
The signal detection framework has been a cornerstone 
of discrimination research for more than half a century. Its 
key feature is the provision of distinct measures for sen-
sitivity and bias that underpin basic and applied research 
into sensory and decision-making processes. Within 
this general framework, there are two main approaches: 
model based and nonparametric. The model-based ap-
proach makes explicit and testable assumptions about the 
distribution of the sensory representations of stimuli. By 
contrast, the nonparametric approach, which might pref-
erably be termed distribution free, makes no assumptions 
about the form of sensory distributions. The aim of the 
present study is to evaluate measures of sensitivity and 
bias from both approaches. These include long established 
model-based measures from the theory of signal detect-
ability (TSD) and Luce’s choice theory, some recent non-
parametric measures suggested by Balakrishnan and his 
colleagues (Balakrishnan, 1998a, 1998b, 1999; Balakrish-
nan & MacDonald, 2002, 2003), and nonparametric area-
based measures, with those for response bias presented 
here for the first time.

The present work was prompted by the challenges 
posed by Balakrishnan and his colleagues (Balakrishnan, 
1998a, 1998b, 1999; Balakrishnan & MacDonald, 2002, 
2003). They suggested that currently used TSD and choice 

measures of sensitivity and bias are fatally flawed. This is 
worrying because basic and applied researchers need to 
be able to choose appropriate measures of sensitivity and 
bias, secure in the knowledge that conclusions based on 
these measures are not flawed. These challenges are ad-
dressed empirically, using one of Balakrishnan’s (1999) 
own very comprehensive data sets. In addition to evaluat-
ing existing measures of sensitivity and bias, we provide 
a new area-based measure of bias and new methods for 
assessing bias that summarize all data points, in those 
paradigms that use confidence ratings. We also assess the 
relative strengths of more and less constrained versions of 
Luce’s choice theory and TSD.

This article has three main sections. The theory sec-
tion describes the key concepts, equations, and criteria 
necessary for empirical evaluations. The analysis section 
applies the criteria to empirical data from 4 individual 
participants making two-choice visual discriminations 
with confidence ratings (Balakrishnan, 1999). The final 
section discusses theoretical and practical implications of 
these analyses.

THEORY, EQUATIONS, AND CRITERIA

This section will start with a brief overview of two-
choice experimental paradigms and the general signal 
detection approach, including an explication of the term 
nonparametric. Then key equations of the model-based 
approaches will be provided. This will be followed by a 
description of distribution-free methods, including the 
new area-based measure of response bias. Then a new 
procedure for measuring the bias of complete receiver- 
operating characteristic (ROC) functions will be proposed. 
Finally, evaluation criteria for measures of sensitivity and 
bias and for model evaluation will be summarized.
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The most common experimental paradigm for discrimi-
nation in the signal detection framework is a simple two-
choice experiment with two possible stimuli (a, b) and 
two possible responses (A, B). For example, the stimuli 
might be a shorter line (stimulus a) and a longer line 
(stimulus b) with responses of short (A) or long (B), as in 
the data analyzed here. This paradigm is also relevant to 
applied situations, where the stimuli might be healthy or 
diseased biopsy samples, with responses being healthy or 
diseased (see Macmillan & Creelman, 1991, for an excel-
lent review). The A response to stimulus a is termed a hit, 
and the A response to stimulus b is termed a false alarm. 
The probability of a hit (h) and the probability of a false 
alarm ( f ) constitute the raw data from which sensitivity 
and bias measures are constructed, whether model based 
or nonparametric. In the confidence-rating version of this 
paradigm, participants give their chosen A or B response, 
together with a rating of their confidence in the accuracy 
of the response, given as c, on a scale from 1 to a maxi-
mum value of 100 (CMAX). These values are combined by 
recoding the responses as follows. The A response with 
confidence c is coded with a negative value, as decision 
criterion k  c, whereas the B response with confidence 
c is coded with a positive value, as decision criterion k  

c. The decision criteria (ks) thus range from 100 (A, 
very confident) to 1 (A, very unsure) and from 1 
(B, very unsure) to 100 (B, very confident). All equa-
tions and figures are displayed in terms of the decision 
criterion k. Then, at each criterion k, one can calculate 
the values hk (the probability of a hit, given criterion k) 

and fk (the probability of a false alarm, given criterion 
k). This is done by labeling all responses less than or 
equal to k (Ak) and all responses greater than k (Bk) and 
calculating hk  p (response Ak | stimulus a) and fk  p 
(response Bk | stimulus a). There are thus 2 CMAX (hk, fk) 
pairs. These may be used to generate an ROC function by 
plotting hk as a function of fk. Figure 1 shows examples of 
experimental raw ROC functions. 

For the model-based approach (choice or TSD) one 
point sensitivity and one point bias measure may be cal-
culated for each (hk, fk) pair. The exact equations depend 
on the model. The area-based approach also provides mea-
sures of sensitivity and bias for each (hk, fk) pair. The the-
ory section will show how to calculate all these sensitivity 
and bias measures. The confidence-rating version of the 
two-choice paradigm may also be used to generate ROC 
measures of sensitivity and bias on the basis of several 
(hk, fk) pairs. Here, such measures are termed ROC mea-
sures, and detailed equations for the different approaches 
will be provided in the theory section.

Sensitivity measures are useful because they describe 
how effectively a particular participant performs a speci-
fied discrimination. A key feature of a sensitivity measure 
is that it is invariant with respect to changes in motivation 
due to changes in reward structure or a priori stimulus 
probability. It is posited to depend only on the current abil-
ity of the participant and the difficulty of the discrimina-
tion task. The invariance property of sensitivity measures 
can be tested by manipulating motivation, while holding 
person and stimuli constant. A very large number of per-

Figure 1. ROC function p(hit) (h) as a function of p(false alarm) ( f ) for all the participants. Top panels, neutral conditions; bottom 
panels, biased conditions. Filled triangles are from response A, open squares from response B. The top left panel shows the key areas 
shaded, as an example, with OCX  KA (corresponding to response A) and ICX  KB (corresponding to response B). The point C 
represents the cut point between responses A and B. The line CX divides the region where response A is made from the region where 
response B is made.
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ceptual and memory discrimination experiments using the 
separate condition paradigm have shown that model-based 
sensitivity measures do not change with bias condition 
(Macmillan & Creelman, 1991). By contrast, sensitivity 
measures derived from the rating paradigm generally do 
show some dependence on confidence rating.

A key feature of a bias measure is that it is posited to 
be under voluntary control but consistent across motiva-
tional conditions. Motivational factors comprise rewards 
for being right, punishments for being wrong, the relative 
a priori probability of stimuli, and pressures toward speed 
or accuracy. Another desirable property of a bias measure 
is that it should provide a measure of normatively opti-
mal performance for any combination of a priori stimulus 
probability and payoffs. For any participant, a given payoff 
matrix and a priori stimulus probabilities should generate 
the same value of the bias parameter. This property can be 
fully tested only by tracing out an isobias function—that 
is, holding payoff constant and manipulating sensitivity. 
There are relatively few such studies (Dusoir, 1975, 1983; 
Irwin, Hautus, & Francis, 2001; Kornbrot, Galanter, & 
Donnelly, 1981; McCarthy & Davison, 1981, 1984). Most 
of the studies show rational conservatism: People move 
their decision criteria in the normatively correct direction, 
but less than would be predicted by normative models.

In general, response bias parameters are more easily in-
terpretable if symmetric about a predicted value of zero for 
a neutral condition. However, traditional measures of re-
sponse bias, based on likelihood ratios (often denoted ), 
have a value of 1 in a neutral condition, a value between 
1 and infinity when biased toward the A response, and a 
value between 0 and 1 when biased toward the B response. 
All the bias measures, defined in the theory section as 
values, have this property, including: T for TSD (denoted 

G by Macmillan & Creelman, 1991), L for choice the-
ory, and the newly defined area bias measure K. Such  
values are not symmetric about the neutral value of unity. 
For example, if   1 is neutral, favoring A twice as much 
as B would give   2, which is a difference of 2  1  1 
from neutral, whereas favoring B twice as much as A gives 

  0.5, which is a difference of 0.5  1  0.5. This is 
asymmetric and gives the false impression that favoring 
A twice as much as B is further away from neutral than 
is favoring B twice as much as A. However, if one uses 
ln( ) as a measure of bias, the neutral bias gives ln( )  
ln(1)  0; favoring A twice as much as B gives ln( )  
ln(2)  0.69, whereas favoring B twice as much as A 
gives ln( )  ln(0.5)  0.69. Thus, the advantage of 
any measure ln( ) is that it is symmetric about the neu-
tral point, so its magnitude is less likely to produce false 
impressions.

All approaches within the signal detection framework 
share the assumption that the internal representation of a 
stimulus over many trials generates an internal distribu-
tion on an internal variable, X (Macmillan, 2002; Mac-
millan & Creelman, 1991). The mean of the stimulus a 
distribution is assumed to be displaced from the mean of 
the stimulus b distribution by a distance, d. A participant 

is assumed to set a cut point or criterion, c, on the X di-
mension. On each trial, if the internal sensory represen-
tation is greater than c, response B is given; otherwise, 
response A is given. The representation on dimension X 
depends on external properties of the stimulus and inter-
nal attributes of the participant but is not under voluntary 
control. By contrast, the location of the criterion (c) is 
assumed to be under voluntary control. More controver-
sially, participants are also assumed to attempt to set their 
criteria optimally, so as to maximize rewards and mini-
mize penalties. 

Approaches in the general signal detection frame-
work may be divided into two broad classes, often des-
ignated parametric and nonparametric. The parametric 
class makes specific assumptions about the form of the 
stimulus and criterion representation distributions. It in-
cludes TSD (normal stimulus representation distribution) 
and Luce’s choice model (logistic stimulus representation 
distribution). The nonparametric class makes no such dis-
tributional assumptions. Because of the confusions sur-
rounding the parametric/nonparametric distinction, in this 
article parametric approaches are termed model based, 
whereas nonparametric approaches are termed distri-
bution free (Macmillan, 2002; Macmillan & Creelman, 
1991). In order to understand the reasons for this termi-
nology, it is desirable to specify what exactly is meant by 
nonparametric in the signal detection context. The term 
nonparametric is generally applied to statistical proce-
dures if either one or both of the following hold: (1) The 
variables are nonmetric, either ordinal or nominal, and/or 
(2) the distribution of the variables in the population is un-
known. If only the second holds, the procedures may be more 
accurately termed distribution free. Ordinal statistical proce-
dures—that is, procedures based on ranks—are also often 
termed nonparametric. However, ordinal procedures are 
usually not distribution free when applied to metric (interval 
or ratio) data. Common procedures in this class, including 
the Mann–Whitney, Wilcoxon, and Kruskal–Wallis, assume 
that all relevant distributions are of the same shape—that 
is, have the same variance, skew, kurtosis, and all higher 
moments. However, no assumption is made about what 
that shape actually is. In the signal detection framework, 
the variables at issue are the representations, assumed to 
be metric, of the physical stimuli and criteria in the human 
brain. Both TSD and choice models have sensitivity and 
bias measures that are distribution dependent. So-called 
nonparametric sensitivity and bias measures make no 
such distributional assumptions and, so, are distribution 
free. This includes both classic measures, such as the area 
under the ROC curve, and newer measures proposed by 
Balakrishnan and his co-workers. Nevertheless, even the 
distribution-free measures are metric parameters derived 
from the probabilities of hits and false alarms. Hence, the 
contrast of model based versus distribution free is pre-
ferred to the contrast of parametric versus nonparametric. 
An important corollary is that it makes sense to compare 
arithmetic means of a sensitivity or bias parameter be-
tween groups.
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Model-Based Approaches
In general terms, the sensitivity measure for either TSD 

or Luce’s choice model can be expressed as the distance, 
d, between the mean of the stimulus a distribution and 
the mean of the stimulus b distribution, divided by some 
estimate of variance from the stimulus b and stimulus a 
distributions. (Note that sensitivity in this signal detec-
tion sense is quite different from sensitivity of tests in 
the medical diagnostic sense.) If variances of the sensory 
distributions for the two stimuli differ (perhaps because 
stronger stimuli are more variable), there will be an ad-
ditional sensory measure to describe the ratio of the vari-
ance of the stimulus a distribution to the variance of the 
stimulus b distribution. A measure of bias is chosen that 
is some function of the cut point c that would remain con-
stant for different sensitivities if—and it is a big if—par-
ticipants set c to maximize their objective rewards.

Theory of signal detectability. The simplest version 
of TSD (Macmillan & Creelman, 1991; Swets, 1986) has a 
sensitivity measure (d ) and a bias measure ( T; subscript 
“T” for TSD) that may be calculated from the proportion 
of hits (h) and the proportion of false alarms ( f ). The d  
measure is defined as the separation between the mean 
of the stimulus b normal distribution and the mean of the 
stimulus a normal distribution, divided by their assumed 
common standard deviation (arbitrarily set to unity):

 d   z(h)  z( f ), (1)

where z( p) is the inverse normal probability correspond-
ing to cumulative probability ( p) (Macmillan & Creel-
man, 1991, Equation 2.10).

The likelihood ratio bias parameter ( T) is the ratio of 
the probability density (height of the curve) of the stim-
ulus b distribution to the probability density of the stim-
ulus a distribution at the cut point criterion, and ln( T) 
(Macmillan & Creelman, 1991, Equation 2.10) is the TSD 
measure that is symmetric about a neutral value of zero:

 
ln . ( ) ( ) .T 5 2 2z h z f

 
(2)

Optimal values for T and hence, equivalently, ln( T) when 
there are biasing manipulations due to different a priori 
stimulus probabilities or payoffs are also easily obtained:
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where a, b are a priori probabilities of stimuli a and b, 
respectively.

When one can obtain several points on an ROC curve, 
either from a rating experiment or from several conditions 
with different optimal biases, more information is avail-
able. Then TSD predicts that z(correct | stimulus x) will be 
a linear function of z(error | stimulus x):

 
z h d

s
z f( ) ( ),ROC

T

1

 
for response A, (4A)
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where dROC is sensitivity at the mean of the b distribution; 
sT  [ (b)/ (a)], the ratio of the stimulus b variance to 
the stimulus a variance; cr is probability of correct reject, 
p(response B | stimulus b); and m is probability of a miss, 
p(response B | stimulus a). Equations 4A and 4B represent 
the TSD normal transformed ROC functions. Estimates 
of the measures sT and dROC can be obtained directly from 
the slopes and intercepts of Equations 4A and 4B.

Obviously, given dROC and sT, one can calculate d  and 
ln( T) corresponding to any other empirically determined 
value of z( f ). Furthermore, one may calculate whether T 
is optimal for any experimenter-determined bias condi-
tion. If the ROC curve arises from separate experiments 
for each point, the ROC obtained from the response B 
from Equation 4B is completely determined by the con-
ventional response A form, because h  m  1 and c  
f  1. However, in a confidence-rating experiment, there 
are independent measures for response A and response B 
for each confidence level. In fact, the measure de, sug-
gested by Egan (Egan, Schulman, & Greenberg, 1959), is 
more comparable to d  at a neutral cut point; the parameter 
is the value of d  where the TSD ROC line cuts the minor 
diagonal and is given by (Macmillan & Creelman, 1991, 
Equation 3.8):
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(5)

Equations 4A and 4B describe the TSD ROC in normal–
normal coordinates and enable graphical and statistical 
evaluation of the TSD model. One may obtain estimates 
of sT and dROC (and hence, de) as the mean of the values 
obtained from the response A and response B versions of 
the normal transformed ROC functions in Equations 4A 
and 4B. One may then test whether sT  unity, thus sup-
porting the simpler equal variance version of TSD. Obvi-
ously, with unequal variances, d  estimates at an arbitrary 
cut point are not predicted to be bias free. Note also that 
the stimulus variances ( B, A) actually include the cri-
terion (confidence-rating) k variances. This is because 
what is measured is the difference between the relevant 
stimulus mean and a criterion, and the variance of a dif-
ference var(x y) is the sum of var(x)  var(y). That is, zh 
is generated from the cumulative distribution of the rep-
resentation of the difference between the a stimulus and 
the criterion, and similarly for zf. In a simple two-choice 
experiment, there is only one criterion and, so, only one 
criterion variance. Consequently, stimulus and criterion 
variance cannot be disentangled, and there is no point in 
considering the criterion variance separately. Rating ex-
periments are more complex. There are several criteria 
and so, potentially, several different criterion variances. 
Equations 4A and 4B include the implicit assumption that 
all criterion variances are equal. If the variances of the 
extreme confidence ratings are higher than those for the 
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less extreme confidence ratings, there will be systematic 
deviations from the linearity predictions of Equations 4A 
and 4B. If all criterion variances are equal, the whole ROC 
function can be predicted with just two free parameters, 
de and sT. These same arguments also apply to the choice 
formulation.

Luce’s choice theory. Choice theory (Luce, 1959) can 
be cast in a form very similar to that of TSD. The only 
difference is that the logistic distribution is substituted 
for the normal distribution. For a single experiment, the 
sensitivity parameter equivalent to d  is ln( ), and the bias 
parameter is ln( L; subscript L for Luce), where for any 
probability p, the logit of p, lgt( p), is given by

 
lgt ( ) ln

(1 )
p

p
p

.
 

(6)

The choice sensitivity parameter, ln( ), is then given by 
(Macmillan & Creelman, 1991, Equation 2.13):

 ln( )  0.5[lgt(h)  lgt( f )]

  0.5[ln(h)  ln( f )

  ln(1 f )  ln(1 h)]. (7)

The bias measure, L, is given by

L

L

h h f f
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(8)

In choice theory, ln( L) plays the same role as ln( T) in 
TSD. The optimal value of the criterion is thus also given 
by Equation 3.

The choice model is also convenient because asymp-
totic standard errors (ASEs) of the measures are simple 
to calculate. If some measure X is given by the ratio or 
product of two independent probabilities, the ASE of ln(X) 
is given by

 

ASE X
n N n n N n

[ln( )] ,1 1 1 1

1 1 1 2 2 2  
where for i  1, 2, pi  ni/Ni are the independent prob-
abilities given by ni criterion events from Ni attempts 
(Agresti, 1996). Application of this result gives the ASE 
for the choice parameters:
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where nJi is the number of responses “J” (J  A, B) to 
stimulus i (i  a, b). The equations for the choice ROC, 
equivalent to Equations 4A and 4B for TSD, are

lgt lgt( ) lgtROC
L

( ) ( ),h
s

f2 1

  for response A, (10A)
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  for response B, (10B)

where sL  ratio of variances for a and b choice theory 
(stimulus  criterion) representations. Equations 10A and 
10B represent a logistic or choice model ROC function. 
As with TSD, one may obtain an average estimate of the 
slope as the geometric mean of the slopes from the A and 
B responses as lgt( )ROC and then obtain an estimate of the 
choice parameter at the cut point as lgt( )e, where
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It is often claimed that the logistic and normal distribu-
tions are so similar that one cannot distinguish Equations 
4A and 4B from Equations 10A and 10B. However, there 
are differences for extreme ratings, because the normal 
density distribution drops very sharply as exp( 1/x2), 
whereas the logistic density distribution drops only as 
exp( 1/x). Another difference is the ratio of variances, sT 
or sL. A variance ratio of unity indicates a simpler model 
with one less parameter. For auditory categorization of 
loudness, Kornbrot (1978, 1980, 1984) found variance 
ratios much closer to 1 for the normal model than for the 
logistic distribution.

Distribution-Free Approaches
Distribution-free measures of sensitivity attempt to es-

timate how “far away” the observed h, f pairs of probabili-
ties are from values corresponding to no discrimination 
at all (the major diagonal in Figure 1), without making  
any assumptions as to the distribution of the sensory  
representation. 

Area-based measures. A widely used distribution-
free measure of sensitivity of this type is the area under 
the raw ROC function (i.e., h as a function of f ), denoted 
here A. If only one point is available, an estimate of A (A ) 
is given by (Macmillan & Creelman, 1991, Equation 4.8)

 

A
f
h

h
f

1 1

4 1
1

.

 

(12)

This is actually the average of the minimum and maxi-
mum possible areas, given the observed values of f and h. 
(Craig, 1979; Macmillan & Creelman, 1996; Pollack & 
Norman, 1964). Clearly, A  is a point measure that can be 
calculated at each confidence-rating criterion. The extent 
to which A  changes with criterion is then an empirical 
question. The extent to which A  at any point is a good 
estimate of A, the area under the full ROC curve, is also 
an empirical question.

There have been several suggestions of area bias mea-
sures, but all have been shown to be monotonic with one 
of the choice model bias parameters and, hence, not distri-
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bution free (Craig, 1979; Grier, 1971; Hodos, 1970; Mac-
millan & Creelman, 1991, 1996). For this reason, they will 
not be discussed further. The area bias measure proposed 
here ( K) is defined as the ratio KB/KA, where KB is the 
area between the ROC curve and the major diagonal to 
the right of the minor diagonal (shown striped in Figure 2) 
and KA is the area between the ROC curve and the major 
diagonal to the left of the minor diagonal (shown dotted 
in Figure 2). In the same spirit as Equation 12, one may 
then define estimated measures KA and KB as the averages 
of the minimum and maximum possible areas between the 
ROC curve and the major diagonals to the left and right of 
the minor diagonals. In the following equations, empirical 
areas are indicated by unprimed symbols (A, KA, and KB), 
whereas estimates that are based on the mean of the maxi-
mum and minimum possible areas, assuming a concave 
ROC function, are indicated by corresponding primed 
symbols (A , KA, KB, and K). Obviously, A  KA  KB  
0.5, and A   KA  KB  0.5. Simple geometry (see the 
Appendix) gives the following equations for KA and KB:
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An approximate area-based point bias measure is then 
given by
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(14)

The ln( K) can be calculated at any criterion value, k, and 
has the desirable property of being symmetric about zero, 
where the criterion indices k run from CMAX through 
0 to CMAX. Neutral bias gives ln( K) equals zero, and 
equivalent biases toward A and B responses give equal 
and opposite values of ln( K). Consequently, ln( K) can be 
directly compared with the model-based measures ln( T) 
from TSD and ln( L) from the choice model. Furthermore, 
ln( K) is not monotonic with any of the choice parameters.

When several points on an ROC curve are available, the 
empirical estimates of the ROC area measures KA and KB 
can be obtained. These can then be used to calculate the 
ROC area sensitivity measure, AROC  0.5  KA  KB 
and the ROC area bias measure, K  KA/KB . If partici-
pants can give confidence ratings between 1 and CMAX, 
the rating function has 2CMAX points indexed by the crite-
rion k, ranging from 1 to 2CMAX. Equations for KA and KB 
are given below (their derivation from simple geometry is 
given in the Appendix):
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(15B)

Equations 15A and 15B can then be used to give a more 
accurate area bias measure at the A, B cut point, denoted 

K, analogous to the measure in Equations 14A and 14B:

 
K

K

K
A

B

.
 

(16)

The K measures behavior at the A, B cut point but uses 
performance from the whole ROC.

Note that KA and KB are areas fully under the ROC func-
tion, not approximations to a smooth curve going through a 
very large number of points. Consequently KA and KB will 
depend on the number of criteria. With a confidence rating 
scale from 1 to 100, the difference is negligible. However, 
with a small number of criteria (e.g., just confident and 
unconfident, giving only four possible responses), the 
underestimation would be substantial. Hence, AROC and 

K should be used only to compare conditions with the 
same number of responses. More accurate estimates of 
the average of the minimum and maximum possible areas 

Figure 2. ROC plot of h as a function of f, showing areas re-
quired to calculate point area measures A , KA, and KB (top panel) 
and full ROC area measures A, KA, and KB (bottom panel). Dotted 
areas represent response A; striped areas represent response B. In 
the top panel, OCX is the minimum area for response A, OCX  
OCV is the maximum area for response A, ICX is the minimum 
area for response B, and ICX  ICU is the maximum area for 
response B. In the bottom panel, the polygon PkPk 1Xk 1Xk rep-
resents a generic polygon contributing to a total area KA or KB.

U
M

C

X

C

P K +
 1

P K

X K

X K +
 1

X C

f

M I

U Iu1 – u

V

V

1 
– 

v
 v

0

0

0

0

1

O

O

1 
– 

h

y

x

2 –
 x

T



DISTRIBUTION-FREE AND MODEL-BASED SIGNAL DETECTION    399

are available from the author. However, they are tedious to 
calculate and show little or no advantage over KA and KB.

Balakrishnan’s distribution-free measures for full 
ROC function. To obtain a sensitivity measure, Bal-
akrishnan (1998b) considered the discrete function UR( j) 
defined over J possible rating criteria, defined as

 UR(k)  p(response  k | stimulus a)

 p(response  k | stimulus b).

UR(k) is the difference between the hit and the false alarm 
probabilities at criterion k, which is, of course, the same as 
the difference between the probabilities of a correct and an 
erroneous response at criterion k. Balakrishnan (1998b) 
defined the sensitivity measure, S  as the sum of UR(k) 
over all criteria:

 
S U kR

k

C

( ).
1

2 MAX

 
(17)

When the number of criteria is small—as, for example, 
with a Likert scale, where people rate responses as un-
certain, moderately confident, or very confident—most 
(but not necessarily all) participants use all the responses. 
However, when the confidence is on a rating scale from 1 
to 100 or on a continuous slider, people rarely use all the 
possible responses, and the S  measure is confounded by 
the number of different responses a person chooses to use. 
This measure is provided here because it was presented as 
an alternative to d  by Balakrishnan and his co-workers (Bal-
akrishnan, 1998a, 1998b, 1999). He and his co-workers now 
suggest a further measure, 0, that estimates unbiased per-
formance (Balakrishnan, MacDonald, & Kohen, 2003). 
Whether 0 remains constant across conditions with dif-
ferent a priori stimulus frequencies and/or different pay-
offs does not appear to have been tested. Hence, 0 will not 
be considered here.

Balakrishnan and his co-workers (Balakrishnan, 1998a, 
1998b, 1999) also noted that prior to their work, all mea-
sures of bias were what we have called here point measures. 
Such measures in no sense assess the bias of a whole ROC 
function, relative to neutral. This is an important insight. 
It suggests that a useful bias measure should both assess 
the shift of the whole ROC function and be independent of 
the distribution of the stimulus representation. With these 
goals in mind, they define suboptimal—in their terms, bi-
ased—responses as responses where p(correct | R  k)  
0.5. For such a criterion, k, an estimate of bias k is equal 
to the total number of responses at that value of k divided 
by the total number of trials (Balakrishnan, 1998b, note 
to Table 5).

Then,
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where N is the total number of trials, A is a measure 
of bias on occasions when response A is given and is 
negative, and B is a measure of bias on occasions when 
response B is given and is positive. The total bias of the 
complete ROC function is then defined as T A 

B. Positive values of T indicate bias toward B, and 
vice versa. Balakrishnan and his colleagues’ approach to 
suboptimality and bias is thus different from that of the 
general signal detection framework. Their approach first 
identifies adjacent criteria k that are suboptimal according 
to the criterion p(correct)  p(error) and then uses k as 
a measure of the magnitude of that bias. The k are point 
measures based on simple probabilities, unlike either the 
area- or the model-based bias measures, in Equations 8, 
14, and 16, which are point-based bias measures based on 
cumulative probabilities. Thus T is different from other 
bias measures both because it is a whole ROC measure 
and because it is ultimately based on simple, rather than 
cumulative, probabilities. So it is to be expected that T 
will behave differently from other bias measures.

The ln(odds ratio) as a distribution-free bias mea-
sure. A widely used distribution-free point measure of 
bias is the ln(odds ratio). It may be obtained by assuming 
that no matter how the independent probabilities h and 
f are generated, they remain constant throughout an ex-
periment and, hence, both of their sample estimates are 
generated by a binomial distribution. The ln(odds ratio) 
is identical with the choice bias measure ln( L). Clearly, 
the ln(odds ratio) may be calculated at any or all criterion 
values.

New Measures of Bias From Rating ROCs
A key property for a bias measure is that it should be 

used consistently for any given set of motivational factors. 
If the experimental situation is neutral—that is, stimuli 
have equal a priori probabilities and equal rewards for cor-
rect responses and penalties for errors—bias as measured 
by ln( ) for confidence c, given response A, should be 
the exact opposite of bias as measured by ln( ) for confi-
dence c, given response B. If the conditions are biased, the 
function should be displaced. The general prediction is

 
ln ,Bmeasure Ameasure measureG

 
(19)

where measure can be derived from TSD, choice, or area 
procedures.

The constant should be zero for neutral conditions and 
negative for bias toward response B. The Gmeasure con-
stants are new measures indicating how far a whole ROC 
function departs from being neutral, rather than how much 
the cut point between A and B is displaced from neutral. 
Equation 19 can be tested for T from Equation 2, L from 
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Equation 8, and K from Equation 14. (One might also use 
K from Equation 16, but it is so similar to K that a sepa-

rate test is not worthwhile.) For model-based approaches, 
the optimal value of the constant is predictable from the 
payoff matrix and the a priori probabilities of the stimuli 
(see Equation 3). Equation 19 is important because it pro-
vides a way to evaluate the bias of the whole ROC func-
tion that depends on cumulative probabilities, unlike , 
which depends on simple probabilities.

A slope of 1 is implicitly predicted for the regres-
sion of ln( Bmeasure) on ln( Ameasure) in Equation 19. If the 
slope is 1, there is symmetry about the Gmeasure point, 
and one can state that the participant is consistent in the 
usage of criteria but biased. Whether the bias is appropri-
ate or optimal is then an empirical question that depends 
on the payoffs and a priori stimulus probabilities. A slope 
different from 1 indicates that a participant has a differ-
ent confidence scale for A and B responses.

Evaluation Criteria
The evaluation criteria address three issues: perfor-

mance of the sensitivity measures, performance of the 
bias measures, and assessment of fit of equal and unequal 
variance versions of TSD and choice models. 

Performance of the sensitivity measures. The first 
evaluation criterion for the sensitivity measures is invari-
ance of the point measures as a function of criterion, k, 
within each condition (k  CMAX, CMAX 1, . . . , 1, 
0, 1, . . . , CMAX 1, CMAX). This will be evaluated in 
three ways. The first is visual inspection of a plot of rela-
tive sensitivity as a function of criterion k. Relative sensi-
tivity, Srel, is defined by

 
S

k
rel

(sensitivity at criterion )
(sensitivitty at cut point)

.
 

(20)

Visual inspection is obviously subjective and, so, is used 
only to determine whether further analysis is useful. Where 
two models are so similar that visual inspection is uncertain, 
any differences are unlikely to be important anyway, even if 
they are statistically significant. The second criterion is the 
frequency of occurrence of values of sensitivity more than 
an arbitrary x% from the value at the cut point. Analyses 
shown here use the criterion of x%  15%, but essentially 
the same conclusion would have been drawn with x%  5% 
or 10%. The third criterion is the minimum and maximum 
percentages of overestimation and underestimation of sen-
sitivity, relative to the cut point sensitivity, where

overestimate % 

 

100(sensitivity at criterion )
(sensitivity

k
at cut point) 100  

(21A)

and

underestimate % 

 

100 100(sensitivity at criterion )
(sensiti

k
vvity at cut point)  

(21B)

for over- and underestimates, respectively. The number 
of extreme criterion points included will affect all these 
criteria. Furthermore, both the number and the extrem-
ity of criterion use changes quite a lot across conditions 
and participants. For this reason, the variance (or coef-
ficient of variation) of sensitivity measures is not a useful 
measure of consistency across criteria. These methods of 
evaluation may not be ideal, but they are explicit, so that 
other investigators can apply them to their own data—or 
suggest better ones.

It is also important to know whether the rating pro-
cedure has substantial advantages over the simpler two-
choice procedure. To evaluate this issue, point measures 
will be compared with their ROC equivalents for TSD, 
choice, and area formulations.

Finally, the invariance of sensitivity measures across 
different bias conditions will be tested. If people and 
stimuli are unchanged across conditions, there should be 
no change in sensitivity measures. However, neutral con-
ditions were always run first, so there might be practice 
effects.

Performance of the bias measures. The first crite-
rion is the consistency of use of point bias measures across 
responses A and B. This criterion may be evaluated by 
testing Equation 19 for linearity and unit negative slope, 
separately for TSD, choice, and area measures.

Then performance of point bias measures at the cut 
point will be compared with equivalent ROC measures 
from Equation 19.

The next issue is whether participants have control of 
bias. This is evaluated by testing whether the bias measures 
have different values in different motivational conditions. 
Once it has been established that a bias measure does in-
deed change, the next question is whether the actual values 
of bias measures are optimal. In its strongest form, this 
question makes sense only for model-based approaches, 
since it is necessary to know the form of the stimulus rep-
resentation to determine the optimal value according to 
equation. In a weaker form, one may ask whether the bias is 
in the “right” direction—that is, is response B made more 
often if a correct response to stimulus b is more highly re-
warded or if stimulus b has a higher a priori probability? 
However participants may not behave optimally according 
to any measure. Although it is still of interest to discover 
whether performance is in fact optimal according to each 
specific bias measure and, if not, whether bias is at least in 
the normatively correct direction.

The “fit” of equal and unequal variance versions 
of TSD and Luce’s choice model. This criterion will be 
evaluated via the TSD and choice ROC functions by test-
ing the fit of Equations 4A and 4B (TSD) and Equations 
10A and 10B (choice), separately for each participant in 
each condition. The more general models are satisfied 
if there is a strong linear trend and no significant higher 
order polynomial trends. In addition, there should be no 
significant differences in parameter estimates obtained 
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from the A and B responses. Finally, slopes not signifi-
cantly different from unity indicate that the simpler, equal 
variance version of a model is tenable.

ANALYSIS OF  
BALAKRISHNAN’S (1999) DATA

The data analyzed here have been described by Bal-
akrishnan (1999) and are available online (Balakrishnan 
& MacDonald, 2003). They consist of individual data on 4 
participants performing a difficult line length discrimina-
tion task, with confidence ratings. All 4 participants per-
formed in both a neutral and a biased condition. Experi-
ment 2 was a frequency manipulation experiment. There 
were 2 participants, identified here as Afreq and Bfreq. 
Both performed in a neutral (equal) condition, with equal 
frequencies for stimulus a and stimulus b, and a biased 
(unequal) condition in which the frequency of stimulus b 
was three times the frequency of stimulus a. Experiment 3 
was a payoff manipulation experiment. There were 2 par-
ticipants, identified here as Cpay and Dpay. Both per-
formed in a neutral condition, with payoffs that did not 
depend on the stimulus presented, and a biased payoff 
condition in which the rewards for the correct responses 
and the penalties for the wrong responses to stimulus b 
were three times the rewards and penalties for equivalent 
responses to stimulus a. Optimal bias toward A was 1/3, in 
both the frequency and the payoff biased conditions. The 
neutral condition came first in both experiments. Allowed 
confidence ratings were 1–100, derived from a slider 
scale. All analyses were based on cumulative probabilities 
where the absolute frequency (numerator) was at least 5 
and the number of stimulus presentations (denominator) 
was at least 640.

General Description of ROC Functions
Figure 1 shows ROC functions for all the participants in 

both conditions. The solid line parallel to the minor diago-
nal shows the transition from response A to response B. 
The theoretical TSD functions for the value of d  at the cut 
point are shown as the continuous curves through OCI in 
the eight panels of Figure 1. 

The following features are evident in Figure 1. The em-
pirical ROC function shows a performance lower than that 
predicted by TSD (choice would be effectively identical). 
Participants Bfreq and Dpay appear very close to unbi-
ased in the neutral condition. Participants Afreq, Cpay, 
and Dpay are all appropriately biased toward response B 
in the biased condition. However Cpay was just as biased 
toward response B in the neutral condition. Thus, 3 out of 
4 participants did show voluntary control of bias. Two out 
of these 3, Afreq and Dpay, appear to have changed their 
bias in the optimal direction. 

For all measures of sensitivity or bias, when an estimate 
is given, followed by two numbers in parentheses, these 
numbers are the 95% confidence limits. Exceptions to this 
convention are explicitly noted.

Performance of Sensitivity Measures
Invariance of point sensitivity measures as a func-

tion of criterion. Figures 3 and 4 show d , ln( ), and A  
at criterion k relative to their values at the response A to 
response B transition (as defined by Equation 20) as a 
function of criterion, k, for Experiment 2 (frequency ma-
nipulation) and Experiment 3 (payoff manipulation), re-
spectively. Relative sensitivity is defined by Equation 20. 
The functions for relative A  appear flatter than the other 
functions. Table 1 summarizes the characteristics of the 
functions in Figures 3 and 4. For each participant and con-
dition, the three measures d , ln( ), and A  are compared 
according to three criteria. The first numeric column gives 
the number of points evaluated. For each such point, the 
ratio of that point’s sensitivity measure to the same sen-
sitivity measure at the cut point was calculated. The next 
column in Table 1 gives a count of the number of points 
for which the deviation of this ratio from unity was more 
than 15%. This count was considerably smaller for A  
than for the other measures, for all the participants except 
Dpay. For Dpay, the choice model had fewer deviations 
greater than 15%, but the number for A  was still small. As 
is evident in Figures 3 and 4, the sensitivity at the cut point 
was near the maximum for all the models. Furthermore, 
the percentages of deviations from cut point values were 
much larger for underestimates than for overestimates. 
The final two columns of Table 1 show these percentages 
of deviations separately for underestimates and overesti-
mates, according to Equation 21. Here, the A  measure is 
numerically superior for all the participants in all the con-
ditions. This superiority of A  was a surprise, since there 
is no theoretical reason why A  should be invariant with 
respect to confidence. 

Comparison of point and ROC sensitivity mea-
sures. Figure 5 shows ROC sensitivity measure as a 
function of point measures for TSD, choice, and area ap-
proaches. For TSD and choice, the regressions are excel-
lent fits, with adjusted r2 greater than 99%, and form close 
to the identity relation (slope  1, intercept  0). The area 
ROC and point measures were slightly less similar [ad-
justed r2  .971, slope  1.25 (1.05, 1.45), intercept  

0.24 ( 0.40, 0.057)]. So overall, these data show al-
most identical performance for ROC and point sensitivity 
measures and, hence, no advantage for the more complex 
confidence-rating procedure.

Comparison of sensitivity measures between neu-
tral and biased conditions. Table 2 shows sensitivity 
measures for each participant in two different conditions, 
one neutral and one biased. All the measures, except S , 
show slight superiority for the biased condition for every 
participant except Afreq. For the choice point sensitivity 
measure ln( ), and for the ROC measures de and ln( e), 
where standard errors are available, these effects are sta-
tistically significant at the 95% confidence level. Thus, 
3 people performed better in the biased condition, and 1 
performed (very slightly) better in the neutral condition. 
Balakrishnan’s S  shows a different pattern. It is larger, 
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sometimes much larger, for the neutral condition for all 
the participants. The reason is simple: The participants 
used fewer points on the rating scale in the biased condi-
tions, so there were fewer values of (Uk  Uk 1) to sum 
over (Table 1 gives number of points).

Performance of the Bias Measures
The behavior of ln( K) and ln( K) are almost identical. 

For all 4 participants in both conditions, the adjusted r2 
values of regressions of ln( K) on ln( K) were more than 
.99; slopes were not significantly different from 1, and 
intercepts were not significantly different from 0. Hence, 

only the more easily calculated ln( K) will be used in most 
of what follows.

Consistency of point bias measures as a function 
of criterion across responses A and B. Figures 6 and 
7 show the consistency of usage of the confidence level 
for the bias measures ln( T), ln( L), and ln( K) by testing 
Equation 19. Table 3 shows intercepts  Gmeasure, slopes, 
and effect sizes (adjusted r2 values) for the functions in Fig-
ures 6 and 7. As might be expected, TSD and choice give 
very similar results. For the most part, there is a consistent 
linear relation, with a high adjusted r2. The exceptions are 
for Afreq in the biased condition for TSD and choice and 

Figure 3. For the frequency manipulation participants, relative point sensitivity 
measures (as defined by Equation 20) at criterion k, relative to value at cut point be-
tween responses A and B, as a function of confidence rating. Left panels, Afreq; right 
panels, Bfreq. Top panels, relative d ; middle panels, relative ln( ); bottom panels, 
relative A .

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

d
re

l

–60 –40 –20 0 20 40 60
Criterion

Unequal

Equal

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
re

l

–60 –40 –20 0 20 40 60
Criterion

Unequal

Equal

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ln
(

) re
l

–60 –40 –20 0 20 40 60
Criterion

Unequal

Equal

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

d
re

l

–75 –50 –25 0 25 50 75
Criterion

Unequal

Equal

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
re

l

–75 –50 –25 0 25 50 75
Criterion

Unequal

Equal

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ln
(

) re
l

–75 –50 –25 0 25 50 75
Criterion

Unequal

Equal



DISTRIBUTION-FREE AND MODEL-BASED SIGNAL DETECTION    403

for Cpay in the biased condition for all the models. This 
indicates that the use of any criterion, given a B response, 
can be predicted from the use of that same criterion, given 
an A response. Nevertheless, in most cases, the slopes are 
significantly different from 1, indicating that the subjec-
tive spacing between confidence criteria is systematically 
different for responses A and B. The poor fits for Afreq in 
the biased conditions may be due to the restricted range 
of bias used for both A and B responses, although the area 
function is an excellent fit (adjusted r2  .997). The poor 
fit for Cpay in the biased condition for all the analyses is 
due to the very restricted range for response A.

Comparison of point and ROC bias measures. 
Figure 8 shows ROC bias Gmeasures as a function of their 
equivalent point measures for area, choice, and TSD for-
mulations. Two features are apparent from Figure 8 and 
from the numeric values of the bias measures in Table 4. 
First, for all the participants and all the conditions, ROC 
measures are considerably (at least 1.6 times) larger than 
the equivalent point measures. Second, the behavior of 
Cpay in the biased condition is substantially different 
from that of the other 3 participants, as is also evident in 
Figure 7. If one excludes Cpay in the biased condition, re-
gressions in Figure 7 all have intercepts not significantly 

Figure 4. For the payoff manipulation participants, relative point sensitivity mea-
sures (as defined by Equation 20) at criterion k, relative to value at cut point between 
responses A and B, as a function of confidence rating. Left panels, Cpay; right panels, 
Dpay. Top panels, relative d ; middle panels, relative ln( ); bottom panels, relative A .
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different from 0 at the 95% confidence level. The regres-
sion slopes are area  1.64 (1.37, 1.92), TSD  2.18 
(1.84, 2.51), and choice  2.13 (1.82, 2.45).

Thus, bias as estimated by an entire ROC is generally 
greater than bias estimated at the A, B cut point. It is also 
evident that for some of the participants, the behavior esti-
mated from the ROC bias measure is different from the be-
havior estimated from the point bias measure. In particular, 
Cpay shows a very large ROC criterion shift (much more 
than the other participants), together with a rather small 
point criterion shift (less than the other participants).

Comparison of neutral and biased conditions: Vol-
untary control of bias measures. Table 4 shows point 
measures of bias—ln( T), ln( L), ln( K), and ln( K)—at 

the cut point between responses A and B, together with 
ROC Gmeasures from Equation 19 and Balakrishnan’s  
for each participant in a neutral and a biased condition. All 
of the measures except  show different behavior in the 
biased and the neutral conditions and, hence, voluntary 
control. For the point measures, statistical tests of these 
differences are available for the choice model, using the 
ASEs in Equation 9, and all differences are statistically 
significant at the 95% confidence level. For the Gmeasures, 
standard errors are available from the regressions in Equa-
tion 19. Again, neutral and biased conditions show sig-
nificant differences for all the participants.

Optimality of the bias measures. Table 4 shows little 
support for any strong version of optimality. The only per-

Table 1 
Performance of Point Sensitivity Measures as a Function of Confidence Criteria

 
Participant

  
Condition

  
No. Criteria

  
Sensitivity 

 No. Outside 
15%

 Max % 
Overestimate

 Max % 
Underestimate

Afreq Neutral 97 TSD: d 33 2.5 82.9
Choice: ln( ) 29 2.4 74.6
Area: A 3 0.6 31.7

Biased 60 TSD: d 22 0.3 91.7
Choice: ln( ) 20 0.4 86.1
Area: A 8 0.1 23.6

Bfreq Neutral 101 TSD: d 20 10.4 38.8
Choice: ln( ) 16 46.1 29.1
Area: A – 0.5 11.8

Biased 79 TSD: d 25 3.4 42.0
Choice: ln( ) 11 4.2 25.9
Area: A – 0.1 13.6

Cpay Neutral 97 TSD: d 29 4.9 36.0
Choice: ln( ) 21 50.5 46.9
Area: A – 0.1 12.4

Biased 85 TSD: d 18 0.5 48.2
Choice: ln( ) 12 1.0 24.9
Area: A 3 0.1 16.1

Dpay Neutral 119 TSD: d 16 0.2 30.6
Choice: ln( ) – 11.2 4.6
Area: A 4  0.05 15.8

Biased 38 TSD: d 5 0.4 32.6
Choice: ln( ) 1 16.0 13.1

      Area: A  2  0.1  15.9

Figure 5. ROC sensitivity measures as a function of point sensitivity measures at the A, B cut point for 
the area, choice, and theory of signal detectability (TSD) approaches for the frequency manipulation par-
ticipants in the neutral condition (filled symbols) and biased conditions (open symbols).
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son with a bias parameter not significantly different from 
0 in the neutral conditions is Bfreq. The only measure not 
significantly different from the normatively optimal value 
of 1.10 in a biased condition is ln( T) for Dpay.

By contrast, the weaker proposition that participants 
move their criteria in the normatively correct direction has 
considerable support from all of the measures except . 
Table 4 shows the value of measures in the biased condi-
tion minus their equivalent values in the neutral condition. 
A negative value significantly different from zero, indicat-
ing a normatively correct move in bias toward B, is pres-
ent for participants Afreq, Cpay, and Dpay for all ROC 
measures. Afreq, Cpay, and Dpay also show a statistically 
significant move in the expected direction for the choice 
point measure ln( L) at the A, B cut point (where a test 
is possible because the ASE is available). As was noted 
above, Bfreq moves in the normatively wrong direction on 
all measures. For point measures, the results for Cpay are 
equivocal, being small toward A for TSD and choice but 
small toward B for the area measure.

The values of  are very low for all the participants in 
all the conditions and, so, are uninformative. Furthermore, 
comparisons across conditions are not possible, since the 
standard error of  is not known.

Fit of TSD and Luce’s Choice Model
Figures 9 and 10 show three versions of ROC function 

for Experiments 2 and 3, respectively. The choice model 
(bottom panels) appears to be a better fit than does TSD 
(middle panels), in the sense that slopes appear more simi-
lar across conditions and responses. This apparent supe-
riority of the choice model is evaluated more rigorously 
by testing the regressions posited in Equations 4A and 4B 

and Equations 10A and 10B. The strong curvature appar-
ent in most raw ROC functions rules out threshold models, 
which will not be discussed further.

The fit of TSD and choice model will first be evalu-
ated by testing the linearity of their respective ROC func-
tions separately for response A and response B, for all the 
participants in both conditions. There is little to choose 
between TSD and choice. Both models had an adjusted r2 
greater than .88 for all functions and greater than .98 for 
15/16 functions (the poor fit was for Dpay, response A 
biased). Both models showed some nonlinear effects in 
terms of a quadratic component significant at the 99% 
confidence level for 6 out of 16 functions. The results gave 
small but significant differences in variance ratio (sT or 
sL) and/or sensitivity at the cut point [de or ln( e)] from 
the stimulus a and stimulus b versions of Equation 4 for 
all TSD functions except for Dpay in the neutral condition 
(Equations 4A and 4B) and for all choice functions ex-
cept for Dpay in both the neutral and the biased conditions 
(Equations 10A and 10B). Thus, on the grounds of linear 
fit and differences between stimulus a and stimulus b es-
timates of variance ratios and sensitivity at the cut point, 
choice and TSD models give similar levels of fit.

The question of equal variance was evaluated by testing 
whether average estimates of sT and sL from response A 
and response B regressions (Equations 4A and 4B for 
TSD and Equations 10A and 10B for choice) were reli-
ably different from unity. Table 5 shows estimates of sT 
and sL, together with their standard errors (sT and sL es-
timates significantly different from unity are shown in 
bold). Violations were tested at the 99% confidence level 
to ensure that the simpler equal variance model was not 
rejected without good cause. For TSD, all eight estimates 

Table 2 
Point and ROC Sensitivity Measures 

in Neutral and Biased Conditions

Point ROC

Analysis  Participant  Neutral  Bias  Neutral  Bias

d de

TSD Afreq 0.67 0.63 0.65 0.63
Bfreq 1.24 1.45 1.21 1.43
Cpay 1.49 1.73 1.41 1.80
Dpay 2.15 2.49 2.16 2.59

ln( ) ln( e)

Choice Afreq 0.54 0.52 0.51 0.51
Bfreq 1.01 1.18 0.96 1.14
Cpay 1.24 1.45 1.10 1.46
Dpay 1.81 2.18 1.79 2.18

 A A

Area Afreq .71 .70 .64 .67
Bfreq .82 .85 .78 .81
Cpay .85 .87 .82 .86
Dpay .92 .93 .92 .95

Balakrishnan Afreq 20.1 8.8
Bfreq 37.6 32.4
Cpay 37.8 31.8

  Dpay      70.4  20.9
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of sT are significantly less than unity (mean sT  0.79; 
99% confidence limits, 0.72, 0.86). So the equal variance 
version of TSD is emphatically rejected. For the choice 
model, four estimates are not reliably different from unity, 
three are lower and one is higher than unity (mean sL  
0.99; 99% confidence limits, 0.87, 1.10). Thus, the equal 
variance version of choice model is viable for some of the 
participants. The ANCOVA also show no evidence that 
slopes are different in biased and neutral conditions, for 
either TSD or choice.

DISCUSSION

The Signal Detection Approach
On the basis of the analyses presented here, as well as 

on the vast body of existing literature going back to the 

1950s, the signal detection approach provides a useful 
framework for describing discrimination. A distribution-
free version provides reliable measures of sensitivity, A , 
and bias, ln( K), for simple two-choice experiments, even 
without confidence ratings. Given rating data, one can 
compare models based on different distributions.

Sensitivity
Consistency. All the measures of point sensitivity 

showed an effect of confidence rating within conditions. 
Figures 3 and 4 show that there is a substantial middle 
range of confidence ratings where sensitivity remains 
constant and very similar to the value at the A, B cut point. 
Sensitivity values estimated from very extreme confidence 
ratings are lower than those at the cut point. Surprisingly, 
as is documented by the measures in Table 1, the A  mea-

Figure 6. Response B bias measure as function of response A bias measure 
for the frequency manipulation participants. Top panels, area measure ln( K); 
middle panels, theory of signal detectability (TSD) measure ln( T); bottom 
panels, choice measure ln( L).
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sure shows the least variation over different confidence 
ratings. This might be an artifact of the fact that the range 
of A  is limited from .5 to 1.0, whereas ln( ) and d  range 
from 0 to unlimited.

Comparing point and ROC measures. The values of 
point sensitivity measures are very similar to the values of 
equivalent ROC measures. This is equally true for the area 
measure and the model-based measures. Consequently, in 
terms of accuracy of sensitivity measurement, confidence 
ratings provide no advantages. This is useful information. 
There may well be a tendency to take confidence ratings 
under the erroneous and time-consuming hypothesis that 
accuracy will be improved.

The ROC measure S  showed lower sensitivity in the 
biased condition for all the participants, due to differential 
use of criteria. In fact, consistent with the present analysis, 

Treisman (2002) has already proposed that unequal use 
of criteria would invalidate the use of S . Balakrishnan 
has argued that such unequal use does not make much 
difference (Balakrishnan & MacDonald, 2002). The flaw 
in using S  is that of attempting to obtain areas from sum-
ming lines, with no width.

Comparing neutral and biased conditions. There 
were small but statistically reliable differences in sensitiv-
ity between the biased and the neutral conditions for the 
area and model-based measures. These favored the biased 
condition (performed second for all the participants) for 3 
out of the 4 participants.

Bias
Consistency. Figures 6 and 7, based on Equation 19, 

provide a new way of measuring consistency of criterion 

Figure 7. Response B bias measure as function of response A bias measure for 
the payoff manipulation participants. Top panels, area measure ln( K); middle 
panels, theory of signal detectability (TSD) measure ln( T); bottom panels, 
choice measure ln( L).

–2

0

2

4

6

8

10

A
re

a 
ln

(
B
)

–10 –8 –6 –4 –2 0 2
Area ln(

A
)

–0.6

0.0

0.6

1.2

1.8
2.4

3.0

3.6

4.2

T
S

D
 ln

(
B
)

–4.2 –3.0 –1.8 –.6 .6

TSD ln(
A
)

–0.6
0.0
0.6

1.2
1.8

2.4
3.0

3.6
4.2

C
ho

ic
e 

ln
(

B
)

–4.2 –3.0 –1.8 –.6 .6

Choice ln(
A
)

–2

0

2

4

6

8

10

A
re

a 
ln

(
B
)

–10 –8 –6 –4 –2 0
Area ln(

A
)

Bias
Neutral

–0.6

0.0
0.6

1.2

1.8

2.4

3.0

3.6

4.2

T
S

D
 ln

(
B
)

–4.2 –3.0 –1.8 –.6 .6

TSD ln(
A
)

–0.6

0.0
0.6

1.2
1.8

2.4
3.0

3.6
4.2

C
ho

ic
e 

ln
(

B
)

–4.2 –3.0 –1.8 –.6 .6

Choice ln(
A
)

Bias
Neutral

Bias
Neutral

Bias
Neutral

Bias
Neutral

Bias
Neutral



408    KORNBROT

Table 3 
Testing Equation 19: Gmeasure Slopes and Adjusted r2 for Regressions of 

Bias Measure for Response B as a Function of Bias Measure for Response A 
Shown in Figures 6 and 7

Gmeasure Slope Adjusted r2

Participant  Analysis  Neutral  Bias  Neutral  Bias  Neutral  Bias

Afreq Area 0.58 1.36 0.48 0.64 .991 .997
Choice 0.22 0.50 0.50 0.99 .895 .275
TSD 0.17 0.40 0.50 0.98 .895 .311

Bfreq Area 0.02 0.36 0.68 0.98 .978 .994
Choice 0.14 0.42 1.29 0.87 .983 .987
TSD 0.11 0.34 1.28 0.88 .985 .988

Cpay Area 1.04 10.67 0.69 19.15 .997 .776
Choice 1.19 9.16 0.84 12.12 .994 .628
TSD 0.92 7.50 0.79 12.31 .992 .641

Dpay Area 0.07 0.55 0.64 0.51 .981 .929
Choice 0.31 3.05 0.96 1.35 .989 .886

  TSD  0.25  2.45 0.94  1.29 .989  .893

use across different responses. Individual participants 
show substantial consistency as assessed by the adjusted 
r2 values in Table 3. The area bias measure, ln( K), appears 
to be slightly more consistent than the TSD bias measure, 
ln( T), or the choice bias measure, ln( L). The adjusted r2 
is highest for the area measure in seven out of eight com-
parisons. This is similar to the finding for sensitivity. The 
slopes of the functions in Figures 6 and 7 are not equal to 

1. Thus, participants typically impose a different scale 
for confidence for A and B responses. This is also a new 
and far from obvious finding.

Comparing point and ROC performance. Figures 6 
and 7 also provide ways of measuring the shift of an entire 
ROC function via the values of Gmeasure. Armed with this 
measure, one can compare point and ROC bias measures. 
Values of K from Equation 14 and K from Equation 15 
are very similar. So, ratings give no advantage in terms of 
accuracy of measurement of bias at the cut point.

By contrast, comparing Gmeasure for the entire ROC 
function with equivalent point measures gives a differ-

ent picture. As is shown in Table 4, the ROC measures 
are always higher. Even the neutral conditions show some 
degree of bias, using Gmeasure. It thus appears that the full 
ROC is more sensitive to deviations form neutrality than 
are the point measures. Furthermore, considering the full 
ROC function provides information not available from 
point measures alone. The large change in behavior be-
tween neutral and biased conditions for Cpay is detect-
able only in Figure 7 and by the high values of Gmeasure 
in Table 3.

By contrast, Balakrishnan’s , also a full ROC measure, 
shows minimal bias for all the participants in all the condi-
tions. It is not obvious what advantages there might be in a 
bias measure that does not actually change when people’s 
decision making does show a change in bias on a raw—and 
hence, distribution free—ROC function (see Figure 1).

Comparison of neutral and biased conditions: Vol-
untary control and optimality. All the measures ex-
cept  show voluntary control of bias, in that values of at 
least some bias measures are different in the neutral and 

Figure 8. ROC bias measures as a function of point bias measures at the A, B cut point for area, choice, 
and theory of signal detectability (TSD) approaches for 4 participants in two conditions each. Biased con-
ditions have up-pointing open triangles with dashed lines; neutral conditions have down-pointing filled 
triangles with solid lines. The outlier point represents participant Cpay in the biased condition.
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the biased conditions. In terms of point measures, Afreq, 
Cpay (minimally), and Dpay all change their bias in the 
normatively correct direction, whereas Bfreq changes in 
the opposite direction. This pattern is observed for all the 
measures. Shifts are larger for the full ROC than for the A, 
B cut point, as a necessary consequence of the finding that 
the deviation from neutrality is larger for Gmeasures than for 
point measures. 

Equation 3 predicts an optimal value ln( L) or ln( T) 
of 1.08 in the biased condition. There is little evidence 
to suggest that these participants chose this optimal bias. 
In terms of the raw ratio of proportion of A responses, 
relative to proportion of B responses, people with lower 
sensitivities need to be more biased. This did not happen, 
or did not happen sufficiently, so the least sensitive par-
ticipant, Afreq, shows the weakest bias in terms of ln( L) 
or ln( T). It may be possible to train people to set their 
criteria optimally, but most (like these participants) are 
suboptimal without such training.

In real-world applications, different situations may 
have both different a priori probabilities and different 
payoffs. For example, malignant cells are less frequent 
in screening conditions than in biopsy conditions. The 
implications of errors are also different for different cat-
egories of response, such as definitely malignant, possibly 
malignant, probably benign, benign, and so forth. Similar 
arguments apply to the probability and degree of threat of 
different kinds of military weapons or computer viruses, 
or of different kinds of investments. Most laboratory rat-
ing experiments, like the one analyzed here, do not have 
clear predictions of optimality away from the cut point, 
because there is no greater penalty for being wrong about 

an extremely confident A response than an extremely ten-
tative A response. Clearly, the behavior of bias measures 
as a function of criterion and motivation merits further 
exploration for both practical and theoretical reasons. It 
would seem that both point and ROC measures would be 
required.

Table 4 
Point and ROC Bias Measures in Neutral and Biased Conditions

Point at A, B cut ROC at A, B cut Full ROC from Equation 19

Analysis  Participant  Neutral  Bias  B N  Neutral  Bias  B N  Neutral  Bias  B N

ln( T) GTSD

TSD Afreq 0.12 0.23 0.35 0.17 0.40 0.57
Bfreq 0.01 0.17 0.18 0.11 0.34 0.45
Cpay 0.53 0.62 0.09 0.92 7.50 6.58
Dpay 0.12 1.08 0.96  0.25 2.45 2.20

ln( L) Gchoice

Choice Afreq 0.15 0.29 0.44 0.22 0.50 0.72
Bfreq 0.01 0.22 0.23 0.14 0.42 0.56
Cpay 0.66 0.77 0.11 1.19 9.16 7.97
Dpay 0.14 1.31 1.17 0.31 3.05 2.74

ln( A ) ln( A) Garea

Area Afreq 0.38 0.80 1.18 0.24 0.72 0.97 0.58 1.36 1.93
Bfreq 0.02 0.14 0.16 0.12 0.10 0.22 0.02 0.36 0.34
Cpay 0.62 0.56 0.06 0.57 0.64 0.07 1.04 10.67 9.63
Dpay 0.07 0.47 0.40 0.08 0.54 0.47 0.07 0.55 0.48

       

Balakrishnan Afreq .06 .00 .06
Bfreq .01 .02 .01
Cpay .04 .00 .04

  Dpay              .00  .00 .00

Note—B N is (value in biased condition)  (value in neutral condition). Negative values indicate a shift toward response B.

Table 5 
Tests of Equal Variance Versions of TSD and Choice Model

Neutral Bias

Participant  Slope  SE(Slope)  Slope  SE(Slope)

sT From TSD

Afreq 0.79 0.007 0.81 0.009
Bfreq 0.87 0.018 0.78 0.014
Cpay 0.89 0.012 0.64 0.013
Dpay 0.76 0.013 0.79 0.059
 Mean 0.83  0.75  
 LCL 0.77 0.69
 UCL 0.89  0.81  

sL From Choice

Afreq 0.85 0.008 0.87 0.012
Bfreq 1.08 0.026 0.99 0.019
Cpay 1.17 0.021 0.81 0.013
Dpay 1.03 0.012 1.09 0.072
 Mean 1.03 0.94  
 LCL 0.95 0.86
 UCL  1.11    1.02   

Note—Slopes not significantly different from 1 at the 99% confidence 
level are in bold. Standard errors of slopes are obtained by averaging 
standard errors obtained from the stimulus a and stimulus b regressions. 
Lower confidence levels (LCLs) and upper confidence levels (UCLs) 
are based on standard errors that are averages of the eight values of SE2 
for the 4 participants in two conditions each.
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Model Evaluation and ROC Functions
Balakrishnan (1998a, 1998b, 1999; Balakrishnan & Mac-

Donald, 2002, 2003) suggested that the empirical ROC func-
tions do not fit any signal detection model. Figures 9 and 10 
and Table 5 challenge this suggestion. Both TSD and choice 
model ROC functions are a “reasonable” fit to the model in 
terms of linear predictions of transformed ROC functions, 
with adjusted r2 values generally greater than .98. The dif-
ferent variance ratios from stimulus a and stimulus b do not 
invalidate the models. Nevertheless, the fits of both TSD 
and the choice model do show systematic deviations from 
theory. Thus, neither the logistic nor the normal distribution 
provides an ideal representation of the effects of repeated 

presentations of the stimuli. The vindication of the signal 
detection approach arises from the finding of consistent 
estimates of sensitivity, dependent on people and stimuli, 
and consistent measures of bias, under voluntary control. 
Suboptimality of bias measures suggests further avenues for 
investigation, rather than a flaw in the approach.

For the line length discrimination task analyzed here, the 
equal variance version of the choice model cannot be re-
jected, because the choice variance ratio measure sL is so 
close to unity. By contrast, the TSD variance ratio measure, 
.79, is substantially less than unity, suggesting that the stim-
ulus a distribution has higher variance than does the stim-
ulus b distribution. The choice model is to be preferred to 

Figure 9. ROC functions for the frequency manipulation participants: G(h) as a 
function of G( f ). Top panels, raw probabilities, G is identity transformation; middle 
panels, theory of signal detectability, G is normal transformation; bottom panels, 
 Luce’s choice model, G is logistic transformation.
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Figure 10. ROC functions for the payoff manipulation participants: G(h) as a func-
tion of G( f ). Top panels, raw probabilities, G is identity transformation; middle pan-
els, theory of signal detectability, G is normal transformation; bottom panels, Luce’s 
choice model, G is logistic transformation.
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TSD for this line length discrimination because the simpler 
version with a single sensitivity measure is acceptable.

Model-Based and Distribution-Free Approaches
The distribution-free approaches have the advantage of 

making fewer assumptions than do the model-based ap-
proaches. Furthermore, area-based measures, both old and 
new, have been shown to have clear advantages of robustness 
and consistency and are thus to be highly recommended. No 
advantages for either S  or  emerge from these analyses. 

Nevertheless, model-based approaches are clearly es-
sential for deeper understanding of underlying processes. 
For example, TSD or choice measures of bias and sensi-

tivity should be derivable from information accrual mod-
els, such as a version of the random walk model (Green 
& Luce, 1973; Heath & Fulham, 1988; Kornbrot, 1988; 
Laming, 1968, 1979; Link, 1975; Luce, 1986; Smith & 
Vickers, 1989; Stone & Callaway, 1964; Vickers, Caudrey, 
& Willson, 1971).

SUMMARY

The main findings may be summarized as follows.
1. The signal detection approach is successful and use-

ful and not flawed, as was suggested by Balakrishnan and 
his colleagues.
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2. Area measures are the best distribution-free mea-
sures. The new area bias measure, ln( K), complements 
the well-established sensitivity measure A .

3. Area measures are at least as good as TSD or choice 
measures for practical purposes.

4. Point measures of sensitivity and of bias at the cut 
point are just as good as ROC measures and much simpler 
to obtain.

5. The new techniques for assessing the bias of com-
plete ROCs are important and give more information and 
information that is different from that given by bias at the 
cut point alone.

6. There are small but significant departures from the 
predictions of the choice model and TSD.

7. The simpler equal variance version of the choice model 
is acceptable, whereas TSD requires an extra parameter for 
the ratio of stimulus a to stimulus b variance.

The time-honored signal detection framework has been 
rigorously tested and emerged with flying colors. Choice 
theory is rather higher up the mast than is TSD.1
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NOTE

1. Macmillan and his colleagues (Macmillan, Rotello, & Miller, 2004) 
provide methods for estimating the accuracy of several signal detection 
parameters. However, the author was unaware of these measures at the 
time of writing.
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APPENDIX 
Equations for Point and ROC Area Measures

Estimation of Areas KA and KB
The top panel of Figure 2 shows a single cut point, C, with coordinates f, h, on an ROC function, together with 

the triangles needed to estimate KA and KB. 
Then, an estimate for KA is the minimum area bounded by the major diagonal and the cut line XC below and 

to the left of the ROC function ( OXC), plus half the OVC that would need to be added to OXC to obtain 
the maximum area. This is the same pragmatic approach as that used by Pollack and Norman (1964; see also 
Macmillan & Creelman, 1996). So,

 KA  area OXC  0.5 area OVC. 

Similarly, an estimate for KB is the minimum area bounded by the major diagonal and the cut line XC below 
and to the right of the ROC function ( IXC), plus half the IUC that would need to be added to IXC to obtain 
the maximum area; thus,

 KB  area IXC  0.5 area IUC. 

To calculate these areas, the distance x, y, u, and v, shown in the top panel of Figure 1, are needed. The values of 
x and y are the coordinates of the point C, when the f, h axes are rotated through 45º (using sin 45  cos 45  
1/ 2); so,
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Similarly, the value of v may be obtained from the similar IU C, IMV by noting that
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therefore,

 v  1  (1 h) (1 f ). 

Using these values for the distances x, y, u, v gives the following equations for KA, KB:
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APPENDIX (Continued)

Areas Under the Empirical ROC Curve, KA, KBx
When a full ROC function is available, the actual areas to the left and right of the cut line CXc may be ob-

tained. If participants can give either of two responses and confidence ratings from 1 to CMAX, there are 2CMAX 
criteria, k from 1 to 2CMAX. This is illustrated in the bottom panel of Figure 2. KA, dotted on the figure, is the 
area bounded by the empirical ROC function and the major diagonal and is to the left of the cut line CXc. KB, 
striped on the figure, is the area bounded by the empirical ROC function and the major diagonal and is to the 
right of the cut line CXc. The kth point on the empirical ROC function, Pk, has coordinates fk, hk. Then, the areas 
KA, KB are obtained by summing polygons of the general form XkPkPk 1Xk 1. The distance OXk along the major 
diagonal is denoted xk, and the distance XkPk parallel to the minor diagonal is denoted yk. Then,
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The polygon XkPkPk 1Xk 1 is composed of the rectangle XkPkTXk 1, plus the triangle PkPk 1T, and so has an 
area given by
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The area KA is then given by summing all polygons from k  0 to k  c, whereas the area KB is given by sum-
ming all polygons from c 1 to 2CR. There are 2CMAX criteria and, hence, 2CMAX polygons. The point P0 is the 
origin (0,0), and the point P2CR 1 is the point (1, 1). So,
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