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Abstract. Multi-modal fusion is an important, yet challeng-
ing task for perceptual user interfaces. Humans routinely per-
form complex and simple tasks in which ambiguous auditory
and visual data are combined in order to support accurate
perception. By contrast, automated approaches for processing
multi-modal data sources lag far behind. This is primarily due
to the fact that few methods adequately model the complex-
ity of the audio/visual relationship. We present an information
theoretic approach for fusion of multiple modalities. Further-
more we discuss a statistical model for which our approach
to fusion is justified. We present empirical results demonstrat-
ing audio-video localization and consistency measurement. We
show examples determining where a speaker is within a scene,
and whether they are producing the specified audio stream.

1 Introduction

Multi-modal fusion is an important, yet challenging task for perceptual
user interfaces. Humans routinely perform complex and simple tasks in
which ambiguous auditory and visual data are combined in order to
support accurate perception. In contrast, automated approaches for
processing multi-modal data sources lag far behind. This is primarily
due to the fact that few methods adequately model the complexity
of the audio/visual relationship. Classical approaches to multi-modal
fusion either assume a statistical relationship which is too simple (e.g.
jointly Gaussian) or defer fusion to the decision level when many of
the joint (and useful) properties have been lost. While such pragmatic
choices may lead to simple statistical measures, they do so at the cost
of modeling capacity.



580 John W. Fisher III and Trevor Darrell

We discuss a nonparametric statistical approach to fusion which
jointly models audio-visual phenomena. Using principles from informa-
tion theory we show an approach for learning maximally informative
joint subspaces for multi-modal fusion. Specifically, we simultaneously
learn projections of images in the video sequence and projections of
sequences of periodograms taken from the audio sequence. The projec-
tions are computed adaptively such that the video and audio projec-
tions have maximum mutual information (MI). The approach uses the
methodology presented in [2, 6, 4] which formulates a learning approach
by which the entropy, and by extension the MI, of a differentiable map
may be optimized. We also discuss a statistical model for which the
approach can be shown to be optimal.

Combining audio and video signals for dialog interface applications
is an important goal for perceptual user interfaces. There has been
substantial progress on feature-level integration of speech and vision.
However, many of these systems assume that no significant motion
distractors are present and that the camera was “looking” at the user
who was uttering the audio signal.

Indeed, speech systems (both those that integrate viseme features
and those that do not) are easily confused if there are nearby speakers
also making utterances, either directed at the speech recognition sys-
tem or not. If a second person says “shut down” near a voice-enabled
workstation, the primary user may not be pleased with the result! In
general, it is clear that multi-modal cues can aid the segmentation of
multiple speakers into separate channels (e.g. the “cocktail party” ef-
fect)..

In this paper we show how signal level fusion of audio and video
data using nonparametric models can capture useful joint structure.
Specifically, we show results on two tasks, one localizing a speaker in
a video stream, and the second measuring audio/video consistency–
whether the audio and video came from the same source.

1.1 Related work

As mentioned above, there has been much work on feature level audio-
visual speech recognition. For example, Meier et al [9] and Stork [12]
(and others) have built visual speech reading systems that can improve
speech recognition results dramatically. It is not clear whether these
systems could be used to localize the speaker as they implicitly rely on
localization having already been performed. In theory, these systems
could be modified to verify if the sequence of observed visemes was
consistent with the detected phonemes. We are not aware of a system
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which has been reported to do this to date, though it may be a suc-
cessful approach. The method we will present works at a pre-feature
level and does not presume detection of phonemes or visemes, so it may
be advantageous in cases where a person-independent viseme model is
hard to obtain. Also, since our method is not dependent on speech con-
tent, it would have the advantage of working on non-verbal utterances.

Other work which is more closely related to ours is that of Hershey
and Movellan [7] which examined the per-pixel correlation relative to
an audio track, detecting which pixels have related variation. An in-
herent assumption of this method was that the joint statistics were
gaussian. Slaney and Covell [11] looked at optimizing temporal align-
ment between audio and video tracks, but did not address the problem
of detecting whether two signals came from the same person or not.
Their technique was more general than [7] in that pixels changes were
considered jointly, although there is also an implicit Gaussian assump-
tion. Furthermore, this technique makes use of training data.

The idea of simply gating audio input with a face detector is re-
lated to ours, but would not solve our target scenerio above where the
primary user is facing the screen and a nearby person makes an ut-
terance that can be mistakenly interpreted as a system command. We
are not aware of any prior work in perceptual user interfaces which ad-
dresses signal-processing level estimators to do both video localization
and classify audio-visual synchrony among individuals.

2 Informative subspaces

We now give a brief description of our information theoretic fusion
approach. While the algorithm has been described in previous work [3],
that discussion focused primarily on the information theoretic intuition
which motivated the method. In this section we also present a statistical
model from which the method can be derived and the conditions under
which our fusion approach is optimal.

2.1 Information theoretic fusion

Figure 1 illustrates our audio/visual fusion approach. Each image in
the measured video sequence is treated as a single sample of a high-
dimensional random variable (i.e. the dimension equals the number of
pixels) . We denote ith image as Vi. The audio signal is converted
to a sequence of periodograms (i.e. magnitude of windowed FFTs).
Peridograms are computed at the video frame rate using a window
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equal to twice the frame period. Similarly to the video sequence, each
periodogram “frame” is also treated as a sample of a high dimensional
random variable (whose dimension is equal to the number of frequency
bins) and whose ith frame is denoted Ui.

learned subspace

fUi
=hu

TUi

fVi
=hv

TVi

Fig. 1. Maximally Informative Joint Subspace

Using the approach described in [3] we learn projections of the au-
dio/video frames, denoted,

fV i = hT
V Vi (1)

fU i = hT
UUi (2)

resulting in samples of low-dimensional features fV i and fU i (whose
dimensionality is determined by the matrices hV and hU , respectively).
The criterion for learning the projection vectors, hV and hU , is to
maximize the MI between the resulting audio and video featuresfV i

and fU i.
Mutual information (in the case of continuous features) is defined

as [1]

I (fV , fU ) = h (fU ) + h (fV ) − h (fU , fV ) (3)

=

∫

RU

pfU
(x) log (pfU

(x)) dx +

∫

RU

pfV
(x) log (pfV

(x)) dx −
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∫ ∫

RU×RV

pfU ,fV
(x, y) log (pfU ,fV

(x, y)) dxdy

The difficulty of MI as a criterion for adaptation is that it is an integral
function of probability densities. Furthermore, in general we are not
given the densities themselves, but samples from which they must be
inferred. Consequently, we replace equation 3 with the approximation
of [6]

Î (fV , fU ) = Ĥ(fU ) + Ĥ(fV ) − Ĥ(fV , fU ) (4)

=

∫

RU

(p̂fU
(x) − pu(x))

2
dx

+

∫

RV

(p̂fV
(x) − pu(x))

2
dx

−

∫

RU×RV

(p̂fV ,fU
(x, y) − pu(x, y))2 dxdy

where RU is the support of one feature output, RV is the support of
the other, pu is the uniform density over that support, and p̂(x) is the
Parzen density [10] estimate computed from the projected samples:

p̂ (x) =
1

N

∑

i

κ (x − xi, σ) (5)

where k ( ) is a gaussian kernel in our case and σ is the standard devi-
ation.

Note that this is essentially an integrated squared error comparison
between the density of the projections to the uniform density (which
has maximum entropy over a finite region). The consequence of using
this approximation is that its gradient with respect to the projection
coefficients can be computed exactly by evaluating a finite number of
functions at a finite number of sample locations in the output space as
shown in [5, 6]. The update term for the individual entropy terms in 4
of the ith feature vector at iteration k as a function of the value of the
feature vector at iteration k− 1 is (where fi denotes a sample of either
fU or fV or their concatenation depending on which term of 4 is being
computed)

∆fi
(k) = br(fi

(k−1)) −

1

N

∑

j �=i

κa

(

fi
(k−1) − fj

(k−1), σ
)

(6)
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br(fi)l ≈
1

dM

∏

j �=l

(

κ1

(

fij +
d

2
, h

)

−

κ1

(

fij −
d

2
, h

))

(7)

κa (fi, σ) = κ(fi, σ) ∗ κ′(fi, σ) (8)

= −
exp

(

− fi
T fi

4h2

)

(

2M+1πM/2hM+2
)fi (9)

where M is the dimensionality of the feature vector fi. Both br(fi)
and κa(fi, σ) are M -dimensional vector-valued functions and d is the
support of the output of the mapping (i.e. a hyper-cube with sides of
length d centered at the origin). The notation br(yi)l indicates the lth
element of br(fi) [6].

The process is repeated iteratively until a local maximum is reached
using the update rule above. In the experiments that follow the dimen-
sionality of fU and fV are set to unity while the number iterations is
typically 150 to 300 iterations.

Capacity control The method of [6] requires that the projection be
differentiable, which it is in this case. Additionally some form of capac-
ity control is necessary as the method results in a system of underdeter-
mined equations. In practice we impose an L2 penalty on the projection
coefficients of hU and hV . Furthermore, we impose the criterion that if
we consider the projection hV as a filter, it has low output energy when
convolved with images in the sequence (on average). This constraint is
the same as that proposed by Mahalanobis et al [8] for designing opti-
mized correlators the difference being that in their case the projection
output was designed explicitly while in our case it is derived from the
MI optimization in the output space.

The adaptation criterion, which we maximize in practice, is then a
combination of the approximation to MI (equation 4) and the regular-
ization terms:

J = Î (fV , fU ) − αvhT
V hV − αuhT

UhU − βhV R̄−1
V hV (10)

where the last term derives from the output energy constraint and
R̄−1

V is average autocorrelation function (taken over all images in the
sequence). This term is more easily computed in the frequency domain
(see [8]) and is equivalent to pre-whitening the images using the inverse
of the average power spectrum. The scalar weighting terms αv, αu, β,
were set using a data dependent heuristic for all experiments.
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The interesting thing to note is that computing hv can be decom-
posed into three stages:

1. Pre-whiten the images once (using the average spectrum of the
images) followed by iterations of

2. Updating the feature values, and
3. Solving for the projection coefficients using least squares and the

L2 penalty.

The pre-whitening interpretation makes intuitive sense in our case as it
accentuates edges in the input image. It is the moving edges (lips, chin,
etc.) which we expect to convey the most information about the audio.
The projection coefficients related to the audio signal, hU , are solved in
a similar (and simultaneously) without the initial pre-whitening step.

2.2 The implicit statistical model

From the perspective of information theory, estimating separate pro-
jections of the audio video measurements which have high mutual in-
formation with respect to each other makes intuitive sense as such
features will be predictive of each other. The advantage being that the
form of those statistics are not subject to strong assumptions (e.g. joint
gaussianity).

However, we now show that there is a statistical model for which
such fusion is optimal. Consider the graphical models shown in fig-
ure 2. Figure 2a shows an independent cause model, where {A, B, C}
are unobserved random variables representing the causes of our (high-
dimensional) observations {U, V }. In general there may be more causes
and more measurements, but this simple case can be used to illustrate
our algorithm. An important aspect is that the measurements have
dependence on only one common cause. The joint statistical model
consistent with the graph of figure 2a is

P (A, B, C, U, V ) = P (A)P (B)P (C)P (U |A, B)P (V, B, C) .

Given the independent cause model a simple application of Bayes’ rule
(or the equivalent graphical manipulation) yields the graph of figure 2b
which is consistent with

P (A, B, C, U, V ) = P (U)P (C)P (A, B|U)P (V |B, C) ,

which shows that information about U contained in V is conveyed
through the joint statistics of A and B. The consequence being that, in
general, we cannot disambiguate the influences that A and B have on
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the measurements. A similar graph is obtained by conditioning on V .
Suppose decompositions of the measurement U and V exist such that
the following joint densities can be written:

P (A, B, C, U, V ) = P (A)P (B)P (C)P (UA|A)P (UB|B)

P (VB |B)P (VC |C)

where U = [UA, UB] and V = [VB , VC ]. An example for our specific
application would be segmenting the video image (or filtering the audio
signal). In this case we get the graph of figure 2c and from that graph
we can extract the Markov chain which contains elements related only
to B. Figure 2d shows equivalent graphs of the extracted Markov chain.
As a consequence, there is no influence due to A or C.

Of course, we are still left with the formidable task of finding a
decomposition, but given the decomposition it can be shown, using the
data processing inequality [1], that the following inequality holds:

I(fU , fV ) ≤ I(fU , B) (11)

I(fU , fV ) ≤ I(fV , B) (12)

So, by maximizing the mutual information between I(fU , fV ) we must
necessarily increase the mutual information between fU and B and
fV and B. The implication is that fusion in such a manner discovers
the underlying cause of the observations, that is, the joint density of
P (fU , fV ) is strongly related to B. Furthermore, with an approxima-
tion, we can optimize this criterion without estimating the separating
function directly. In the event that a perfect decomposition does not
exist, it can be shown that the method will approach a “good” solution
in the Kullback-Leibler sense.

3 Empirical results

We now present experimental results in which the general method de-
scribed previously is used to first to localize the speaker in the video
and second to measure whether the audio signal is consistent with the
video signal. We collected audio-video data from eight subjects. In all
cases the video data was collected at 29.97 frames per second at a res-
olution of 360x240. The audio signal was collected at 48000 KHz, but
only 10Khz of frequency content was used. All subjects were asked to
utter the phrase “How’s the weather in Taipei?”. This typically yielded
2-2.5 seconds of data. Video frames were processed as is, while the
audio signal was transformed to a series of periodograms. The window
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length of the periodogram was 2/29.97 seconds (i.e. spanning the width
of two video frames). Upon estimating projections the mutual informa-
tion between the projected audio and video data samples is used as
the measure of consistency. All values for mutual information are in
terms of the maximum possible value, which is the value obtained (in
the limit) if the two variables are uniformly distributed and perfectly
predict one another. In all cases we assume that there is not signifi-
cant head movement on the part of the speaker. While this assumption
might be violated in practice one might account for head movement
using a tracking algorithm, in which case the algorithm as described
would process the images after tracking.

3.1 Video localization of speaker

Figure 3a shows a single video frame from one sequence of data. In the
figure there is a single speaker and a video monitor. Thoughout the
sequence the video monitor exhibits significant flicker. Figure 3c shows
an image of the pixel-wise standard deviations of the image sequence.
As can be seen, the energy associated with changes due to monitor
flicker is greater than that due to the speaker. Figure 3b shows the
absolute value of the output of the pre-whitening stage for the video
frame in the same figure. Note that the output we use is signed. The
absolute value is shown instead because it illustrates the enhancements
of edges in the image.

Figure 5a shows the associated periodogram sequence where the
horizontal axis is time and the vertical axis is frequency (0-10 Khz).
Figure 3d shows the coefficients of the learned projection when fused
with the audio signal. As can be seen the projection highlights the
region about the speaker’s lips.

Figure 4a shows results from another sequence in which there are
two people. The person on the left was asked to utter the test phrase,
while the person on the right moved their lips, but did not speak. This
sequence is interesting in that a simple face detector would not be
sufficient to disambiguate the audio and video stream. Furthermore,
viseme based approaches might be confused by the presence of two
faces.

Figures 4b and 4c show the pre-whitened images as before. There
are significant changes about both subjects lips. Figure 4d shows the
coefficients of the learned projection when the video is fused with the
audio and again the region about the correct speaker’s lips is high-
lighted.
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3.2 Quantifying consistency between the audio and video

In addition to localizing the audio source in the image sequence we can
also check for consistency between the audio and video. Such a test is
useful in the case that the person to which a system is visually attend-
ing is not the person who actually spoke. Having learned a projection
which optimizes MI in the output feature space, we can then estimate
the resulting MI and use that estimate to quantify the audio/video
consistency.

Using the sequence of figure 3 we compared the fusion result when
using separately recorded audio sequence from another speaker. The
periodogram of the alternate audio sequence is shown in figure 5b. Fig-
ure 6a (correct audio) and 6b (alternate audio) compares the resulting
projections hv. In the case that the alternate audio was used we see
that coefficients related to the video monitor increase significantly. The
estimate of mutual information was 0.68 relative to the maximum pos-
sible value for the correct audio sequence. In contrast when compared
to the periodogram of 5b , the value drops to 0.08 of maximum. We
repeat the same experiment with two speaker video sequence, shown
in figure 6c (correct audio) and 6d (alternate audio) and again we see,
not surprisingly, the speaker is not localized. The estimate of mutual
information for this correct sequence was 0.61 relative to maximum,
while it drops to 0.27 when the alternate audio is used.

3.3 Eight-way test

Finally, data was collected from six additional subjects. These data
were used to perform an eight-way test. Each video sequence was com-
pared to each audio sequence. No attempt was made to optimally align
the mismatched audio sequences. Table 1 summarizes the results. The
previous sequences correspond to subjects 1 and 2 in the table. In ev-
ery case the matching audio/video pairs exhibited the highest mutual
information after estimating the projections.

a1 a2 a3 a4 a5 a6 a7 a8

v1 0.68 0.19 0.12 0.05 0.19 0.11 0.12 0.05
v2 0.20 0.61 0.10 0.11 0.05 0.05 0.18 0.32
v3 0.05 0.27 0.55 0.05 0.05 0.05 0.05 0.05
v4 0.12 0.24 0.32 0.55 0.22 0.05 0.05 0.10
v5 0.17 0.05 0.05 0.05 0.55 0.05 0.20 0.09
v6 0.20 0.05 0.05 0.13 0.14 0.58 0.05 0.07
v7 0.18 0.15 0.07 0.05 0.05 0.05 0.64 0.26
v8 0.13 0.05 0.10 0.05 0.31 0.16 0.12 0.69

Table 1. Summary of results over eight video sequences. The columns indicate which audio sequence
was used while the rows indicate which video sequence was used. In all cases the correct audio/video
pair have the highest relative MI score.
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Fig. 2. Graphs illustrating the various statistical models exploited by the
algorithm: (a) the independent cause model - U and V are independent of
each other conditioned on {A, B, C}, (b) information about U contained in
V is conveyed through joint statistics of A and B, (c) the graph implied by
the existence of a separating function, and (d) two equivalent Markov chains
which can be extracted from the graphs if the separating functions can be
found.
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(a) (b)

(c) (d)

Fig. 3. Video sequence contains one speaker and monitor which is flickering:
(a) one image from the sequence, (b) magnitude of the image after pre-
whitening, (c) pixel-wise image of standard deviations taken over the entire
sequence, (d) image of the learned projection, hV .

(a) (b)

(c) (d)

Fig. 4. Video sequence containing one speaker (person on left) and one person
who is randomly moving their mouth/head (but not speaking): (a) one image
from the sequence, (b) magnitude of the image after pre-whitening, (c) pixel-
wise image of standard deviations taken over the entire sequence, (d) image
of the learned projection, hV .
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(a)

(b)

Fig. 5. Gray scale magnitude of audio periodagrams. Frequency increases
from bottom to top, while time is from left to right. (a) audio signal for
image sequence of figure 3. (b) alternate audio signal recorded from different
subject.

(a) (b)

(c) (d)

Fig. 6. Comparison of learned video projections when correct (left) and in-
correct (right)( audio is compared to image sequences of figure 3 (top) and
figure 4 (bottom). When correct audio is used energy is concentrated on
subject, when incorrect audio is used it is distributed throughout the image.
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4 Discussion and future work

We have presented a method for information theoretic fusion of audio
and video data. We have demonstrated over a small set of data, that
the method shows promise for detecting audio-video consistency. We
are not aware of equivalent results in the literature, although previous
multi-modal methods might also work for this application. However,
in contrast to previous approaches our method does not make strong
assumptions about the underlying joint properties of the modalities
being fused (e.g. Gaussian statistics). Consequently, it has the capac-
ity to represent more complex structure which may be present in the
data. Furthermore, our method makes no use of training data. While
there is an adaptive element to the method, the adaptation occurs in
an online fashion over a short sequence (approximately 2-2.5 seconds)
of audio-video data. Consequently, the method is applicable when a
prior model cannot be trained. As might happen when a multi-modal
interface is moved to a new environment. Future work will address the
robustness of the method over a larger corpus of data. Another area
of interest is to determine the relationship between camera resolution,
audio signal-to-noise ratio, and sampling rates for which the method
maintains reliability.
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