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Signal identification:
The comparison of two competitive theories
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On each of a series of random trials, 10 observers had to identify which of two possible tones of different
amplitude had been presented. Two theories for this paradigm of signal identification are compared. One
theory, the memory-trace model, is a normal process model, whereas the competitive theory, the
memory-state model, assumes high thresholds operating in a Markov chain. Different predictions for
sequences of stimulus response pairs are derived. The results of the experiment involving payoffs
contingent upon the previous answer strongly favor the memory-trace model.

In the simplest experimental paradigm for signal
identification. the subjects is presented, on every trial,
with one of two possible stimuli, S1 and S2. The
subject tries to identify which stimulus has been
presented, and responds with A1 or A2, respectively.
Ordinarily both signals are easily detected. The
difference between them is so small, however, that
they are not discriminated with certainty.

Two theories have been offered to explain what is
going on in this simple experiment of signal
identification or signal recognition. These theories,
however. come from rather different theoretical
backgrounds.

Tanner, Haller, and Atkinson (1967) developed a
model in the tradition of signal detection theory,
whereas Sandusky (1971) advocates a threshold model
combined with a homogeneous Markov process. Both
theories have been found to describe data from
different experiments quite satisfactorily. To quote
Sandusky: "It is remarkable that two theories with
such divergent bases can so closely parallel each other
in terms of predicted response probabilities"
(Sandusky, 1971. p. 340).

The present study again tries to decide between the
two theories. As will be argued. the additional results
presented here strongly favor the Tanner et al. theory.

The problem under investigation is related to a
discussion in the field of human signal detection,
namely. whether or not there isa sensory threshold
operating in the process of detection. With respect to
signal detection at least. a preliminary decision has,
apparently. been reached. As has been summarized
recently by Laming. threshold models such as
Blackwell's (1963) or Krantz's (1969) or Luce's (1963)
did not survive the accumulating contradicting
evidence (Laming. 1973, p. 105 ft).

Similarly, in studies of recognition memory where
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lists of items to be remembered contain more than just
two alternatives and where during the test phase old
and new items are mingled together, strength theory
has been found to be superior to threshold theories.
This point was summarized recently by Murdock
0974. p. 17 ro.

The present study is concerned with the same
problem with respect to the simplest form of signal
recognition as described at the outset. This
experimental situation is very similar to that in signal
detection. The results, however. differ in at least two
important points from signal detection. 0) If the
probability for presenting S1 is different in different
sessions. the probability of hits and of false positives
both tend to vary in the opposite direction. That is.
with increasing P(S1). both P(A1 I S1) and P(S1 I AJ
decrease. and vice versa. This has been dubbed the
probability contrast. It was found by Parducci and
Sandusky (1965). Sandusky (1971), and Tanner,
Rauk, and Atkinson (1970). The probability contrast
bears some resemblance to the word frequency effect
observed by Gorman (1961). Shepard (1967), and
others. However. the exact relationship between these
two effects is far from clear. (2) In signal
identification. the responses apparently depend on the
stimulus-response pair of the preceding trial. Such
sequential dependencies have not been found in signal
detection. The sequential dependencies will be
analyzed in more detail below.

The following two paragraphs summarize the main
features of both theories. For more detail, the reader
is referred to Sandusky (1971) and Tanner et al.
(967).

MEMORY TRACEMODEL

This model assumes the following:
(Tl) The effect of presenting S, is a normally

distributed random variable, Ii> with expected value Si> i
= I, 2. 11 and 12 have equal variances a~. The unit of
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measurement is so chosen that SI =0 and S2 = 1.
(T2) On every trial, the subject has access to a trace of

the preceding signal. The trace of Sk is an asymptotically
normally distributed random variable, Tk. T I and T2
have equal variances a~. The trace on any given trial, n,
is the weighted sum of the trace and the signal effect
from the preceding trial; that is,

t, =(l-a)tk -1 +asi n-1,i= 1,2 and 0 «a";; 1.(1)
l ..n ..n ..

The parameter a is the weight of the present signal
compared to the old trace.

For random sequences of 81 and S2' it may be shown
that the expected value of Tk on trial n is

if SI was presented on n - 1
(2)

if S2 was presented on n - 1

where -y is the a priori probability of SI .
(T3) On every trial, the subject judges the difference

between signal and trace. Assuming independence of S,
and Tk, the distribution of differences, Dik = S, - Tk s is
asymptotically normal with expected value s, - tk and

. 2 2 + 2vanance an =a I aT'

The subjects respond according to the following rule

MEMORY STATE MODEL

This model makes the following assumptions:
(SI) Following each signal presentation, the subject is

in one of three sensory states: (a) SI was recognized
correctly, (b) S2 was recognized correctly, or (c) no
signal was recognized. This assumption qualifies the
model as a double high-threshold model.

(S2) The probabilities of recognizing SI and S2 are al
and 0:2, respectively. If a signal is recognized, the correct
answer follows with probability 1. Furthermore, 0:1 =0:2
= a is assumed.

(S3) If no signal is recognized, then the preceding
response is repeated with some probability. This
probability depends on the preceding sensory state. If
the preceding state was a recognition state, then the
probability to repeat the last response is p. If the subject
was in the nonrecognition state, then the probability for
repetition is v. Additionally, it is assumed that v~ p.

The sequence of sensory states and responses is
conceived as a homogeneous Markov process with four
states: In ZI, signal SI is recognized and the response is
AI; in Zz, S2 is recognized and A2 is the response; in
Z3, no signal is recognized and the response is AI; and,
finally, in Z4, no signal is recognized and Az is the
response. The transition matrix for this process is:

SEQUENTIAL PROBABILITIES

A possible way of discriminating between the two
models lies in the comparison of sequential probabilities.
In the MT model, the probability of an AI response to
an S, presentation following an Sk and Aj stimulus
response pair is given by

(4)

(I - 0:)(1 - p)

(1 - a)p

(I - 0:)(1 - v)

(I - a:)v

(I - a)v

The model has three free parameters. a: can be
attributed to the sensory process. The values of v and p
determine the decision process. If the subject is in the
nonrecognition state, he is more likely to assume that
the signal has changed jf he was in a recognition state on
the foregoing trial. Therefore, lJ ;;? P is postulated.
Whenever v and p differ from 0.5, the model predicts
sequential dependencies.

Z4 -ya: (I - -y)a: (I - a:)(I - v)

r>6' respond with AI ZI Z2 Z3

if dik < °I respond with A2 (3) ZI -ya (I --y)a (I - a)p

°1 <dik <02 repeat the last answer. Z2 -ya (I - -y)a (1-a)(1-p)

This model contains four free parameters. a~ may be
interpreted as a sensitivity parameter, a determines the
effect of the immediately preceding signal upon the
following trace. The larger the value of a, the more the
trace on n is determined by the signal on n - 1. For
a = 0, the trace approaches -y independently from the
immediately preceding signal. 01 and 02 may be looked
at as response bias parameters. They have been found to
depend on the a priori probabilities. The decision rule is'
motivated by the following consideration. If the subject
experiences a large positive difference between signal
and trace, the conclusion is that the stronger signal must
be present. If the experienced difference has a large
negative value, then the present signal must be the weak
one. If the difference is not far from zero, then the last
and the present signal must probably be identical, and
therefore the last response is repeated.

The sequential probabilities are obtained in this model
as given by Equation 5 below. Notice that p(A I I Sb Aj ,

Sk) depends on OJ' Furthermore, the preceding response,
Aj , determines which one of 01 and 02 enters into the
computation. Hence, this model predicts that the
response on trial n depends on the answer on trial n - 1
if °1 "* 82. This kind of dependency has been observed
in experiments.



252 WENDER

Condition II

AI

Table 1
Payoff Conditions I and II

where tl>(x) is the cumulative unit normal distribution at
argument x. Since, i, j, and k may be either 1 or 2, there
are eight different sequential probabilities. The
sequential probabilities for the MS model may be
obtained in a straightforward manner from the transition
matrix:

Condition I

AI A 2

+2 -1
-1 +2

Last
Response

AI '+5
A 2 +2

A2

-5
-1

The first four of the probabilities for each model are
hits and the last four are false alarms. Also, due to the
stimulus response pair of the preceding trial, each hit
rate belongs to one false alarm rate. Therefore, the eight
sequential probabilities may be depicted as four points
,in an ROC plot. By a standard argument, the ROC of the
MT model has the familiar bowed shape or, if the
probabilities are transformed to unit normal deviates
the ROC is a straight line with unit slope. '

From Equations 6, it follows readily that the ROC in
hit and false alarm coordinates for the MS model is a
straight line with unit slope and intercept equal to a.

Since the predicted ROC is different for the two
models, this offers one possibility for discriminating'
between them. Another possibility may be derived from
the fact that the relationship between sequential
probabilities and response parameters is different for the
two models. According to the MT model, each of the
sequential probabilities depends' on just one of the
response parameters, 61 or 62, In the MS model, in
contrast, four probabilities depend on both v and o, The
experiment described below tries to take advantage of
this difference.

The idea is to find experimental conditions which
influence some of the sequential probabilities and leave
others constant. One possibility for achieving this is
displayed in Table 1, which shows two payoff conditions
used in the experiment.

Under Condition I, each correct answer is rewarded
by two points, whereas for each incorrect answer, one
point is deducted. Under Condition II, the amount
of payoff in addition depends on the last response.
This payoff condition should lead to an increase in
all sequential probabilities involving At as preceding
response when compared to the corresponding proba-

(1 - a)(a(c - d) - c)

-(1-a)c

(1- a)c

-1 +282

(1 - a)(a(d - c) + c)
= (8)

(1 -' a)(a(c - d) - c)

-(1 - a)c

(1- a)c

(1 - a)(a(d - c) + c)

bilities under Condition I.
The main question is what the two models predict

for these two experimental conditions, i.e., which
parameters should change and in which direction. The
sensory parameters, of course, should remain constant
between the two experimental conditions. With respect
to the response parameters, on the other hand, the two
models make different predictions: In the MT model, an
increase in peAt ISi At Sk) would lead to a decrease in
6 1 , whereas 62 should not change. That is, four
sequential probabilities should increase from Condition I
to Condition II and the remaining four should remain
constant. When converted to z scores, the decrease
should be of identical magnitude. In detail, these
predictions are:

where ZI and ZII are obtained from the sequential
probabilities observed under Conditions I and II after
conversion to Z scores and 61 ,1 and 61 ,II is the response
parameter under Conditions I and II, respectively.

The MS model, on the other hand, would account for
an increase in peAl I Si At Sk) by an increase in v or by
an increase in both v and p. Because of Equations 6, the
MS model also predicts a rather systematic . shift in
sequential probabilities between Condition I and
Condition II. If the changes in v and pare denoted by d
and c, respectively, then the predictions are:

(6)

p(A I I SI A, Sd = a + (1 - a)(a(p - v) + v)

p(A I I SI At S2) = a + (1 - a)v

p(A I ISt A2 Sd = a + (1 - a)(1 - v)

p(A t lSI A2 S2)=a+(1-a)(a(v-p)-v+ 1)

p(A I I 52 Al Sd = (1 - a)(a(p - v) +v)

p(A I I 52 Al S2) =(1 - a)v

p(A t I S2 A2 SI) = (1 -.a)(l - v)

p(At I S2 A2 S2) = (1 - a)(a(v - p) - v + 1)
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tendency to respond At regardless of the previous
answer. This result was not intended by Condition II,
but on the subject's side it appears to be not an
unreasonable thing to do. The decisive question now is
how the two models can account for this result.

Recall that, in the MT model, an increase in four
sequential probabilities would result in a decrease of 0 t .
The remaining four sequential probabilities determine
the value of 02 independently of 0 r- The MS model, on
the other hand, predicts that if four sequential
probabilities increase, the remaining four should
decrease.

To evaluate the two models, parameters were
estimated and observed and predicted probabilities were
compared. Parameter estimation was done by an
iterative routine (Chandler, 1969) which searched for a
minimum of the following function

Table 2
Sequential Probabilities: P(A, ISi~Sk )

Condition

j k I II

I 1 1 .74 .87
1 1 2 .83 .93
I 2 1 .55 .63
1 2 2 .76 .84
2 1 1 .25 .34
2 1 2 .45 .42
2 2 1 .21 .19
2 2 2 .24 .27

where the subscripts I or II correspond to the payoff
conditions. The sequential probabilities appear in the
same sequence as in Equations 6. Note that for every
positive difference there is a corresponding decrease of
the same magnitude. Furthermore, the absolute
differences can take on only one of two possible values.

EXPERIMENT

II 2

X2 = ~ ~
C=I i,j,k,l=l

[Fc(Ai ISjAkS1) - Fc(Ai ISjAkS1) ) 2

FdAi I SjAkS1)

Method

Apparatus. The experimental setup closely followed the Tanner
et al. experiment. Signals were two sinusoidal tones of 1.000 Hz.
differing in loudness. The louder tone was set to 70 dB
whereas the softer one was individually adjusted for each subject to
yield a probability of correct response of approximately 0.70.
Signals were presented by earphones. The subjects responded by
pressing one of two buttons corresponding to the two signals.

Subjects. Ten students served as subjects. They were paid
accord ing to their performance as specitied by the payon conditions
described in Table 3. Each point was valued at I Pfennig. The
subjects were tullv informed about the nature of the experimental
procedure.

Procedure. Each subject participated in individual sessions under
both experimental conditions. There was a total of 10 sessions. 5
under each condition. Because of technical requirements.
Condition I in every ease preceded Condition II. Since the subjects
were highlv trained. we assume that no bias was introduced. Each
session was divided into 26 series. Each series consisted of 20 trials.
Each trial began with a warning light of I sec followed by the
stimulus presentation of tOO rnsec. Thereafter. the subject had
J sec time to respond. The a priori probability of 5, was 0.5.
During the experiment the subject could look at the payoff matrix.
draw n on a card in front of him. The subjects were not given
trial-to-trial feedback. but after each series they were told how
many points they had earned during the last 20 trials. The different
sessions for each subject took place on different days. The whole
lirst sessions of each condition as well as the first series of all
following sessions were viewed as warming-up trials and were
excluded from data analysis.

Results and Discussion
Table 2 contains the empirical sequential probabilities

combined for all 10 subjects. Note that the proportion
of At responses has increased from Condition I to
Condition II in seven out of eight cases. The overall
increase is statistically highly significant, as judged by an
X2 of 304.5 with 1 df obtained from the fourfold table,
Type of Response by Condition. Apparently, the
subjects reacted to Payoff Condition 11 by an increased

where F denotes the number of observed and F the
number of predicted responses under the respective
conditions.

Parameters were estimated for each subject
individually. The X2 values are given in Table 3. The
main result is that the MT model agrees much more
closely with the data than the MS model does. For 8 out
of the 10 subjects, the model does not deviate from the
data at the .05 level of significance, whereas the MS
model for every subject departs from the data beyond
the .01 level.

Figure 1 shows the ROC from four of the subjects.
These illustrate that the bow-shaped curve of the MT
model accounts better for the data than does a straight
line with unit slope as predicted by the MS model.

Figure 1 also shows the result from one of those
subjects for which the MT model also did not fit. This
failure apparently is caused by the fact that the data
points for Condition II moved towards the upper left

Table 3
Minimum Chi Squares

Subjects MT-Mod MS-Mod
df= 26 df = 27

1 19.4 273.0*
2 28.3 454.7*
3 28.5 281.5*
4 14.7 63.4*
5 20.6 126.9*
6 27.7 128.0*
7 101.8* 138.5 *
8 25.2 222.5*
9 17.6 232.2*

10 93.9* 113.7*

Note- Values with p < .05 are indicated by an asterisk.
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comer. According to the model, this indicates that this
subject responded more sensitively under Condition II.
The above parameter estimation, of course, could not
account for this change, since the sensitivity parameter
was kept constant. Hence, the large X2 was obtained.
The data for Subject 10, which resulted also in a
significant X2 , look very similar.

Table 4 gives the parameter estimates for the MT
model. The parameter estimates of the MS model are not
included because of the bad fit. As can be seen, the MT
model accounts for the effect of Condition II by a
decrease in both response bias parameters, °1 and 02'
This is consistent with the interpretation of these
parameters. The MS model, on the other hand, could not
react in a similar way because of the reciprocal
relationship between u and p, as implied by Equations 6.
Thus, the bad fit of the MS model is not caused by the
form of the ROC alone, but perhaps to a higher degree
by the relationship between the response parameters.
One fallacy in Table 4 should be noted, however. For
Subject 3, 01 and 02 appear in reverse order. I have no
suggestion on how to explain this except that the search
algorithm might have got trapped in a local minimum.

To summarize, in the present study, involving two
payoff conditions, the MT model could predict the data
much better than the MS model did. This conclusion fits
into the results found in signal detection and recognition

Condition IICondition I

Table 4
Parameter Estimates

Subjects Q °d °1 °2 °1 °2
1 .37 .75 -.19 -.02 -.54 -.23
2 .20 .66 -.22 -.01 -.69 -.27
3 .22 .81 -.19 -.33 -.34 -.35
4 .31 .97 -.36 -.03 -.37 +.30
5 .40 .54 +.13 +.19 -.19 +.31
6 .22 .44 -.07 +.26 -.30 +.10
7 .27 .67 -.23 +.03 -.24 +.06
8 .42 .64 -.23 +.33 -.56 -.06
9 .24 1.01 +.22 +.49 -.69 +.08

10 .30 .89 -.08 -.03 -.25 -.06

memory, where, as mentioned at the outset, continuous
models have been found to be superior to discrete
threshold models.
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Figure I. Empirical ROCs from four subjects. Points from
Condition I are denoted by • and from Condition n by x, Also
shown are the predicted ROCs [MS model: straight line; MT
model: bow-shaped curve).
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