been incorporated into the group decision. In fact,

6 There are a variety of techniques to calculate a d' index from such

rating data (e.g., find the best fitting ROC to all the points, estimate the area

under the ROC; see Swets, 1996). In our experiment, both the display

values and the rating values were essentially normally distributed, and only

the middle criterion values produced nonzero false-alarm rates and non-
unity hit rates. In view of the size of the trial block and the well-behaved

nature of the (display and rating) values, a more computationally extensive

procedure was deemed unnecessary. Note also that the displays from the m

members were weighted uniformly in our calculations. If the members had

been given displays with different signal-to-noise ratios, it would have
been necessary to weight each xtj by the member's DSNR.
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the Rj statistic may not contain all of the information present in the
members' ratings. For example, if there are differences in the

individual indices of member detection ability (or in the members'
DSNR), an improved statistic, ARf would use the appropriately
weighted ratings on each trial,

AR, = (17)

where {a,} is the set of optimal weights for the group based on the

detection indices of the individual members.

A statistic that improves on ARj follows from the assumption

that there is variability in the way individual members make their
rating judgments. Perhaps members use different scales for map-

ping their judgments of signal likelihood onto a graphical, numer-

ical, or verbal output. If that were the case, performance could be

greatly improved by normalizing the rating from each member

before combining the ratings into a group decision. Recall that we
recorded the mean display input xtj and the resulting rating rtj that

was generated by each member during a block of trials. We can

perform a linear regression on these data to predict the value of the

display input for a member given that member's rating on a trial.
The regression prediction enables us to generate estimates that

have scaling properties that are consistent across the members. We

define the predicted mean display input to participant i on trial j as

Xy to distinguish it from the actual mean display input, xtj. The
value Xy is determined by rti and the regression coefficients for

member j. We then define an optimally weighted statistic, AX'},

AX (18)

where {a,} is the set of optimal weights for the group and Jty is the

predicted display input for member / based on a linear regression

of member f s rating rit on Xy.

Now we can calculate the detection index, d'AX', for the virtual

group that uses the AXJ statistic. This detection index was com-

puted in the same manner as for d'x and d'R. That is, a response from

the AX'j statistic was defined as a signal-plus-noise response if and

only if AX'j > AX'CTit. The resulting virtual hit and false-alarm rates
were used to calculate the ratings-based index, d'AX.. This detection

index is especially useful because the AX'j statistic contains all of

the information in the aggregated judgments of the group's mem-
bers. Regardless of how the group may use the information that it

obtains from its members, on average it cannot do better than this

index (column 7 of Table 3). To calculate the efficiency with
which the group has used this information, we define the efficiency

of the group's decision aggregation process as

^decision

"group
(19)

This efficiency is the (squared) ratio of the actual group perfor-
mance divided by the performance possible if the group had used
all of the information available in the members' judgments.

Note that because the d'AX> index specifies all of the information
that the members have obtained from the displayed stimuli, we can
characterize the efficiency of the members' aggregate individual

detection effort as

(20)

This efficiency is the (squared) ratio of the performance possible
based on all the information in the members' judgments divided by
the performance possible given all of the information in the mem-
bers' stimuli. Thus, i7member specifies the overall efficiency with

which the members converted the stimulus information into rating
judgments.

We can now decompose the overall group efficiency into its

components. First, notice that we have partitioned the group effi-
ciency into two major components:

because

^decision " ^member

"grou

(21)

(22)

These two efficiency components are shown in columns 3 and 4 of
Table 4 and are also plotted as the upper solid line (triangle
symbols) and dashed line (diamond symbols), respectively, in

Figure 11. One can observe from. Figure 11 that there is a clear

distinction between the efficiency of the group decision process

and the efficiency of the aggregate detection efforts of the indi-

vidual members. Member effort declines with group size, whereas
group decision efficiency does not.

We can define further efficiencies by factoring the group deci-

sion component into three subcomponents:

d'

d'K d'A
-^ • (23)

The three terms on the right-hand side of Equation 23 may be

described, from left to right respectively, as (a) the efficiency of

decision based on ratings alone, (b) the weighting efficiency (as
defined earlier in Equation 12), and (c) the efficiency arising out of

consistency in the members' likelihood rating responses. That is,

the latter term would be unity if there were no variability in the

way that members generated their ratings.
Given the results of Experiments 1 and 2 (and the use of equal

DSNR values in Experiment 2), we have assumed that the weight-
ing efficiency was unity. Equation 23 may then be simplified to the

ratings-alone and ratings-consistency components:

Table 4
Measures of Efficiency as a Function of Group Size

Size (m) ''Idecisioi ^member ^ratings-aloi ings-consistency

3
4
5
8
8

10

0.54
0.45
0.52
0.38
0.21
0.26

0.86
0.58
0.71
1.04
0.45
0.76

0.63
0.79
0.73
0.37
0.46
0.34

0.76
0.82
1.10
1.04
0.69
0.84

1.13
0.70
0.64
1.00
0.66
0.91

Note. Column 2 shows the overall efficiency of the groups' performance.
Columns 3 and 4 partition the overall efficiency into two factors: t)decision,
which characterizes the efficiency of aggregating member judgments, and
^member, which characterizes the efficiency of member detection. Col-
umns 5 and 6 are subfactors of decision efficiency: the ratings-alone-
efficiency and the ratings-consistency-efficiency (see text).
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^decision

"PTnttn 1 / *^grOllp 1
(24)

Columns 5 and 6, respectively, in Table 4 summarize these deci-
sion subcomponents. Both subcomponents are relatively high and

appear to be independent of group size.

General Discussion

A quantitative model of group decision making should be able

to specify how performance depends on the formal properties of

the task and on the abilities of the group members. A signal-

detection analysis of the group decision task promises to meet

these requirements. This analysis shows how the group decision

rule, the constraints on member interaction, and the level and

distribution of member expertise affect the accuracy of group

performance. Furthermore, empirical tests of the theory lead nat-

urally to hypotheses about the sources of inefficiency in the

behavior of human groups and to estimates of the magnitude of

those inefficiencies.

According to the detection theory analysis, the accuracy of a
group's performance will be limited by the number and ability of

the members and the correlation among member judgments. It is

reasonable to expect that the performance of a human group will

fall between two extremes: the performance of the statistically

ideal detection group at the top end and the Condorcet (zero-

interaction, binary-voting) detection group at the bottom end. We

assume that there is a shared incentive for group members to work

toward accurate group performance, and that no individual incen-

tives conflict with the group incentive. We also assume that there

are no constraints on member interaction that would cause the

group to limit its mode of communication or deliberation. Finally,

we assume that no members of the group exert an improper

influence over the behavior of other members. Specifically, we

assume that some members may have a greater influence on the

group's decision than other members only if they are demonstrably

more competent at the task.

We applied the detection analysis to a visual task in which

groups had to make binary, diagnostic decisions based on the

relatively brief display of noisy, graphically presented information.

On the surface, this appears to be a very simple task. However,

even when the task is performed by an individual participant, it

involves many judgmental factors, including estimation, criterion

setting, and the recall of information from memory. Perhaps in part

because of its apparent simplicity, this task is a highly useful way

to study information processing in groups of participants and falls

well within the definition of group information processing as

defined by Hinsz, Tindale, and Vollrath (1997).

The present experiments were designed to give groups of indi-

viduals the opportunity to reach their maximum level of performance

in this decision task, by training, feedback, monetary payoff, and

the opportunity for full member interaction. The results of Exper-

iment 1 were generally consistent with the detection theory anal-

ysis in that (a) the level of group performance increased with group
size, (b) the advantage of size decreased when member judgments

were correlated, and (c) the group weighed the judgments of

individual members approximately in accordance with the mem-
bers' expertise. Libby, Trotman, and Zimmer (1987) showed that

the variance in expertise within a group and the group's ability to

recognize the relative expertise of its members are crucial in

determining group performance when member interaction is al-

lowed. Our results are consistent with their observations and with

studies that show that groups can recognize the relative expertise

of group members. For example, Henry (1993) demonstrated that

groups can estimate the ability of members, even when no specific

feedback about the correctness of judgments is provided.

Experiment 1 indicated that the efficiency of group performance

decreased as the group size was increased or, equivalently, that the

advantage of size declined more rapidly than the statistical expec-

tation. This is consistent with studies that have found decision

performance to be less than the statistical optimum (see Davis,

1992) and could be attributed to several possible causes, such as

(a) nonzero correlations between member judgments, (b) ineffi-

ciencies in how the member judgments were combined to form a

decision, and (c) decreases in member detection efforts with in-

creased group size. In Experiment 2, we attempted to either control

or assess the contribution of these different factors by requiring

each group member to make an overt estimate of the likelihood

that a signal-plus-noise event had occurred on each trial and by

displaying these estimates to the group during its deliberation. Experi-

ment 2 also enabled us to measure how efficiently the group used

the judgments received from its members and to quantify the aggre-

gate information losses resulting from decreased member effort.

Implicit in our analysis is the assumption that each member

makes an observation of the stimulus, and that this observation

leads to an internal, graded estimate of signal likelihood. One

member's estimate could be correlated with another member's

estimate as a consequence of common genetics, background, or

experience or because the experimenter has intentionally manipu-

lated the members' stimuli. This correlation between members is

confined by assumption to the individual's perceptual stage of

processing; that is, it is present earlier than the group decision

stage of the system shown in Figures 2 and 3. Conversely, the

influence of one member on another is confined to the decision

stage of the system, specifically, the setting of decision weights on

each member's contribution to the group decision (e.g., Kriss,

Kinchla, & Darley, 1977; Robinson & Sorkin, 1985).

In Experiment 1 we attempted to control the intermember cor-

relation by manipulating the stimulus information that was pre-

sented to each member. Our manipulation was designed to produce

member judgments that were either independent or at a set corre-

lation of 0.25. We observed a large drop in performance as a

consequence of experimentally increasing the correlation from

p = 0 to p = 0.25. If the member judgments had been correlated

to a significant degree before our manipulation, the predicted

effect of the increase in experimental correlation would have been

much smaller (i.e., the drop it produced by shifting from 0.2

to 0.45 would have been very small). Therefore, we concluded that

the effective correlation between members in the zero-correlation

condition must have been near zero. This conclusion was con-

firmed by Experiment 2, in which we recorded the member judg-

ments and could directly test the magnitude of the correlation
between the member's estimates. We found that the average cor-

relation between member estimates (considered within noise-alone
and signal-plus-noise trials) was essentially 0.

For the reasons of member background and experience cited

previously, one should not normally expect that the intermember
correlation will be 0, particularly when the stimuli are not random
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graphical patterns, as in the present study. Hinsz (1990) reported

on a group recognition memory experiment using a signal-

detection methodology. Hinsz's experiment involved 6 partici-

pants having the member properties: mean(J') = 1.04 and

var(d') = 0.19. He obtained a group of d' of 2.11 in his experi-

ment. This is much higher than the average member d' of 1.04 but

less than the ideal value of 2.77. What accounts for the decreased

efficiency of his participants? The discrepancy between ideal and

actual group performance is probably not attributable to inappro-

priate weighting of the members' judgments, because a uniform

weighting strategy would only have reduced the predicted value

to 2.55. It seems reasonable to attribute Hinsz's result to a corre-

lation among the members' recall and interpretation of the video-

presented material. For example, a correlation of 0.25 (and optimal

weights) would have dropped the predicted performance to the

level he observed. One would assume that even higher correla-

tions—and hence even greater performance decreases—would re-

sult from choosing jurors from a population having homogenous

ethnic and age characteristics.

Another reason for the low overall efficiencies obtained in

Experiment 1 was that time pressure may have encouraged the

members to use a Condorcet mode of decision. In fact, the results

were well below the level predicted by a simple majority Con-

dorcet rule. We attempted to ameliorate this problem in Experi-

ment 2 by removing time pressure as much as possible and by

eliminating any financial incentive to rushing the deliberation

process. A Condorcet rule is often used when the pressure of work

prevents full deliberation and communication among a group's

members. For example, consider a group that must select a person

for a position from a large number of job applicants. Because of

time pressure, the group first selects a "short" final list of candi-

dates from the large applicant pool. This is done individually and

without discussion. Each committee member examines the applicants'

folders and makes a yes or no decision on whether to include that

applicant on the short list. For a candidate to be on the list, the

candidate must receive a favorable vote from all of the committee

members. Although the present study offers no solution to the time

pressure problem, Sorkin et al.'s (1998) results suggest that the

committee would arrive at a better list of candidates if it used a

simple majority rule but asked each member to vote for fewer can-

didates. Note that the American jury does not fit the Condorcet model

even though it might use a unanimous rule. In the jury case, member

deliberation and interaction are encouraged rather than prohibited.

In addition to handling the correlation and deliberation problems

inherent in Experiment 1, Experiment 2 allowed calculation of the

separate efficiencies that describe the group decision process and

member detection effort. Surprisingly, the efficiency of the group

decision process did not decrease with group size. One would

expect that increased size would increase problems of coordination
and communication, opportunities for disagreements, and social

pressure from member subgroups. Apparently, at least in the
computer-aided situation of the experimental task, size did not

impose significant difficulties. One could argue that the display of

member ratings efficiently conveyed most of the information
needed by the members to perform the decision task, and that this

would probably not be the case for most "real" group decision
tasks. We tend to agree with that statement, but we also believe

that the present result argues strongly for providing such efficient

decision aids in "real" group decision situations.

Why does member effort decrease with group size? We have

mentioned the difficulty in measuring a small drop in the detection

effort of an individual participant in a group detection task. Only

when one aggregates the grouped effect of such drops does one see

a clear effect. Individual drops in effort are difficult to observe

even when, as in the present experiment, much larger numbers of

trials per condition are run than in the typical group study. Because

of this statistical aspect, it is relatively easy for an individual in a

group to decrease detection effort and remain anonymous. In fact,

the group payoff is not affected very much by a decrease in one

member's effort, but it is very much affected by a decrease in all
the members' efforts.

Kerr (1983), Shepperd (1993), and others discussed why partic-

ipants may reduce their individual efforts in a group situation and

indulge in "social loafing." If some type of social loafing were

present, we would conclude that the monetary payoff to each

participant was not sufficient to completely dominate incentives to

reduce individual effort or participation. Perhaps participants will

"loaf if they cannot see the statistical benefit of their contribution

to the group's performance (i.e., to their own payoff) and if they

can do so anonymously. Harkins and Petty (1982) found that

participants who viewed their contributions as nonessential re-

duced their individual efforts more than those who viewed their

efforts as significant. Following that reasoning, groups with high

intermember correlation should show greater decreases in effi-

ciency with size, because the benefit of each member's contribu-

tion is very much reduced. We did not run a high correlation

condition in Experiment 2, so we cannot test that possibility.

The efficiency of member detection effort (and total group

efficiency) shown in Figure 11 appeared to reach an asymptotic

level by group sizes of 12 or 14. This result is consistent with

social impact theory, which predicts a decreasing rate of reduced

effort with increasing group size (Latane, 1991). One is tempted to

speculate on the implication and potential application of this result.

Suppose that one assumes a single-member detection/decision task

having a signal-to-noise ratio of 0.5. A "real-life" version of such

a task might involve a predictive decision about the efficacy of a

medical research program or the strategic intention of an industrial

or military opponent. However, the low signal-to-noise ratio would

make this task unfeasible to be performed either by individual ob-

servers or small groups of observers. That is, the resulting hit rates

would be uselessly low and the false-alarm rates intolerably high.

However, if the group efficiency were asymptotic at 0.2 (see Figure

11), one might be able to use the statistical advantage of a large

networked group of decision makers to perform the task. For example,

a group of 25 decision makers would produce a group d' of \A? '

V« • SNR = VO-2 • V25 • 0.5 = 1.12. Although not earth-

shaking, the resulting performance could be useful in many situations.

Our analysis of group signal detection has emphasized perfor-

mance accuracy and has avoided the question of individual and
group response bias. To specify a system's detection ability com-

pletely, it would be necessary to know the ROC, the locus of

possible operating points in the hit and false-alarm probability
space for the system. This is because the ROC defines the system
behavior that will be produced at different levels of bias toward the
signal-plus-noise and noise-alone alternatives, including the point

of neutral bias. In the present study, our experimental materials

and conditions were designed to encourage individuals and groups

to operate only at the neutral bias point on the ROC. Our intent was
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to avoid the potentially complex problem of aggregating the

choices made by detectors having different response biases. To

ensure that participants operated with a neutral bias, all detection

conditions were conducted with symmetric payoff structures and

equal probability of signal plus noise and noise alone. In addition,

our participants were knowledgeable about the signal probability

and payoff structure, were highly experienced with the experimen-

tal conditions, and did not have to record binary responses during

the group deliberations. In our experiments they behaved with

essentially neutral biases as individuals and as groups.

Minimizing (and controlling) the bias problem allows for a

greatly simplified analysis of detection behavior (cf. Pete et al.,

1993b; Sorkin & Dai, 1994) but reduces the ability to generalize

the results to real-life situations. Moreover, if one assumes that

group members are not efficient at finding the optimal aggregate

operating point, the neutral-bias condition probably overestimates

the performance to be expected from a group that is solving a

real-life problem. In other words, having to compensate for vari-

ability in member bias provides an additional opportunity for a

group to operate in a nonideal manner. Thus, our approach fails to

address whether performance is affected by group members being

required to form binary judgments before deliberation or how the

group sets its criterion when the payoff structure or prior proba-

bilities are not symmetric. We hope to address these questions in

future experiments.
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Appendix

Performance of a Group That Uses Weights {a}

The performance, d', of a system that uses the Z statistic and arbitrary

weights, {aj, is given by the expected value (over trials) of Z given signal

minus the expected value of Z given noise, all divided by the standard

deviation of Z. Let Xti be the value of detector i's estimate on they'th trial.

The expected value of Z given noise is 0, so the numerator for d' is just the

expected value of Z given signal. That is,

l>? Var(XINDJ)]

= o N D + "'C

a,)2 Var[XCOMJ

The variance of Z over trials is the same given signal plus noise or noise,

and because the independent and common components of X are indepen-

dent,

Var[Z] = a,XCOMj]

and,

<*;«.„, =
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