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ABSTRACT

We have seen three important trends develop in the last five years in speech recognition. First,
heterogeneous parameter sets that mix absolute spectral information with dynamic, or
time-derivative, spectral information, have become common. Second, similarity transform
techniques, often used to normalize and decorrelate parameters in some computationally
inexpensive way, have become popular. Third, the signal parameter estimation problem has
merged with the speech recognition process so that more sophisticated statistical models of the
signal’s spectrum can be estimated in a closed-loop manner. In this paper, we review the signal
processing components of these algorithms. These algorithms are presented as part of a unified
view of the signal parameterization problem in which there are three major tasks: measurement,
transformation, and statistical modeling.

This paper is by no means a comprehensive survey of all possible techniques of signal
modeling in speech recognition. There are far too many algorithms in use today to make an
exhaustive survey feasible (and cohesive). Instead, this paper is meant to serve as a tutorial on
signal processing in state-of-the-art speech recognition systems and to review those techniques
most commonly used. In keeping with this goal, a complete mathematical description of each
algorithm has been included in the paper.
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[. INTRODUCTION 1.1 The Signal Model Paradigm

Parameterization of an analog speech Signal modeling can be subdivided into
signal is the first step in the speech recognitiorfour basic operations: spectral shaping,
process. Several popular signal analysisspectral analysis, parametric transformation,
techniques have emergeddesfactostandards and statistical modeling. The complete
in the literature. These algorithms are intendecsequence of steps is summarized in Fig. 1. The
to produce a “perceptually meaningful” first three operations are straightforward
parametric representation of the speech signalproblems in digital signal processing. The last
parameters that emulate some of the behavictask, however, is often divided between the
observed in the human auditory and perceptuasignal modeling system and the speech
systems. Of course, and perhaps morerecognition system.

importantly, these algorithms are also designec  There are three main driving forces in
to maximize recognition performance. designing signal modeling systems. First,
The roots of many of these techniques carparameterizations are sought that represent
be traced to early speech recognition researcsalient aspects of the speech signal, preferably
on speaker dependent technology. Todayparameters that are analogous to those used by
though significant portions of speech the human auditory system. This is often
recognition research are now focused on thereferred to agerceptually-meaningful
speaker independent recognition problem parameters. Second, parameterizations are
many of these parameterizations continue to bdesired that are robust to variations in channel,
useful. In speaker independent speectspeaker, and transducer. We refer to this as the
recognition, a premium is placed on robustness, oinvariance, problem. Finally,
developing descriptions that are somewhaimost recently, parameters that capture spectral
invariant to changes in the speaker. Parameterdynamics, or changes of the spectrum with
that represent salient spectral energies of thtime, are desired. We refer to this as the
sound, rather than details of the particulartemporal correlation problem. With the
speaker’s voice, are desired. introduction of Markov modeling techniques
that are capable of statistically modeling the
syntactic pattern recognition approach tolime course of the signal, parameters that
speech recognition consists of two incorporate both absoll_Jte and differential
fundamental operations: signal modeling andmeasurements of the signal spectrum have
network searchingSignal modeling P&come increasingly common.
represents the process of converting sequence  Signal modeling now requires less than
of speech samples to observation vectors10% of the total processing time required in a
representing events in a probability spacetypical large vocabulary speech recognition
Network searchingis the task of finding the application. The difference in processing time
most probable sequence of these events givebetween various signal modeling approaches is
some syntactic constraints. In this tutorial, wenow a small percentage of the total processing
present an overview of popular approaches tctime. The focus today has shifted towards
signal modeling in speech recognition. maintaining high performance and minimizing
the number of degrees of freedom.
Parameterizations that concisely describe the

In this paper, we will adopt a view that a
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signal, can be easily computed in fixed point 1.2 Terminology

hardware, and can be compressed throug|

straightforward quantization techniques are  Throughout this papérwe will avoid the
often preferred over more exotic approachesOverworked and all encompassing term
Memory considerations often outweigh any feature extraction” for two reasons. First,
small gains that may be achieved in speeciMost often this term conveys some connotation
recognition performance by a new signal that the amount of information has been
model. reduced (distilled). Salient features of the
speech signal are strongly context dependent.
No feature extraction algorithm can magically
normalize all variations in the observed data
without some knowledge of the context of the
sound. We often prefer methods that preserve
spectral variation in the data, rather than those
that attempt to remove it in early stages of the
processing. Our disposition is to let the speech
recognizer deal with statistical variation in the

Historically, robustness to background
acoustic noise has been a major driving force ir
the design of signal models. In fact, many of
the signal models in use today were the
outgrowth of research into applications
involving noisy environments: voice control of
military instrumentation (speech recognition in
the cockpit) [1-2] and voice control of the
telephone (automatic telephone
transactions) [3-6]. As speech recognition
technologies have become more sophisticatec ~ Second, the term “feature extraction”
the recognition system itself now contributesS0mehow implies we know what we are
more to the noise robustness problem than thlooking for (in the signal). At this early stage in

signal model. Hence, it is often difficult to SP€€ch recognition history, there are no
isolate signal modeling algorithm @absolutes. The merit of a signal model must be

enhancements. measured in the context of a recognition task.
Various objective measures of modeling
accuracy or efficiency, such as distortion, have
no strong correlation with recognition
performance. In fact, the best feature set can
often be a function of the recognition algorithm
and the task. The end goal is to preserve those
dimensions in the data that represent
dimensions in which fundamental sound units
can be discriminated. The rather grim reality is
that many signal models in use today are great
achievements in empirical optimization.

In addition, signal models that are good for
one type of application may not necessarily be
optimal for another. For example, in speaker
independent speech recognition targeted for ¢
single environment (for example, continuous
digit recognition for telecommunications
applications), certain types of statistical
variations of the channel and speakers can b
safely predicted and accounted fopriori
(e.g.,the bandwidth of the channel). In speaker
dependent or speaker identification
applications, learning unique characteristics of ~ Having said this, what term should we use?
the user and the user’s acoustic environment iWe prefer the use of the simple tesignal
important. Though this difference might seem model. A signal model will have three internal
to necessitate different signal modeling COmMponents: measurements — basic spectral
approaches, most approaches discussed in thand temporal measurements;
paper work well in both types of applications.

1. Since no field today is worth its salt without a plateful of
jargon, a few brief comments on terminology are made in this
section.
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parameters — parametrically collated andtutorial, though choice of an appropriate
smoothed versions of these measurements; arsample frequency obviously plays an
observations — the output of some form of important part in the signal modeling problem.
statistical model of the parameters. The signa  The microphone used in the A/D
model’s observations are of course intimatelyconyersion process usually introduces

interrelated with the speech recognition tech-;ndesired side effects, such as line frequency
nology. These internal components are showrgise (“50/60 Hz hum”), loss of low and high
in Fig. 1. frequency information, and nonlinear
Let us now describe each of these steps irdistortion. The A/D converter also introduces
greater detail. We note that it is a shame thaits own distortion in the form of a less than
very few, if any, speech recognition systemsideal frequency response and nonlinear input/
are capable of exhaustively comparing manyoutput transfer function, and fluctuating DC
variants of signal models in a controlled bias. An example of the frequency response of
manner. Hence, it is often the case thata typical telephone grade channel (including
motivations for choosing a particular approachA/D conversion) is shown in Fig. 3. The sharp
are not always scientific. Therefore, we attenuation of low and high frequencies often
conclude this paper with an overview of causes problems for the subsequent parametric
common signal models used in today’s state o'spectral analyses algorithms.

the art speech recognition systems, and make  gecause of the limited frequency response
few comments on the respective author'sgf analog telecommunications channels, and

claims about the merit§ of their approach.ipe widespread use efkHz  sampled speech in
Excellent papers on this and other relateddigita| telephony, the most popular sample

topics can be found in [7-2%] frequency for the speech signal in
telecommunications i8 kHz . With the recent
Il. SPECTRAL SHAPING emergence of broadband digital networks,

however, we may soon see new
telecommunications applications that utilize
higher quality audio input. In non-
telecommunications applications, in which the
speech recognition subsystem has access to

components in the signal. This conversionhigh quality speech, sample frequencies of

process is shown in Fig. 2. A good discussion0 kHz, 12 kHz, and 16 kHz have been used.
of general principles of sampling and A/D These sample frequenmes give better time and
conversion can be found in [30]. We will not fréduency resolution [31].
discuss the choice of a signal sample frequenc:  The main purpose of the digitization
and the implications of such choices in thisprocess is to produce a sampled data
representation of the speech signal with as high
2. The references in this paper have been selected mainly foa Slgnal to NOIS_e ratio (SNR) as pOSSIbIe'
their worth as general introductions to mainstream work in T€lecommunications systems today regularly

this area, rather than their authenticity as an original referencede”ver SNRs in excess @b dB for speech
on the subject. It was not our intention to discredit particular . . . .
research in this area (though that is probably unavoidable)fecognition applications, more than sufficient

Excellent comprehensive discussions of many topics ini i inti i
presented in this paper can be found in [27-2]. for obtaining high performance. Variations in

Spectral shaping involves two basic
operationsA/D conversion —conversion of
the signal from a sound pressure wave to ¢
digital signal; and digital
filtering — emphasizing important frequency
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transducers, channels, and background noisespectrum [31] (see Section 3.3.4 for more
however, can each contribute significantly to details).

problematic performance in such e also note that such preemphasis filters
environments. also raise frequencies abow@Hz , a region in
Once signal conversion is complete, thewhich the auditory system becomes
last step of digital postfiltering is most often increasingly less sensitive. However,
executed using a Finite Impulse frequencies abovekHz are naturally
Response (FIR) filter: attenuated by the speech production system
and normally are assigned a significantly
(1) smaller weight in a typical speech recognition

N

pre

Hoe@ = Z a, Kz .
K=0

system.
Normally, a one coefficient digital filter, More sophisticated preemphasis
known as greemphasisfilter, is used: algorithms have been proposed. One such
notable approach is adaptive preemphasis, in
Hyod = 1+a, 7" . (2)  which the spectral slope is automatically

flattened [31] before spectral analysis. Other
algorithms utilize shaping filters that attenuate
areas of the spectrum known to be quite
noisy [33,34]. More recently, speech/noise
classification algorithms based on adaptive
filtering are being employed [35]. However,
none of these approaches have yet enjoyed
widespread success in speech recognition
applications. In fact, recently, many speech
recognition systems have eliminated the
_ preemphasis stage altogether and compensate
There are two common explanations of thess, the spectral slope as part of the speech

advgntages of using thi§ filter. First, voiced recognition statistical model (see Section VI).
sections of the speech signal naturally have ¢

negative spectral slope (attenuation) of [Il. SPECTRAL ANALYSIS
approximately20dB per decade due to
physiological characteristics of the speech
production system [28,31]. The preemphasis
filter serves to offset this natural slope before
spectral analysis, thereby improving the
efficiency of the analysis [31,32].

A typical range of values fog,, is
[-1.0,-0.4 . Values close te1.0 that can be
efficiently implemented in fixed point
hardware, suchasd efqi1-11 , are most
common in speech recognition. A range of
frequency responses for the preemphasis filte
of Eq. (2) is shown in Fig. 4. The preemphasis
filter is intended to boost the signal spectrum
approximately20 dB8 per decade (an order of

magnitude increment in frequency).

For pedagogical reasons, let us classify the
types of spectral measurements used in speech
recognition systems into two classes:
power — measures of the gross spectral (or
temporal) power of the signal; spectral
amplitude — measures of power over
particular frequency intervals in the spectrum.

moret SenS_II_tI[]VG above ;mlfH?.lt reglolqc_ of :L‘_eA typical parameter set in speech recognition
Spectrum. The preempnasis fiteramplifies this, .\ incjude each of these measurements.

area of the spectrum, assisting the spectra
analysis algorithm in modeling the most
perceptually important aspects of the speec

An alternate explanation is that hearing is

Recently there has been resurgence of inferest

fin fundamental frequency for use as a prosodic
feature [36], for use in speech recognition of

Proceedings of the IEEE - "Final'Copy: June 3, TG8E3



Picone: Signal Modeling ... 6

tonal languages (e.g. Chinese) or language Second, the U.S. National Security
that have some tonal components (e.g.Agency (NSA), as part of a program to develop
Japanese), and as a measure of speaker identsecure digital telephones based on low bit rate
or authenticity [37]. Let us first briefly review voice coding, has developed a robust algorithm
fundamental frequency and power for telecommunications applications [42,43].
calculations, and then focus on spectralThis algorithm is based on the average
amplitude estimation. magnitude difference function [32], and a
discriminant analysis of multiple voicing
measures. It is a published government
standard and publicly available in the U.S.

3.1 Fundamental Frequency

Fundamental frequency' is defined as the
frequency at which the vocal cords vibrate A third class of algorithms, similar in
during a voiced sound [38,39]. Fundamentalnature to the previous class, are based on
frequency {, ) has long been a difficult dynamic programming concepts [44]. These
parameter to reliably estimate from the speectalgorithms have been shown to provide high
signal. Previously, it has been neglected inperformance across a wide range of
speech recognition systems for numerous€nvironments,  including  noisy
reasons, including the large computationaltelecommunications channels. This class of
burden required for accurate estimation, thealgorithms uses a sophisticated optimization
concern that unreliable estimation would be aprocedure that evaluates several measures of
barrier to achieving high performance, and thecorrelation and spectral change in the signal,
difficulty in characterizing complex and computes an optimal fundamental
interactions betweefy and suprasegmentafrequency pattern and voicing pattern
phenomena. simultaneously.

There are four major classes of algorithms ~ Finally, an algorithm that is rarely used in
in use today. One of the first algorithms to real-time speech systems, but often used for
appear, and one of the simplest, is an algorithnfeésearch experimentation, is an algorithm that
that uses multiple measures of periodicity inoPerates on the cepstrum of the speech
the signal, and votes between them tosignal [45]. This algorithm is still popular
determine the voicing state and fundamentatoday as an accurate method for estimating the
frequency. This algorithm was originally fundamental frequency in extremely quiet
known in the speech processing literature adaboratory recording conditions.
the Gold-Rabiner algorithm [40], and Fundamental frequency is often processed
motivated many other variants based on time-on a logarithmic scale, rather than a linear
domain measurements [41]. The Gold-Rabinerscale, to match the resolution of the human
algorithm is still popular mainly because of its auditory system. For reference purposes, let us
simplicity and ease of reliable implementation. define a measure of the fundamental frequency
Unfortunately, it does not work very well. as:

3. Of course, fundamental frequency is still rarely used in F(n) = IOglo(fO(n)) ! (3)

practical speech recognition systems. . .
4. This section is intended to serve only as a reference guideWheren represents discrete time.

to major work in this area. The details of such algorithms are
beyond the scope of this paper. Good tutorials on the subjec
can be found in [38,39]
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Normally, 50 Hzsf,<500 Hz for voiced for 0sn<N,, andw(n) =0 elsewherea, is
speech. For unvoiced spee¢h, is undefineddefined as a window constant in the range
and by conventior=0 . Often, fundamental [0, 1], and N, is the window duration in
frequency is normalized by the speaker’'ssamples. To implement a Hamming window,
average f, value, or some qa, = 0.54,
physiologically-motivated transformation of a
nominal value during the corresponding voiced
segment of speech.

B, Is a normalization constant defined so

that the root mean square (RMS) value of the
window is unity.p,, is defined as:

3.2 Power
Ng—1
The use of some sort of power measure(s B, = 1 Z w2 (n) . (6)

in speech recognition is fairly standard today. Nsn:o

Poweris rather simple to compute: In Fig. 5 we show various realizations of the
N,—1 Hanning window.
_ 10 o Ny [Tf L : .

P(n =& Y twmsgn-z+mgg ,  (4) In practice, it is desirable to normalize the
*m=0 window so that the power in the signal after

whereN, is the number of samples used towindowing is approximately equal to the

compute the power(n) denotes the signaljpower of the signal before windowing.

w(m) denotes a weighting function, amd Equation (6) describes such a normalization
denotes the sample index (discrete time) of theconstant. This type of normalization is
center of the window. Rather than using poweréspecially convenient for implementations
directly, many speech recognition systems useusing fixed point arithmetic hardware. Note
the logarithm of the power multiplied by 10, that the computational burden of a window is
defined as the power i#B , in an effort to relatively small, because the window
emulate the logarithmic response of the humarcoefficients are precomputed at system
auditory system [46]. initialization.

The weighting function in Eq. (4) is The purpose of the window is to weight, or
referred to as a window function. Window favor, samples towards the center of the
theory was once a very active topic of researctwindow. This characteristic, coupled with the
in digital signal processing [31,32]. There are overlapping analysis discussed next, performs
many types of windows including rectangular, @n important function in obtaining smoothly
Hamming’ Hanning, Blackman, Bartlett, and varying parametric estimates. It is important
Kaiser. Today, in Speech recognition' the that the width of the main lobe in the frequency
Hamming window is almost exclusively used. response of the window be as small as possible,
The Hamming window is a specific case of theor the windowing process can have a

Hanning window. A generalized Hanning detrimental effect on the subsequent spectral

window is defined as: analysis. See [31,32,47] for good discussions
of this topic.

a,— (1-a,) cos(2rn/ (N,—1))

Bu

, (5) Power, like most parameters in a speech
recognition system (including fundamental
frequency mentioned in the last section) is

w(n) =
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computed on a frame by frame basis.frame duration ofio msec . Generally speaking,
Frame duration,T,, is defined as the length of since a shorter frame duration is used to
time (in seconds) over which a set of capture rapid dynamics of the spectrum, the
parameters are valid. Frame period is awindow duration should also be
similarly used term that denotes the length ofcorrespondingly shorter so that the detail in the
time between successive parameterspectrum is not excessively smoothed.
calculations. Frame rate, yet another commor  The process of frame based analysis is

term, is the number of frames computed petdepicted in Fig. 6. This type of analysis is often

second (Hz). referred to as an overlapping analysis, because
In Eq. (4),n is updated by the frame with each new frame, only a fraction of the

duration in samples. Frame duration typically signal data changes. The amount of overlap to

ranges betweerro msec andiomsec in Some extent controls how quickly parameters

practical systems. Values in this rangecan change from frame to frame. The

represent a trade-off between the rate ofpercentage overlap is given by:

change of spectrum and system complexity. (T.—T)

The proper frame duration is ultimately %Overlap = WT—fx100% , (7)

dependent on the velocity of the articulators in v

the speech production system (rate of changwhereT, is the window duration (in seconds)

of the vocal tract shape). While some speectand T, is the frame duration. #f <T, , the

sounds (such as stop consonants olpercentage overlap is zero.

dip_hthongs) exhipit sharp spectral tra_ns_:itions The combination of &0 msec frame

which can result in spectral peaks shifting asyration and a30 msec window duration

much asso Hz_/msec [31], frame durations less correspond to @3% overlap. Some systems
than approximatel\s msec are normally not \;se as much 6% overlap. One goal of such
used. large amounts of overlap is to reduce the

Equally important, however, is the interval amount of noise introduced in the
over which the power is computed. The measurements by such artifacts as window
number of samples used to compute theplacement and nonstationary channel
summation, Ny, is known as the noise [32]. On the other hand, excessively
window duration (in samples). Window smoothed estimates can obscure true variations
duration,T, is normally measured in units of in the signal.

time (seconds). Frame-based power computations can also

Window duration controls the amount of be computed recursively [32]. This technique
averaging, or smoothing, used in the poweriS most easily viewed as a filtering operation of
calculation. The frame duration and window the squared amplitude of the signal:
duration together control the rate at which the N, N,
power values track the dynamics of the py-= ~3 P (n=) + 3 by, ()s¥n-]) | (8)
signal [32]. Frame duration and window i=1 i=o

dl_Jration are-normally adj_usted as pair: aywhere {a,} and{b,} represent the
window duration 0f30 msec is most common cqefficients of a digital low pass filter. Most

with a frame duration obomsec , while @ qften, a first order filter (leaky integrator),
window duration of20 msec is used with a
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N, = 1,N, = 0, or a second order filter (biquad adaptation speed is appropriate for the given
section),N, = 2,N, = 2 , are used. The design application.

of the system represented in Eq. (8) to produce Recursive formulations are used to
smoothed power estimates is a classical contrcimplement algorithms for adaptive gain
problem. A good discussion of the design ofcontrol, peak signal power estimation, and
such controllers can be found in [48]. signal endpoint detection. Equation (8) can

In Fig. 7, we demonstrate the use of these2lso be applied as a postprocessor to Eq. (4) to
parameters. At the bottom of the figure, aProvide additional smoothing of the power
speech signal is shown. The first four estimates.
waveforms starting from the top of the figure

show power contours for: (aj, = 5 msec ,
T, = 10 mse¢ (b) T, = 10 mse, T, = 20 msec There are six major classes of spectral
w ' w

(d) analysis algorithms used in speech recognition
systems today. The procedures for generating
window was used; (e)T, = 20 msec , these analyseslare summari;ed in Fig. 8 F.ilter
. . bank methods (implemented in analog circuits)
Tw b 60 mseg (f) a recurglve filter .approach N were historically the first methods introduced.
Wh'Ch as0 Hz low pass flltgrwas implemented Linear prediction methods were introduced in
using a second order section. the 1970’s, and were the dominant technique
The application of a Hamming window, as through the early 1980’s. Currently, both
shown in Fig. 7(d), helps produce a smoothecFourier transform and linear prediction
estimate of the power through regions wheretechniques enjoy widespread use in various
the power changes rapidly (note the point in thespeech processing applications. In this section,
waveform marked by an arrow). Note that atwe will discuss each of these techniques,
t = 0.3 secsthere is a subtle rise in power. This beginning with the digital filter bank.
rise in power is reproduced only in (a) and (e), - .
the two analyses with the greatest ability to 3.3.1 Digital Filter Bank

respond to rapid changes in the signal’s power ~ The digital filter bank is one of the most
fundamental concepts in speech processing. A

produces an oscillatory power contour. Thefllter bank can be regarded as a crude model of

second order filter used in the implementationthe initial stages of transduction in the human

is not capable of sufficiently damping high aud.lto.ry system.. There are two main
frequencies in the signal’s amplitude/ motivations for the filter bank representation.

instantaneous power contour. Hence, therirst, the position of maximum displacement
output tends to be too sensitive to thealong the be_lsilar membrane for stimuli_such as
short-term power level of the signal. For this pure tones is proportional to the Iogarlthm O_f
reason, such filters are often used only asthe frequency of the ton_e. This hypothesis is
postprocessors to frame-based analyses, jpart of a theory of hearing called the “place

which case the power contour is extremelytheory” [49].

smooth to begin with. Careful design of these ~ Second, experiments in human perception
circuits are required to make sure thehave shown that frequencies of a complex
sound within a certain bandwidth of some

3.3 Spectral Analysis

(c) T, = 20msec T, = 30 msec
T, = 20 mseg T, = 30 mseg and a Hamming

The recursive technique in Fig. 7(f)
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nominal frequency cannot be individually linear phase FIR bandpass filters that are
identified. When one of the components of thisarranged linearly along tigark (or mel)scale.
sound falls outside this bandwidth, it can beThe bandwidths are chosen to be equal to a
individually distinguished. We refer to this critical bandwidth for the corresponding center
bandwidth as the critical bandwidth [50]. A frequency.

critical bandwidth is nominallyo% t@0% of

One such filter bank, originally defined
the center frequency of the sound.

in [52] has become somewhat of a standard,
We can define a mapping of acousticand is shown in Table 1. The center
frequencyf , to a “perceptual” frequency scale,frequencies and bandwidths for these filters are
as follows [51]: shown in the second and third columns of
s 0 ¢ 0 Table 1. The cgnter freqqencies corrgspond to
1boog+ 3.EatarH_____2% . (9) f[hose fr_equenmes fqr which Eq. (9) yields the
(7500 integer index value in the table (for example,
The units of this perceptual frequency scale arethe frequency corresponding to an index of 2
referred to as critical band rate, Bark. The  produces &ark Vvalue of 2). The bandwidth is
Bark scale is shown in Fig. 9(a). then computed using Eq. (11).

Bark = 13ata

A more popular approximation to this type In many speech processing applications,
of mapping in speech recognition is known asthe first filter is omitted, because its range is
themelscale [51]: beyond the capabilities of the A/D converter.
Often the sampled data collected in the
corresponding frequency range is extremely
The melscale attempts to map the perceivednoisy. Telephone grade speech is often
frequency of a tone, or pitch, onto a linear processed using a filter bank consisting of
scale. This scale is displayed in Fig. 9(b). It is16 bands (indices 2 - 17).
often approximated as a linear scale from
0 to 1000 Hz, and then a logarithmic scale
beyond1000 Hz .

mel frequency= 2595 log1Q( 1+ f/700.0 .(10)

Another equally important filter bank in
the speech recognition literature is a filter bank
based on thenel scale. The frequency/

An expression for critical bandwidth is:  bandwidths for this filter bank [26] are given in
fourth and fifth columns of Table 1. In this

BWeriticar design, ten filters are assigned linearly from
This transformation can be used to compute100 Hz to 1000 Hz Above 1000 Hz, five filters
bandwidths on a perceptual scale for filters at care assigned for each doubling of the frequency
given frequency omBark or mel scales. The scale (octave). These filters are spaced
critical bandwidth function is also displayed in logarithmically (equally spaced on a log scale).
Fig. 9(c). The bandwidths are assigned such that the
3 dB point is halfway between the current bin

Both theBark scale and thenel scale can _ : .
be regarded as a transformation of the@nd the previous/next bin. The shaded entries

frequency scale into a perceptually meaningfulIn the table are shown only fpr comparison
scale that is linear. The combination of thesePU"POSes: Normally, only the first 20 samples
two theories gave rise to an analysis techniquefrom the filter bank are used.

known as the critical band filter bank. A Each filter in the digital filter bank is
critical band filter bank is simply a bank of usually implemented as a linear phase filter so

= 25+ 75[ 1+ 1.4f/10002 % . (11)
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that the group delay for all filters is equal to in Section 3.3.4), the technique is generally
zero, and the output signals from the filters will robust to ambient noise.

be synchronized in time. The filter equations  \ye conclude this section with one
for a linear phase filter implementation can benistorical note. Long before computer

summarized as follows: hardware was capable of performing complex
N 142 mathematical operations in real time, analog

s (n) = z 8o () S(n+ ) (12) fllter.banks silmllar to the digital fllt'er bank
=N 172 previously discussed were used in speech

S ~ recognition. The filter banks were often built
whereag(j) denotes thegoefficientforthet  from discrete components and needed to be
critical band filter. The filter order is normally carefully tuned by adjusting resistors and
odd for a linear phase filter. capacitors. At that time, researchers dreamed
Processing of speech through two filters in O the days when speech recognition system
this type of filter bank is demonstrated in Parameters cpuld be ad!usted from software.
Fig. 10. A speech signal is shown, along with The analog filter bank is one of the oldest
the outputs from two bandpass filters, one@PProaches used in speech recognition.
2500 Hz. Note that the power of the outputsgenerated some of the lowest cost
This is the basic merit of the filter bank: certain  3.3.2 The Fourier Transform Filter Bank
filter outputs can be correlated with certain

classes of speech sounds. We have previously discussed the

_ advantages in using non-uniformly spaced
The filter outputs are normally processed grequency samples. One of the easiest and most
using any of the power estimation methodsg¢ficient ways to compute a non-uniformly
previously discussed. The digital filter bank is spaced filter bank model of the signal is to
most frequently used in systems that attempt t(simply perform a Fourier transform on the

emulate auditory processing [53,54]. gjgnal, and sample the transform output at the

Recursive-in-time computations aregesjred frequencies. THiscrete Fourier
particularly convenient for postprocessing in transform (DFT) of a signal is defined as:
these applications.

The output of this analysis is a vector of _ Mot -G
power values (or power/frequency pairs) for S() = ZOS(”)e T (13)

each frame of data. These are usually )
combined with other parameters, such as totaVNeref denotes the frequency in iz, denotes
power, to form the signal measurement vectorthe signal sample frequency, and  denotes

The filter bank attempts to decompose thethe window duration in samples.

signal into a discrete set of spectral samples  The filter bank can be implemented by

that contain information similar to what is using Eq. (13) to sample the spectrum at the
presented to higher levels of processing in thefrequencies listed in Table 1. However, often

auditory system. Because the analysis isthe spectrum is oversampled at a finer
largely based entirely on linear processing (asresolution than that described in Table 1, and
opposed to the nonlinear techniques discusseeach output of the filter bank (a power spectral
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Picone: Signal Modeling ... 12

magnitude) is computed as a weighted sum oof human perception, we hypothesize that high
its adjacent values: amplitude areas of the spectrum are weighted
more heavily in the auditory system than low
amplitude regions. In noisy environments,
noise often disproportionately degrades our
estimates of the low amplitude areas of the
whereN, represents the number of Samplefspectrum. Stated another way, we are more
used to obtain the averaged valug (n) confident of the reliability (and repeatability)

represents a weighting function, asidf,n) of our estimates of the high amplitude areas of
represents some function that describes thinhe spectrum.

frequencies in the neighborhoodfof to be usec
in computing the average. Note that the
averaging method presented in Eqg. (14) is jus
one particular method of implementing a
spectral smoothing function.

NOS
SHGE Ni T wes@S(f+31(En) ,  (14)
n=0

For this reason, we often impose a limit on
the dynamic range of the spectrum. This is
depicted in Fig. 12. We refer to this lower limit
as thedynamic range threshold Rather than
use noisy estimates of low amplitude regions

Averaging is often performed in theel  of the spectrum, we simply clip, or discard,
scale frequency domain if a DFT is used (sinCegstimates below a certain threshold from the
the added computational burden is minimal).peak in the spectrum. For Fourier
Averaging also is usually performed in the log Tyansform-based techniques, this is
domain (log power values) rather than ongyraightforward to implement as a thresholding

spectral amplitudes. The benefit of using fynction on the spectral magnitude (measured
averaged values for spectral analysis isj, dB).

demonstrated in Fig. 11. -
g It is important that the spectral envelope be

A Fast Fourier Transform (FFT) [S5]  (gjatively flat before implementing such
also can be used as an alternate method Gnresholding algorithms. Otherwise, useful low
computing the spectrum of the signal. The FFTenergy portions of the spectrum can be
is a computationally efficient implementation mistakenly eliminated. Recall that since the
of the DFT under the constraint that the gpectrum of the speech signal inherently drops
spectrum is to be evaluated at a discrete set (5 45 per decade, a threshold based on low
frequencies that are multiples Qf N . Thesefrequency energies, where the peak to valley
frequencies are referred to as orthogonaspectral amplitude difference is large, can
frequencies. The principal advantage of theeasily remove useful signal energy at higher
FFT is that it is very fast: approximately frequencies. Later, we will discuss more
N logN additions andN logN/ 2 multiplications Sophisticated methods for imp|ementing
are required. (The DFT requires on the order othresholding of the spectrum based on
N° operations.) The principal disadvantage isparametric modeling techniques. For the
that nonlinear frequency mappings, such as thmoment, the reader might ponder the utility of
filter bank in Table 1, must be adjusted to letting the dynamic range threshold vary as a
match the FFT orthogonal frequency function of the background noise level in the
constraints. spectrum or as a function of the local spectral

One additional processing step is oftenP€ak to local background noise level.
added. Based in part on our sketchy knowledge
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3.3.3 Cepstral Coefficients S(H = G(f) V() .

Since their introduction in the early 1970’s, If we take the logarithm (complex) of both
homomorphic signal processing sides, we have:
techniques [27] have been of great interest ir
speech recognition. Homomorphic systems are Log(S(9) = Log(G(H V(D)
a class of nonlinear systems that obey ¢ Log(G(9) +Log(V(D) -
generalized principle of superposition. Linear Hence, in the log domain, the excitation and
systems, such as those previously discussed¢he vocal tract shape are superimposed, and
are a special case of a homomorphic systercan be separated using conventional signal
The motivation for homomorphic processing Processing (in theory at least).
in speech analysis is summarized in Fig. 13. To compute the cepstrum, we first

In speech processing, the homomorphiccompute the log spectral magnitudes (averaged

system we seek should have the followingif necessary) from Eq. (14). Next we compute
property: the inverse Fourier transform of the log

spectrum:

D[ [x(M] % [%(M]°] = aD [x,(n)]

N—-1 211
+BD : : IR
PD Dx(n)] c(n) = Nl Z Iogm\savg(k)\eNs , 0snsN,-1.
This is a superposition type operation with $¢>o
respect to multiplication, exponentiation, and (15)

addition. A logarithm function, of course, _ ) ]
obeys the generalized superposition property. ¢("W N EQ. (15) is defined as treepstrum.

. _ We refer to cepstral coefficients computed via
Homomorphic systems were considered

. the Fourier transform (or analog filter bank) as
useful for speech processing [27] beca_use thejFOurier Transform-derived cepstral
offered a methodology for separating thecoefﬁcients.
excitation signal from the vocal tract shape. )

Current approaches to speech recognition ar~ Observe that(o) in Eg. (15) represents
primarily concerned with modeling the vocal the average value of the spectrum, or the root
tract characteristics. In the linear acousticsMean square (rms) value of the signal. Initially,
model of speech production, the compositethis term was an important part of the cepstral
speech spectrum, as measured by a FouricP@rameter vector. Later, it was observed that
transform, consists of the excitation signal@Psolute power measures of the signal were
filtered by a time-varying linear filter somewhat unreliabfe and use of(0) was
representing the vocal tract shape. deemphasized. Recently, however, since
The process of separating the two various alternative measures of power are
often referred to as €Xplicitly added to the parameter vector in

components, | .
deconvolution, can be described as follows: ©ther stages of processingo)  is no longer
used. From this point forward, we will
s(n =g(n Ov(n , EXCLUDE this term from our discussion of

whereg(n) denotes the excitation signgly)  the cepstral coefficient sequence.
denotes the vocal tract impulse response, an

“or _denOtes con\_/olutlon.. The frequency 5. Some systems [14] still use some form of absolute power
domain representation of this process is: along with various normalized power measures.
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Equation (15) is also recognized as the  Because the cepstrum is computed using a
inverse DFT of the log spectrum. This can benonlinear operator, a logarithm function, it is
conveniently simplified by noting that the log generally believed to be sensitive to certain
magnitude spectrum is a real symmetrictypes of noise and signal distortions. While
function. Hence, Eq. (15) can be simplified to: multiplicative noise processes can generally be

dealt with, additive noise (such as background
(16) acoustic noise) can be troublesome. Cepstral

parameters derived from high resolution
spectral estimators, or parametric fits of the

c(n in Eq. (16) is normally truncated to an spectrum, are often preferred for applications
order much lower than, 1(k) represents a.

_ _ _ in noisy environments.
mapping function that translates the integer _ o o
to the appropriate samples &f For 3.3.4 Linear Prediction Coefficients
vg .

efficiency, s,,, can also be computed usingan ~ We now turn from Fourier Transform
oversampled FFT, rather than a non-uniformlymethods based on linear spectral analysis to a
spaced DFT. class of parametric modeling techniques that

We note that the cepstrum, as used indttempt to optimally model the spectrum as an

speech processing, is slightly different than the2Utoregressive process. It is difficult to
classical definition of the complex cepstrum OVerstate the impact parametric models have

found in the literature [27,28]. However, the Mad€ on speech processing since their
definition presented here conveys all introduction in the early 1970s [56,57]. By th_e
significant information needed in speech [ate 1970s, almost every speech processing
recognition.The cepstrum defined in Eg. (16)SYStém used some sort of algorithm that
can be easily modified to beraetspaced parametrically fits the spectrum, whether for

cepstrum by sampling the Fourier Transform at’€c0gnition, compression, or verification
appropriately spaced frequencies. applications. Though parametric models today
are less popular in recognition, they are still

widely used in compression systems.
Parametric models were the impetus for a
transition to vastly more powerful statistical
modeling techniques in speech recognition. In
this section, we will discuss computation of a
parametric model based on least mean squared
error theory. This technique is known as linear
prediction (LP).

Ns
2 21
c(n =3 Z Sagl(K)) cosrkn
Sk: 1 S

The cepstrum of two different speech
signals is shown in Fig. 14. In Fig. 14(a) and
Fig. 14(c), an unvoiced and a voiced speect
waveform are shown, respectively. In
Fig. 14(b) and Fig. 14(d), the corresponding
cepstra are shown. The low order terms of the
cepstrum correspond to short-term correlation
in the speech signal (smooth spectral shape c
vocal tract shape). The local maxima in the

higher order terms in Fig. 14(d) demonstrate € roots of linear prediction, as a least
long term correlation, or periodicity, in the Mean squared error algorithm can be traced to

waveform (excitation information). The Many diverse areas: system identification
cepstrum in Fig. 14(b) of the unvoiced pro_blems in modern control_ syster_ns,_tlme
segment does not show any periodicity. |nser|§s analysis for economlc applications,
spectral analysis for speech recognitionMaXimum entropy techniques, quantum

applications, normally only the low order PhYSICS, geophysics, adaptive filtering and
terms <20 ) are used. spectral estimation in signal processing. Linear
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prediction theory is well-documented in the Nep
literature. Some of the landmark academic H(2) = 1+ ZaLP(i)Z_i :
texts include [31,32,57]. Here, we will (very) i=1

briefly review the mechanics of computing a or,

linear prediction model, and then discuss the
implications in speech recognition.

Nip
. _ Hp(2 = ZaLp(i)z" : (18)
Given a signals(n) , we seek to model the =0

signal as a linear cpmblnatl_cm of its preVIOUSWheI‘EaLP(O) =1 H_.(2) isdefined as the linear
samples. Let us define our signal model as: prediction inverse filter.

Nep Under the constraint that we would like the
s(n ==% ai)s(n-i +e(n , (17)  mean-squared error to be as small as possible
=1 (seeking a solution that gives us the minimum

where N, represents the number of error energy is reasonable), the coefficients
coefficients in the model (the order of the (excludinga, ,(0) ) of Eq. (18) can be obtained
predictor),{a } are defined as thimear  from the following matrix equation:
prediction coefficients (predictor

coefficients), and(r) represents the error in &p = 279, (19)
the model (the difference between thewhere,

predicted value and the actual measurec

‘

value). ap = [aLP(l)’ ""aLP(NLP)] (20)
One obvious virtue of this model is that, if

it is accurate, we should be able to predict 01D 01,2 .. ¢ N

future values of the signal based on our curren o=| ®2D @R . @RNG | ()

set of measuremefitsThe error term should
tell us something about the quality of our @(NLp: 1) 9N p, 2) ... @(Np, N p)

model (if the error is small, the model is )
accurate). It is also possible to show that a ¢ = [cpn(l, 0), 9,2, 0), ...0,(N, ps 0)} , (22)

linear prediction model effectively models the
spectrum of the signal as a smoothand,

spectrum [31]. N-1
Equation (17) can be rewritten in  @,G.k) = le s(n+ m-)s(n+ m-R . (23)
Z-transform notation and shown to be a linear *m=0
filtering operation: The solution presented in Egs. (19)-(23) is
known as the Covariance Method. is

E(2 = H S(2, ) : :
(2 (2502 referred to as a covariance matrix, &y k) is
whereE(2 ands(3 arethe -transforms of referred to as the covariance functiongon
the error signal and the speech signal,

. There are three basic ways to compute
respectively, and

predictor coefficients: covariance methods
" e f . based on the covariance matrix (also known as

6. The naive reader will easily imagine uses for such models .

in predicting stock market prices. In fact, economic analysis pure least squares methOdS)' autocorrelation

was one of the earliest applications for such algorithms. methods, and lattice (or harmonic) methods.

Proceedings of the IEEE - "Final'Copy: June 3, TG8E3



Picone: Signal Modeling ... 16

Good discussions of the differences in these/._ - \
approaches are given in [31,57]. In speecH 'Mtiaizaton:
recognition, the autocorrelation method is EQ = R (0) (26)

almost exclusively used because of its
computational efficiency and inherent
stability. The autocorrelation method always

For1<i<Np {

i—1
produces a prediction filter whose zeroes lig R (i) + zaiip—l)(j)Rn(i i)
inside the unit circle in the -plane. K o(i—1) = =1 (27)
LP (i-1)
In the autocorrelation method, we modify Elb
Eq. (23) as follows: afF),(i) = ko(i-1) (28)
0,0, K) = 9,0, i —K|) , (24) Forl<j<i-1 {
or, i) ,. i—1) . . i-1),. .
ap() = ajp V() +kpli-1) &y (i -])
N,—1-k
: 29
R, (K) :Ni Y s(n+ms(nem-§ . (25) (29)
s m=0 }
R.(K) is known as the autocorrelation function. E® = (1—kpli-1)?)EGD (30)
This simplification results by constraining the
evaluation interval to the rang®,N-1] , and K} /

assuming values outside this range are zero. _ _
These equations compute the predictor

. Becaus_e of this finite Iength.constralnt, Itis coefficients with complexity proportional to
important in the autocorrelation method to . :
and allow the entire LP computation to be

apply a window, such as that described in"L?: _ : :
Eq. (5) to the signal. Normally, a Hamming Performed with a complexity of approximately

window is used. Application of the window NN p+ 3N +NZ.
eliminates the problems caused by rapid  The signal model is actually the inverse of
changes in the S|gna_l at the e_dg_es of they (2, and is given by:
window. In an overlapping analysis, it ensures
a smooth transition from frame to frame of the _ Gp

| Sp(d) = 2 (31)
estimated parameters. Hp (2)

This simplification allows the predictor G, is the model gain, and is given by:
coefficients to be computed efficiently using

the Levinson-Durbin recursion [37]: Gp = EL(’:LFJ _ (32)
Note that the gain term is also given by the
expression:

Nip
Gp = JRn(O)H (1-K p(i —1)?) (33)
i=1

The gain term allows the spectrum of the LP
model to be matched to the spectrum of the
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original speech signal. The LP model order, only the gross spectral shape (or trend) is
computed from Eqg. (19) is a normalized modelcaptured. With a higher order, finer detail in
(the values of the predictor coefficients arethe spectrum is represented.

independent of the power of the signal). As we observed in previous sections, the

There are three important observations tospectral model in low energy areas of the signal
make about this form of the LP solution. First, spectrum is often inaccurate. We would like to
the intermediate variables used in thesomehow impose a dynamic range threshold
computation,{k .} , are calledceflection similar to that imposed in Fig. 12. There are
coefficients They are bounded: several ways to do this in an LP model: a
stabilized covariance method [59] that reduces
the dynamic range in the spectrum, a
This is an extremely useful result for storageperceptual-weighting method [60] that
and compression applications involving LP broadens the bandwidths of the LP model
models. For example, LP coefficients for slightly, or a stabilized autocorrelation
speech applications can be compressed to emethod [44] in which a small amount of noise
few as 30 bits/model without significant is added to the autocorrelation function.

degradation [58]. LP coefficients can normally  The latter of these approaches is simple and
be stored in such as way that we can achieve agffective. The autocorrelation function of

order of magnitude compression over thegq. (25) is modified before the LP
original speech data. This is an importantcomputation as follows:
consideration for speech recognition systems
that must store large numbers of recognition Raw(©@ = (1+Vn,) R,(0) (35)
models. R.u() = R, (i) i>0 .

Second, the iterative solution computes theThe dynamic range threshold is normally
solution for all model orders<i<N,, . Thisis specified in dB:
convenient for signal processing applications
that require estirgatiorl? of the mgodglporder as Yo = 10 '8 1% (36)
part of the task. Normally, in speech A typical value of the dynamic range threshold
recognition applications, the model order is ais -10 dB.
fixed system parameter.

O<|kpi—-1)|<1, O1<i<N_ . (34)

This stabilization process is equivalent to

Third, as the order increases, the model fitadding uncorrelated white noise to the speech
becomes better. Equation (30) represents thsignal before LP analysis. The effect of this
energy of the error. From this equation, we seenoise is to prevent the LP model from
that the error is monotonically decreasing asmodeling sharp nulls (or zeroes) in the
the order increases. The model itself attemptsspectrum. This is demonstrated in Fig. 16.
to match the overall spectrum as well asObserve that some distortion in the form of
possible for the given order. spectral smoothing is also introduced into the

We demonstrate this fact in Fig. 15, where model at higher energy areas of the spectrum
we show a speech spectrum, and two(broadening the bandwidths of the resonances
corresponding LP models. Note that as theof the LP model sometimes causes neighboring
order is increased, the model produces a betteSPectral resonances to collapse into one broad
match of the original spectrum. With a low résonance).

Proceedings of the IEEE - "Final'Copy: June 3, TG8E3



Picone: Signal Modeling ... 18

Let us make one more important 3.3.5 LP-Derived Filter Bank Amplitudes
observation about the LP model. By adding
power and fundamental frequency information
to the LP coefficients, it is possible to

reconstruct an audio version of the Speecrprediction-derived filter bank amplitudes

signz_il _[56]' Listening t(_) param(_atric are defined as filter bank amplitudes resulting
descriptions of the speech signal, partlcularlyfrom sampling the LP spectral model (rather

speech recognition models, is very useful for

Obviously, we can combine the notion of a
filter bank, such as that described in
Section 3.3.1, with the LP moddlinear

than the signal spectrum) at the appropriate

dlagnfosmg_problemﬁ [61]. Somei par?fm_etrlcﬁlter bank frequencies. The astute reader might
transformations, such as cepstral coefficients .. \\hat is the benefit of this?

do not have a one-to-one mapping with the
original LP data. Hence, it is somewhat harder
to assess the validity of a parameter set.

It has been argued that use of the LP model,
or high resolution model as it is often referred
. , ) to, gives more robust spectral estimates [57].

_ Speech recognition systems h|stqr|cally Often, the spectral smoothing inherent in the

first usgq LP parameter's directly in the LP model provides more stable parameters to
re°°9”'_“°” process. Slnc_e then, moresubsequent stages of the processing. However,
sophisticated transformations of thesealS speech recognition and DSP technologies

parameters have been devised. However, it Ihave progressed, the differences in these

Important to reme.mber. that gengratmg 6?napproaches are not as great as they once might
accurate LP model is an important first step iNLove been

spectral analysis. Because LP analysis is i
nonlinear operation, performance in noisy
environments is sometimes problematic. For
this reason, some systems still use a Fourie
transform based filter bank analysis.

How can we efficiently sample the
spectrum given the LP model? A
straightforward technique to compute filter
bank amplitudes from the LP model involves

. . _direct evaluation of the LP model:
In Fig. 17, we summarize the LP modeling

process by presenting LP models for severa 0 = G.p (37)
analysis conditions in the form of a el = v oty
spectrographic display [62]. Note that as the Zau:(i)e )

i=0

frame duration decreases (and the window
duration is proportionately decreased) the
temporal resolution in the spectrogram wheref, represents the sample frequency. This
increases. Frame durations2afmsec  used tomethod requires on the order afp+3

be most common in speech recognitionmultiply/accumulate operations per frequency
systems. Recently, as the speech recognitiosample. As described in Section 3.3.1, the
research focus has shifted towards phonetispectrum is typically oversampled and
recognition, frame durations on the order ofaveraged estimates are generated for actual
10 msechave become common. The movementfilter bank amplitudes.

towards finer time resolution will continue as

_ = Another popular approach is to compute
phonetic recognition technology matures.

the power spectrum from the autocorrelation of
the impulse response 6f,(z) . The impulse
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response ofH, (2 can be computed directly If the linear prediction filter is stable (and it
from the LP coefficients [32]: is guaranteed to be stable in the autocorrelation
analysis), the logarithm of the inverse filter can

Np—IK
be expressed as a power series'in  [63]:

z a‘LP(m) aLP(m+‘H) ‘k‘ < NLP'
m=0

Rip(K) = N
0 K> Np - C o2 = ZCLP(i)Z_i
(38) =0
. . = logH (2)

The power spectral density can be efficiently . . (40)
computed from the autocorrelation function by 0 0

. . . . _ o G, 0O
observing that the autocorrelation function is = loggg——0
an even real function. Hence, its Fourier E a G)Z—JB
transform is real, and is given by: n& o

Nep We can solve for the coefficients by

S = R (0) +2Z RLP(k)cosBanikH (39) differentiating both sides of the expression
k=1 ’ with respectta™ , and equating coefficients of
Equation (38) requires a total of approximately the resulting polynomials. This results in the
NZ.— (3/2)N,,  multiply/accumulate following recursion [32,56,64]:
operations, while Eq. (39) requireg,

multiply/accumulate operations per frequenc
Samg)ley. P P g y Gitialization: \
With either approach, nonlinearly warped | Cp(1) = -2, (1) (41)

spectra can be easily implemented by | g 2<i<N, {
appropriate choices of the filter bank sample
frequencies. Also, even though the LPC model | () = —a.g(0)

supplies a smoothed spectral fit, it is often still o - (42)
advantageous to oversample the spectrum so -> Dl—iEF‘LP(J)CLP(' -i)-

that sharp peaks in the frequency response will i=d

be accurately characterized by the filter bank }
(which tends to coarsely quantize the K /
spectrum).

The coefficientgc,;} are referred to as
3.3.6 LP-Derived Cepstral Coefficients | P-derived cepstral coefficients

Finally, we discuss our last signal Historically, c_,(0) has been defined as the
measurement technique. Recall that in the laslog of the power of the LP error [31]. For now,
section, we leveraged the LP model to computewe note that since power will be dealt with as a
LP-derived filter bank amplitudes. Another separate parameter, there is no need to include
logical step in this direction would be to use theit in the equations above. We can regard the
LP model to compute cepstral coefficients. cepstral model as a normalized model, much
Again, the astute reader might wonder: canlike an LP model, in whicl,_,(0) = logl = 0

cepstral coefficients be computed directly from e will discuss this issue in more detail later
the LP model?

Proceedings of the IEEE - "Final'Copy: June 3, TG8E3



Picone: Signal Modeling ... 20

(Section 5.2) when we consider comparison ofcoefficients was the most effective method
signal models. (and the simplest).

There is one minor complication in the Equation (43) describes a frequency
cepstral coefficient recursion. We do not domain procedure. If implemented using a
specify the number of cepstral coefficiemds, ,sampledz -transform approach, the
to compute. Since they are, in fact, an inversecomputation would involve an inverse Fourier
Fourier transform of the impulse response oftransform of the cepstral coefficients. Instead,
the LP model, and the LP model of the signalwe would prefer a direct recursive computation
is an infinite impulse response filter, we can, inusing the cepstral coefficients. Such a
theory, compute an infinite number of cepstralrecursion fortunately exists [65].
coefficients. However, the number of cepstral  This recursion can be viewed as a sequence
coefficients computed is usually comparable toof cascaded linear shift-invariant filtering
the number of LP coefficients: gperations, and can be implemented

0.7%p <N <1.2%. recursively as follows:
The cepstral coefficients computed with
the recursion described above reflect a linear \
frequency scale. One drawback to the[ For o<n<N, {
LP-derived cepstral coefficients is that we
must work a little harder to introduce the| ¢ = ay[cf " ©) -0] (44)
notion of a nonlinear frequency scale. The +¢,p(N,—n)
preferred approach is based on a method used - -
e i i : : o (1) = ap,[cp (1) -0]
to warp frequencies in digital filter design. bt btL bt (45)
This method uses a very important transform in +(1-a) (0
digital signal processing: the bilinear For 2<k< N, {
transform [27].
.- . . . C(n)(k) = qa [C(n_l)(k)—c(n)(k—l)]
A bilinear transform is defined as: bt btL Cot bt
-1 (46)
+cp (k=1)
a sinEZTriD 0 "
f g “bt st a }
frew = 2T +2tarr15 fDE , (43)
s - O‘thOSBZ”f‘ T }
S

wherea,, is the frequency warping parameter. /
Wheno.4a< ,,<0.8, the frequency Warping of wWhere all initial conditions are zero. Since
the bilinear transform is similar to tmel  ¢»(0 = 0, processing can begin withy(1)  at
scale. This is demonstrated in Fig. 18. An = 0.

common value of,, 9.6 . In this recursion, we iterate over all(k

We can use this transformation at one offirst, and update these values for each n (the
several places in the LP-derived cepstra/Sécond iteration). The results after  iterations
coefficient computation: on the autocorrelation are the final transformed coefficients. This
function, on the predictor parameters, or on thefecursion requires on the order BfxN,,
LP-derived cepstral parameters. In [20], it wasmultiply/accumulate operations. It is about the
shown that postprocessing the cepstralsame complexity as the LP solution.
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Again, we need to consider truncation. Thecan be deemphasized if extreme amounts of
bilinearly transformed cepstral sequence,scaling are performed.

which is the result of a truncated cepstrum Second, the compression factor must more
being processed through a nonlinear frequencypan |ikely be lowered to maintain theelscale
translation, is inherently infinite in duration approximation. Yet, as this factor is lowered,
also. However, practically speaking, if the {ne amount of compression performed
cepstral sequence is of finite duration, thegecreases. This leads one to speculate that this

resulting transformed sequence will tyansform may not be the best way to
asymptotically exponentially decay (poles gpproximate thenelscale.
inside the unit circle). Hence, it is possible to

truncate the transformed sequence with Iittlem
distortion. NormallyN,, < 1.25N, .

We have now discussed all major signal
easurement techniques used in speech
recognition systems today. Next, we will
In Fig. 19 we demonstrate the combined discuss how these parameters are smoothed

effects of cepstral analysis and bilinearly and concatenated to form signal parameters.
transformed coefficients. A speech spectrum

for an 8 kHz sampled signal is shown, along IV. PARAMETER TRANSFORMS

with its 10" order LP model. The log

. In the previous section, we discussed
magnitude spectrum of the cepstralS

everal methods of computing absolute
coefficients is also shown for®" order measurements. In this section, we will discuss
cepstral analysis. Similarly, a log magnitude the next step in the chain of operations depicted
spectrum for the bilinearly transformed in Fig. 1: parameter transformations. Signal
cepstrum is shown. In this example  cepstralparameters are generated from signal
coefficients were converted t6  bilinearly measurements through two fundamental
transformed coefficients. operations: differentiation and concatenation.

The proper amount of compression for the The output of this stage of processing is a
bilinear transform is to some degree a functionParameter vector containing our raw estimates
of the sample frequency. In several studiesof the signal. An overview of the operations
involving a 16 kHz sample frequency [20,66], that constitute the parameter vector
a compression factor of 0.6 was used. Theconstruction is given in Fig. 20.
effective bandwidth of th_e speech signql qt a 4.1 Differentiation
16 kHz sample frequency is small (the majority

of the energy appears in the lower quarter of As computational power increased in the
the frequency scale for sonorants). 1980s, the use of auxiliary measures of the

We speculate that for a number of reasons,Speech spectrum in dynamic time warping

the bilinear transform is not as useful at asystems became feasible. As part of a

sample frequency of kHz . First, the Speechcontmulmg _trgnd _to rk])ett_er ?hﬁricterge
signal now occupies the majority of the temporal variations in the signal, higher order

available bandwidth. There is less “emptyiMe&  derivatives — of ~ signal

space” (the only available space is betweer{neas?rem;nlts_l[_ﬁ,18621} were added to the
approximately3.0kHz and kHz ) to utilize in signal modet. € absolute measurements

stretching the spectrum. Useful information previously discussed can be thought of as'zero
order derivatives. Here, we investigate the
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addition of the time derivatives of these measurement is decreased.

measurements to our signal model. There are several popular ways to achieve
In digital signal processing, there are this result. Regression analyses, as shown in

several ways in which a first-order time Eq. (49), spline interpolation, and bandlimited

derivative can be approximated. Three populaidifferentiation are a few of the common

approximations are [27,67,68]: techniques. We observe that since Eq. (49)
q computes differences symmetrically placed
§n) = SN =s(n-s(n-1) , (47)  around the sample at time , it is using a
q combination ofN; previous samples in each
s =g =sn+1)-s(n , (48)  direction to compute the current value. Hence,
N, some measure of smoothing is inherent in this

s(n)z%s(n): z ms(n+ . (49)  calculation.
m=N, There are two trends emerging in the use of

(Note that we have dropped superfluousEd- (49). Many systems today [2,66,113] use a
normalization factors in these equations.) TheSimple first order differencen, = 1 . These
first two equations are known as backward ancsystems typically operate at frame durations in
forward differences, respectively. Eq. (49) the range ofio msee T, <20 msec . The range of
represents a linear phase filter approximatiortime over which the derivative is computed is
to an ideal differentiator. This is often referred relatively small:aT, < 40 msec. A second group
to as regression analysis. of systems [11,67] uses a larger number of

The signal output from this differentiation t€rms: 5<N;<7. In these systems,
process is denoteddelta parameter. The 8 msec<T;<10 msec The period over which
second-order time derivative can be similarlythe derivative is computed is rather large:
approximated by reapplying Eq. (49) to the 56 msecs AT, <75 msec
output of the first-order differentiator. This is The frequency responses of several
shown in Fig. 20. This output is often referred yo5izations of a differentiation filter are shown
to as adelta-delta parameter. Obviously, we Fig. 21. The low frequency portion of each
can extend this process to higher ordeffjjter is designed to approximate a linear
derivatives. function (a ramp function) that favors higher

We have seen Eq. (47) before in the formfrequency information (indicative of temporal
of a preemphasis filter in the spectral shapingvariation). Observe that as the order of the
portion of our system (see Eq. (2)). Recallingdifferentiator increases, the filter begins to
the primary purpose of the preemphasis filterdeemphasize high frequencies, and introduces
was to amplify high frequency portions of the more ripple in the spectrum. The property of
spectrum, we must be cognizant of the realityattenuating high frequencies is considered a
that differentiation is inherently a noisy form of noise reduction — beyond a certain
process. Differentiation filters tend to amplify point high frequency information is considered
noise in the signal measurements. Often, it isunreliable and needs to be attenuated.
desirable to compute derivatives of smoothec
parameters, rather than the raw measurement
so that the noise level in the output
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4.2 Concatenation nevertheless useful that common
measurements be grouped together in adjacent
columns inx (to facilitate sub-matrix
operations).

The common thread throughout most of the
measurement technigues we have discussed
the use of linear filtering to achieve parameter
smoothing. Most systems postprocess the We will define two auxiliary matrices
measurements in such a way that therelated to the parametric smoothing process.
operations can be easily explained in terms oFirst, we define a matrix of lags (delays),
linear filtering theory. In this section, we will denotedt , that will represent a time delay (or
generalize this notion in the form of a matrix advance) from the current time:
operator.

Let us define a signal measurement matrix 0.0 100 TN =)
for a signal as follows: 1-| @9 @D . TN D)
0,0  x©0,1) .. xON,-1) T(Np“_. 1,0 T(Np: 1, 1) T(Np—i: INTp—l)
X = x(1, 0) X1, 1) ... XL N,-1) _ [To . TNP— T
x(Nf'—ul, 0 x(Nf.—ul, 1) X(Nf—i.,.Nx—l) (51)

(50) wheret, denotes thg" lag vector, ang

where x(nm denotes then" signal denotes the total number of signal parameters.

measurement at frame  (or tirﬁe+ 1DTf N) The lag vectors can be of different dimensions,
20 depending on how many measurements will be

dgnotes the total number of frames in the saq in each particular signal parameter

signal, andN, denotes the total number of .o 5tation (the lag matrix is actually a vector

signal measurements for each frame. of vectors). Hence, we denote the dimension of
The signal measurement matrix, , each row by the term,

contains all measurements of a signal for all

time. In many practical systems, the signal is

processed frame by frame in real-time.

Next, we define a weighting matriw, , that
holds the weights of filters to be applied to the
. : : measurements. These weights have a one-to-
Accumulation of the signal into one large . .
i one correspondence with the lag matrix. The
matrix adds delay to the system. However, for . . : _
. ) . weight matrix is defined as follows:
research purposes, it is convenient to view the

signal model as a matrix of measurements.

' ' w0,0 .. wON, -1)
Note that the signal measurement matrix ,, _ °
usually contains a mixture of measurements:
power and a set of cepstral coefficients.

represents the dimension of the vector that is
the composite of these measurements. Fron

this point, we will consider these wherew, denotes thé" coefficient vector

measurements as a group, rather than,,,se dgimension is equal to the corresponding
individually, and not refer to specific types of

... vectorinT .
measurements. In some analyses, it is =

WN,~1,0) ... W(Np—lll,.th—l) (52)

T
- o]
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We also define an indexing vector, , that ~Some parameters, such as power, are often
for each row inw defines a corresponding hormalized before the computation in Eq. (54).

column inx : It is common to simply divide the power by the
maximum value observed over an utterance (or
[ = DO I ... |NX_1] . (53)  subtract the log of the power). This approach

has a drawback that one must wait until the

We define the process of filtering the yerance has been identified (or completed)

measurement vector as a pseudo-convolutiolyefare such a value is available. This delay is
operator: often unacceptable in real-time applications.

V=XUOWw, Peak power values can also be computed

where the operator?” is defined as follows:  using recursive-in-time filtering approaches
such as those described in Section 3.2. In this

s "\ case, the frame-based power estimate is often
ForOsns N -1 { . . . L
. postfiltered by an adaptive gain control circuit
For0<i<N,-1{ that attempts to dynamically monitor the peak
N1 power level. This adds delay to the system

T

because the algorithm needs time to react to
changes in the signal (and settle). Adaptation
times for such estimators are typically on the
} } order of 0.25 seconds [66].

K Historically, when recognition systems
were very simple, signal models often
Equation (54) simply represents a sequence ofonsisted of heavily smoothed parameters.
linear filtering operations iterated over each“Noisy parameters”, that is, parameters that
element of the signal parameter vector for eaclamplified dynamics in the spectrum, were
frame of signal measurement data. This isbelieved to be unreliable. With the emergence
expressed using a flexible indexing scheme tof Markov modeling techniques that provide a
account for the fact that different types of mathematical basis for characterizing
features will require different filters. (This is sequential (or temporal) aspects of the signal,
more of an implementation issue than athe reliance upon dynamic features has grown.
conceptual issue.) Today, dynamic features are considered

Note that through the use of the indexing €SSential to developing a good phonetic

arrayl we can derive multiple parameters fromrewgmt'_On capability [69_]' becau_se raplq

the same measurement (e.g., average pow ange in the spectrum IS a major cue in
and delta-power from the same power Value).classmcatlon of a phonetic-level unit.

Also, the coefficient matrisv can be used to ~ Differential parameters also gained

realize all of the filtering operations previously popularity as researchers struggled to find
discussed, including differentiation, averaging, Signal models invariant to drastic changes in
and weighting. We refer to the operation the speaker’s behavior (often induced by the
described in Eq. (54) ancatenation the  application) [2,70]. For example, in command

creation of a single parameter vector per frameand control applications, a speaker’s acoustic

that contains all desired signal parameters. ~ data can change significantly as the speaker

Vin i = ZW(i,j)x[n+T(i,j),|i] (54)
i=0
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encounters physical or mental stress related tsection, we assume the signal parameters were
the tasks at hand. These changes often manifegenerated from some underlying multivariate
themselves more in the absolute spectra tharandom process. We would like to learn, or
the differential spectra. Parameters deriveddiscover, the nature of this process. Our
from differential spectral information are approach will be to impose a model on the data,
believed to make a system more invariant tooptimize (or train) the model, and then
these types of gross changes in a speakermeasure the quality of the approximation. The
data. only information we will have about the

Before we leave this section, let us discussProCess are its observed outputs, the signal
one particular form of parameter weighting parameters that have been computed. For this
used with cepstral coefficients. Early research’€@son, the parameter vector output from this
into cepstral processing techniques suggested Stage of processing is often called tgnal
means of performing linear filtering operations observations The collection of these vectors
directly on the cepstral coefficients to enhancefOr the entire signal is referred to as the signal
those portions of the cepstrum representincOPServation matrix.
vocal tract information [71]. This technique This last processing step is, ironically, just
has come to be known as liftering (a termthe first step in statistical modeling in speech
coined because of the similarities to linearrecognition. Often, this step is contained

filter theory). entirely within the speech recognition
The liftering process is simple and is Systém [14,18]. The techniques described here
defined as follows: only represent the most basic approaches.
Speech recognition systems use extremely

CLir(m) = c(m) wyie (M) (55)  sophisticated statistical models — this is one
where of the fundamental functions of a speech
recognizer. Nevertheless, the techniques
W, (m) = 1+ N?csmn_m _ (56) pres_ented he_re have been found to be use_ful in

N, a wide variety of speech processing

Equation (55) describes a “time-domain” applications, and form the basis for the more
Windowing operation (the time scale of the Sophisticated algorithms. An overview of the
cepstrum is actually called quefrequency)_various types of transformations discussed in
Equation (56) describes the weighting (or this section is given in Fig. 22.
window) function. At this point, we merely
note that this is a static weighting function that
can be applied directly to any set of cepstrum As we have previously mentioned, in a
coefficients. In the next section, we will typical set of heterogenous signal parameters,
discuss a method of computing such awe mix quantities such as power and cepstral
weighting in a statistically optimal manner. ~ coefficients that have completely different
numerical scales: the range and variance of the
V. STATISTICAL MODELING power term will be much larger than the range
and variance of a cepstral coefficient.
Variances of the time derivatives of the
cepstral coefficients will be larger than the
cepstral coefficients. If we compare two

5.1 Multivariate Statistical Models

In our last section on signal modeling, we
turn our attention to the problem of statistical
models for the signal parameters. In this
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parameter vectors using a simple operator sucbe able to achieve some level of compression
as a Euclidean distance, the result will likely beor reduction by selecting a subset of the
dominated by the terms with large amplitudesfeatures (or linear combinations of the
and variances, even though the truefeatures). Extraneous dimensions in signal
information may lie in the smaller amplitude processing problems are often the source of
parameters. trouble (the problem becomes less
Similarly, if we consider a measurement well-conditioned). Second, we would like to
such as a filter bank amplitude, it is easy toUSe simple techniques to compare vectors. The
understand that filter bank amplitudes from Presence of correlated parameters makes the
adjacent bins are likely to be correlated with development of an optimal statistical metric
one another. The filter bank, in fact, is much more difficult.
specifically designed to produce this type of 5.1.1 Prewhitening Transformations [72]
correlation. This is similar to the way human
hearing operates: a group of hair cells on the
basilar membrane will respond to a given tone
and produce correlated outputs.

There is a straightforward method of
decorrelating parameters in a statistically
optimal sense for a multivariate Gaussian

_ ~ process. Let us define a multivariate Gaussian
We can illustrate the problem with ,opapility distribution as:

performing direct comparisons in a vector
space in which the dimensions have unequa xv) = O[v,u,C,]
variances with the simple two-dimensional

example shown in Fig. 23(a). In the original = +
coordinate system, the distance betweer J(2m) G

points a and b is equal to the distance betWee‘\Ne will assume that our parameters obey this

pplntslc and d (bp th are one “tf”t)- Yet, fromlgtype of statistical model (or stated another way,
sighal processing perspective, we wWouldy, o4 oy parameters can be modelled

consider the.former distance to bg greater tha'sufﬁciently accurately by such a process).
the latter distance, because it is a largel

percentage of the variance of the parameter e _
One cautionary note: the argument presenteth@t will simultaneously normalize and
in Fig. 23 assumes that the observed variancdecorrelate the parameters. Let us define a
is not due to a large noise component, and thelfansformed vectos, , as:

it, in fact, represents meaningful variation in ¢ - wy-p,) , (58)

the parameter.

e—% (x-1u,) (,3\71(x—|;\,)T . (57)

We can compute a linear transformation

wherev denotes the input parameter vector,
andp, denotes the mean value of the input
parameter vector. We defing as a
prewhitening transformation [18,72], based

on the fact that we desire the output of this
‘transformation to be an uncorrelated (or white)
Gaussian random vector. To achieve this
result, it can be shown that is given by:

While the solution to the above problem of
variance weighting is straightforward,
elimination of correlation is more subtle. We
would like to remove correlation from our
measurements for two reasons. First
correlation implies redundancy. The actual
number of “true” parameters required to
describe the information might be much less

than the number of measurements. We migh Y = Aot (59)
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where A denotes a diagonal matrix of As pointed out in [75] (an excellent
eigenvalues, an@ denotes a matrix ofdiscussion on this topic), this is one of those
eigenvectors of the covariance matrixvof .  problems in life best left to “canned software.”
One version we recommend, despite the fact
of Eq. (59), the “true-meaning” of that it is written in a very Fortranish-looking C,

eigenvectors, and other deep mysteries of lifdS @ function based on the Jacobi
related to Eq. (59) would take us too far afielg transformation of a symmetric matrix. This
from our task at hand. However, we cannotfunction can be found in the widely distributed
understate the importance of appreciating theSftware package Numerical Recipes in
need to statistically normalize parameters. ThiC [73], and is namegacobi. This widely used
concept has been a recurring theme througho SOftware is very stable and has generally
modern speech recognition systems [73’74]_prowded satisfactory performance on this task
The eigenvalues and eigenvectors describeOr many years.

above are the key to the whole computation,in  There is one VERY important
that they describe a linear transformation of thesimplification of Eq. (60) that needs to be
input vector space to a new space in whichdiscussed. If the parameters are uncorrelated,
normal Euclidean distances can be computed.then the covariance matrix in Eq. (60) reduces
to a diagonal matrix. In this case, the
transformation in Eq. (60) simplifies to a
diagonal matrix:

A complete discussion of the significance

The eigenvalue and eigenvectors can be
shown to satisfy the following relation:

C, = PADT (60) i
wherecC, is the covariance matrix for . Each 01 0 .. O©
element inc, ,C,(i,j) , can be computed as v .
. 0 0
follows: W = o, 1) , (62)
N-1
Y o o
C(ij) = N, Z (Vi (1) =1(D)) (Vi (1) =R, 0@)) - o o o—1
m=0 | Ov(n,-1)

(61)

We have delayed disclosing the
computation of the eigenvalues and

eigenvectors (for good reason). Thlsparameters by their standard deviations,

computation is algorithmically complex. .
. . ther makin h parameter nt Il
While the procedure has a simple. ereby making each parameter count equally

. L o in the calculation. We alluded to this in our
interpretation in linear algebra, it is somewhat

i ! i ion of Fig. 23.
of a nasty thing to program. We do point outd scussion of Fig. 23
that, since a covariance matrix is a real, It has been observed over the years that

symmetric matrix, and that covariance certain parameter sets, namely cepstral

matrices for speech parameters usually arcoéfficients, can be regarded (to an
well-conditioned, the solution is normally @pproximation) as uncorrelated [66,74]. This is
well-behaved. convenient, because it significantly reduces the

number of parameters one needs to estimate in
the system. The so-called “variance-weighted

whereg,;, is the standard deviation of the i

component of the parameter vector . This is
readily recognized as normalizing the
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cepstral coefficients” are very popular in In this case, the transformation mattix, ,isan
speech recognition systems today. OtheIiN, xN, rectangular (but not square) matrix.
parameters, such as filter bank amplitudes Equations (64) and (65) are often used to guide

display very strong correlations of the first off- decisions about how many dimensions to
diagonal components. Sometimes it iSretain.

advantageous in such situations, in an effort tc
reduce computational noise in the system aNtgficient model, we note that we can model

to reduce the complexity of the system, 104, jata as a weighted sum (or mixture) of
approximate the covariance matrix as such ¢ 5,,ssian distributions [74]. We will not
banded matrix [18]. discuss this issue in great detail here, but will

A noise reduction technique that is often gbserve that we can get an asymptotically good
incorporated in this context is a procedure inmatch to the parameter distribution with such a
which we discard the least significant features.linear combination of Gaussian density
If we defineN, eigenvalues, A, S - functions.

If a single Gaussian distribution is not a

ordered in decreasing order, an important \We can gain some intuition into the
relationship can be shown to hold true: prewhitening transformation from Fig. 24.
N1 Three eigenvectors from a transformation
VZ A = trace G, designed for telephone bandwidth §peech are
= (63) shown. These were computed fqr filter bank
N,-1 amplitude outputs from el scale filter bank.
= Z o . Note that each eigenvector attempts to model a
=0 different aspect of the speech spectrum. The
From this relationship, we see that thefirst few eigenvectors of the transformation
eigenvalues and the variance of the process aimatrix often tend to model gross spectral
related. characteristics of the channel (which is

We can define the amount of the varianceconstantly changing in telecommunications

accounted for by each eigenvalue/eigenvecto@PPlications). Note that this weighting
pair as: function, when applied to filter bank

amplitudes, can be viewed as a filtering

operation in the time domain (frequency

v domain windowing is equivalent to time

Z A domain filtering).

= _ Before we unilaterally invoke the power of

and the total percerjtage O_f the varanceyis multivariate Gaussian model, remember

a_ccount_ed for by the first, dlmep3|ons (Onethe associated cost: we must learn (or train) this

dimension corresponds to an eigenvectoriyanstormation matrix. Usually, this is done by

eigenvalue pair) as: collecting mean and covariance statistics
across a large amount of speech data. Often

¢ = N 100% (64)

N,—-1

Ny—l
z A this can be an art, because we must insure that
4 = L2 x100% . (65) statistics of_the trai_nipg data accurately match
v the underlying statistics of the process we are
2 A modeling. Insufficient training data sets (i.e.,
i=0
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too little data or recording conditions that do unique vocal tract shapes. If we can use

not match the application environment) canmeasurements that are normalized with respect

lead to inaccurate transformations. to individual speaker physiology (vocal tract
5.1.2 Vector Quantizatior2p] length, volume, etc.), we should be able to

model all vocal tract shapes across all speakers
In the previous section we alluded to the yith a small codebook.

fact that parametric fits based on multivariate
Gaussian statistics might not be appropriate
Recall that in a Gaussian process, all moment

Another equally compelling argument is
based on rate distortion theory [22], and shows
that we should be able to model our parameter

other than the first-order or second-order ) . .
: vector using a finite number of discrete values
moments (mean and variance) are zero. Fo_ . o )
with vanishingly small error. The main

speech parameters, higher order moments arquestion is: how many symbols will be

Gaussi_a_n model of the source may not a|Wa_y5vectors used for such models in speech

fit of the data by simply hypothesizing a gepending on the task.
discrete probability distribution of arbitrary
shape, and by forcing the system to learn th(composite of two items: am, xN,  matri
shape of this distribution. This does not come _ oy =
without an associated cost — we introduceand a discrete probability distributipm) Q.

another learning (or training) phase. is referred to as theector quantization
codebook Its rows are parameter vectqss)

Let us define a vector quantizer as a

This type of discrete distribution model is . o I
referred to as aector quantizer [22], a is referred to as theepriori symbol probability

reference to the fact that the procedure can bdlstrlbuju.o_n. Its element@(s ' SN_Vq_l )are the
regarded as a compression, or quantizationpmbab'l't'es of observing a given parameter

technique. One of the most convincingveCtor (or row) inQ . We will refer to this
arguments for the use of such a technique ifrocess of vector quantizing an input vegtor
based on a model of speech production [772SQI[Y] -
that proposes the vocal tract shape as the ke  We also need to define a distance measure
measurement. In this view of speech(or similarity measure): a means of
production, there are a small set of physicallydetermining the distance between two vectors.
realizable vocal tract shapes (or elementaryLet us defer this issue until the next section,
sounds) in a language. Hence, we should biand simply define a general distance measure:
able to model our continuous-valued vector
with a finite set of vectors representing these D1, ¥2) = 151, 92) - (66)
We will see that a Euclidean distance is one

7. Higher order moments have yet to make a significantcommon function used for Eq. (66)_
impact on speech processing, though it is clear these

calculations produce moments that are non-zero. Application  The vector quantization process consists of

of higher order spectral estimates and statistical estimates t : : : : :
speech recognition is still an area of active research. WetW0 main ta_Sks' FII‘SI'[, as with th(_a prewhlten_lng
conjecture that higher order moments might contain transformation previously described, there is a
information about long term spectral behavior of the signal. . . ;

This information could be useful for a wide variety of training problem. how do we estimaty ]

applications such as speaker normalization and speakesuch that the distortion introduced by replacing
identification.
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the input vector by a codebook vector is/,_ o \
minimized? Second, there is the quantization 'n't'al'_zat'on‘ o o
problem: how do we estimate the probability of Ai)f'gn a setof N, initial vectors to g;
observingy given a codebook? This latter] & =1
problem is essentially a pattern recognition| For 1sm< M
problem — we seek to maximizg(y|Q)

max{
nlj] =0 0<j<N,
The latter problem is relatively simple: we

. . For O0sn<N {
choose the index, , according to a neares{

neighbor rule: i = argmin[ D(y,, qj(m_l))] 0<j<N,

i =argmin[D(y, q)]  0<j<N,,  (67) a™ [l =q™ 0] +y,l1  0sj<N,
and, nlil =nli] +1

P(5IQ) = p(g) - e8) |

m _ ), .

P(y/Q) can be estimated by computing the| & =& /nli] 0<i<N,
probability of each vector in the codebook can  ¢™ - ¢™ 4 gy | 0<n<N
occur (this is usually estimated on a large
training database). it £™_ _re  break

(m-1) vg’
The first problem is slightly more €

complicated. A training sequence is| }
required — normally the same training| Termination:
database of speech used for recognitiorn
technology development. No closed-form
solution exists for computing the optimal set of K

codebook vectors. Fortunately, several . .
y Q'™ contains the final codebook upon

iterative techniques for finding a codebook ~ =~
exist. termination.

The most popular of these is the The initialization step i_n _t_his process is
K-MEANS algorithm [76]. The name alludes somewhat important. The initial guesses for
to the fact that this algorithm attempts to cluster centers should span the entire data
organize the data into K groups, and replaceSPace. A simple iterative procedure [79] to
the data in each group with the mean, orS€lect these centers is to searchNgr initial
centroid, of the group. This process is Vectors in the data that are a distaace from
demonstrated in Fig. 25. Design parameters fo€ach other. Initiallyg is set to some large
this algorithm are the number of codebooknumber, and then slowly reduced unijl,
vectors,N and some sort of termination vectors satisfying the minimum distance

1 Vvg

condition. Here, we will use a limit on the constraint are found.

i .
p(g) = r]_N[dk]) 0<i<N,

maximum number of iterations, denoted,, , Since the K-MEANS algorithm is an
and a threshold on the change in averagiterative algorithm, and since we must provide
distortion,Ae,, . guesses for the initial cluster centers, this

algorithm is not guaranteed to converge to an

The algorithm is as follows: ) . _ i
optimal solution. The iteration procedure can
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get trapped in local maxima and produce a Recently, a new class of neural network
suboptimal solution. However, in practice, on based algorithms has emerged, referred to as
speech problems convergence is usually swifLearning Vector Quantizers (LVQ) [81].
and strong. Even for large codebooks,These algorithms combine the training and
convergence is often reached within 10recognition problems into one massively
iterations. parallel computational structure based on a

The algorithm presented here computes thé€ural network architecture. The LVQ
new cluster centers as the arithmetic average c2PProach has been shown to be theoretically
the elements in the cluster. This iscap_able of producing an optimal quantizer
computationally and memory efficient, and design. Nevertheless, this a_ppr_o_ach has not yet
makes the iteration proceed smoothly towardsP€€n shown to produce significantly better
convergence. Other centroid recalculationPerformance on speech problems.
str'ategies hqve peen proposed [781 based on 5.2 Distance Measures
min/max criterion. These algorithms, in

practice, are generally comparable in  In an anticlimactic fashion, we will now
performance to the one described here. discuss the problem that is at the root of speech

recognition: the distance measure. It is most
interesting to view this topic from an historical
perspective. First, however, what is a distance
measure? A distance measure should obey the
L Ni—1 following properties [82]:
Eavg = Nf Z D (¥, QL% - (69) (1) Nonnegativity:
n=0

The quality of the codebook can be
computed by averaging the distortion over the
entire training database:

. . D(X;, %) > 0 X # Xy
This value is actually computed at each stage

of the K-MEANS iteration. The average
distortion usually decreases logarithmically (2) Symmetry:
with the size of the codebook, as shown in  D(x;, X;) = D(X,, X;)

Fig. 26. (3) Triangle Inequality:
The quantization process actually becomes D(%;, X3) < D(Xy, %) + D(%,, X3) -

a search problem once the codebook has beEA Euclidean distance measure is perhaps the

computed. The nearest neighbor rule is a linea : -
. : . most famous distance measure that satisfies
search, requiring,, distance comparisons pe| :
q these relations.

input vector. It is possible to reduce the searct _ _
time by generating a structured codebook, ©One of the first distance measures
though the codebook in this case is slightly/ntroduced into speech recognition was a

sub-optimal. There are two popular variants of éasure based on minimum prediction error
the K-MEANS algorithm that produce and spectral matching principles. This measure
structured codebooks. The LBG IS known as the log-likelihood measure [83].

algorithm [77] produces a codebook that is 1NiS measure computes the energy of the
structured as an N-level tree (most often gdifference in the spectra of two LP parameter

binary tree). Procedures described in [80] sets. It essentially evaluates the likelihood of
produce lattice structured quantizers. the test data being generated from a statistical

model based on the reference LP parameter set.

D(x;,%x;) =0 X = X,
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(Hence, it is often referred to as a probabilisticparameter vector? One of the most elegant
distance measure.) This distance measure iderivations in statistical signal processing is a
given by: derivation of the Mahalanobis distance [72]. In
this derivation, it is shown that the likelihood
of a vector belonging to a multivariate
Gaussian distribution can be expressed as a
weighted Euclidean distance:

R, represents the autocorrelation matrix usec

to generate the LP parameterssipr . D, R = (y-mC (y-m' , (73)

ap "R p
DY) = — 5 - (70)
aLPZTRZaLPZ

When performing a task such as vectorwherep andc are the mean and covariance of
guantization (or speech recognition) in whichthe distribution. Obviously, if we operate on
repeated comparisons of the test data will bevectors that have been processed through a
made against the entire reference vector seprewhitening transformation, the covariance
the denominator in Eg. (70) can be discardecmatrix will be an identity matrix, and Eq. (73)
(or computed only once). The numerator has eédegenerates to a plain squared Euclidean

computationally efficient form [31]: distance.
N -1 For this reason, Euclidean distances are the
z R,(KR,(K) most common distance measure used today.
= Part of the reason for this is that man
Dy, ¥,) =+, (71) y

ap Roap, parameter sets used are based on implicitly
decorrelated parameters, such as cepstral
coefficients. Also, speech recognition systems
N_p—k today have evolved to invoke these types of
R,(K) = Z a_p(i)a i +K) . (72) transformations implicitly [73,74].
=0 In many applications, such as vector
R,(k) represents the autocorrelation of the LPquantization, it is possible to use a factored

where

inverse filter impulse response. form of the Euclidean distance:
The log-likelihood measure is readily seen — o o 12
: . (V192 = [y.-Y
to be an asymmetric distance measure T
= (%Y (V1-9) (74)

(violating our previous definition of a distance
measure). This asymmetry has not proven to b = Hyluz + HyZHZ—Z (v:07,) -

a significant problem however. The \ye see a Euclidean distance is the sum of the
log-likelihood measure is not commonly used magnitudes of the vectors minus twice the dot
today. Nevertheless, it was a very importantproduct_ Suppose we wish to vector quantize
turning point in speech recognition researchine input vectory, . Let, denote each entry in

because it initiated the adoption of ahe codehook (against which the input must be
probabilistic framework for distance measurescompared)_ The first term is constant with
in speech recognition. respect to each codebook entry, and can be
While the log-likelihood measure is discarded. The second term is a scalar, and can
well-suited to LP coefficients, what type of be added to the result of the third term. If each
measure should we use for our generalcodebook entry has the same magnitude, the
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second term can be discarded also. review its contents first, and then draw some

The third term is a dot product and must beconclusions about the data.
evaluated once per codebook entry. This is 6.1 Table Overview
called the dot-product form of the Euclidean - . '
distance. This type of calculation can be usec ~ The affiliation section of the table is

in most Speech processing app”cationS, thrsupplled mel’ely as an identifier. Institutions
include vector quantization and speechare listed in alphabetical order. The reference

associated with the entry usually contains a
sufficient amount of detail about the signal
model used in the most recently published
recognition system by the institution. Every
attempt has been made to keep the reference
model can be constructed from a sequence Ceyrent, so that the data in the table reflects the
three operations: signal measurement,rent state of the particular system. Many of
parameter smoothing, and statistical modeling systems in Table 2 have evolved over
In the next section, we will discuss how thesegeyeral years. In some cases, multiple entries
concepts are put to work in state of the arti, 5 given affiliation are shown, usually to
speech recognition systems, and comment Ol 5 ntrast different types of recognition

the relative merits of these approaches. technology being explored at the same
institution.

recoghnitiors.

We have now completed our discussion of
techniques for signal modeling in speech
recognition. We have shown that a signal

VI. PRACTICAL EXAMPLES
The second column contains a brief

There are, needless to say, a large numbegyerview of the type of application being
of combinations and permutations of the signalpursued, at least in terms of vocabulary size.
models we have discussed in use today. Let UObviously, there are other equally important
begin our discussion by simply enumeratingdimensions to the problem. “Small” refers to a
some state-of-the-art (perhaps modern day is speech recognition task using a small
better way to phrase this) speech recognitioryocabulary, usually less than 100 words.
systems, along with the signal modeling Continuous digit recognition and recognition
techniques used. An overview of this data isof spoken letters in English fall into this
given in Table 2. The table is divided into four category. Similarly, “Medium” refers to tasks
sections: affiliation (for reference purposes); on the order of 1000 words, and “Large” refers
signal measurements, signal parameters, an iosks greater than 5000 wétds

statistical models. We have discussed each ¢ ) o
these topics in previous sections of this paper e also attempt to quantify the application

Note that a list of abbreviations and their IN terms of the acoustic environment. “Office”

meanings is contained at the end of the table'€fers t0 a system developed on a database

Since this table is fairly lengthy, we will collected in either a normal office environment
(typically about 70 dB SPL) or an

8. A consultant from a famous supercomputing company 9. We readily admit this is an oversimplification of the
once told me that “everything in life reduces to one of two problem. Confusability of the words and the complexity of the
operations: a dot product or a vector multiply/add.” He had language model are equally important dimensions, but more
found through his extensive experience optimizing code for difficult to concisely quantify. There are some major
supercomputing that 99% of the time the core operationsdifferences between signal models in systems used in “small”
required could be shown to be one of these two. and “large” vocabulary applications.
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acoustically-treated room (such as an anechoir  The next section, comprising the 8th
chamber). “Telecom” refers to technology columnin Table 2, contains the elements of the
developed for telecommunications signal parameter vector. Here, we simply list
applications using standard analog telephone¢he salient features (as they might be
lines. “Mil.” refers to military applications that concatenated in the vector) of the type of
often involve a wide range of ambient noiseanalysis used. These were discussed in
and speaking styles. Section Ill. Usually, an entry consists of a set
The signal measurement section is spIitOf absolute measurements, such as “Mel-Cep.”
into five parts. First, we show the sample (denotingmelwarped cepstral coefficients),
frequency of the system. Though most system@nd time derivatives of these absolute
today have software-selectable sampleMeasurements, such as *D-Cep.” (which
frequencies, this entry represents the sampldénotes the derivative of the cepstral
frequency of the experimentation database irP@rameters). See the abbreviations at the end of
the corresponding reference. It is provided forthe table for an explanation of all the terms.
comparison purposes. Sample frequency i The last section of the table
most often dictated by the application (systems(cols. 9 and 10) contains a description of the
for telecommunications applications must statistical models used in the systems. The type
operate at or belowkHz ). of speech recognition technology used with the

The next three columns specify the spectraISignal model is shown mainly for reference
analysis conditionsa,, is the preemphasispurpose$’. The term “VQ” refers to vector
filter constant for a first order filter; quantization. The term “Variance” refers to the
“Frame Dur.” is the frame duration of the variance-weighting form of the Prewhitening
analysis; “Wind. Dur.” is the analysis window transformation. The term “PT" refers to a
duration. We do not explicitly show the type of prewhitening transformation in which the full
window used on the signal before spectralrank of the matrix is used. The term “MS-VQ”
analysis, because all of the systems presenterefers to multi-stage vector quantization: an
here use some form of a generalized Hannin@pproach in which a separate codebook is

window (most use a Hamming window, while maintained for each type of signal parameter
a few use a Hanning window). (often there are three codebooks: one for

The last column in this section, titled 3b§olgte measurements,done :or time
“Spectral Analysis,” refers to the sequence of erivative measurements, and one for power

operations involved in generating the measurements).
measurements. For example, under the entr 6.2 Comments
“AT&T [7],” LP(8) and CEP(12) indicate that

an LP analysis of order 8, followed by a ) :
cepstral analysis of order 12, was used tdfrom the agglomeration of data presented in

generate the cepstral signal measurements! aPle 2. First, Neural Network (NN) based
Most systems that use LP-derived cepstraSySteéms tend to use filter bank amplitudes
coefficients will have multiple entries in this diréctly. We will avoid elaborating on this
column, to indicate that LP and CepStraI 10. These technologies have not been discussed in this paper.

analyses were performed. There are two main classes of technology referenced in this
table: Hidden Markov Model (HMM) and Neural
Network (NN). See [27] for more information on this topic.

There are several conclusions we can draw
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point — it would take us too far afield. It form of prewhitening filter is the degenerate
suffices to say that the NN systems arecase: variance-weighted coefficients. We find
attempting to develop models that emulatefew systems actually using a fully populated
human hearing. Filter bank amplitudes arecovariance matrix.

perhaps the simplest type of stimulus to presen  Tpe popularity of FFT-based spectral
to such a system that will achieve this goal aNCanalysis continues to be based on the FFT’s
keep the system complexity low. Readersjmmynity to noise. We find it somewhat
interested in this topic are encouraged tosurprising that a large percentage of systems
pursue more rigorous discussions in [87,91]. today do not rely on LP analysis for spectral

Second, as previously mentioned severalanalysis. LP analysis was almost exclusively
times in this paper, cepstral coefficients are byused in the 1970’s and early 1980’s. Since
far the dominant acoustic measurement. Fothen, it seems the trend is towards the FFT
example, twenty-one out of the thirty-one based analysis. We speculate that this is due to
systems in Table 2 use some form of cepstrathe ease with which themel scaling can be
coefficients. This ratio is even higher (21 out of imposed.

26) if we exclude Neural Net based systems. In the systems reviewed in Table 2, the use

Third, FFT-derivedmelscaled cepstral of time differentiation to postprocess signal
coefficients are the most common form of measurements can be classified into two
cepstral analysis used. LP-derived cepstragroups. Most systems use a simple first order
coefficients are used by only a third of the difference. Several systems, most notably
systems using cepstral analysis. There is ¢hose in [7] and [11], use a five frame
definite preference towards usingelscaling. regression analysis. It is argued that this
Ironically, two institutions that are notable provides a smoother, more stable
advocates of cepstral coefficients are the onlyrepresentation of the parameter.

institutions to use their respective techniques:  vgry Jittle comprehensive data exists on
liftered cepstral coefficients and bilinearly comparative analyses of signal modeling in
transformed cepstral coefficierits. speech recognition. There are two major

A fourth observation, somewhat beyond r€éasons for this. First, only recently have large
the scope of this paper, is that Sysmmsscale speech recognition experiments become
performing large vocabulary speech feasible. Databases are now large enough to
recognition tend to use discrete densitySupport statistically significant comparisons;
approaches based on vector quantizationcomputers are now fast enough to do
while systems performing small vocabulary Parametric evaluations. Unfortunately,
speech recognition in harsh environments tenoftware technology lags: many research
to use some sort of prewhitening filter. The organizations are only able to simulate subsets
most common form of vector quantization f many of the competing approaches (and
today is the multi-stage codebook, used inhave not researched the others extensively).
conjunction with cepstral and time-derivatives Convincing comparative data on large speaker

of the cepstral coefficients. The most commonindependent continuous speech recognition
tasks is simply not currently available. Two of

11. These two institutions have also consistently deliveredthe highly referenced works in this area
high performance systems with their signal models, which
makes the lack of adoption of these techniques interesting.

Proceedings of the IEEE - "Final'Copy: June 3, TG8E3



Picone: Signal Modeling ... 36

are [23,84]. Other, more recent studies  This not to say that the problem of signal

include [113,114]. modeling is solved. Performance of current
speech recognition systems is still far below
VIl. SUMMARY human performance. For example, on digit

recognition tasks, where the vocabulary is
small and a premium is placed on acoustic
modeling, state-of-the-art performance is still
at least two orders of magnitude below human

We have presented several popular signa
analysis techniques in a common framework
that emphasized the importance of accurate
spectral analysis and statistical normalization.
When viewed in this common framework, the performance_ on the_ same task [73,115]. In
differences amongst these competi ngadverse ambient environments, such as analog

approaches seems small when compared to tr:ellechomm.umcatlc:ns sbylstet?s orfcellular
enormous challenges we still face in the speecl elephony in an automobile, the performance

recognition problem. All approaches share9aP between humans and machines is even

some important basic attributes: greater.

time-derivative information, As mentioned at the beginning of this
perceptually-motivated transformations, andpaper, we have also steered clear of such topics
parameter normalization. as robustness in noise. We have presented
some simple approaches for dealing with noise
that generally work equally well for clean and
noisy environments. We have not presented
techniques specifically designed to improve
robustness in adverse conditions — this is a
topic unto itself. Recently, several promising
algorithms have appeared for improving signal
models in noisy environments [116]. As

The survey of contemporary systems
demonstrated the fact that FFT-derived
cepstral coefficients seem to be dominating the
field. LP analysis, once the cornerstone of
speech recognition, is now relegated to a
secondary role. A signal parameter vector
consisting of cepstral coefficients, the first
derivative of the cepstral coefficients, power, e )
and the derivative of the power has become zspeech recognition systems are being moved

de factostandard. Variance-weighting of this from the laboratory to the field, such practical
parameter vector is the most popularproblems are receiving increasing attention.
normalization technique Perhaps this paper will motivate a future

_ _ tutorial on the topic. Clearly,

It will be the subject of further research 10 o, stness-in-noise issues strongly interact
quantify the differences in these approaches ir, ;i signal model design.
a reasonable recognition task. There still
remain some important questions to be
guantified: robustness to noise? invariance tc
sample frequency? invariance to recognition
task? It is interesting to note that despite the
seemingly vast algorithmic differences in these
approaches, many of these approaches hav
enjoyed widespread success. Often, the
significant differences in the recognition
systems lie in details beyond the signal mode

Finally, a major driving force today in
signal model design is the minimization of the
number of degrees of freedom in the system.
Because speech recognition systems today
have a large number of free variables (more
than 10,000 variables is common), insufficient
amounts of training data are a very real
problem. One thing we have learned over the
| years: badly trained parameters are often cited
as the major contributor to bad performance.
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IX. FIGURE CAPTIONS

1. An overview of the signal modeling process is shown. Advances in speech
recognition technology have blurred the distinction between signal modeling and
statistical modeling by introducing context sensitive statistical models into the
parameterization of the signal.

2. The sequence of operations in converting an analog signal to a digital signal suitable
for spectral analysis are shown. Some components, such as a low quality A/D
converter or a nonlinear microphone, can introduce unwanted artifacts in the signal.

3. The frequency response of a typical telephone grade A/D converter is shown.

4. The frequency responses of common preemphasis filters used in speech recognition
systems are given. The motivation behind such filters is to spectrally flatten the
speech signal, and to amplify important areas of the spectrum. Values of a, . close
to -1.0 are most common.

5. Temporal and frequency domain responses of the Hanning window are shown for a
range of values. In this window design, the objective is to make the main lobe width
small, and the stopband attenuation large, and also to have the window response
near zero at the edge of the window. o, = 0.54 is the most common value used in
speech recognition systems today.

5(a). Temporal Response
5(b). Frequency Response

6. A frame-based overlapping analysis is depicted. In this case, a 33% overlap is shown.
One-third of the data used in each analysis frame is shared with the previous
frame. Note that only one-third of the data are unique to the current frame — the
remaining two-thirds are shared between adjacent frames.

7. Various power computations are shown for the speech signal (the word “tea”) in (g). In
(a), a rectangular window analysis using a 5 msec frame duration and 10 msec
window is shown. In (b), a rectangular window analysis with 10 msed 20 msec
parameters are shown. In (c), a rectangular window analysis with 20 msed 30 msec
are shown. In (d), a Hamming window has been used with 20 msed 30 msewalues. In
(e), heavy smoothing is demonstrated by using a window duration of 60 mseg while
the frame duration is held fixed at 20 msec Finally, in (f), the power is computed
using a recursive-in-time approach using a second-order 50 Hz low pass filter. The
arrow indicates a point where the power changes rapidly. Note that the Hamming
window applied in (d) helps smooth this transition.

8. The six major spectral analysis algorithms are shown. Cepstral parameters derived
from either a Fourier Transform or Linear Prediction model are by far the most
popular of these approaches. The Fourier Transform methods have traditionally
been considered robust in severely noisy environments, and are popular for their
similarity to the initial stages of the human auditory system.

9. The Bark and mel scales are shown as a function of acoustic frequency in (a) and (b)
respectively. In (c), critical bandwidth as a function of frequency is shown. The mel
scale is a popular approximation to the Bark scale, and is widely used in speech
recognition.

9(a). The Bark scale transformation.
9(b). The mel scale transformation.
9(c). The critical bandwidth transformation.
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10. Digital filter bank outputs for a speech signal shown in (a), consisting of the word
“speech.”. In (b), the output from a filter with a center frequency of 250 Hz and a
bandwidth of 100 Hz is shown. In (c), the output from a filter centered at 2500 Hzis
shown. Note that the amplitude of the output for each filter varies depending on the
nature of the sound. The final “ch” sound, for example, is mainly composed of high
frequency information.

11. An oversimplified example of the benefit in oversampling the spectrum. A spectrum
of a signal (computed by a DFT to be precise) is shown along with the frequency
values at which it would be sampled using a filter bank consisting of 5 samples per
bin (index 14 from Table 1 is shown). If the spectrum is sampled exactly at the
center of the critical band the output value would be 0dB. If an average of the
spectrum across the critical band were used, the value would be -1dB.
Oversampling the spectrum often results in more stable, or smoothed, amplitude
estimates.

12. Low energy areas of the spectrum are often clipped in an effort to emphasize high
energy portions of the spectrum in the signal model and limit the effect of areas of
the spectrum that are not necessarily perceptually relevant. This clipping is
normally executed after preemphasis so that high frequency components of the
speech spectrum are not excessively truncated.

13. In the linear acoustics model of speech production [32], the speech signal is
produced by filtering an excitation signal (produced in the sub-glottal system) with a
time-varying linear filter (the vocal tract). The vocal tract can be decoupled from the
excitation signal using homomorphic signal processing techniques. It should be
noted that this model is not valid for all classes of speech sounds, such as frication,
where excitation occurs above the glottis.

14. An example of the computation of the cepstrum is given. In (a), an unvoiced speech
waveform is shown. In (b), a 1000 point cepstrum is computed. In (c), a voiced
speech waveform is shown. Finally, in (d), the corresponding cepstrum is shown.
Note that the cepstrum in (d) indicates periodicity in the waveform by the presence
of two local maxima. The low order terms in the cepstrum reflect the smooth
spectral structure of the speech signal (vocal tract information).

15. A speech spectrum is shown along with LP models of order 4 and 8. Note that the
model order 4 does not sufficiently model the detail in the spectrum. Model orders
of 10 and 12 are often used in speech recognition systems.

16. Stabilization of the LP model is demonstrated. A speech spectrum is shown along
with an LP model of order 10, and the same LP model with a stabilization factor of
-10 dB. Note that while the bottom of the spectral model is raised, the performance
of the model around the spectral peaks is also significantly smoothed. In cases
where two spectral resonances are close in frequency, stabilization sometimes
tends to combine these into on broad spectral peak (a bandwidth broadening
effect).

17. Spectral analysis for a speech signal is demonstrated by showing a wideband
spectrogram of a speech signal, and three associated LP models. Normally, the
analysis presented in (e) is sufficient to capture salient aspects of the individual
sounds. However, as computational power increases, and phonetic recognition
technology improves, 10 msec frame durations may become more common,
because of the need for better characterizations of dynamic sounds such as
consonants.

17(a). A speech waveform (the word “speech”) and its power contour.

Proceedings of the IEEE - "Final'Copy: June 3, TG8E3



Picone: Signal Modeling ... 48

17(b). A wideband spectrogram (6 msecwindow).

17(c). A spectrogram of the LP model (T, = 5 mseg T,, = 10 mseg.
17(d). A spectrogram of the LP model (T, = 10 mseg T,, = 20 mseg.
17(e). A spectrogram of the LP model (T, = 20 mseg T,, = 30 mseg.

18. The bilinear transform is compared to the mel scale for a range of values. The
bilinear transform was computed using a sample frequency of 16 kHz. Note that
positive values of a,, produce compression of the frequency scale (shown here)

while negative values produce expansion.

19. A speech spectrum along with its LP model are shown. In addition, the log
magnitude spectrum of the LP-derived cepstral coefficients, and the log magnitude
spectrum of the corresponding warped cepstral coefficients (a,, = 0.25) are shown.

Similar results can be obtained for the LP spectrum by processing either the LP
coefficients or the autocorrelation function through the iterative transform.

20. Conversion of signal measurements to a signal parameter vector usually consists of
two steps: differentiation (optional) and collation. Most speech recognition systems
today use the absolute measurements and an estimate of the first derivative of the
measurements. Recently, estimates of the second derivative have been
incorporated. The output of this stage of processing is a single parameter vector
which is the concatenation of all parameters.

. The frequency responses for three different realizations of a differentiator are
shown. In (a), N, = 1. In (b), Ny = 3. In (c), N, = 5. Note that an ideal differentiator
has a frequency response proportional to the log of the frequency. It is desirable
however to attenuate high frecwencies (it is important to not excessively amplify
these components) because higher frequency components tend to be naisy.
Hence, each of these designs attenuates high frequencies. The first-order
difference, as shown in (a), is most common.

22. Statistical models in speech recognition are generally divided into two categories:
parametric models (continuous distributions) and nonparametric models (discrete
distributions). The types of models range from direct evaluation of the LP model to
sophisticated likelihood models based on decorrelation transformations.

2

=

23(a). The elliptical region shows the range of allowable values of an order pair (X,y)
(assume all points in this region are equally likely). Which distance is greater: (a)
the distance from point a to point b, or (b) the distance from point c to point d? The
answer is (a). Since the distance from a to b is a larger percentage of the variance
in the vertical direction, we would have to believe this distance is “perceptually”
larger than the distance from point c to point d. (Note that the distances as shown
are exactly one unit.)

23(b). An important variation of the problem in Fig. 23(a): which distribution does the
data point belong to? The distance from the center of each distribution to the data
point are the same. However, since the shapes of the distributions are different, on
what scale do we compare the two distances? [72]
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24. An example of a transformation computed over speech data collected over the
telephone. The original data was sampled at 8 kHz. The first curve corresponds to
an eigenvector that weighs low frequency filter bank amplitudes heavily and
deemphasizes high frequencies. The second curve depicts a dimension that
focuses on the 1 kHz region of the spectrum. Both of these dimensions attempt to
track first formant information for vowels. The third curve represents a dimension
that favors high frequency sounds, such as sibilants. Use of these types of
transformations to model specific classes of speech sounds is an area of on-going
research in speech recognition.

25. The K-MEANS algorithm is demonstrated for a two-dimensional clustering problem.
Input vectors are grouped according to a nearest neighbor rule into clusters. The
centers for these clusters are recomputed based on the data in the cluster. The
data is then reclassified using the new clusters. The procedure is repeated until the
quality of the clustering is acceptable. The cluster centers then become the vectors
in the codebook.

26. Codebook distortion is displayed as a function of the codebook size. Codebook size
often ranges between 32 and 256 in speech recognition systems today. Beware that
codebook distortion is at best weakly correlated with speech recognition
performance.
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X. TABLE CAPTIONS

1. Two critical band filter banks are shown. The first filter bank (cols. 2 and 3) is a design
based on the Bark scale. The second (cols. 4 and 5) is a design based on the mel
scale. The shaded entries are shown only for comparison purposes. Usually these
bins are not included in the design. For the Bark scale filter bank, telephone grade
speech is often processed using a filter bank consisting of 16 bands
(indices 2 - 17).

2. A summary of the common signal modeling techniques used in speech recognition
systems. See the notes at the end of the table for explanations of the various
abbreviations. (This table extends for several pages.)
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Figure 2:
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Figure 3:
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Figure 4.
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Figure 5:
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Figure 6:
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Figure 7
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Figure 8:
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Figure 9:

Critical Band Rate (Bark)
24

16

0

0.001 0.01 0.1 1.0 10
Frequency (kHz)
Figure 9(a). The Bark scale transformation.
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Figure 9(b). The mel scale transformation.
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Figure 9(c). The critical bandwidth transformation.
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Figure 10:
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Figure 11:
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Figure 12:
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Figure 13:
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Figure 14
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Figure 15:
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Figure 16:
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Figure 17:
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(a) A speech waveform (the word “speech”) and its power contour.
5 kHz
0 kHz
0 0.25 0.5 0.75
Time (secs)
(b) A wideband spectrogram (6 msec window).
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(c) A spectrogram of the LP model (T; = 5 msec, T,, = 10 msec).
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(d) A spectrogram of the LP model (T; = 10 msec, T,, = 20 msec).
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(e) A spectrogram of the LP model (T; = 20 msec, T,, = 30 msec).
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Figure 18:
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Figure 19:
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Figure 20:
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Figure 21.:
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Figure 22:
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Figure 23(a):
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Figure 24
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Figure 25:
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Figure 26:
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Table 1:

Proceedings of the IEEE

Xll. TABLES
Bark Scale Mel Scale
Center Center
Freq. BW Freq. BW
Index (Hz) (Hz) (Hz2) (Hz)

1 50 100 100 10d
2 150 100 200 10(
3 250 100 300 10(
4 350 100 400 10(
5 450 110 500 10(
6 570 120 600 10(
7 700 140 700 10(
8 840 150 800 10(
9 1000 160 900, 10(
10 1170 190 1000 124
11 1370 210 1149 160
12 1600 240 1320 184
13 1850 280 1516 211
14 2150 320 1741 247
15 2500 380 2000 274
16 2900 450 2297 32()
17 3400 550 2639 36}
18 4000 700 3031 427
19 4800 900 3482 484
20 5800 1100 4000 55f
21 7000 1300 4595 639
22 8500 1800 5278 734
23 10500 2500 6063 843
24 13500 3500 6964 969
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Table 2:
Signal
General Information Signal Measurements Parameters Statistical Model
Affiliation | Application|| f anre Frame | Wind. | Spectral || Parameter Types Model Speech
[Ref] Size/Task || kHz Dur. | Dur. | Analysis Recog.
msec | msec Technology
ATR Large 12 | -0.97 3 21.3 LP(12) LP PWLR DD-HMM
[87] Office Power VQ(256)
ATR Large 12 0.0 5 21.3 | FFT(128) Mel FB, - TD-NN
[86] Office D-FB,
D-D-FB
AT&T Small 6.67 | -0.95 15 45 LP(8) Liftered-Cep. Variance | CD-HMM
[7] Telecom Cep(12) D-Cep.
D-D-Cep
Power
D-Power
D-D Power
AT&T Medium 8 -0.95 10 30 LP(10) (Same) (Same) (Same)
[69] Office Cep(12)
BBN Large 20 0.0 10 20 FFT(512) Mel-Cep VQ DD-HMM
[88,89] Office Cep.(14) D-Cep.
Power
D-Power
Brown Small 16 0.0 10.0 | 40.0 LP(12) Cep. MS-VQ HMM-NN
[90] Office Cep(12) D-Cep (256/stage)
Power
D-Power
Cambridge Large 10 FD 10 10 FFT(128) FB - NN
[91] Office
CMU Large 16 |-0.97 | 10.0 | 20.0 LP(14) BT Cep. MS-VQ DD-HMM
[66] Office Cep(12) D-Cep. (256/stage)
Power
D-Power
CMU Large 16 | -0.97 | 10.0 | 20.0 | FFT(256) Mel-FB MS-VQ TD-NN
[92] Office D-FB (256/stage)
D-D-FB
CSELT Medium 16 0.0 10 20 FFT(256) Mel-Cep. Variance | CD-HMM
[93] Telecom Cep(12) D-Cep.
Power MS-VQ DD-HMM
D-Power
CSELT Large 12 0.0 10 20 FFT(256) Mel-Cep. vVQ DD-HMM
[94] Office Cep(18) (128)
Fujitsu Large 16 0.0 5 32 FFT(512) Mel-FB Identity DP
[95] Office Power
IBM Large 16 0.0 10 20 - Auditory - DD-HMM
[96,97] Office Model (20)
INRS Large 16 0.0 10 25.6 | FFT(256) Mel-Cep. MS-VQ CD-HMM
[17] Office D-Cep. (64/stage)
Power
INRS Large 16 0.0 10 25.6 | FFT(256) (Same) Variance DD-HMM
[98] Office
KAIST Large 10 0.0 10 25.6 LP(12) Cep. MS-VQ DD-HMM
[99] Office Cep(12) D-Cep. (256/stage)
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Signal
General Information Signal Measurements Parameters Statistical Model
Affiliation | Application|| f Anre Frame | Wind. | Spectral || Parameter Types Model Speech
[Ref.] Size/Type || kHz Dur. | Dur. | Analysis Recog.
msec | msec Technology
LL Med./Lg. 8 FD 10 20.0 | FFT(256) Mel-Cep. Fixed CD-HMM
[2,70] Office/Mil. Cep(14) D-Cep.
MIT Large 16 FD 5 - FB(40) Auditory Model PT CD-CFG
[54,100,113] Office
Mitsubishi Large 10 | -0.95 10 25.6 | FFT(256) Mel-Cep. Variance CD-HMM
[101] Office D-Cep.
Power
D-Power
NEC Large 16 0.0 5 32 FFT(512) Mel-Cep. Variance CD-HMM
[102] Office Cep(10)
NYNEX Small 8 0.95 5 20 LP(10) Cep. PT HMM
[103] Telecom Cep(10) D-Cep. - MLP-NN
Power
D-Power
NTT Large 12 0.0 10 30 LP(16) Cep. Variance DD-FSA
[11,104] Office Cep(16) D-Cep.
D-Power
NTT Large 12 0.0 8 32 (Same) (Same) Variance CD-HMM
[105] Office
Panasonic Large 10.67 | 0.0 9.3 18.6 PLP(8) Cep. Fixed CD-HMM
[106] Office D-Cep.
Power
D-Power
Phillips Large 16 0.0 10 25 FFT(512) Mel-FB MS-VQ DD-HMM
[107] Office D-FB
D-D-FB
Power
D-Power
D-D-Power
RSRE Large 20 0.0 10 - FB(27) Bark-Cep. Fixed CD-HMM
[108] Office/Mil. Power
D-Cep.
SRI Large 16 0.0 8 16 FFT(256) Mel-Cep. MS-VQ DD-CSG
[109,110] Office D-Cep.
Power,
D-Power
SSi Large 16 0.0 6.6 - FB(20) Bark FB - CD-HMM
[111] Office Max Ampl.
Delta-Max Ampl.
Pitch
TI Small 8 -1.0 20 30.0 LP (10) Mel-FB, PT CD-HMM
[6.14,18] | Telecom D-FB,
Power,
D-Power
Tohoku Large 16 0.0 10 - FB(29) Cep., - LVQ2-NN
Univ. Office D-Cep.
[112]
Waseda Large 12 0.0 10 20 LP(16) Mel-Cep. MS-VQ DD-HMM
[113] Office D-Cep. (256/stage)
Power
D-Power
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Notes:
A. An explanation of abbreviations:

Small: Small Sized Vocabulary (usually Digit Recognition or Alpha Digit Recognition)
Medium: Medium-Size Vocabulary (usually < 5,000 words)
Large: Large Vocabulary Speech Recognition (usually > 5,000 words)
Office: Data%sngggf)ollected in a quiet or typical office environment (noise level is usually about
Telecom: Telecommunications Data (data collected over standard telephone lines)
Mil.: Military applications involving noisy environments and different speaking styles
FD: Frequency Domain Preemphasis (applied directly to the spectrum - ~10-20 dB/decade)
LP: Linear Prediction (order is shown in parentheses)
PLP: Perceptually-Motivated Linear Prediction
FFT: Fast Fourier Transform
FB: Filter Bank
Cep.: Cepstral Parameters
Power: Signal Power (usually in dB)
Mel: Mel Scale Parameters
Bark: Bark Scale Parameters
Liftered: Liftered Parameters
BT: Mel Scale Parameters Computed Using the Bilinear Transform
D-FB: Delta (or Time Derivative of) Filter Bank
D-D-FB: Delta-Delta Filter Bank Parameters (Second Derivative)
D-Power: Delta-Power (Time Derivative of Power)
D-D-Power: Delta-Delta-Power (Second Derivative of Power)
PWLR: Perceptually Weighted Log Llkelihood Distance Measure
VQ: Vector Quantization
MS-VQ: Multi-stage Vector Quantization (VQ with multiple codebooks)
PT: Prewhitening Transformation
Variance: Variance-Weighted Parameters (Diagonal components of the prewhitening transformation)
Identity: Identity Matrix Weighted Parameters (No Weighting)
Fixed: A Fixed (a priori) Weighting Matrix is used (sometimes called “Pooled” or “Grand”)
HMM: Hidden Markov Model
NN: Neural Network
TD-NN: Time Delay Neural Network
DP: Dynamic Programming
CD-HMM: Continuous Density Hidden Markov Models
DD-HMM: Discrete Density HMM
FSA: Finite State Automaton (usually a regular grammar)
CFG: Context Free Grammar
CSG: Context Sensitive Grammar
LvVQ2: Learning Vector Quantizer (a Neural Network approach to vector quantization)
MLP: Multi-Layer Perceptron Neural Network

B. An explanation of categories:

Affiliation: Company/University principally responsible for the cited research

Application: A brief summary of the type of database used in the cited publication

Signal Measurements:  Sample frequency, preemphasis, frame duration, and window duration of the spectral
analysis. For some systems, preemphasis is performed directly in the frequency
domain (indicated by a “yes”). Under spectral analysis, the sequence of operations is
shown. Orders of analysis, where applicable, are shown in parentheses.

Signal Parameters: Signal parameters used in the system. These are derived from the spectral analysis
parameters.
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Statistical Model: The statistical model used in the speech recognition system. Some affiliations have
multiple entries.
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