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ABSTRACT

We have seen three important trends develop in the last five years in speech recognition. First,
heterogeneous parameter sets that mix absolute spectral information with dynamic, or
time-derivative, spectral information, have become common. Second, similarity transform
techniques, often used to normalize and decorrelate parameters in some computationally
inexpensive way, have become popular. Third, the signal parameter estimation problem has
merged with the speech recognition process so that more sophisticated statistical models of the
signal’s spectrum can be estimated in a closed-loop manner. In this paper, we review the signal
processing components of these algorithms. These algorithms are presented as part of a unified
view of the signal parameterization problem in which there are three major tasks: measurement,
transformation, and statistical modeling.

This paper is by no means a comprehensive survey of all possible techniques of signal
modeling in speech recognition. There are far too many algorithms in use today to make an
exhaustive survey feasible (and cohesive). Instead, this paper is meant to serve as a tutorial on
signal processing in state-of-the-art speech recognition systems and to review those techniques
most commonly used. In keeping with this goal, a complete mathematical description of each
algorithm has been included in the paper.
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I. INTRODUCTION

Parameterization of an analog speech
signal is the first step in the speech recognition
process. Several popular signal analysis
techniques have emerged asde factostandards
in the literature. These algorithms are intended
to produce a “perceptually meaningful”
parametric representation of the speech signal:
parameters that emulate some of the behavior
observed in the human auditory and perceptual
systems. Of course, and perhaps more
importantly, these algorithms are also designed
to maximize recognition performance.

The roots of many of these techniques can
be traced to early speech recognition research
on speaker dependent technology. Today,
though signi f icant port ions of  speech
recognition research are now focused on the
speaker independent recognition problem,
many of these parameterizations continue to be
useful. In speaker independent speech
recogni t ion ,  a  premium is  p laced on
developing descriptions that are somewhat
invariant to changes in the speaker. Parameters
that represent salient spectral energies of the
sound, rather than details of the particular
speaker’s voice, are desired.

In this paper, we will adopt a view that a
syntactic pattern recognition approach to
speech  recogn i t i on  cons is ts  o f  two
fundamental operations: signal modeling and
network search ing.Signal  model ing
represents the process of converting sequences
of speech samples to observation vectors
representing events in a probability space.
Network searching is the task of finding the
most probable sequence of these events given
some syntactic constraints. In this tutorial, we
present an overview of popular approaches to
signal modeling in speech recognition.

1.1 The Signal Model Paradigm

Signal modeling can be subdivided into
four basic operations: spectral shaping,
spectral analysis, parametric transformation,
and statistical modeling. The complete
sequence of steps is summarized in Fig. 1. The
first three operations are straightforward
problems in digital signal processing. The last
task, however, is often divided between the
signal modeling system and the speech
recognition system.

There are three main driving forces in
designing signal modeling systems. First,
parameterizations are sought that represent
salient aspects of the speech signal, preferably
parameters that are analogous to those used by
the human auditory system. This is often
referred to asperceptually-meaningful
parameters. Second, parameterizations are
desired that are robust to variations in channel,
speaker, and transducer. We refer to this as the
robustness, orinvariance, problem. Finally,
most recently, parameters that capture spectral
dynamics, or changes of the spectrum with
time, are desired. We refer to this as the
temporal correlation problem. With the
introduction of Markov modeling techniques
that are capable of statistically modeling the
time course of the signal, parameters that
incorporate both absolute and differential
measurements of the signal spectrum have
become increasingly common.

Signal modeling now requires less than
10% of the total processing time required in a
typical large vocabulary speech recognition
application. The difference in processing time
between various signal modeling approaches is
now a small percentage of the total processing
time. The focus today has shifted towards
maintaining high performance and minimizing
the  number  o f  degrees  o f  f reedom.
Parameterizations that concisely describe the
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signal, can be easily computed in fixed point
hardware, and can be compressed through
straightforward quantization techniques are
often preferred over more exotic approaches.
Memory considerations often outweigh any
small gains that may be achieved in speech
recognition performance by a new signal
model.

Historically, robustness to background
acoustic noise has been a major driving force in
the design of signal models. In fact, many of
the signal models in use today were the
outgrowth of research into applications
involving noisy environments: voice control of
military instrumentation (speech recognition in
the cockpit) [1-2] and voice control of the
te lephone  (au tomat i c  te lephone
transactions) [3-6]. As speech recognition
technologies have become more sophisticated,
the recognition system itself now contributes
more to the noise robustness problem than the
signal model. Hence, it is often difficult to
i so la te  s igna l  mode l ing  a lgor i thm
enhancements.

In addition, signal models that are good for
one type of application may not necessarily be
optimal for another. For example, in speaker
independent speech recognition targeted for a
single environment (for example, continuous
digit recognition for telecommunications
applications), certain types of statistical
variations of the channel and speakers can be
safely predicted and accounted fora priori
(e.g., the bandwidth of the channel). In speaker
dependent  o r  speaker  iden t i f i ca t ion
applications, learning unique characteristics of
the user and the user’s acoustic environment is
important. Though this difference might seem
to necessitate different signal modeling
approaches, most approaches discussed in this
paper work well in both types of applications.

1.2 Terminology

Throughout this paper1, we will avoid the
overworked and all encompassing term
“feature extraction” for two reasons. First,
most often this term conveys some connotation
that the amount of information has been
reduced (distilled). Salient features of the
speech signal are strongly context dependent.
No feature extraction algorithm can magically
normalize all variations in the observed data
without some knowledge of the context of the
sound. We often prefer methods that preserve
spectral variation in the data, rather than those
that attempt to remove it in early stages of the
processing. Our disposition is to let the speech
recognizer deal with statistical variation in the
data.

Second, the term “feature extraction”
somehow implies we know what we are
looking for (in the signal). At this early stage in
speech recognition history, there are no
absolutes. The merit of a signal model must be
measured in the context of a recognition task.
Various objective measures of modeling
accuracy or efficiency, such as distortion, have
no strong correlation with recognit ion
performance. In fact, the best feature set can
often be a function of the recognition algorithm
and the task. The end goal is to preserve those
dimensions in the data that  represent
dimensions in which fundamental sound units
can be discriminated. The rather grim reality is
that many signal models in use today are great
achievements in empirical optimization.

Having said this, what term should we use?
We prefer the use of the simple termsignal
model. A signal model will have three internal
components: measurements — basic spectral
and  tempora l  measurements ;

1. Since no field today is worth its salt without a plateful of
jargon, a few brief comments on terminology are made in this
section.
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parameters — parametrically collated and
smoothed versions of these measurements; and
observations — the output of some form of
statistical model of the parameters. The signal
model’s observations are of course intimately
interrelated with the speech recognition tech-
nology. These internal components are shown
in Fig. 1.

Let us now describe each of these steps in
greater detail. We note that it is a shame that
very few, if any, speech recognition systems
are capable of exhaustively comparing many
variants of signal models in a controlled
manner. Hence, it is often the case that
motivations for choosing a particular approach
are not always scientific. Therefore, we
conclude this paper with an overview of
common signal models used in today’s state of
the art speech recognition systems, and make a
few comments on the respective author’s
claims about the merits of their approach.
Excellent papers on this and other related

topics can be found in [7-26]2.

II. SPECTRAL SHAPING

Spectral shaping involves two basic
operations:A/D conversion —conversion of
the signal from a sound pressure wave to a
d ig i ta l  s igna l ;  and d ig i ta l
filtering — emphasizing important frequency
components in the signal. This conversion
process is shown in Fig. 2. A good discussion
of general principles of sampling and A/D
conversion can be found in [30]. We will not
discuss the choice of a signal sample frequency
and the implications of such choices in this

2. The references in this paper have been selected mainly for
their worth as general introductions to mainstream work in
this area, rather than their authenticity as an original reference
on the subject. It was not our intention to discredit particular
research in this area (though that is probably unavoidable).
Excellent comprehensive discussions of many topics
presented in this paper can be found in [27-29].

tutorial, though choice of an appropriate
sample f requency obviously p lays an
important part in the signal modeling problem.

The  mic rophone  used  in  the  A /D
conversion process usually introduces
undesired side effects, such as line frequency
noise (“  hum”), loss of low and high
frequency informat ion, and nonl inear
distortion. The A/D converter also introduces
its own distortion in the form of a less than
ideal frequency response and nonlinear input/
output transfer function, and fluctuating DC
bias. An example of the frequency response of
a typical telephone grade channel (including
A/D conversion) is shown in Fig. 3. The sharp
attenuation of low and high frequencies often
causes problems for the subsequent parametric
spectral analyses algorithms.

Because of the limited frequency response
of analog telecommunications channels, and
the widespread use of  sampled speech in
digital telephony, the most popular sample
f requency  fo r  the  speech  s igna l  i n
telecommunications is . With the recent
emergence of broadband digital networks,
however ,  we  may  soon  see  new
telecommunications applications that utilize
h igher  qua l i t y  aud io  inpu t .  In  non-
telecommunications applications, in which the
speech recognition subsystem has access to
high quality speech, sample frequencies of

, , and  have been used.
These sample frequencies give better time and
frequency resolution [31].

The main purpose of the digitization
process is  to produce a sampled data
representation of the speech signal with as high
a Signal to Noise ratio (SNR) as possible.
Telecommunications systems today regularly
deliver SNRs in excess of  for speech
recognition applications, more than sufficient
for obtaining high performance. Variations in

50/60 Hz

8 kHz

8 kHz

10 kHz 12 kHz 16 kHz

30 dB
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transducers, channels, and background noise,
however, can each contribute significantly to
p rob lemat i c  per fo rmance  in  such
environments.

Once signal conversion is complete, the
last step of digital postfiltering is most often
execu ted  us ing  a  F in i te  Impu lse
Response (FIR) filter:

. (1)

Normally, a one coefficient digital filter,
known as apreemphasis filter, is used:

. (2)

A  typ ica l  range  o f  va lues  fo r  i s
. Values close to  that can be

efficiently implemented in f ixed point
hardware, such as  or , are most
common in speech recognition. A range of
frequency responses for the preemphasis filter
of Eq. (2) is shown in Fig. 4. The preemphasis
filter is intended to boost the signal spectrum
approximately  per decade (an order of
magnitude increment in frequency).

There are two common explanations of the
advantages of using this filter. First, voiced
sections of the speech signal naturally have a
negative spectral slope (attenuation) of
approximately  per decade due to
physiological characteristics of the speech
production system [28,31]. The preemphasis
filter serves to offset this natural slope before
spectral analysis, thereby improving the
efficiency of the analysis [31,32].

An alternate explanation is that hearing is
more sensitive above the  region of the
spectrum. The preemphasis filter amplifies this
area of the spectrum, assisting the spectral
analysis algorithm in modeling the most
perceptually important aspects of the speech

Hpre z( ) apre k( )z k–

k 0=

Npre

∑=

Hpre z( ) 1 aprez
1–

+=

apre

1.0– 0.4–,[ ] 1.0–

1– 1 1 16⁄–( )–

20 dB

20 dB

1 kHz

spectrum [31] (see Section 3.3.4 for more
details).

We also note that such preemphasis filters
also raise frequencies above , a region in
wh ich  the  aud i to ry  sys tem becomes
increasingly less sensi t ive.  However,
f requencies above  are natural ly
attenuated by the speech production system
and normally are assigned a significantly
smaller weight in a typical speech recognition
system.

More  soph is t i ca ted  p reemphas is
algorithms have been proposed. One such
notable approach is adaptive preemphasis, in
which the spectral slope is automatically
flattened [31] before spectral analysis. Other
algorithms utilize shaping filters that attenuate
areas of the spectrum known to be quite
noisy [33,34]. More recently, speech/noise
classification algorithms based on adaptive
filtering are being employed [35]. However,
none of these approaches have yet enjoyed
widespread success in speech recognition
applications. In fact, recently, many speech
recognition systems have eliminated the
preemphasis stage altogether and compensate
for the spectral slope as part of the speech
recognition statistical model (see Section VI).

III. SPECTRAL ANALYSIS

For pedagogical reasons, let us classify the
types of spectral measurements used in speech
recognit ion systems into two classes:
power — measures of the gross spectral (or
temporal) power of the signal; spectral
ampl i tude — measures of  power over
particular frequency intervals in the spectrum.
A typical parameter set in speech recognition
will include each of these measurements.

Recently there has been resurgence of interest3

in fundamental frequency for use as a prosodic
feature [36], for use in speech recognition of

5 kHz

5 kHz
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tonal languages (e.g. Chinese) or languages
that have some tonal components (e.g.,
Japanese), and as a measure of speaker identity
or authenticity [37]. Let us first briefly review
fundamenta l  f requency  and  power
calculations, and then focus on spectral
amplitude estimation.

3.1 Fundamental Frequency

Fundamental frequency4 is defined as the
frequency at which the vocal cords vibrate
during a voiced sound [38,39]. Fundamental
frequency ( ) has long been a difficult
parameter to reliably estimate from the speech
signal. Previously, it has been neglected in
speech recognition systems for numerous
reasons, including the large computational
burden required for accurate estimation, the
concern that unreliable estimation would be a
barrier to achieving high performance, and the
d i f f i cu l ty  in  character iz ing complex
interactions between  and suprasegmental
phenomena.

There are four major classes of algorithms
in use today. One of the first algorithms to
appear, and one of the simplest, is an algorithm
that uses multiple measures of periodicity in
the signal, and votes between them to
determine the voicing state and fundamental
frequency. This algorithm was originally
known in the speech processing literature as
the Gold-Rabiner algor i thm [40],  and
motivated many other variants based on time-
domain measurements [41]. The Gold-Rabiner
algorithm is still popular mainly because of its
simplicity and ease of reliable implementation.
Unfortunately, it does not work very well.

3. Of course, fundamental frequency is still rarely used in
practical speech recognition systems.

4. This section is intended to serve only as a reference guide
to major work in this area. The details of such algorithms are
beyond the scope of this paper. Good tutorials on the subject
can be found in [38,39]

f0

f0

Second, the U.S. National Security
Agency (NSA), as part of a program to develop
secure digital telephones based on low bit rate
voice coding, has developed a robust algorithm
for telecommunications applications [42,43].
This algorithm is based on the average
magnitude difference function [32], and a
discriminant analysis of multiple voicing
measures. It is a published government
standard and publicly available in the U.S.

A third class of algorithms, similar in
nature to the previous class, are based on
dynamic programming concepts [44]. These
algorithms have been shown to provide high
per fo rmance across  a  w ide  range o f
env i ronments ,  i nc lud ing  no isy
telecommunications channels. This class of
algorithms uses a sophisticated optimization
procedure that evaluates several measures of
correlation and spectral change in the signal,
and computes an optimal fundamental
frequency pattern and voicing pattern
simultaneously.

Finally, an algorithm that is rarely used in
real-time speech systems, but often used for
research experimentation, is an algorithm that
operates on the cepstrum of the speech
signal [45]. This algorithm is still popular
today as an accurate method for estimating the
fundamental frequency in extremely quiet
laboratory recording conditions.

Fundamental frequency is often processed
on a logarithmic scale, rather than a linear
scale, to match the resolution of the human
auditory system. For reference purposes, let us
define a measure of the fundamental frequency
as:

, (3)

where  represents discrete time.

F n( ) f0 n( )( )
10

log=

n
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Normally,  for voiced
speech. For unvoiced speech,  is undefined,
and by convention . Often, fundamental
frequency is normalized by the speaker’s
average  va lue ,  o r  some
physiologically-motivated transformation of a
nominal value during the corresponding voiced
segment of speech.

3.2 Power

The use of some sort of power measure(s)
in speech recognition is fairly standard today.
Power is rather simple to compute:

, (4)

where  is the number of samples used to
compute the power,  denotes the signal,

 denotes a weighting function, and
denotes the sample index (discrete time) of the
center of the window. Rather than using power
directly, many speech recognition systems use
the logarithm of the power multiplied by 10,
defined as the power in , in an effort to
emulate the logarithmic response of the human
auditory system [46].

The weighting function in Eq. (4) is
referred to as a window function. Window
theory was once a very active topic of research
in digital signal processing [31,32]. There are
many types of windows including rectangular,
Hamming, Hanning, Blackman, Bartlett, and
Kaiser. Today, in speech recognition, the
Hamming window is almost exclusively used.
The Hamming window is a specific case of the
Hanning window. A generalized Hanning
window is defined as:

, (5)

50 Hz f0≤ 500 Hz≤

f0

F 0≡

f0

P n( ) 1
Ns

----- w m( ) s n
Ns

2
-----– m+ 

 
 
  2

m 0=

Ns 1–

∑=

Ns

s n( )
w m( ) n

dB

w n( )
αw 1 αw–( ) 2πn Ns 1–( )⁄( )cos–

βw

---------------------------------------------------------------------------------------=

for , and  elsewhere.  is

defined as a window constant in the range
, and  is the window duration in

samples. To implement a Hamming window,
.

 is a normalization constant defined so

that the root mean square (RMS) value of the
window is unity.  is defined as:

. (6)

In Fig. 5 we show various realizations of the
Hanning window.

In practice, it is desirable to normalize the
window so that the power in the signal after
windowing is approximately equal to the
power of the signal before windowing.
Equation (6) describes such a normalization
constant. This type of normalization is
especially convenient for implementations
using fixed point arithmetic hardware. Note
that the computational burden of a window is
relat ively smal l ,  because the window
coefficients are precomputed at system
initialization.

The purpose of the window is to weight, or
favor, samples towards the center of the
window. This characteristic, coupled with the
overlapping analysis discussed next, performs
an important function in obtaining smoothly
varying parametric estimates. It is important
that the width of the main lobe in the frequency
response of the window be as small as possible,
or  the windowing process can have a
detrimental effect on the subsequent spectral
analysis. See [31,32,47] for good discussions
of this topic.

Power, like most parameters in a speech
recognition system (including fundamental
frequency mentioned in the last section) is

0 n Ns<≤ w n( ) 0≡ αw

0 1,[ ] Ns

αw 0.54=

βw

βw

βw
1
Ns

----- w2 n( )
n 0=

Ns 1–

∑=
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computed on a f rame by f rame basis.
Frame duration, , is defined as the length of
t ime ( in seconds) over which a set of
parameters are valid. Frame period is a
similarly used term that denotes the length of
t ime  be tween success ive  paramete r
calculations. Frame rate, yet another common
term, is the number of frames computed per
second (Hz).

In Eq. (4),  is updated by the frame
duration in samples. Frame duration typically
ranges between  and  in
practical systems. Values in this range
represent a trade-off between the rate of
change of spectrum and system complexity.
The proper frame duration is ultimately
dependent on the velocity of the articulators in
the speech production system (rate of change
of the vocal tract shape). While some speech
sounds  (such  as  s top  consonan ts  o r
diphthongs) exhibit sharp spectral transitions
which can result in spectral peaks shifting as
much as [31], frame durations less
than approximately  are normally not
used.

Equally important, however, is the interval
over which the power is computed. The
number of samples used to compute the
summat ion , ,  i s  known as  the
window duration  (in samples). Window
duration,  is normally measured in units of
time (seconds).

Window duration controls the amount of
averaging, or smoothing, used in the power
calculation. The frame duration and window
duration together control the rate at which the
power values track the dynamics of the
signal [32]. Frame duration and window
duration are normally adjusted as pair: a
window duration of  is most common
with a frame duration of , while a
window duration of  is used with a

Tf

n

20 msec 10 msec

80 Hz / msec

8 msec

Ns

Tw

30 msec

20 msec

20 msec

frame duration of . Generally speaking,
since a shorter frame duration is used to
capture rapid dynamics of the spectrum, the
w indow dura t ion  shou ld  a lso  be
correspondingly shorter so that the detail in the
spectrum is not excessively smoothed.

The process of frame based analysis is
depicted in Fig. 6. This type of analysis is often
referred to as an overlapping analysis, because
with each new frame, only a fraction of the
signal data changes. The amount of overlap to
some extent controls how quickly parameters
can change from frame to frame. The
percentage overlap is given by:

, (7)

where  is the window duration (in seconds)
and  is the frame duration. If , the
percentage overlap is zero.

The combination of a  frame
duration and a  window duration
correspond to a  overlap. Some systems
use as much as  overlap. One goal of such
large amounts of overlap is to reduce the
amount  o f  no ise  in t roduced  in  the
measurements by such artifacts as window
placement and nonstat ionary channel
noise [32]. On the other hand, excessively
smoothed estimates can obscure true variations
in the signal.

Frame-based power computations can also
be computed recursively [32]. This technique
is most easily viewed as a filtering operation of
the squared amplitude of the signal:

, (8)

where  and  represen t  the
coefficients of a digital low pass filter. Most
often, a first order filter (leaky integrator),

10 msec

%Overlap
Tw Tf–( )

Tw

----------------------- 100%×=

Tw

Tf Tw Tf<

20 msec

30 msec

33%

66%

P n( ) apw i( )P n i–( )
i 1=

Na

∑–= bpw j( )s2 n j–( )
j 0=

Nb

∑+

apw{ } bpw{ }
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, or a second order filter (biquad
section), , are used. The design
of the system represented in Eq. (8) to produce
smoothed power estimates is a classical control
problem. A good discussion of the design of
such controllers can be found in [48].

In Fig. 7, we demonstrate the use of these
parameters. At the bottom of the figure, a
speech signal is shown. The f irst four
waveforms starting from the top of the figure
show power contours for: (a) ,

; (b) , ;
( c ) , ;  (d )

, , and a Hamming
window was  used ;  (e ) ,

; (f) a recursive filter approach in
which a  low pass filter was implemented
using a second order section.

The application of a Hamming window, as
shown in Fig. 7(d), helps produce a smoothed
estimate of the power through regions where
the power changes rapidly (note the point in the
waveform marked by an arrow). Note that at

 there is a subtle rise in power. This
rise in power is reproduced only in (a) and (e),
the two analyses with the greatest ability to
respond to rapid changes in the signal’s power.

The recursive technique in Fig. 7(f)
produces an oscillatory power contour. The
second order filter used in the implementation
is not capable of sufficiently damping high
frequencies in the signal ’s ampli tude/
instantaneous power contour. Hence, the
output tends to be too sensit ive to the
short-term power level of the signal. For this
reason, such filters are often used only as
postprocessors to frame-based analyses, in
which case the power contour is extremely
smooth to begin with. Careful design of these
circuits are required to make sure the

Na 1 Nb, 0= =

Na 2 Nb, 2= =

Tf 5 msec=

Tw 10 msec= Tf 10 msec= Tw 20 msec=

Tf 20 msec= Tw 30 msec=

Tf 20 msec= Tw 30 msec=

Tf 20 msec=

Tw 60 msec=

50 Hz

t 0.3 secs=

adaptation speed is appropriate for the given
application.

Recursive formulations are used to
implement algorithms for adaptive gain
control, peak signal power estimation, and
signal endpoint detection. Equation (8) can
also be applied as a postprocessor to Eq. (4) to
provide additional smoothing of the power
estimates.

3.3 Spectral Analysis

There are six major classes of spectral
analysis algorithms used in speech recognition
systems today. The procedures for generating
these analyses are summarized in Fig. 8. Filter
bank methods (implemented in analog circuits)
were historically the first methods introduced.
Linear prediction methods were introduced in
the 1970’s, and were the dominant technique
through the early 1980’s. Currently, both
Fourier transform and linear prediction
techniques enjoy widespread use in various
speech processing applications. In this section,
we will discuss each of these techniques,
beginning with the digital filter bank.

3.3.1 Digital Filter Bank

The digital filter bank is one of the most
fundamental concepts in speech processing. A
filter bank can be regarded as a crude model of
the initial stages of transduction in the human
audi tory system. There are two main
motivations for the filter bank representation.
First, the position of maximum displacement
along the basilar membrane for stimuli such as
pure tones is proportional to the logarithm of
the frequency of the tone. This hypothesis is
part of a theory of hearing called the “place
theory” [49].

Second, experiments in human perception
have shown that frequencies of a complex
sound within a certain bandwidth of some
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nominal frequency cannot be individually
identified. When one of the components of this
sound falls outside this bandwidth, it can be
individually distinguished. We refer to this
bandwidth as the critical bandwidth [50]. A
critical bandwidth is nominally to  of
the center frequency of the sound.

We can define a mapping of acoustic
frequency, , to a “perceptual” frequency scale,
as follows [51]:

. (9)

The units of this perceptual frequency scale are
referred to as critical band rate, orBark. The
Bark scale is shown in Fig. 9(a).

A more popular approximation to this type
of mapping in speech recognition is known as
themelscale [51]:

. (10)

The mel scale attempts to map the perceived
frequency of a tone, or pitch, onto a linear
scale. This scale is displayed in Fig. 9(b). It is
often approximated as a linear scale from

to , and then a logarithmic scale
beyond .

An expression for critical bandwidth is:

. (11)

This transformation can be used to compute
bandwidths on a perceptual scale for filters at a
given frequency onBark or mel scales. The
critical bandwidth function is also displayed in
Fig. 9(c).

Both theBark scale and themel scale can
be regarded as a transformation of the
frequency scale into a perceptually meaningful
scale that is linear. The combination of these
two theories gave rise to an analysis technique
known as the critical band filter bank. A
critical band filter bank  is simply a bank of
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---------------------
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 
 

atan+=

mel frequency 2595 log10 1 f 700.0⁄+( )=

0 1000 Hz

1000 Hz

BWcritical 25 75 1 1.4 f 1000⁄( ) 2+[ ] 0.69
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linear phase FIR bandpass filters that are
arranged linearly along theBark (or mel) scale.
The bandwidths are chosen to be equal to a
critical bandwidth for the corresponding center
frequency.

One such filter bank, originally defined
in [52] has become somewhat of a standard,
and is  shown in  Table 1.  The center
frequencies and bandwidths for these filters are
shown in the second and third columns of
Table 1. The center frequencies correspond to
those frequencies for which Eq. (9) yields the
integer index value in the table (for example,
the frequency corresponding to an index of 2
produces a  value of 2). The bandwidth is
then computed using Eq. (11).

In many speech processing applications,
the first filter is omitted, because its range is
beyond the capabilities of the A/D converter.
Often the sampled data collected in the
corresponding frequency range is extremely
noisy. Telephone grade speech is often
processed using a filter bank consisting of
16 bands (indices 2 - 17).

Another equally important filter bank in
the speech recognition literature is a filter bank
based on themel scale. The frequency/
bandwidths for this filter bank [26] are given in
fourth and fifth columns of Table 1. In this
design, ten filters are assigned linearly from

 to . Above , five filters
are assigned for each doubling of the frequency
scale (octave). These filters are spaced
logarithmically (equally spaced on a log scale).
The bandwidths are assigned such that the
3 dB point is halfway between the current bin
and the previous/next bin. The shaded entries
in the table are shown only for comparison
purposes. Normally, only the first 20 samples
from the filter bank are used.

Each filter in the digital filter bank is
usually implemented as a linear phase filter so

Bark

100 Hz 1000 Hz 1000 Hz
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that the group delay for all filters is equal to
zero, and the output signals from the filters will
be synchronized in time. The filter equations
for a linear phase filter implementation can be
summarized as follows:

, (12)

where  denotes the jthcoefficient for the ith

critical band filter. The filter order is normally
odd for a linear phase filter.

Processing of speech through two filters in
this type of filter bank is demonstrated in
Fig. 10. A speech signal is shown, along with
the outputs from two bandpass filters, one
centered at 250 Hz, and one centered at
2500 Hz. Note that the power of the outputs
varies depending on the type of sound spoken.
This is the basic merit of the filter bank: certain
filter outputs can be correlated with certain
classes of speech sounds.

The filter outputs are normally processed
using any of the power estimation methods
previously discussed. The digital filter bank is
most frequently used in systems that attempt to
emulate audi tory processing [53,54].
Recurs ive - in - t ime computa t ions  a re
particularly convenient for postprocessing in
these applications.

The output of this analysis is a vector of
power values (or power/frequency pairs) for
each frame of data. These are usual ly
combined with other parameters, such as total
power, to form the signal measurement vector.
The filter bank attempts to decompose the
signal into a discrete set of spectral samples
that contain information similar to what is
presented to higher levels of processing in the
auditory system. Because the analysis is
largely based entirely on linear processing (as
opposed to the nonlinear techniques discussed

si n( ) aFBi
j( ) s n j+( )

j NFBi
1–

 
  2⁄–=

NFBi
1–

 
  2⁄

∑=

aFBi
j( )

in Section 3.3.4), the technique is generally
robust to ambient noise.

We conclude this sect ion with one
historical note. Long before computer
hardware was capable of performing complex
mathematical operations in real time, analog
filter banks similar to the digital filter bank
previously discussed were used in speech
recognition. The filter banks were often built
from discrete components and needed to be
carefully tuned by adjusting resistors and
capacitors. At that time, researchers dreamed
of the days when speech recognition system
parameters could be adjusted from software.
The analog filter bank is one of the oldest
approaches used in speech recognition.
Ironically, the analog filter technique has
genera ted  some o f  the  lowes t  cos t
implementations of speech recognizers to date.

3.3.2 The Fourier Transform Filter Bank

We have prev iously  d iscussed the
advantages in using non-uniformly spaced
frequency samples. One of the easiest and most
efficient ways to compute a non-uniformly
spaced filter bank model of the signal is to
simply perform a Fourier transform on the
signal, and sample the transform output at the
desired frequencies. TheDiscrete Fourier
Transform (DFT) of a signal is defined as:

, (13)

where  denotes the frequency in Hz,  denotes
the signal sample frequency, and  denotes
the window duration in samples.

The filter bank can be implemented by
using Eq. (13) to sample the spectrum at the
frequencies listed in Table 1. However, often
the spectrum is oversampled at a f iner
resolution than that described in Table 1, and
each output of the filter bank (a power spectral

S f( ) s n( ) e
j

2πf
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-------- 
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Ns 1–

∑=

f fs

Ns



Picone: Signal Modeling ... 12

Proceedings of the IEEE Second Submission: March 18, 1992

Picone: Signal Modeling ... 12

Proceedings of the IEEE Second Submission: May 15,1993

Picone: Signal Modeling ... 12

Proceedings of the IEEE Second Submission: March 18, 1992

Picone: Signal Modeling ... 12

Proceedings of the IEEE Final Copy: June 3,1993

magnitude) is computed as a weighted sum of
its adjacent values:

, (14)

where  represents the number of samples
used to obtain the averaged value,
represents a weighting function, and
represents some function that describes the
frequencies in the neighborhood of  to be used
in computing the average. Note that the
averaging method presented in Eq. (14) is just
one particular method of implementing a
spectral smoothing function.

Averaging is often performed in themel
scale frequency domain if a DFT is used (since
the added computational burden is minimal).
Averaging also is usually performed in the log
domain (log power values) rather than on
spectral amplitudes. The benefit of using
averaged values for spectral analysis is
demonstrated in Fig. 11.

A Fast Fourier Transform (FFT) [55]
also can be used as an alternate method of
computing the spectrum of the signal. The FFT
is a computationally efficient implementation
of the DFT under the constraint that the
spectrum is to be evaluated at a discrete set of
frequencies that are multiples of . These
frequencies are referred to as orthogonal
frequencies. The principal advantage of the
FFT is that it is very fast: approximately

 additions and  multiplications
are required. (The DFT requires on the order of

 operations.) The principal disadvantage is
that nonlinear frequency mappings, such as the
filter bank in Table 1, must be adjusted to
match the FFT or thogonal  f requency
constraints.

One additional processing step is often
added. Based in part on our sketchy knowledge

Savg f( )
1

Nos

-------- wFB n( )S f f f n,( )δ+( )
n 0=

Nos
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Nos

wFB n( )

f f n,( )δ

f

fs N⁄

N Nlog N Nlog 2⁄

N
2

of human perception, we hypothesize that high
amplitude areas of the spectrum are weighted
more heavily in the auditory system than low
amplitude regions. In noisy environments,
noise often disproportionately degrades our
estimates of the low amplitude areas of the
spectrum. Stated another way, we are more
confident of the reliability (and repeatability)
of our estimates of the high amplitude areas of
the spectrum.

For this reason, we often impose a limit on
the dynamic range of the spectrum. This is
depicted in Fig. 12. We refer to this lower limit
as thedynamic range threshold. Rather than
use noisy estimates of low amplitude regions
of the spectrum, we simply clip, or discard,
estimates below a certain threshold from the
peak  in  the  spec t rum.  For  Four ie r
T rans fo rm-based  techn iques ,  th i s  i s
straightforward to implement as a thresholding
function on the spectral magnitude (measured
in ).

It is important that the spectral envelope be
relatively flat before implementing such
thresholding algorithms. Otherwise, useful low
energy portions of the spectrum can be
mistakenly eliminated. Recall that since the
spectrum of the speech signal inherently drops

 per decade, a threshold based on low
frequency energies, where the peak to valley
spectral amplitude difference is large, can
easily remove useful signal energy at higher
frequencies. Later, we will discuss more
sophisticated methods for implementing
thresholding of the spectrum based on
parametric modeling techniques. For the
moment, the reader might ponder the utility of
letting the dynamic range threshold vary as a
function of the background noise level in the
spectrum or as a function of the local spectral
peak to local background noise level.

dB

20 dB
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3.3.3 Cepstral Coefficients

Since their introduction in the early 1970’s,
homomorph ic  s igna l  p rocess ing
techniques [27] have been of great interest in
speech recognition. Homomorphic systems are
a class of nonlinear systems that obey a
generalized principle of superposition. Linear
systems, such as those previously discussed,
are a special case of a homomorphic system.
The motivation for homomorphic processing
in speech analysis is summarized in Fig. 13.

In speech processing, the homomorphic
system we seek should have the following
property:

This is a superposition type operation with
respect to multiplication, exponentiation, and
addition. A logarithm function, of course,
obeys the generalized superposition property.

Homomorphic systems were considered
useful for speech processing [27] because they
offered a methodology for separating the
excitation signal from the vocal tract shape.
Current approaches to speech recognition are
primarily concerned with modeling the vocal
tract characteristics. In the linear acoustics
model of speech production, the composite
speech spectrum, as measured by a Fourier
transform, consists of the excitation signal
f i l tered by a t ime-varying l inear f i l ter
representing the vocal tract shape.

The process of  separat ing the two
components ,  o f ten  re fe r red  to  as
deconvolution, can be described as follows:

,

where  denotes the excitation signal,
denotes the vocal tract impulse response, and

 denotes convolution. The frequency
domain representation of this process is:

D x1 n( )[ ] α
x2 n( )[ ] β• αD x2 n( )[ ]=

βD x2 n( )[ ] .+

s n( ) g n( ) v n( )⊗=

g n( ) v n( )

“ "⊗

.

If we take the logarithm (complex) of both
sides, we have:

Hence, in the log domain, the excitation and
the vocal tract shape are superimposed, and
can be separated using conventional signal
processing (in theory at least).

 To compute the cepstrum, we first
compute the log spectral magnitudes (averaged
if necessary) from Eq. (14). Next we compute
the inverse Fourier transform of the log
spectrum:

.

(15)

 in Eq. (15) is defined as thecepstrum.
We refer to cepstral coefficients computed via
the Fourier transform (or analog filter bank) as
Fourier Transform-derived cepstral
coefficients.

Observe that  in Eq. (15) represents
the average value of the spectrum, or the root
mean square (rms) value of the signal. Initially,
this term was an important part of the cepstral
parameter vector. Later, it was observed that
absolute power measures of the signal were

somewhat unreliable5, and use of  was
deemphasized. Recently, however, since
various alternative measures of power are
explicitly added to the parameter vector in
other stages of processing,  is no longer
used. From this point forward, we will
EXCLUDE this term from our discussion of
the cepstral coefficient sequence.

5. Some systems [14] still use some form of absolute power
along with various normalized power measures.
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Equation (15) is also recognized as the
inverse DFT of the log spectrum. This can be
conveniently simplified by noting that the log
magnitude spectrum is a real symmetric
function. Hence, Eq. (15) can be simplified to:

. (16)

 in Eq. (16) is normally truncated to an
order much lower than .  represents a
mapping function that translates the integer
to the appropriate samples of . For
efficiency,  can also be computed using an
oversampled FFT, rather than a non-uniformly
spaced DFT.

We note that the cepstrum, as used in
speech processing, is slightly different than the
classical definition of the complex cepstrum
found in the literature [27,28]. However, the
def in i t ion presented here conveys al l
significant information needed in speech
recognition.The cepstrum defined in Eq. (16)
can be easily modified to be amel-spaced
cepstrum by sampling the Fourier Transform at
appropriately spaced frequencies.

The cepstrum of two different speech
signals is shown in Fig. 14. In Fig. 14(a) and
Fig. 14(c), an unvoiced and a voiced speech
waveform are shown, respect ively. In
Fig. 14(b) and Fig. 14(d), the corresponding
cepstra are shown. The low order terms of the
cepstrum correspond to short-term correlation
in the speech signal (smooth spectral shape or
vocal tract shape). The local maxima in the
higher order terms in Fig. 14(d) demonstrate
long term correlation, or periodicity, in the
waveform (excitation information). The
cepstrum in Fig. 14(b) of the unvoiced
segment does not show any periodicity. In
spectral analysis for speech recognition
applications, normally only the low order
terms ( ) are used.

c n( ) 2
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----- Savg I k( )( )
2π
Ns

------kncos
k 1=

Ns
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c n( )
Ns I k( )

k

Savg

Savg

n 20≤

Because the cepstrum is computed using a
nonlinear operator, a logarithm function, it is
generally believed to be sensitive to certain
types of noise and signal distortions. While
multiplicative noise processes can generally be
dealt with, additive noise (such as background
acoustic noise) can be troublesome. Cepstral
parameters derived from high resolution
spectral estimators, or parametric fits of the
spectrum, are often preferred for applications
in noisy environments.

3.3.4 Linear Prediction Coefficients

We now turn from Fourier Transform
methods based on linear spectral analysis to a
class of parametric modeling techniques that
attempt to optimally model the spectrum as an
autoregressive process. It is difficult to
overstate the impact parametric models have
made on speech processing since their
introduction in the early 1970s [56,57]. By the
late 1970s, almost every speech processing
system used some sort of algorithm that
parametrically fits the spectrum, whether for
recognition, compression, or verification
applications. Though parametric models today
are less popular in recognition, they are still
widely used in compression systems.
Parametric models were the impetus for a
transition to vastly more powerful statistical
modeling techniques in speech recognition. In
this section, we will discuss computation of a
parametric model based on least mean squared
error theory. This technique is known as linear
prediction (LP).

The roots of linear prediction, as a least
mean squared error algorithm can be traced to
many diverse areas: system identification
problems in modern control systems, time
series analysis for economic applications,
maximum entropy techniques, quantum
physics, geophysics, adaptive filtering and
spectral estimation in signal processing. Linear
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prediction theory is well-documented in the
literature. Some of the landmark academic
texts include [31,32,57]. Here, we will (very)
briefly review the mechanics of computing a
linear prediction model, and then discuss the
implications in speech recognition.

Given a signal, , we seek to model the
signal as a linear combination of its previous
samples. Let us define our signal model as:

, (17)

where  represen ts  the  number  o f
coefficients in the model (the order of the
predictor),  are defined as thelinear
p red ic t ion  coe f f i c ien ts (p red ic to r
coefficients), and  represents the error in
the model (the difference between the
predicted value and the actual measured
value).

One obvious virtue of this model is that, if
it is accurate, we should be able to predict
future values of the signal based on our current

set of measurements6. The error term should
tell us something about the quality of our
model (if the error is small, the model is
accurate). It is also possible to show that a
linear prediction model effectively models the
spec t rum o f  the  s igna l  as  a  smooth
spectrum [31].

Equat ion (17)  can be rewr i t ten in
-transform notation and shown to be a linear

filtering operation:

,

where  and  are the -transforms of
the error signal and the speech signal,
respectively, and

6. The naive reader will easily imagine uses for such models
in predicting stock market prices. In fact, economic analysis
was one of the earliest applications for such algorithms.
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,

or,

, (18)

where .  is defined as the linear
prediction inverse filter.

Under the constraint that we would like the
mean-squared error to be as small as possible
(seeking a solution that gives us the minimum
error energy is reasonable), the coefficients
(excluding ) of Eq. (18) can be obtained
from the following matrix equation:

, (19)

where,

(20)

,(21)

, (22)

and,

. (23)

The solution presented in Eqs. (19)-(23) is
known as the Covariance Method.  is
referred to as a covariance matrix, and  is

referred to as the covariance function for .

There are three basic ways to compute
predictor coefficients: covariance methods
based on the covariance matrix (also known as
pure least squares methods), autocorrelation
methods, and lattice (or harmonic) methods.
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Good discussions of the differences in these
approaches are given in [31,57]. In speech
recognition, the autocorrelation method is
almost exclusively used because of its
computational eff iciency and inherent
stability. The autocorrelation method always
produces a prediction filter whose zeroes lie
inside the unit circle in the -plane.

In the autocorrelation method, we modify
Eq. (23) as follows:

, (24)

or,

. (25)

 is known as the autocorrelation function.
This simplification results by constraining the
evaluation interval to the range , and
assuming values outside this range are zero.

Because of this finite length constraint, it is
important in the autocorrelation method to
apply a window, such as that described in
Eq. (5) to the signal. Normally, a Hamming
window is used. Application of the window
eliminates the problems caused by rapid
changes in the signal at the edges of the
window. In an overlapping analysis, it ensures
a smooth transition from frame to frame of the
estimated parameters.

This simplification allows the predictor
coefficients to be computed efficiently using
the Levinson-Durbin recursion [37]:

z
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These equations compute the predictor
coefficients with complexity proportional to

, and allow the entire LP computation to be
performed with a complexity of approximately

.

The signal model is actually the inverse of
, and is given by:

. (31)

 is the model gain, and is given by:

. (32)

Note that the gain term is also given by the
expression:

(33)

The gain term allows the spectrum of the LP
model to be matched to the spectrum of the

NLP
2

NsNLP 3Ns NLP
2+ +

HLP z( )

SLP z( )
GLP

HLP z( )
-------------------=

GLP

GLP ELP

NLP( )
=

GLP Rn 0( ) 1 kLP i 1–( )2–( )
i 1=

NLP

∏=



Proceedings of the IEEE First Submission: July 15, 1992

Picone: Signal Modeling ... 17

Proceedings of the IEEE Second Submission: May 15,1993

Picone: Signal Modeling ... 17

Proceedings of the IEEE First Submission: July 15, 1992

Picone: Signal Modeling ... 17

Proceedings of the IEEE Final Copy: June 3, 1993

Picone: Signal Modeling ... 17

or iginal  speech signal.  The LP model
computed from Eq. (19) is a normalized model
(the values of the predictor coefficients are
independent of the power of the signal).

There are three important observations to
make about this form of the LP solution. First,
the intermediate variables used in the
computation, , are calledreflection
coefficients. They are bounded:

. (34)

This is an extremely useful result for storage
and compression applications involving LP
models. For example, LP coefficients for
speech applications can be compressed to as
few as  wi thout  s igni f icant
degradation [58]. LP coefficients can normally
be stored in such as way that we can achieve an
order of magnitude compression over the
original speech data. This is an important
consideration for speech recognition systems
that must store large numbers of recognition
models.

Second, the iterative solution computes the
solution for all model orders . This is
convenient for signal processing applications
that require estimation of the model order as
part  of  the task.  Normal ly,  in speech
recognition applications, the model order is a
fixed system parameter.

Third, as the order increases, the model fit
becomes better. Equation (30) represents the
energy of the error. From this equation, we see
that the error is monotonically decreasing as
the order increases. The model itself attempts
to match the overall spectrum as well as
possible for the given order.

We demonstrate this fact in Fig. 15, where
we show a speech spectrum, and two
corresponding LP models. Note that as the
order is increased, the model produces a better
match of the original spectrum. With a low

kLP{ }

0 kLP i 1–( ) 1≤ ≤ , 1 i NLP≤ ≤∀

30 bits/model

1 i NLP≤ ≤

order, only the gross spectral shape (or trend) is
captured. With a higher order, finer detail in
the spectrum is represented.

As we observed in previous sections, the
spectral model in low energy areas of the signal
spectrum is often inaccurate. We would like to
somehow impose a dynamic range threshold
similar to that imposed in Fig. 12. There are
several ways to do this in an LP model: a
stabilized covariance method [59] that reduces
the dynamic range in the spectrum, a
perceptual-weighting method [60] that
broadens the bandwidths of the LP model
slightly, or a stabilized autocorrelation
method [44] in which a small amount of noise
is added to the autocorrelation function.

The latter of these approaches is simple and
effective. The autocorrelation function of
Eq . (25)  i s  mod i f ied  be fo re  the  LP
computation as follows:

(35)

The dynamic range threshold is normally
specified in dB:

. (36)

A typical value of the dynamic range threshold
is .

This stabilization process is equivalent to
adding uncorrelated white noise to the speech
signal before LP analysis. The effect of this
noise is to prevent the LP model from
modeling sharp nulls (or zeroes) in the
spectrum. This is demonstrated in Fig. 16.
Observe that some distortion in the form of
spectral smoothing is also introduced into the
model at higher energy areas of the spectrum
(broadening the bandwidths of the resonances
of the LP model sometimes causes neighboring
spectral resonances to collapse into one broad
resonance).
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Le t  us  make  one  more  impor tan t
observation about the LP model. By adding
power and fundamental frequency information
to the LP coefficients, it is possible to
reconstruct an audio version of the speech
s igna l [56 ] .  L is ten ing  to  paramet r ic
descriptions of the speech signal, particularly
speech recognition models, is very useful for
diagnosing problems [61]. Some parametric
transformations, such as cepstral coefficients,
do not have a one-to-one mapping with the
original LP data. Hence, it is somewhat harder
to assess the validity of a parameter set.

Speech recognition systems historically
first used LP parameters directly in the
recognit ion process. Since then, more
sophist icated transformations of these
parameters have been devised. However, it is
important to remember that generating an
accurate LP model is an important first step in
spectral analysis. Because LP analysis is a
nonlinear operation, performance in noisy
environments is sometimes problematic. For
this reason, some systems still use a Fourier
transform based filter bank analysis.

In Fig. 17, we summarize the LP modeling
process by presenting LP models for several
ana lys is  cond i t ions  in  the  fo rm o f  a
spectrographic display [62]. Note that as the
frame duration decreases (and the window
duration is proportionately decreased) the
temporal resolution in the spectrogram
increases. Frame durations of  used to
be most common in speech recognition
systems. Recently, as the speech recognition
research focus has shifted towards phonetic
recognition, frame durations on the order of

 have become common. The movement
towards finer time resolution will continue as
phonetic recognition technology matures.

20 msec

10 msec

3.3.5 LP-Derived Filter Bank Amplitudes

Obviously, we can combine the notion of a
f i l ter  bank,  such as that  descr ibed in
Section 3.3.1, with the LP model.Linear
prediction-derived filter bank amplitudes
are defined as filter bank amplitudes resulting
from sampling the LP spectral model (rather
than the signal spectrum) at the appropriate
filter bank frequencies. The astute reader might
ask: what is the benefit of this?

It has been argued that use of the LP model,
or high resolution model as it is often referred
to, gives more robust spectral estimates [57].
Often, the spectral smoothing inherent in the
LP model provides more stable parameters to
subsequent stages of the processing. However,
as speech recognition and DSP technologies
have progressed, the differences in these
approaches are not as great as they once might
have been.

How can we eff iciently sample the
spec t rum g iven  the  LP mode l?  A
straightforward technique to compute filter
bank amplitudes from the LP model involves
direct evaluation of the LP model:

, (37)

where  represents the sample frequency. This
method requires on the order of
multiply/accumulate operations per frequency
sample. As described in Section 3.3.1, the
spectrum is typically oversampled and
averaged estimates are generated for actual
filter bank amplitudes.

Another popular approach is to compute
the power spectrum from the autocorrelation of
the impulse response of . The impulse

SLP f( )
GLP

aLP i( )e
j2π f fs⁄( )–

i 0=

NLP

∑
----------------------------------------------=

fs

4p 3+

HLP z( )
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response of  can be computed directly
from the LP coefficients [32]:

(38)

The power spectral density can be efficiently
computed from the autocorrelation function by
observing that the autocorrelation function is
an even real function. Hence, its Fourier
transform is real, and is given by:

. (39)

Equation (38) requires a total of approximately

 mu l t ip l y /accumula te

operations, while Eq. (39) requires
multiply/accumulate operations per frequency
sample.

With either approach, nonlinearly warped
spectra can be easi ly implemented by
appropriate choices of the filter bank sample
frequencies. Also, even though the LPC model
supplies a smoothed spectral fit, it is often still
advantageous to oversample the spectrum so
that sharp peaks in the frequency response will
be accurately characterized by the filter bank
(which tends to coarsely quant ize the
spectrum).

3.3.6 LP-Derived Cepstral Coefficients

Final ly,  we discuss our last s ignal
measurement technique. Recall that in the last
section, we leveraged the LP model to compute
LP-derived filter bank amplitudes. Another
logical step in this direction would be to use the
LP model to compute cepstral coefficients.
Again, the astute reader might wonder: can
cepstral coefficients be computed directly from
the LP model?

HLP z( )

RLP k( )
aLP m( ) aLP m k+( )

m 0=

NLP k–

∑ k NLP≤ ,

0 k NLP .>

=

SLP f( ) RLP 0( ) 2+ RLP k( ) 2π f
fs

---k 
 cos

k 1=

NLP

∑=

NLP
2 3 2⁄( ) NLP–

NLP

If the linear prediction filter is stable (and it
is guaranteed to be stable in the autocorrelation
analysis), the logarithm of the inverse filter can

be expressed as a power series in [63]:

(40)

We can solve for the coefficients by
differentiating both sides of the expression

with respect to , and equating coefficients of
the resulting polynomials. This results in the
following recursion [32,56,64]:

z
1–

CLP z( ) cLP i( )z
i–

i 0=

Nc

∑=

H z( )log=

GLP

aLP j( )z
j–

j 0=

NLP

∑
-----------------------------

 
 
 
 
 
 
 

.log=

z
1–

Initialization:

(41)

For {

(42)

}

cLP 1( ) aLP 1( )–=

2 i Nc≤ ≤

cLP i( ) aLP i( )–=

1 j
i
-– 

  aLP j( )cLP i j–( )
j 1=

i 1–

∑ .–

The coefficients  are referred to as
LP-derived cepstral coefficients.

Historically,  has been defined as the
log of the power of the LP error [31]. For now,
we note that since power will be dealt with as a
separate parameter, there is no need to include
it in the equations above. We can regard the
cepstral model as a normalized model, much
like an LP model, in which .
We will discuss this issue in more detail later

cLP{ }

cLP 0( )

cLP 0( ) 1log 0= =
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(Section 5.2) when we consider comparison of
signal models.

There is one minor complication in the
cepstral coefficient recursion. We do not
specify the number of cepstral coefficients, ,
to compute. Since they are, in fact, an inverse
Fourier transform of the impulse response of
the LP model, and the LP model of the signal
is an infinite impulse response filter, we can, in
theory, compute an infinite number of cepstral
coefficients. However, the number of cepstral
coefficients computed is usually comparable to
the  number  o f  LP  coe f f i c ien ts :

.

The cepstral coefficients computed with
the recursion described above reflect a linear
frequency scale. One drawback to the
LP-derived cepstral coefficients is that we
must work a little harder to introduce the
notion of a nonlinear frequency scale. The
preferred approach is based on a method used
to warp frequencies in digital filter design.
This method uses a very important transform in
digi tal  s ignal processing: the bi l inear
transform [27].

A bilinear transform is defined as:

, (43)

where  is the frequency warping parameter.

When , the frequency warping of

the bilinear transform is similar to the mel
scale. This is demonstrated in Fig. 18. A
common value of  is .

We can use this transformation at one of
several places in the LP-derived cepstral
coefficient computation: on the autocorrelation
function, on the predictor parameters, or on the
LP-derived cepstral parameters. In [20], it was
shown that postprocessing the cepstral

Nc

0.75p Nc 1.25p≤ ≤

fnew 2π f
fs

--- 2

αbt 2π f
fs

--- 
 sin

1 αbt 2π f
fs

--- 
 cos–

-------------------------------------------

 
 
 
 
 

tan 1–+=

αbt

0.4 αbt 0.8≤ ≤

αbt 0.6

coefficients was the most effective method
(and the simplest).

Equation (43) describes a frequency
domain procedure. If implemented using a
sampled - t rans fo rm approach ,  the
computation would involve an inverse Fourier
transform of the cepstral coefficients. Instead,
we would prefer a direct recursive computation
using the cepstral coefficients. Such a
recursion fortunately exists [65].

This recursion can be viewed as a sequence
of cascaded linear shift-invariant filtering
opera t ions ,  and can be imp lemented
recursively as follows:

Z

For {

(44)

(45)

For {

(46)

}

}

0 n Nc≤ ≤

cbt
n( )

0( ) αbt cbt
n 1–( )

0( ) 0–=

cLP Nc n–( )+

cbt
n( )

1( ) αbt cbt
n 1–( )

1( ) 0–=

1 a
2

–( ) cbt
n 1–( )

0( )+

2 k Nbt≤ ≤

cbt
n( )

k( ) αbt cbt
n 1–( )

k( ) cbt
n( )

k 1–( )–=

cbt
n 1–( )

k 1–( )+

where all initial conditions are zero. Since
, processing can begin with  at

.

In this recursion, we iterate over all
first, and update these values for each n (the
second iteration). The results after  iterations
are the final transformed coefficients. This
recursion requires on the order of
multiply/accumulate operations. It is about the
same complexity as the LP solution.

cLP 0( ) 0= cLP 1( )

n 0=

cbt k( )

Nc

Nc Nbt×
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can be deemphasized if extreme amounts of
scaling are performed.

Second, the compression factor must more
than likely be lowered to maintain themelscale
approximation. Yet, as this factor is lowered,
the amount of compression performed
decreases. This leads one to speculate that this
transform may not be the best way to
approximate themelscale.

We have now discussed all major signal
measurement techniques used in speech
recognition systems today. Next, we will
discuss how these parameters are smoothed
and concatenated to form signal parameters.

IV. PARAMETER TRANSFORMS

In the previous section, we discussed
several methods of computing absolute
measurements. In this section, we will discuss
the next step in the chain of operations depicted
in Fig. 1: parameter transformations. Signal
parameters are generated f rom signal
measurements through two fundamental
operations: differentiation and concatenation.
The output of this stage of processing is a
parameter vector containing our raw estimates
of the signal. An overview of the operations
tha t  cons t i tu te  the  parameter  vec to r
construction is given in Fig. 20.

4.1 Differentiation

As computational power increased in the
1980s, the use of auxiliary measures of the
speech spectrum in dynamic time warping
systems became feasible. As part of a
continuing trend to better characterize
temporal variations in the signal, higher order
t ime der i va t i ves  o f  s igna l
measurements [14,18,21] were added to the
signal model. The absolute measurements
previously discussed can be thought of as zeroth

order derivatives. Here, we investigate the

Again, we need to consider truncation. The
bilinearly transformed cepstral sequence,
which is the result of a truncated cepstrum
being processed through a nonlinear frequency
translation, is inherently infinite in duration
also. However, practically speaking, if the
cepstral sequence is of finite duration, the
resu l t ing  t rans fo rmed sequence w i l l
asymptotically exponentially decay (poles
inside the unit circle). Hence, it is possible to
truncate the transformed sequence with little
distortion. Normally, .

In Fig. 19 we demonstrate the combined
effects of cepstral analysis and bilinearly
transformed coefficients. A speech spectrum
for an  sampled signal is shown, along

wi th  i ts order  LP model .  The log
magn i tude  spec t rum o f  the  ceps t ra l

coefficients is also shown for a order
cepstral analysis. Similarly, a log magnitude
spectrum for the bilinearly transformed
cepstrum is shown. In this example cepstral
coefficients were converted to bilinearly
transformed coefficients.

The proper amount of compression for the
bilinear transform is to some degree a function
of the sample frequency. In several studies
involving a sample frequency [20,66],
a compression factor of 0.6 was used. The
effective bandwidth of the speech signal at a

sample frequency is small (the majority
of the energy appears in the lower quarter of
the frequency scale for sonorants).

We speculate that for a number of reasons,
the bilinear transform is not as useful at a
sample frequency of . First, the speech
signal now occupies the majority of the
available bandwidth. There is less “empty
space” (the only available space is between
approximately  and ) to utilize in
stretching the spectrum. Useful information

Nbt 1.25Nc≤
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addition of the time derivatives of these
measurements to our signal model.

In digital signal processing, there are
several ways in which a first-order time
derivative can be approximated. Three popular
approximations are [27,67,68]:

, (47)

, (48)

. (49)

(Note that we have dropped superfluous
normalization factors in these equations.) The
first two equations are known as backward and
forward differences, respectively. Eq. (49)
represents a linear phase filter approximation
to an ideal differentiator. This is often referred
to as regression analysis.

The signal output from this differentiation
process is denoted adelta parameter. The
second-order time derivative can be similarly
approximated by reapplying Eq. (49) to the
output of the first-order differentiator. This is
shown in Fig. 20. This output is often referred
to as adelta-delta parameter. Obviously, we
can extend this process to higher order
derivatives.

We have seen Eq. (47) before in the form
of a preemphasis filter in the spectral shaping
portion of our system (see Eq. (2)). Recalling
the primary purpose of the preemphasis filter
was to amplify high frequency portions of the
spectrum, we must be cognizant of the reality
that differentiation is inherently a noisy
process. Differentiation filters tend to amplify
noise in the signal measurements. Often, it is
desirable to compute derivatives of smoothed
parameters, rather than the raw measurements,
so  tha t  the  no ise  leve l  in  the  output

ṡ n( )
td

d
s n( )≡ s n( ) s n 1–( )–≈

ṡ n( )
td

d
s n( )≡ s n 1+( ) s n( )–≈

ṡ n( )
td

d
s n( )≡ m s n m+( )

m Nd–=

Nd

∑≈

measurement is decreased.

There are several popular ways to achieve
this result. Regression analyses, as shown in
Eq. (49), spline interpolation, and bandlimited
differentiation are a few of the common
techniques. We observe that since Eq. (49)
computes differences symmetrically placed
around the sample at time , it is using a
combination of  previous samples in each
direction to compute the current value. Hence,
some measure of smoothing is inherent in this
calculation.

There are two trends emerging in the use of
Eq. (49). Many systems today [2,66,113] use a
simple first order difference: . These
systems typically operate at frame durations in
the range of . The range of
time over which the derivative is computed is
relatively small: . A second group
of systems [11,67] uses a larger number of
te rms : .  In  these  sys tems,

. The period over which
the derivative is computed is rather large:

.

The frequency responses of several
realizations of a differentiation filter are shown
in Fig. 21. The low frequency portion of each
filter is designed to approximate a linear
function (a ramp function) that favors higher
frequency information (indicative of temporal
variation). Observe that as the order of the
differentiator increases, the filter begins to
deemphasize high frequencies, and introduces
more ripple in the spectrum. The property of
attenuating high frequencies is considered a
form of noise reduction — beyond a certain
point high frequency information is considered
unreliable and needs to be attenuated.

n

Nd

Nd 1=

10 msec Tf 20 msec≤ ≤

∆Tf 40 msec≤

5 Nd 7≤ ≤

8 msec Tf 10 msec≤ ≤

56 msec ∆Td 75 msec≤ ≤
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4.2 Concatenation

The common thread throughout most of the
measurement techniques we have discussed is
the use of linear filtering to achieve parameter
smoothing. Most systems postprocess the
measurements in such a way that  the
operations can be easily explained in terms of
linear filtering theory. In this section, we will
generalize this notion in the form of a matrix
operator.

Let us define a signal measurement matrix
for a signal as follows:

(50)

where  deno tes  the  s igna l

measurement at frame  (or time ),

denotes the total number of frames in the
signal, and  denotes the total number of
signal measurements for each frame.

The signal measurement matrix, ,
contains all measurements of a signal for all
time. In many practical systems, the signal is
processed frame by frame in real-time.
Accumulation of the signal into one large
matrix adds delay to the system. However, for
research purposes, it is convenient to view the
signal model as a matrix of measurements.

Note that the signal measurement matrix
usually contains a mixture of measurements:
power and a set of cepstral coefficients.
represents the dimension of the vector that is
the composite of these measurements. From
th is  po in t ,  we  w i l l  cons ider  these
measurements as a group, rather than
individually, and not refer to specific types of
measurements. In some analyses, i t  is

X

x 0 0,( ) x 0 1,( ) … x 0 Nx 1–,( )

x 1 0,( ) x 1 1,( ) … x 1 Nx 1–,( )

… … … …
x Nf 1– 0,( ) x Nf 1– 1,( ) … x Nf 1– Nx 1–,( )

=

x n m,( ) m
th

n n
1
2
---+ 

  Tf Nf

Nx

X

Nx

never the less  use fu l  tha t  common
measurements be grouped together in adjacent
columns in  (to faci l i tate sub-matrix
operations).

We will define two auxiliary matrices
related to the parametric smoothing process.
First, we define a matrix of lags (delays),

denoted , that will represent a time delay (or
advance) from the current time:

(51)

where  denotes the  lag vector, and

denotes the total number of signal parameters.
The lag vectors can be of different dimensions,
depending on how many measurements will be
used in each particular signal parameter
computation (the lag matrix is actually a vector
of vectors). Hence, we denote the dimension of
each row by the term .

Next, we define a weighting matrix, , that
holds the weights of filters to be applied to the
measurements. These weights have a one-to-
one correspondence with the lag matrix. The
weight matrix is defined as follows:

(52)

where  denotes the coefficient vector
whose dimension is equal to the corresponding

vector in .

X

τ

τ

τ 0 0,( ) τ 0 1,( ) … τ 0 Nτ0
1–,( )

τ 1 0,( ) τ 1 1,( ) … τ 1 Nτ1
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… … … …
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=

τ0 τ1 … τNp 1–

†
.=

τi i
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We also define an indexing vector, , that
for each row in  defines a corresponding
column in :

. (53)

We define the process of filtering the
measurement vector as a pseudo-convolution
operator:

,

where the operator “✪” is defined as follows:

I

W

X

I I0 I1 … INx 1–=

V X ✪ W=

Some parameters, such as power, are often
normalized before the computation in Eq. (54).
It is common to simply divide the power by the
maximum value observed over an utterance (or
subtract the log of the power). This approach
has a drawback that one must wait until the
utterance has been identified (or completed)
before such a value is available.This delay is
often unacceptable in real-time applications.

Peak power values can also be computed
using recursive-in-time filtering approaches
such as those described in Section 3.2. In this
case, the frame-based power estimate is often
postfiltered by an adaptive gain control circuit
that attempts to dynamically monitor the peak
power level. This adds delay to the system
because the algorithm needs time to react to
changes in the signal (and settle). Adaptation
times for such estimators are typically on the
order of 0.25 seconds [66].

Historically, when recognition systems
were very simple, signal models often
consisted of heavily smoothed parameters.
“Noisy parameters”, that is, parameters that
amplified dynamics in the spectrum, were
believed to be unreliable. With the emergence
of Markov modeling techniques that provide a
mathematical  basis for character iz ing
sequential (or temporal) aspects of the signal,
the reliance upon dynamic features has grown.
Today, dynamic features are considered
essential to developing a good phonetic
recognition capability [69], because rapid
change in the spectrum is a major cue in
classification of a phonetic-level unit.

Differential parameters also gained
popularity as researchers struggled to find
signal models invariant to drastic changes in
the speaker’s behavior (often induced by the
application) [2,70]. For example, in command
and control applications, a speaker’s acoustic
data can change significantly as the speaker

For  {

For  {

(54)

}

}

0 n Nf 1–≤ ≤

0 i Nx 1–≤ ≤

V n i,[ ] W i j,( ) X n τ i j,( ) I i,+
j 0=

Nτj
1–

∑=

Equation (54) simply represents a sequence of
linear filtering operations iterated over each
element of the signal parameter vector for each
frame of signal measurement data. This is
expressed using a flexible indexing scheme to
account for the fact that different types of
features will require different filters. (This is
more of an implementation issue than a
conceptual issue.)

Note that through the use of the indexing
array  we can derive multiple parameters from
the same measurement (e.g., average power
and delta-power from the same power value).
Also, the coefficient matrix  can be used to
realize all of the filtering operations previously
discussed, including differentiation, averaging,
and weighting. We refer to the operation
described in Eq. (54) asconcatenation: the
creation of a single parameter vector per frame
that contains all desired signal parameters.

I

W
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encounters physical or mental stress related to
the tasks at hand. These changes often manifest
themselves more in the absolute spectra than
the differential spectra. Parameters derived
from differential spectral information are
believed to make a system more invariant to
these types of gross changes in a speaker’s
data.

Before we leave this section, let us discuss
one particular form of parameter weighting
used with cepstral coefficients. Early research
into cepstral processing techniques suggested a
means of performing linear filtering operations
directly on the cepstral coefficients to enhance
those portions of the cepstrum representing
vocal tract information [71]. This technique
has come to be known as liftering (a term
coined because of the similarities to linear
filter theory).

The liftering process is simple and is
defined as follows:

, (55)

where

. (56)

Equation (55) describes a “time-domain”
windowing operation (the time scale of the
cepstrum is actually called quefrequency).
Equation (56) describes the weighting (or
window) function. At this point, we merely
note that this is a static weighting function that
can be applied directly to any set of cepstrum
coefficients. In the next section, we will
discuss a method of computing such a
weighting in a statistically optimal manner.

V. STATISTICAL MODELING

In our last section on signal modeling, we
turn our attention to the problem of statistical
models for the signal parameters. In this

cLift m( ) c m( ) wLift m( )=

wLift m( ) 1
Nc

2
------ πm

Nc

-------sin+=

section, we assume the signal parameters were
generated from some underlying multivariate
random process. We would like to learn, or
discover, the nature of this process. Our
approach will be to impose a model on the data,
optimize (or train) the model, and then
measure the quality of the approximation. The
only information we will have about the
process are its observed outputs, the signal
parameters that have been computed. For this
reason, the parameter vector output from this
stage of processing is often called thesignal
observations. The collection of these vectors
for the entire signal is referred to as the signal
observation matrix.

This last processing step is, ironically, just
the first step in statistical modeling in speech
recognition. Often, this step is contained
entirely within the speech recognit ion
system [14,18]. The techniques described here
only represent the most basic approaches.
Speech recognition systems use extremely
sophisticated statistical models — this is one
of the fundamental functions of a speech
recognizer. Nevertheless, the techniques
presented here have been found to be useful in
a  w ide  var ie ty  o f  speech process ing
applications, and form the basis for the more
sophisticated algorithms. An overview of the
various types of transformations discussed in
this section is given in Fig. 22.

5.1 Multivariate Statistical Models

As we have previously mentioned, in a
typical set of heterogenous signal parameters,
we mix quantities such as power and cepstral
coefficients that have completely different
numerical scales: the range and variance of the
power term will be much larger than the range
and variance of a cepstral coeff icient.
Variances of the time derivatives of the
cepstral coefficients will be larger than the
cepstral coefficients. If we compare two
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parameter vectors using a simple operator such
as a Euclidean distance, the result will likely be
dominated by the terms with large amplitudes
and var iances ,  even  though the  t rue
information may lie in the smaller amplitude
parameters.

Similarly, if we consider a measurement
such as a filter bank amplitude, it is easy to
understand that filter bank amplitudes from
adjacent bins are likely to be correlated with
one another. The filter bank, in fact, is
specifically designed to produce this type of
correlation. This is similar to the way human
hearing operates: a group of hair cells on the
basilar membrane will respond to a given tone
and produce correlated outputs.

We can i l lustrate the problem with
performing direct comparisons in a vector
space in which the dimensions have unequal
variances with the simple two-dimensional
example shown in Fig. 23(a). In the original
coordinate system, the distance between
points a and b is equal to the distance between
points c and d (both are one unit). Yet, from a
signal processing perspective, we would
consider the former distance to be greater than
the latter distance, because it is a larger
percentage of the variance of the parameter.
One cautionary note: the argument presented
in Fig. 23 assumes that the observed variance
is not due to a large noise component, and that
it, in fact, represents meaningful variation in
the parameter.

While the solution to the above problem of
variance weighting is straightforward,
elimination of correlation is more subtle. We
would like to remove correlation from our
measurements for  two reasons.  Fi rst ,
correlation implies redundancy. The actual
number of “true” parameters required to
describe the information might be much less
than the number of measurements. We might

be able to achieve some level of compression
or reduction by selecting a subset of the
features (or l inear combinations of the
features). Extraneous dimensions in signal
processing problems are often the source of
t roub le  ( the  p rob lem becomes less
well-conditioned). Second, we would like to
use simple techniques to compare vectors. The
presence of correlated parameters makes the
development of an optimal statistical metric
much more difficult.

5.1.1 Prewhitening Transformations [72]

There is a straightforward method of
decorrelating parameters in a statistically
optimal sense for a multivariate Gaussian
process. Let us define a multivariate Gaussian
probability distribution as:

. (57)

We will assume that our parameters obey this
type of statistical model (or stated another way,
that  our  parameters  can be model led
sufficiently accurately by such a process).

We can compute a linear transformation
that will simultaneously normalize and
decorrelate the parameters. Let us define a
transformed vector, , as:

, (58)

where  denotes the input parameter vector,
and  denotes the mean value of the input

parameter  vec to r .  We de f ine  as  a
prewhitening transformation [18,72], based
on the fact that we desire the output of this
transformation to be an uncorrelated (or white)
Gaussian random vector. To achieve this
result, it can be shown that  is given by:

, (59)
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where  denotes a diagonal matrix of
eigenvalues, and  denotes a matrix of
eigenvectors of the covariance matrix of .

A complete discussion of the significance
o f  Eq . (59) ,  the  “ t rue -mean ing”  o f
eigenvectors, and other deep mysteries of life
related to Eq. (59) would take us too far afield
from our task at hand. However, we cannot
understate the importance of appreciating the
need to statistically normalize parameters. This
concept has been a recurring theme throughout
modern speech recognition systems [73,74].
The eigenvalues and eigenvectors described
above are the key to the whole computation, in
that they describe a linear transformation of the
input vector space to a new space in which
normal Euclidean distances can be computed.

The eigenvalue and eigenvectors can be
shown to satisfy the following relation:

, (60)

where  is the covariance matrix for . Each

element in , , can be computed as

follows:

.

(61)

We have  de layed  d isc los ing  the
computa t ion  o f  the  e igenva lues  and
eigenvectors ( for  good reason) .  This
computation is algorithmically complex.
Wh i le  the  p rocedure  has  a  s imp le
interpretation in linear algebra, it is somewhat
of a nasty thing to program. We do point out
that, since a covariance matrix is a real,
symmetric matrix, and that covariance
matrices for speech parameters usually are
well-conditioned, the solution is normally
well-behaved.

Λ
Φ

v

Cv ΦΛΦ†=

Cv v

Cv Cv i j,( )

Cv i j,( )
1
Nf

----- vm i( ) µv i( )–( ) vm j( ) µv j( )–( )
m 0=

Nf 1–

∑=

As pointed out in [75] (an excellent
discussion on this topic), this is one of those
problems in life best left to “canned software.”
One version we recommend, despite the fact
that it is written in a very Fortranish-looking C,
i s  a  func t ion  based  on  the  Jacob i
transformation of a symmetric matrix. This
function can be found in the widely distributed
software package Numerical Recipes in
C [75], and is namedjacobi. This widely used
software is very stable and has generally
provided satisfactory performance on this task
for many years.

There  i s  one  VERY impor tan t
simplification of Eq. (60) that needs to be
discussed. If the parameters are uncorrelated,
then the covariance matrix in Eq. (60) reduces
to a diagonal matrix. In this case, the
transformation in Eq. (60) simplifies to a
diagonal matrix:

, (62)

where  is the standard deviation of the ith

component of the parameter vector . This is
readi ly recognized as normalizing the
parameters by their standard deviations,
thereby making each parameter count equally
in the calculation. We alluded to this in our
discussion of Fig. 23.

It has been observed over the years that
certain parameter sets, namely cepstral
coe f f i c ien ts ,  can  be  regarded ( to  an
approximation) as uncorrelated [66,74]. This is
convenient, because it significantly reduces the
number of parameters one needs to estimate in
the system. The so-called “variance-weighted
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cepstral coefficients” are very popular in
speech recognition systems today. Other
parameters, such as filter bank amplitudes,
display very strong correlations of the first off-
diagonal components. Sometimes i t  is
advantageous in such situations, in an effort to
reduce computational noise in the system and
to reduce the complexity of the system, to
approximate the covariance matrix as such a
banded matrix [18].

A noise reduction technique that is often
incorporated in this context is a procedure in
which we discard the least significant features.
If we define  eigenvalues

ordered in decreasing order, an important
relationship can be shown to hold true:

(63)

From this relationship, we see that the
eigenvalues and the variance of the process are
related.

We can define the amount of the variance
accounted for by each eigenvalue/eigenvector
pair as:

(64)

and the total percentage of the variance
accounted for by the first  dimensions (one
dimension corresponds to an eigenvector/
eigenvalue pair) as:

. (65)
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In this case, the transformation matrix, , is an
 rectangular (but not square) matrix.

Equations (64) and (65) are often used to guide
decisions about how many dimensions to
retain.

If a single Gaussian distribution is not a
sufficient model, we note that we can model
the data as a weighted sum (or mixture) of
Gaussian distributions [74]. We will not
discuss this issue in great detail here, but will
observe that we can get an asymptotically good
match to the parameter distribution with such a
linear combination of Gaussian density
functions.

We can gain some intuition into the
prewhitening transformation from Fig. 24.
Three eigenvectors from a transformation
designed for telephone bandwidth speech are
shown. These were computed for filter bank
amplitude outputs from amel scale filter bank.
Note that each eigenvector attempts to model a
different aspect of the speech spectrum. The
first few eigenvectors of the transformation
matrix often tend to model gross spectral
characteristics of the channel (which is
constantly changing in telecommunications
applications). Note that this weighting
funct ion,  when appl ied to f i l ter  bank
amplitudes, can be viewed as a filtering
operation in the time domain (frequency
domain windowing is equivalent to time
domain filtering).

Before we unilaterally invoke the power of
this multivariate Gaussian model, remember
the associated cost: we must learn (or train) this
transformation matrix. Usually, this is done by
collecting mean and covariance statistics
across a large amount of speech data. Often
this can be an art, because we must insure that
statistics of the training data accurately match
the underlying statistics of the process we are
modeling. Insufficient training data sets (i.e.,

Ψ
Ny Nv×
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too little data or recording conditions that do
not match the application environment) can
lead to inaccurate transformations.

5.1.2 Vector Quantization [22]

In the previous section we alluded to the
fact that parametric fits based on multivariate
Gaussian statistics might not be appropriate.
Recall that in a Gaussian process, all moments
other than the first-order or second-order
moments (mean and variance) are zero. For
speech parameters, higher order moments are

often significant7, providing evidence that a
Gaussian model of the source may not always
be sufficient. We can perform a nonparametric
fit of the data by simply hypothesizing a
discrete probability distribution of arbitrary
shape, and by forcing the system to learn the
shape of this distribution. This does not come
without an associated cost — we introduce
another learning (or training) phase.

This type of discrete distribution model is
referred to as avector quantizer [22], a
reference to the fact that the procedure can be
regarded as a compression, or quantization,
technique. One of the most convincing
arguments for the use of such a technique is
based on a model of speech production [77]
that proposes the vocal tract shape as the key
measurement .  In  th is  v iew of  speech
production, there are a small set of physically
realizable vocal tract shapes (or elementary
sounds) in a language. Hence, we should be
able to model our continuous-valued vector
with a finite set of vectors representing these

7. Higher order moments have yet to make a significant
impact on speech processing, though it is clear these
calculations produce moments that are non-zero. Application
of higher order spectral estimates and statistical estimates to
speech recognition is still an area of active research. We
conjecture that higher order moments might contain
information about long term spectral behavior of the signal.
This information could be useful for a wide variety of
applications such as speaker normalization and speaker
identification.

unique vocal tract shapes. If we can use
measurements that are normalized with respect
to individual speaker physiology (vocal tract
length, volume, etc.), we should be able to
model all vocal tract shapes across all speakers
with a small codebook.

Another equally compelling argument is
based on rate distortion theory [22], and shows
that we should be able to model our parameter
vector using a finite number of discrete values
with vanishingly small error. The main
question is: how many symbols will be
required? As we will see, the number of
vectors used for such models in speech
recognition typically ranges from 32 to 1024,
depending on the task.

Let us define a vector quantizer as a
composite of two items: an  matrix, ,

and a discrete probability distribution .

is referred to as thevector quantization
codebook. Its rows are parameter vectors.
is referred to as thea priori symbol probability
distribution. Its elements ( ) are the
probabilities of observing a given parameter
vector (or row) in . We will refer to this

process of vector quantizing an input vector
as .

We also need to define a distance measure
(o r  s im i la r i t y  measure ) :  a  means  o f
determining the distance between two vectors.
Let us defer this issue until the next section,
and simply define a general distance measure:

. (66)

We will see that a Euclidean distance is one
common function used for Eq. (66).

The vector quantization process consists of
two main tasks. First, as with the prewhitening
transformation previously described, there is a
training problem: how do we estimate
such that the distortion introduced by replacing
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the input vector by a codebook vector is
minimized? Second, there is the quantization
problem: how do we estimate the probability of
observing  given a codebook? This latter
problem is essentially a pattern recognition
problem — we seek to maximize .

The latter problem is relatively simple: we
choose the index, , according to a nearest
neighbor rule:

, (67)

and,

. (68)

 can be estimated by computing the
probability of each vector in the codebook can
occur (this is usually estimated on a large
training database).

The f i rst  problem is s l ight ly more
compl ica ted .  A  t ra in ing  sequence is
required — normally the same training
database of speech used for recognition
technology development. No closed-form
solution exists for computing the optimal set of
codebook vectors. Fortunately, several
iterative techniques for finding a codebook
exist.

The  mos t  popu la r  o f  these  i s  the
K-MEANS algorithm [76]. The name alludes
to the fact that this algorithm attempts to
organize the data into K groups, and replace
the data in each group with the mean, or
centroid, of the group. This process is
demonstrated in Fig. 25. Design parameters for
this algorithm are the number of codebook
vectors, , and some sort of termination
condition. Here, we will use a limit on the
maximum number of iterations, denoted ,
and a threshold on the change in average
distortion, .

The algorithm is as follows:

y
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 contains the f inal codebook upon

termination.

The initialization step in this process is
somewhat important. The initial guesses for
cluster centers should span the entire data
space. A simple iterative procedure [79] to
select these centers is to search for  initial
vectors in the data that are a distance  from
each other. Initially,  is set to some large
number, and then slowly reduced until
vectors satisfying the minimum distance
constraint are found.

Since the K-MEANS algorithm is an
iterative algorithm, and since we must provide
guesses for the initial cluster centers, this
algorithm is not guaranteed to converge to an
optimal solution. The iteration procedure can
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get trapped in local maxima and produce a
suboptimal solution. However, in practice, on
speech problems convergence is usually swift
and strong. Even for large codebooks,
convergence is often reached within 10
iterations.

The algorithm presented here computes the
new cluster centers as the arithmetic average of
the  e lements  in  the  c lus te r .  Th is  i s
computationally and memory efficient, and
makes the iteration proceed smoothly towards
convergence. Other centroid recalculation
strategies have been proposed [78] based on a
min/max criterion. These algorithms, in
pract ice, are general ly comparable in
performance to the one described here.

The quality of the codebook can be
computed by averaging the distortion over the
entire training database:

. (69)

This value is actually computed at each stage
of the K-MEANS iteration. The average
distortion usually decreases logarithmically
with the size of the codebook, as shown in
Fig. 26.

The quantization process actually becomes
a search problem once the codebook has been
computed. The nearest neighbor rule is a linear
search, requiring  distance comparisons per
input vector. It is possible to reduce the search
time by generating a structured codebook,
though the codebook in this case is slightly
sub-optimal. There are two popular variants of
the K-MEANS algori thm that produce
s t ruc tu red  codebooks .  The  LBG
algorithm [77] produces a codebook that is
structured as an N-level tree (most often a
binary tree). Procedures described in [80]
produce lattice structured quantizers.

εavg
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Recently, a new class of neural network
based algorithms has emerged, referred to as
Learning Vector Quantizers (LVQ) [81].
These algorithms combine the training and
recognition problems into one massively
parallel computational structure based on a
neural network architecture. The LVQ
approach has been shown to be theoretically
capable of producing an optimal quantizer
design. Nevertheless, this approach has not yet
been shown to produce significantly better
performance on speech problems.

5.2 Distance Measures

In an anticlimactic fashion, we will now
discuss the problem that is at the root of speech
recognition: the distance measure. It is most
interesting to view this topic from an historical
perspective. First, however, what is a distance
measure? A distance measure should obey the
following properties [82]:

(1) Nonnegativity:

(2) Symmetry:

(3) Triangle Inequality:

.

A Euclidean distance measure is perhaps the
most famous distance measure that satisfies
these relations.

One of the f i rst  distance measures
introduced into speech recognition was a
measure based on minimum prediction error
and spectral matching principles. This measure
is known as the log-likelihood measure [83].
This measure computes the energy of the
difference in the spectra of two LP parameter
sets. It essentially evaluates the likelihood of
the test data being generated from a statistical
model based on the reference LP parameter set.
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(Hence, it is often referred to as a probabilistic
distance measure.) This distance measure is
given by:

. (70)

 represents the autocorrelation matrix used
to generate the LP parameters for .

When performing a task such as vector
quantization (or speech recognition) in which
repeated comparisons of the test data will be
made against the entire reference vector set,
the denominator in Eq. (70) can be discarded
(or computed only once). The numerator has a
computationally efficient form [31]:

, (71)

where

. (72)

 represents the autocorrelation of the LP
inverse filter impulse response.

The log-likelihood measure is readily seen
to be an asymmetric distance measure
(violating our previous definition of a distance
measure). This asymmetry has not proven to be
a  s ign i f i can t  p rob lem however .  The
log-likelihood measure is not commonly used
today. Nevertheless, it was a very important
turning point in speech recognition research,
because i t  in i t iated the adopt ion of  a
probabilistic framework for distance measures
in speech recognition.

While the log-likelihood measure is
well-suited to LP coefficients, what type of
measure should we use for our general
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parameter vector? One of the most elegant
derivations in statistical signal processing is a
derivation of the Mahalanobis distance [72]. In
this derivation, it is shown that the likelihood
of a vector belonging to a multivariate
Gaussian distribution can be expressed as a
weighted Euclidean distance:

, (73)

where  and  are the mean and covariance of
the distribution. Obviously, if we operate on
vectors that have been processed through a
prewhitening transformation, the covariance
matrix will be an identity matrix, and Eq. (73)
degenerates to a plain squared Euclidean
distance.

For this reason, Euclidean distances are the
most common distance measure used today.
Part of the reason for this is that many
parameter sets used are based on implicitly
decorrelated parameters, such as cepstral
coefficients. Also, speech recognition systems
today have evolved to invoke these types of
transformations implicitly [73,74].

In many applications, such as vector
quantization, it is possible to use a factored
form of the Euclidean distance:

(74)

We see a Euclidean distance is the sum of the
magnitudes of the vectors minus twice the dot
product. Suppose we wish to vector quantize
the input vector, . Let  denote each entry in
the codebook (against which the input must be
compared). The first term is constant with
respect to each codebook entry, and can be
discarded. The second term is a scalar, and can
be added to the result of the third term. If each
codebook entry has the same magnitude, the
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second term can be discarded also.

The third term is a dot product and must be
evaluated once per codebook entry. This is
called the dot-product form of the Euclidean
distance. This type of calculation can be used
in most speech processing applications, which
include vector quantization and speech

recognition8.

We have now completed our discussion of
techniques for signal modeling in speech
recognition. We have shown that a signal
model can be constructed from a sequence of
three operations: signal measurement,
parameter smoothing, and statistical modeling.
In the next section, we will discuss how these
concepts are put to work in state of the art
speech recognition systems, and comment on
the relative merits of these approaches.

VI. PRACTICAL EXAMPLES

There are, needless to say, a large number
of combinations and permutations of the signal
models we have discussed in use today. Let us
begin our discussion by simply enumerating
some state-of-the-art (perhaps modern day is a
better way to phrase this) speech recognition
systems, along with the signal modeling
techniques used. An overview of this data is
given in Table 2. The table is divided into four
sections: affiliation (for reference purposes);
signal measurements, signal parameters, and
statistical models. We have discussed each of
these topics in previous sections of this paper.
Note that a list of abbreviations and their
meanings is contained at the end of the table.
Since this table is fairly lengthy, we will

8. A consultant from a famous supercomputing company
once told me that “everything in life reduces to one of two
operations: a dot product or a vector multiply/add.” He had
found through his extensive experience optimizing code for
supercomputing that 99% of the time the core operations
required could be shown to be one of these two.

review its contents first, and then draw some
conclusions about the data.

6.1 Table Overview

The affiliation section of the table is
supplied merely as an identifier. Institutions
are listed in alphabetical order. The reference
associated with the entry usually contains a
sufficient amount of detail about the signal
model used in the most recently published
recognition system by the institution. Every
attempt has been made to keep the reference
current, so that the data in the table reflects the
current state of the particular system. Many of
the systems in Table 2 have evolved over
several years. In some cases, multiple entries
for a given affiliation are shown, usually to
contrast different types of recognit ion
technology being explored at the same
institution.

The second column contains a brief
overview of the type of application being
pursued, at least in terms of vocabulary size.
Obviously, there are other equally important
dimensions to the problem. “Small” refers to a
speech recognit ion task using a small
vocabulary, usually less than 100 words.
Continuous digit recognition and recognition
of spoken letters in English fall into this
category. Similarly, “Medium” refers to tasks
on the order of 1000 words, and “Large” refers

to tasks greater than 5000 words9.

We also attempt to quantify the application
in terms of the acoustic environment. “Office”
refers to a system developed on a database
collected in either a normal office environment
( t yp ica l l y  abou t  70 dB SPL)  o r  an

9. We readily admit this is an oversimplification of the
problem. Confusability of the words and the complexity of the
language model are equally important dimensions, but more
difficult to concisely quantify. There are some major
differences between signal models in systems used in “small”
and “large” vocabulary applications.



Picone: Signal Modeling ... 34

Proceedings of the IEEE Second Submission: March 18, 1992

Picone: Signal Modeling ... 34

Proceedings of the IEEE Second Submission: May 15,1993

Picone: Signal Modeling ... 34

Proceedings of the IEEE Second Submission: March 18, 1992

Picone: Signal Modeling ... 34

Proceedings of the IEEE Final Copy: June 3,1993

acoustically-treated room (such as an anechoic
chamber). “Telecom” refers to technology
deve loped  fo r  te lecommun ica t ions
applications using standard analog telephone
lines. “Mil.” refers to military applications that
often involve a wide range of ambient noise
and speaking styles.

The signal measurement section is split
into five parts. First, we show the sample
frequency of the system. Though most systems
today have software-selectable sample
frequencies, this entry represents the sample
frequency of the experimentation database in
the corresponding reference. It is provided for
comparison purposes. Sample frequency is
most often dictated by the application (systems
for telecommunications applications must
operate at or below ).

The next three columns specify the spectral
analysis conditions:  is the preemphasis
f i l ter  constant for a f i rst  order f i l ter ;
“Frame Dur.” is the frame duration of the
analysis; “Wind. Dur.” is the analysis window
duration. We do not explicitly show the type of
window used on the signal before spectral
analysis, because all of the systems presented
here use some form of a generalized Hanning
window (most use a Hamming window, while
a few use a Hanning window).

The last column in this section, titled
“Spectral Analysis,” refers to the sequence of
operat ions involved in generat ing the
measurements. For example, under the entry
“AT&T [7],” LP(8) and CEP(12) indicate that
an LP analysis of order 8, followed by a
cepstral analysis of order 12, was used to
generate the cepstral signal measurements.
Most systems that use LP-derived cepstral
coefficients will have multiple entries in this
column, to indicate that LP and Cepstral
analyses were performed.

8 kHz

apre

The next section, comprising the 8th
column in Table 2, contains the elements of the
signal parameter vector. Here, we simply list
the sal ient features (as they might be
concatenated in the vector) of the type of
analysis used. These were discussed in
Section III. Usually, an entry consists of a set
of absolute measurements, such as “Mel-Cep.”
(denotingmel warped cepstral coefficients),
and t ime derivatives of these absolute
measurements, such as “D-Cep.” (which
denotes the der ivat ive of  the cepstral
parameters). See the abbreviations at the end of
the table for an explanation of all the terms.

The  las t  sec t ion  o f  the  tab le
(cols. 9 and 10) contains a description of the
statistical models used in the systems. The type
of speech recognition technology used with the
signal model is shown mainly for reference

purposes10. The term “VQ” refers to vector
quantization. The term “Variance” refers to the
variance-weighting form of the Prewhitening
transformation. The term “PT” refers to a
prewhitening transformation in which the full
rank of the matrix is used. The term “MS-VQ”
refers to multi-stage vector quantization: an
approach in which a separate codebook is
maintained for each type of signal parameter
(often there are three codebooks: one for
absolute measurements,  one for  t ime
derivative measurements, and one for power
measurements).

6.2 Comments

There are several conclusions we can draw
from the agglomeration of data presented in
Table 2. First, Neural Network (NN) based
systems tend to use filter bank amplitudes
directly. We will avoid elaborating on this

10. These technologies have not been discussed in this paper.
There are two main classes of technology referenced in this
table: Hidden Markov Model (HMM) and Neural
Network (NN). See [27] for more information on this topic.
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point — it would take us too far afield. It
suffices to say that the NN systems are
attempting to develop models that emulate
human hearing. Filter bank amplitudes are
perhaps the simplest type of stimulus to present
to such a system that will achieve this goal and
keep the system complexity low. Readers
interested in this topic are encouraged to
pursue more rigorous discussions in [87,91].

Second, as previously mentioned several
times in this paper, cepstral coefficients are by
far the dominant acoustic measurement. For
example, twenty-one out of the thirty-one
systems in Table 2 use some form of cepstral
coefficients. This ratio is even higher (21 out of
26) if we exclude Neural Net based systems.

Third, FFT-derivedmel-scaled cepstral
coefficients are the most common form of
cepstral analysis used. LP-derived cepstral
coefficients are used by only a third of the
systems using cepstral analysis. There is a
definite preference towards usingmelscaling.
Ironically, two institutions that are notable
advocates of cepstral coefficients are the only
institutions to use their respective techniques:
liftered cepstral coefficients and bilinearly

transformed cepstral coefficients.11

A fourth observation, somewhat beyond
the scope of this paper, is that systems
per fo rming  la rge  vocabu la ry  speech
recognition tend to use discrete density
approaches based on vector quantization,
while systems performing small vocabulary
speech recognition in harsh environments tend
to use some sort of prewhitening filter. The
most common form of vector quantization
today is the multi-stage codebook, used in
conjunction with cepstral and time-derivatives
of the cepstral coefficients. The most common

11. These two institutions have also consistently delivered
high performance systems with their signal models, which
makes the lack of adoption of these techniques interesting.

form of prewhitening filter is the degenerate
case: variance-weighted coefficients. We find
few systems actually using a fully populated
covariance matrix.

The popularity of FFT-based spectral
analysis continues to be based on the FFT’s
immunity to noise. We find it somewhat
surprising that a large percentage of systems
today do not rely on LP analysis for spectral
analysis. LP analysis was almost exclusively
used in the 1970’s and early 1980’s. Since
then, it seems the trend is towards the FFT
based analysis. We speculate that this is due to
the ease with which themel scaling can be
imposed.

In the systems reviewed in Table 2, the use
of time differentiation to postprocess signal
measurements can be classified into two
groups. Most systems use a simple first order
difference. Several systems, most notably
those in [7] and [11], use a five frame
regression analysis. It is argued that this
p rov ides  a  smoother ,  more  s tab le
representation of the parameter.

Very little comprehensive data exists on
comparative analyses of signal modeling in
speech recognition. There are two major
reasons for this. First, only recently have large
scale speech recognition experiments become
feasible. Databases are now large enough to
support statistically significant comparisons;
computers are now fast  enough to do
parametric evaluations. Unfortunately,
software technology lags: many research
organizations are only able to simulate subsets
of many of the competing approaches (and
have not researched the others extensively).
Convincing comparative data on large speaker
independent continuous speech recognition
tasks is simply not currently available. Two of
the highly referenced works in this area
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are [23,84]. Other, more recent studies
include [113,114].

VII. SUMMARY

We have presented several popular signal
analysis techniques in a common framework
that emphasized the importance of accurate
spectral analysis and statistical normalization.
When viewed in this common framework, the
di f ferences amongst  these compet ing
approaches seems small when compared to the
enormous challenges we still face in the speech
recognition problem. All approaches share
some impor tan t  bas ic  a t t r i bu tes :
t ime-der i va t i ve  in fo rmat ion ,
perceptually-motivated transformations, and
parameter normalization.

The survey of contemporary systems
demonstrated the fact that FFT-derived
cepstral coefficients seem to be dominating the
field. LP analysis, once the cornerstone of
speech recognition, is now relegated to a
secondary role. A signal parameter vector
consisting of cepstral coefficients, the first
derivative of the cepstral coefficients, power,
and the derivative of the power has become a
de facto standard. Variance-weighting of this
parameter vector  is  the most  popular
normalization technique.

It will be the subject of further research to
quantify the differences in these approaches in
a reasonable recognition task. There still
remain some important questions to be
quantified: robustness to noise? invariance to
sample frequency? invariance to recognition
task? It is interesting to note that despite the
seemingly vast algorithmic differences in these
approaches, many of these approaches have
enjoyed widespread success. Often, the
significant differences in the recognition
systems lie in details beyond the signal model.

This not to say that the problem of signal
modeling is solved. Performance of current
speech recognition systems is still far below
human performance. For example, on digit
recognition tasks, where the vocabulary is
small and a premium is placed on acoustic
modeling, state-of-the-art performance is still
at least two orders of magnitude below human
performance on the same task [73,115]. In
adverse ambient environments, such as analog
telecommunications systems or cellular
telephony in an automobile, the performance
gap between humans and machines is even
greater.

As mentioned at the beginning of this
paper, we have also steered clear of such topics
as robustness in noise. We have presented
some simple approaches for dealing with noise
that generally work equally well for clean and
noisy environments. We have not presented
techniques specifically designed to improve
robustness in adverse conditions — this is a
topic unto itself. Recently, several promising
algorithms have appeared for improving signal
models in noisy environments [116]. As
speech recognition systems are being moved
from the laboratory to the field, such practical
problems are receiving increasing attention.
Perhaps this paper will motivate a future
tu to r ia l  on  the  top ic .  C lear l y ,
robustness-in-noise issues strongly interact
with signal model design.

Finally, a major driving force today in
signal model design is the minimization of the
number of degrees of freedom in the system.
Because speech recognition systems today
have a large number of free variables (more
than 10,000 variables is common), insufficient
amounts of training data are a very real
problem. One thing we have learned over the
years: badly trained parameters are often cited
as the major contributor to bad performance.
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Hence, approaches that minimize the number
of parameters, like variance-weighting, are
preferred over approaches that are statistically
optimal, e.g., prewhitening transformations,
but require large amounts of training data.
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IX. FIGURE CAPTIONS

1. An overview of the signal modeling process is shown. Advances in speech
recognition technology have blurred the distinction between signal modeling and
statistical modeling by introducing context sensitive statistical models into the
parameterization of the signal.

2. The sequence of operations in converting an analog signal to a digital signal suitable
for spectral analysis are shown. Some components, such as a low quality A/D
converter or a nonlinear microphone, can introduce unwanted artifacts in the signal.

3. The frequency response of a typical telephone grade A/D converter is shown.

4. The frequency responses of common preemphasis filters used in speech recognition
systems are given. The motivation behind such filters is to spectrally flatten the
speech signal, and to amplify important areas of the spectrum. Values of  close
to -1.0 are most common.

5. Temporal and frequency domain responses of the Hanning window are shown for a
range of values. In this window design, the objective is to make the main lobe width
small, and the stopband attenuation large, and also to have the window response
near zero at the edge of the window.  is the most common value used in
speech recognition systems today.

5(a). Temporal Response

5(b). Frequency Response

6. A frame-based overlapping analysis is depicted. In this case, a 33% overlap is shown.
One-third of the data used in each analysis frame is shared with the previous
frame. Note that only one-third of the data are unique to the current frame — the
remaining two-thirds are shared between adjacent frames.

7. Various power computations are shown for the speech signal (the word “tea”) in (g). In
(a), a rectangular window analysis using a  frame duration and
window is shown. In (b), a rectangular window analysis with /
parameters are shown. In (c), a rectangular window analysis with /
are shown. In (d), a Hamming window has been used with /  values. In
(e), heavy smoothing is demonstrated by using a window duration of , while
the frame duration is held fixed at . Finally, in (f), the power is computed
using a recursive-in-time approach using a second-order  low pass filter. The
arrow indicates a point where the power changes rapidly. Note that the Hamming
window applied in (d) helps smooth this transition.

8. The six major spectral analysis algorithms are shown. Cepstral parameters derived
from either a Fourier Transform or Linear Prediction model are by far the most
popular of these approaches. The Fourier Transform methods have traditionally
been considered robust in severely noisy environments, and are popular for their
similarity to the initial stages of the human auditory system.

9. The Bark and mel scales are shown as a function of acoustic frequency in (a) and (b)
respectively. In (c), critical bandwidth as a function of frequency is shown. The mel
scale is a popular approximation to the Bark scale, and is widely used in speech
recognition.

9(a). The Bark scale transformation.

9(b). The mel scale transformation.

9(c). The critical bandwidth transformation.
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10. Digital filter bank outputs for a speech signal shown in (a), consisting of the word
“speech.”. In (b), the output from a filter with a center frequency of  and a
bandwidth of  is shown. In (c), the output from a filter centered at  is
shown. Note that the amplitude of the output for each filter varies depending on the
nature of the sound. The final “ch” sound, for example, is mainly composed of high
frequency information.

11. An oversimplified example of the benefit in oversampling the spectrum. A spectrum
of a signal (computed by a DFT to be precise) is shown along with the frequency
values at which it would be sampled using a filter bank consisting of  samples per
bin (index 14 from Table 1 is shown). If the spectrum is sampled exactly at the
center of the critical band the output value would be . If an average of the
spectrum across the critical band were used, the value would be .
Oversampling the spectrum often results in more stable, or smoothed, amplitude
estimates.

12. Low energy areas of the spectrum are often clipped in an effort to emphasize high
energy portions of the spectrum in the signal model and limit the effect of areas of
the spectrum that are not necessarily perceptually relevant. This clipping is
normally executed after preemphasis so that high frequency components of the
speech spectrum are not excessively truncated.

13. In the linear acoustics model of speech production [32], the speech signal is
produced by filtering an excitation signal (produced in the sub-glottal system) with a
time-varying linear filter (the vocal tract). The vocal tract can be decoupled from the
excitation signal using homomorphic signal processing techniques. It should be
noted that this model is not valid for all classes of speech sounds, such as frication,
where excitation occurs above the glottis.

14. An example of the computation of the cepstrum is given. In (a), an unvoiced speech
waveform is shown. In (b), a  cepstrum is computed. In (c), a voiced
speech waveform is shown. Finally, in (d), the corresponding cepstrum is shown.
Note that the cepstrum in (d) indicates periodicity in the waveform by the presence
of two local maxima. The low order terms in the cepstrum reflect the smooth
spectral structure of the speech signal (vocal tract information).

15. A speech spectrum is shown along with LP models of order  and . Note that the
model order  does not sufficiently model the detail in the spectrum. Model orders
of  and  are often used in speech recognition systems.

16. Stabilization of the LP model is demonstrated. A speech spectrum is shown along
with an LP model of order , and the same LP model with a stabilization factor of

. Note that while the bottom of the spectral model is raised, the performance
of the model around the spectral peaks is also significantly smoothed. In cases
where two spectral resonances are close in frequency, stabilization sometimes
tends to combine these into on broad spectral peak (a bandwidth broadening
effect).

17. Spectral analysis for a speech signal is demonstrated by showing a wideband
spectrogram of a speech signal, and three associated LP models. Normally, the
analysis presented in (e) is sufficient to capture salient aspects of the individual
sounds. However, as computational power increases, and phonetic recognition
technology improves,  frame durations may become more common,
because of the need for better characterizations of dynamic sounds such as
consonants.

17(a). A speech waveform (the word “speech”) and its power contour.
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17(b). A wideband spectrogram (  window).

17(c). A spectrogram of the LP model ( , ).

17(d). A spectrogram of the LP model ( , ).

17(e). A spectrogram of the LP model ( , ).

18. The bilinear transform is compared to the mel scale for a range of values. The
bilinear transform was computed using a sample frequency of . Note that
positive values of  produce compression of the frequency scale (shown here)
while negative values produce expansion.

19. A speech spectrum along with its LP model are shown. In addition, the log
magnitude spectrum of the LP-derived cepstral coefficients, and the log magnitude
spectrum of the corresponding warped cepstral coefficients ( ) are shown.
Similar results can be obtained for the LP spectrum by processing either the LP
coefficients or the autocorrelation function through the iterative transform.

20. Conversion of signal measurements to a signal parameter vector usually consists of
two steps: differentiation (optional) and collation. Most speech recognition systems
today use the absolute measurements and an estimate of the first derivative of the
measurements. Recently, estimates of the second derivative have been
incorporated. The output of this stage of processing is a single parameter vector
which is the concatenation of all parameters.

21. The frequency responses for three different realizations of a differentiator are
shown. In (a), . In (b), . In (c), . Note that an ideal differentiator
has a frequency response proportional to the log of the frequency. It is desirable
however to attenuate high frequencies (it is important to not excessively amplify
these components) because higher frequency components tend to be noisy.
Hence, each of these designs attenuates high frequencies. The first-order
difference, as shown in (a), is most common.

22. Statistical models in speech recognition are generally divided into two categories:
parametric models (continuous distributions) and nonparametric models (discrete
distributions). The types of models range from direct evaluation of the LP model to
sophisticated likelihood models based on decorrelation transformations.

23(a). The elliptical region shows the range of allowable values of an order pair (x,y)
(assume all points in this region are equally likely). Which distance is greater: (a)
the distance from point a to point b, or (b) the distance from point c to point d? The
answer is (a). Since the distance from a to b is a larger percentage of the variance
in the vertical direction, we would have to believe this distance is “perceptually”
larger than the distance from point c to point d. (Note that the distances as shown
are exactly one unit.)

23(b). An important variation of the problem in Fig. 23(a): which distribution does the
data point belong to? The distance from the center of each distribution to the data
point are the same. However, since the shapes of the distributions are different, on
what scale do we compare the two distances? [72]
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24. An example of a transformation computed over speech data collected over the
telephone. The original data was sampled at . The first curve corresponds to
an eigenvector that weighs low frequency filter bank amplitudes heavily and
deemphasizes high frequencies. The second curve depicts a dimension that
focuses on the  region of the spectrum. Both of these dimensions attempt to
track first formant information for vowels. The third curve represents a dimension
that favors high frequency sounds, such as sibilants. Use of these types of
transformations to model specific classes of speech sounds is an area of on-going
research in speech recognition.

25. The K-MEANS algorithm is demonstrated for a two-dimensional clustering problem.
Input vectors are grouped according to a nearest neighbor rule into clusters. The
centers for these clusters are recomputed based on the data in the cluster. The
data is then reclassified using the new clusters. The procedure is repeated until the
quality of the clustering is acceptable. The cluster centers then become the vectors
in the codebook.

26. Codebook distortion is displayed as a function of the codebook size. Codebook size
often ranges between  and  in speech recognition systems today. Beware that
codebook distortion is at best weakly correlated with speech recognition
performance.
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X. TABLE CAPTIONS

1. Two critical band filter banks are shown. The first filter bank (cols. 2 and 3) is a design
based on the Bark scale. The second (cols. 4 and 5) is a design based on the mel
scale. The shaded entries are shown only for comparison purposes. Usually these
bins are not included in the design. For the Bark scale filter bank, telephone grade
speech is often processed using a filter bank consisting of 16 bands
(indices 2 - 17).

2. A summary of the common signal modeling techniques used in speech recognition
systems. See the notes at the end of the table for explanations of the various
abbreviations. (This table extends for several pages.)
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XI. FIGURES
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XII. TABLES

Table 1:

Index

Bark Scale Mel Scale

Center
Freq.
(Hz)

BW
(Hz)

Center
Freq.
(Hz)

BW
(Hz)

1 50 100 100 100
2 150 100 200 100
3 250 100 300 100
4 350 100 400 100
5 450 110 500 100
6 570 120 600 100
7 700 140 700 100
8 840 150 800 100
9 1000 160 900 100

10 1170 190 1000 124
11 1370 210 1149 160
12 1600 240 1320 184
13 1850 280 1516 211
14 2150 320 1741 242
15 2500 380 2000 278
16 2900 450 2297 320
17 3400 550 2639 367
18 4000 700 3031 422
19 4800 900 3482 484
20 5800 1100 4000 556
21 7000 1300 4595 639
22 8500 1800 5278 734
23 10500 2500 6063 843
24 13500 3500 6964 969
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Table 2:

General Information Signal Measurements
Signal

Parameters Statistical Model

Affiliation
[Ref.]

Application
Size/Task

Frame
Dur.

Wind.
Dur.

Spectral
Analysis

Parameter Types Model Speech
Recog.

Technology

ATR
[87]

ATR
[86]

Large
Office

Large
Office

12

12

-0.97

0.0

3

5

21.3

21.3

LP(12)

FFT(128)

LP
Power

Mel FB,
D-FB,

D-D-FB

PWLR
VQ(256)

-

DD-HMM

TD-NN

AT&T
[7]

AT&T
[69]

Small
Telecom

Medium
Office

6.67

8

-0.95

-0.95

15

10

45

30

LP(8)
Cep(12)

LP(10)
Cep(12)

Liftered-Cep.
D-Cep.

D-D-Cep.
Power

D-Power
D-D Power

(Same)

Variance

(Same)

CD-HMM

(Same)

BBN
[88,89]

Large
Office

20 0.0 10 20 FFT(512)
Cep.(14)

Mel-Cep.
D-Cep.
Power

D-Power

VQ DD-HMM

Brown
[90]

Small
Office

16 0.0 10.0 40.0 LP(12)
Cep(12)

Cep.
D-Cep
Power

D-Power

MS-VQ
(256/stage)

HMM-NN

Cambridge
[91]

Large
Office

10 FD 10 10 FFT(128) FB - NN

CMU
[66]

CMU
[92]

Large
Office

Large
Office

16

16

-0.97

-0.97

10.0

10.0

20.0

20.0

LP(14)
Cep(12)

FFT(256)

BT Cep.
D-Cep.
Power

D-Power

Mel-FB
D-FB

D-D-FB

MS-VQ
(256/stage)

MS-VQ
(256/stage)

DD-HMM

TD-NN

CSELT
[93]

CSELT
[94]

Medium
Telecom

Large
Office

16

12

0.0

0.0

10

10

20

20

FFT(256)
Cep(12)

FFT(256)
Cep(18)

Mel-Cep.
D-Cep.
Power

D-Power

Mel-Cep.

Variance

MS-VQ

VQ
(128)

CD-HMM

DD-HMM

DD-HMM

Fujitsu
[95]

Large
Office

16 0.0 5 32 FFT(512) Mel-FB
Power

Identity DP

IBM
[96,97]

Large
Office

16 0.0 10 20 - Auditory
Model (20)

- DD-HMM

INRS
[17]

INRS
[98]

Large
Office

Large
Office

16

16

0.0

0.0

10

10

25.6

25.6

FFT(256)

FFT(256)

Mel-Cep.
D-Cep.
Power

(Same)

MS-VQ
(64/stage)

Variance

CD-HMM

DD-HMM

KAIST
[99]

Large
Office

10 0.0 10 25.6 LP(12)
Cep(12)

Cep.
D-Cep.

MS-VQ
(256/stage)

DD-HMM

fs
kHz

apre

msec msec

(Continued on next page)
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Affiliation
[Ref.]

Application
Size/Type

Frame
Dur.

Wind.
Dur.

Spectral
Analysis

Parameter Types Model Speech
Recog.

Technology

LL
[2,70]

Med./Lg.
Office/Mil.

8 FD 10 20.0 FFT(256)
Cep(14)

Mel-Cep.
D-Cep.

Fixed CD-HMM

MIT
[54,100,113]

Large
Office

16 FD 5 - FB(40) Auditory Model PT CD-CFG

Mitsubishi
[101]

Large
Office

10 -0.95 10 25.6 FFT(256) Mel-Cep.
D-Cep.
Power

D-Power

Variance CD-HMM

NEC
[102]

Large
Office

16 0.0 5 32 FFT(512)
Cep(10)

Mel-Cep. Variance CD-HMM

NYNEX
[103]

Small
Telecom

8 0.95 5 20 LP(10)
Cep(10)

Cep.
D-Cep.
Power

D-Power

PT
-

HMM
MLP-NN

NTT
[11,104]

NTT
[105]

Large
Office

Large
Office

12

12

0.0

0.0

10

8

30

32

LP(16)
Cep(16)

(Same)

Cep.
D-Cep.

D-Power

(Same)

Variance

Variance

DD-FSA

CD-HMM

Panasonic
[106]

Large
Office

10.67 0.0 9.3 18.6 PLP(8) Cep.
D-Cep.
Power

D-Power

Fixed CD-HMM

Phillips
[107]

Large
Office

16 0.0 10 25 FFT(512) Mel-FB
D-FB

D-D-FB
Power

D-Power
D-D-Power

MS-VQ DD-HMM

RSRE
[108]

Large
Office/Mil.

20 0.0 10 - FB(27) Bark-Cep.
Power
D-Cep.

Fixed CD-HMM

SRI
[109,110]

Large
Office

16 0.0 8 16 FFT(256) Mel-Cep.
D-Cep.
Power,

D-Power

MS-VQ DD-CSG

SSI
[111]

Large
Office

16 0.0 6.6 - FB(20) Bark FB
Max Ampl.

Delta-Max Ampl.
Pitch

- CD-HMM

TI
[6,14,18]

Small
Telecom

8 -1.0 20 30.0 LP (10) Mel-FB,
D-FB,
Power,

D-Power

PT CD-HMM

Tohoku
Univ.
[112]

Large
Office

16 0.0 10 - FB(29) Cep.,
D-Cep.

- LVQ2-NN

Waseda
[113]

Large
Office

12 0.0 10 20 LP(16) Mel-Cep.
D-Cep.
Power

D-Power

MS-VQ
(256/stage)

DD-HMM

General Information Signal Measurements
Signal

Parameters Statistical Model

fs
kHz

apre

msec msec

(Continued on next page)
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Notes:
A. An explanation of abbreviations:

Small: Small Sized Vocabulary (usually Digit Recognition or Alpha Digit Recognition)
Medium: Medium-Size Vocabulary (usually < 5,000 words)
Large: Large Vocabulary Speech Recognition (usually > 5,000 words)
Office: Database was collected in a quiet or typical office environment (noise level is usually about

~70 dB SPL)
Telecom: Telecommunications Data (data collected over standard telephone lines)
Mil.: Military applications involving noisy environments and different speaking styles

FD: Frequency Domain Preemphasis (applied directly to the spectrum - ~10-20 dB/decade)
LP: Linear Prediction (order is shown in parentheses)
PLP: Perceptually-Motivated Linear Prediction
FFT: Fast Fourier Transform
FB: Filter Bank
Cep.: Cepstral Parameters
Power: Signal Power (usually in dB)

Mel: Mel Scale Parameters
Bark: Bark Scale Parameters
Liftered: Liftered Parameters
BT: Mel Scale Parameters Computed Using the Bilinear Transform
D-FB: Delta (or Time Derivative of) Filter Bank
D-D-FB: Delta-Delta Filter Bank Parameters (Second Derivative)
D-Power: Delta-Power (Time Derivative of Power)
D-D-Power: Delta-Delta-Power (Second Derivative of Power)

PWLR: Perceptually Weighted Log LIkelihood Distance Measure
VQ: Vector Quantization
MS-VQ: Multi-stage Vector Quantization (VQ with multiple codebooks)
PT: Prewhitening Transformation
Variance: Variance-Weighted Parameters (Diagonal components of the prewhitening transformation)
Identity: Identity Matrix Weighted Parameters (No Weighting)
Fixed: A Fixed (a priori) Weighting Matrix is used (sometimes called “Pooled” or “Grand”)

HMM: Hidden Markov Model
NN: Neural Network
TD-NN: Time Delay Neural Network

DP: Dynamic Programming
CD-HMM: Continuous Density Hidden Markov Models
DD-HMM: Discrete Density HMM
FSA: Finite State Automaton (usually a regular grammar)
CFG: Context Free Grammar
CSG: Context Sensitive Grammar
LVQ2: Learning Vector Quantizer (a Neural Network approach to vector quantization)
MLP: Multi-Layer Perceptron Neural Network

B. An explanation of categories:
Affiliation: Company/University principally responsible for the cited research
Application: A brief summary of the type of database used in the cited publication
Signal Measurements: Sample frequency, preemphasis, frame duration, and window duration of the spectral

analysis. For some systems, preemphasis is performed directly in the frequency
domain (indicated by a “yes”). Under spectral analysis, the sequence of operations is
shown. Orders of analysis, where applicable, are shown in parentheses.

Signal Parameters: Signal parameters used in the system. These are derived from the spectral analysis
parameters.
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Statistical Model: The statistical model used in the speech recognition system. Some affiliations have
multiple entries.


