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Abstract: Radio altimeters are an important component of modern helicopter on-board systems.
These devices currently involve the use of narrowband deterministic signals, that limits their potential
technical characteristics. Given the significant breakthrough in the development of wideband and
ultra-wideband radio electronics, it is promising to create on-board radio complexes capable of
obtaining the necessary information using wideband stochastic signals. At the same time, when
developing such complexes, it is important to use optimal synthesis methods for radio systems, which
will allow optimal signal processing algorithms and potential accuracy parameters to be obtained. In
this work, the algorithm to measure flight altitude for a helicopter or an unmanned aerial vehicle
based on the processing of wideband and ultra-wideband pulsed stochastic signals is synthesized for
the first time by the maximum-likelihood method. When formulating the problem, the mathematical
model of the signal and observation is specified, and their statistical characteristics are investigated.
The peculiarity of the synthesis task is the use of a noise pulse transmitter, which implements the
function of an underlying surface illuminator, as well as considering the signal structure destruction
during its radiation, propagation, and reflection. This signal shape destruction makes it impossible to
synthesize a radar with internally coherent processing when working on one receiving antenna. In
accordance with the synthesized algorithm, a simulation model of a pulsed radar with a stochastic
probing signal has been developed and the results of its modeling are presented.

Keywords: broadband stochastic signals; radar altimeter; helicopter radar; optimal signal processing
algorithm

1. Introduction

Motivation: Modern trends in the development of all types of manned and unmanned
aircraft indicate the importance of issues relating to ensuring flight safety and improving
autopilot capabilities [1–3]. Solving these issues requires a comprehensive approach and
the simultaneous use of a large number of on-board systems for continuous monitoring of
both the condition of the aircraft itself (its speed, acceleration, roll, altitude, coordinates,
etc.) and the current condition of the environment (wind speed and direction, pressure,
etc). The information received from all aircraft sensors is mostly sent to a single on-board
complex, processed, and further used by the pilot to make decisions and the automatic
control system to generate the necessary control signals depending on the current task and
the determined condition of the aircraft.

In terms of the complexity of ensuring flight safety and implementing autopilot sys-
tems, helicopters stand out among many other types of aircraft. Therefore, their use
involves the possibility of flights in a wide range of speeds, heights, and directions. The
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information received from the on-board complex is used to make decisions about maneu-
vering, solving navigation problems, and avoiding dangerous situations. An important
element of such a complex is an altimeter, which allows you to measure the current aircraft
altitude above the ground surface with high accuracy and with a high degree of reliability.

State of the Art: Today, there is a large number of altimeters, ranging from baro-
metric [4], to gamma ray devices. They can be based on different principles of altitude
measurement, and even similar systems may involve the use of different signal types with
different frequencies and work algorithms. For example, laser radiation is used and pro-
cessed in lidar systems [5–7], there are also systems that use telecommunication signals [8,9],
nonlinear algorithms for a movement trajectory processing [10–12], etc. Traditionally, the
most reliable are radio altimeters [13–15], which work in the radio range of waves, which al-
lows one to receive the necessary information regardless of the current time of day, weather
conditions, and are completely autonomous. Such systems can be implemented according
to different schemes, but they all have some common features, such as the use of pulsed or
continuous deterministic narrowband probing signals, which limits their potential technical
characteristics. At the same time, wideband and ultra-wideband measuring systems with
noise signals [16–18], are currently of considerable interest, because in recent years the
radio element base has reached a level sufficient for their implementation. Thus, advanced
developers in the radio electronics field currently offer a wide selection of high-speed
analog-to-digital converters [19,20], wideband amplifiers [21], antennas [22], etc.

The use of stochastic wideband signals opens up new possibilities in the aerospace-
based radio vision systems design. Such systems can provide much better measurement
accuracy along with a high degree of protection against extraneous radiation. The main
disadvantage of such radars is the significant complexity of implementing a coherent mode
of signal processing, which can be achieved only at small distances of several tens of
meters [23], even with the use of correction models [24], for the atmosphere influence on
signal propagation.

Therefore, the creation of on-board radio complexes capable of obtaining the necessary
information using stochastic signals is an urgent task today [25–27]. Radio complexes
that will be placed on board the helicopter are no exception. It should be noted that it
is advisable to search for the algorithms of such systems using the methods of optimal
synthesis [28], of radio systems, which allow to obtain both the optimal algorithm for
estimating the desired parameter and the potential accuracy of this estimate.

Objectives: This work is aimed at solving the problem of statistical synthesis of the
stochastic radio-signal processing algorithm for measuring the flight height of a helicopter
or an unmanned aerial vehicle.

2. Materials and Methods

In Figure 1 a helicopter is shown, that moves at a speed
→
V
′

and is at a height h above
the ground surface at a moment in time t. The antenna of the radio altimeter is marked
A, and the area of radiation is marked by D′. The area of the underlying surface, which

is irradiated by the radiation pattern, is marked by D. Radius vectors
→
r
′

and
→
r denote

the positions of elementary areas within the radiation area D′ and the radiated area D. At
the same time, the projections of these radius vectors beginning on the underlying surface

coincide. The projection of the velocity
→
V
′

onto the underlying surface is denoted by the

vector
→
V. The project line of the path to the underlying surface is marked as S.
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Figure 1. Physical parameters and geometric relationships used in the synthesis of the helicopter
altitude measurement algorithm.

Helicopter altimeters often use two antennas [29,30], one for signal radiation and one
for reception. The use of one antenna in the modes of operation for radiation and reception
of signals is due to the fact that the intended radar will work with pulsed stochastic signals.

The purpose of the work is to synthesize an algorithm for processing wideband
stochastic signals for measuring the true altitude of a helicopter.

For the signal processing algorithm synthesis, we will develop a model of a pulsed
(for the implementation of a radar that will work with one antenna) stochastic signal and
determine its statistical characteristics. Here and further, considering the complexity of
mathematical explanations, we will use two approaches to describe the signals at once,
temporal and spectral.

The following signal model has been developed:

s(t) = F−1
f

{
Π(f)

∫ ∞

−∞

.
P(f− f1)

.
N(f1)df1

}
=
∫ ∞

−∞
Π(f)

∫ ∞

−∞

.
P(f− f1)

.
N(f1)df1 ej2πf tdf =

∞∫
−∞

η
(
t− t′

)
P
(
t′
)
n
(
t′
)
dt′, (1)

where F−1
f {·} is operator notation of the inverse Fourier transform with integration over

a variable f;
.

N(f) = F−1
f {n(t)} is the complex stochastic spectral density of the radiated

signal amplitude, (n(t) is a white Gaussian noise with zero mean, which is used as the
filling of the radiated radio pulse); Π(f) = F−1

f {η(t)} is the spectrum of the radio pulse
envelope (P(t) is radio pulse envelope); f is frequency; t is time; and τ is pulse duration in
time. In the problem being solved, it is assumed that the bandwidth satisfies the condition
of wideband or ultra-wideband.

Today, Equation (1) signal type can be generated by the existing radio element base [31,32].
It is assumed that the stochastic spectral density of the useful signal is a Gaussian

process with zero mean, that is
〈 .

N(f)
〉
= 0 or 〈n(t)〉 = 0, in the time domain. Here and

further, parentheses 〈·〉 denote statistical averaging. The correlation function of this process

is delta-correlated by frequency
〈 .

N(f1)
.

N
∗
(f2)

〉
= (N/2) δ(f1 − f2) or in the time domain

〈n(t1)n(t2)〉 = (N/2) δ(t1 − t2), where δ(·) is a delta function. Here N is the power spectral
density of the probing signal.
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Often, only one of these records is used in professional literature. The correctness of
both entries can be easily proven by the following calculation:

〈 .
N(f1)

.
N
∗
(f2)

〉
=

〈
∞∫
−∞

n(t)e−j2πf1tdt
∞∫
−∞

n(t)× ej2πf2tdt
〉

=
∞∫
−∞

∞∫
−∞
〈n(t1)n(t2)〉
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−∞ −∞ −∞
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d

d

j2 f t t r
s 1 1 1

j2 f t t t r
d

s t, r f F r,f G r,f P f f N f df e df n t p t f F r,f G r,f

e df dt g r, t t n t p t f r, t t t t t r dt dt dt ,
 (6)

( ) ( ) ( ) ( ) ( )
∞ ∞

π

−∞ −∞
= η − = Π   j2 f t

r 1 1 1 nn t t t n t dt f N f e df,  

N
2 δ(t1−t2)

e−j2π(f1t1−f2t2)dt1dt2 = N
2
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−∞

e−j2π(f1−f2) tdt
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With the above limitations, the full information about the signal is contained in its
correlation function or power spectral density. Signal correlation function of Equation (1)
has the following form:

Rs(t1, t2) = 〈s(t1)s(t2)〉 =
∞∫
−∞

∞∫
−∞

η(t1 − t′)η(t2 − t′′ )P(t′)P(t′′ )

×〈n(t′)n(t′′ )〉
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The correlation function (3) depends on (t1, t2) and not on the difference t1 − t2, i.e., it
describes a non-stationary signal.

The signal power spectral density can be found according to the generalized Wiener–
Khinchin theorem. To do this, we perform the Fourier transformation of Equation (3):

Gs(t1, f) = Fτ
{

Rs(t1, t2)|t2=t1−τ

}
= N

2 Fτ

{
∞∫
−∞

η(t1 − t)η(t1 − τ− t)P2(t)dt

}
=

= N
2

.
Π
∗
(j2πf)

∞∫
−∞

∞∫
−∞

.
Π(j2π[f2 + f3 + f])

.
P(j2πf2)ej2πf2t1 df2

.
P(j2πf3) ej2πf3t1 df3.

(4)

For the signal processing algorithm synthesis, it is important to write down the obser-
vation equation model. At the same time, various variants of the input path implementation
are considered [33,34], which impose restrictions on the observation equation form, as well
as the geometry of the problem. It is known from the statistical theory basics [28], that the
observation equation model in this case can be described quite accurately by an additive
mixture of the useful signal reflected by the underlying surface and noise [35]:

u(t) =
∫
D

ss

(
t,
→
r
)

d
→
r + nr(t) + n(t) (5)

where ss

(
t,
→
r
)

is a signal reflected by an elementary section of the underlying surface

with the center coordinates determined by the end of the radius vector
→
r ; nr(t) + n(t) is a

noise additive taking into account the limitation of the receiver working bandwidth and
white noise. We neglect the Doppler frequency in Equation (5), because in the considered
geometry of the problem it will be close to zero [36].

Mathematical models of signal and noises can be presented as follows:

ss

(
t,
→
r
)
=

∞∫
−∞

.
Π(f)

.
F
(→

r , f
) .

G
(→

r , f
)
×

∞∫
−∞

.
P(f− f1)

.
N(f1)df1 ej2πf (t−td(

→
r ))df =

∞∫
−∞

n(t′)P(t′)
∞∫
−∞

.
Π(f)

.
F
(→

r , f
) .

G
(→

r , f
)
×

×ej2πf (t−t′−td(
→
r ))df dt′ =

∞∫
−∞

g
(→

r , t∼
) ∞∫
−∞

η(t′′ )
∞∫
−∞

n(t′)P(t′) fσ
(→

r , t− t′ − t′′ − t∼ − td

(→
r
))

dt′ dt′′ dt∼,
(6)

nr(t) =
∞∫
−∞

η(t− t1)n(t1)dt1 =

∞∫
−∞

.
Π(f)

.
Nn(f) ej2πf tdf,
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n(t) =
∫ ∞

−∞

.
N0(f)ej2πf tdf, (7)

where
.
F
(→

r , f
)

is the underlying surface complex reflection coefficient (we consider it a
random process [28]), which depends on the frequency [37], when working with wideband
signals; fσ(·) = F−1

f

{
F
(→

r , f
)}

;
.

Nn(f) and
.

N0(f) are spectral densities of the complex am-

plitude of receiver noise and white noise; G
(→

r , f
)

is the radiation pattern of the antenna A
as a function of frequency, recalculated to the underlying surface elements with coordinates
→
r ∈ D (the beginning of the radius vector

→
r is located in the projection of the antenna

phase center onto the underlying surface); and td

(→
r
)
= 2c−1

√
h2 +

∣∣∣→r ∣∣∣2 is the delay time

for the signal to propagate from the phase center of the antenna to the elemental section
of the underlying surface with the coordinates determined by the vector

→
r end and in the

reverse direction.
We ignore the signal attenuation coefficient during propagation in the atmosphere (for

the millimeter range it is advisable [38]. to calculate it taking into account the local properties
of the atmosphere), considering that it can be included in the complex radiation pattern.

The complex radiation pattern is related to the amplitude-phase distribution of the
field in the antenna aperture by the following formula

.
G
(→
ϑ , f
)
= fc−1

∫
D′

.
I
(

f
→
r
′
c−1
)

e−j2πf
→
ϑ
→
r c−1

d
→
r
′

(8)

and is recalculated to the underlying surface coordinates, taking into account Figure 1, as
follows

.
G
(→

r , f
)
=

.
G

h
cosα
cosγ

, h

√
tg2γ− cos2 α

cos2 γ

, f

 (9)

where
→
ϑ =

(
ϑx, ϑy, ϑy

)
= (cos(α), cos(β), cos(γ)) are the direction cosines of a unit vector

direction of which is characterized by the end of the vector
→
r ; ϑz = cos(γ) =

√
1− ϑ2

x − ϑ2
y;

α ∈ (0,π); β ∈ (0,π); γ ∈
(
0, π2

)
is the angle, that is calculated from the axis 0z′ directed

from the phase center of the radio altimeter antenna in the direction of the normal to the
underlying surface elements.

Considering that all processes included in Equation (5) are Gaussian with zero mean,
we obtain that the mathematical expectation of the observation 〈u(t)〉 = 0. Considering the
mutual uncorrelation of the signal and noise, we write the expression for the correlation
function as follows:

Ru(t1, t2) = 〈u(t1)u(t2)〉 =
∫
D

∫
D

〈
ss

(
t1,
→
r 1

)
ss

(
t2,
→
r 2

)〉
d
→
r 1d

→
r 2+

+〈nr(t1)nr(t2)〉+ 〈n(t1)n(t2)〉 = Rs(t1, t2) + Rnr(t1 − t2) + Rn(t1 − t2).
(10)

In Equation (10), the partial correlation functions of noises have the following forms:

Rnr(t1 − t2) = 〈nr(t1)nr(t2)〉 =
∞∫
−∞

∞∫
−∞

η(t1 − t′)η(t2 − t′′ )〈n(t′)n(t′′ )〉dt′ dt′′ =

= Nr

∞∫
−∞

η(t1 − t′)η(t2 − t′)dt′ = NrRη(t1 − t2),
(11)

Rη(t1 − t2) = Rη(τ) =
∞∫
−∞

η
(
t1 − t′

)
η
(
t2 − t′

)
dt′ =

∞∫
−∞

η(t)η(t− τ)dt,

Rn(t1 − t2) = 〈n(t1)n(t2)〉 = Nδ(t1 − t2) (12)



Computation 2022, 10, 150 6 of 16

The expression for the correlation function of the signal can be found through the
spectral representation of the signal:

Rs(t1, t2) =
1
2
∫

D

∫
D

∫ ∞
−∞

∫ ∞
−∞

.
G
(→

r 1, fa

) .
G
∗(→

r 2, fb

)〈 .
F
(→

r 1, fa

) .
F
∗(→

r 2, fb

)〉 .
Π(fa)

.
Π
∗
(fb)

∫ ∞
−∞

∫ ∞
−∞

.
P(fa − f1)

.
P
∗
(fb − f2)×

×
〈 .

N(f1)
.

N
∗
(f2)

〉
df 1df2 e−j2πfa (t1−td(

→
r 1))ej2πfb (t2−td(

→
r 2))dfad

→
r 1dfbd

→
r 2 = 1

2 N
∫

D

∫
D

∫ ∞
−∞

∫ ∞
−∞

.
G
(→

r 1, fa

) .
G
∗(→

r 2, fb

)
×

×σ0
(→

r 1 −
→
r 2, f a − f b

) .
Π(f a)

.
Π
∗
(f b)

∫ ∞
−∞

.
P(fa − f)

.
P
∗
(fb − f)df e−j2πfa (t1−td(

→
r 1))ej2πfb (t2−td(

→
r 2))df adf bd

→
r 1d

→
r 2.

(13)

In Equation (13), it is taken into account that the complex radar cross-section correlation

function is associated in space and frequency, i.e., it is written in form
〈 .

F
(→

r 1, fa

) .
F
∗(→

r 2, fb

)〉
=

σ0
(→

r 1−
→
r 2, fa− fb

)
. Parameter σ0

(→
r 1−

→
r 2, fa− fb

)
is the radar cross-section of the un-

derlying surface as a function of frequency and space mismatch. The issue of concretizing
the analytical expression for σ0

(→
r 1−

→
r 2, fa− fb

)
is quite complex and requires the solution

of direct problems of radio physics. In many real situations, it is possible to assume that
σ0
(→

r 1−
→
r 2, fa− fb

)
= σ0

(
fa− fb,

→
r 1

)
δ
(→

r 1−
→
r 2

)
, i.e., the effective scattering surface is

uncorrelated in spatial coordinates. This can happen in practice when a real (non-mirror) under-
lying surface is irradiated with a millimeter wave range. Then the correlation function (13) can
be written as follows

Rs(t1, t2)|σ0(fa−fb)δ(
→
r 1−

→
r 2)

= 1
2 N
∫

D

∫ ∞
−∞

∫ ∞
−∞

.
G
(→

r , fa

)
G∗
(→

r , fa − ∆f
)
σ0
(

∆f,
→
r
) .

Π(fa)
.

Π
∗
(fa − ∆f)×

×
∫ ∞
−∞

.
P(fa − f)

.
P
∗
(fa − ∆f− f)df e−j2π(∆f t1+(fa−∆f)τ)ej2π∆f td(

→
r )dfad∆f d

→
r .

Based on the obtained formulas, let us write down the final form of the observation
correlation function:

Ru(t1, t2) = Rs(t1, t2)|σ0(fa−fb)δ(
→
r 1−

→
r 2)

+ Rnr(t1 − t2) + Rn(t1 − t2) =
1
2 N
∫

D

∫ ∞
−∞

∫ ∞
−∞

.
G
(→

r , fa

) .
G
∗(→

r , fa − ∆f
)
×

×σ0
(

∆f,
→
r
) .

Π(fa)
.

Π
∗
(fa − ∆f)

∫ ∞
−∞

.
P(fa − f)

.
P
∗
(fa − ∆f− f)dfe−j2π(∆f t1+(fa−∆f)τ)ej2π∆f td(

→
r )dfad∆f d

→
r +

+Nr

∞∫
−∞

η(t)η(t− τ)dt + Nδ(τ).

(14)

Equation (14) analysis makes it possible to make an important conclusion. The average
value of the observation is zero 〈u(t)〉 = 0, and the correlation function (14) contains
information about both the signal delay time and the radio pulse envelop, which are
converted into the desired parameter—the range.

To solve the problem of the signal processing algorithm synthesizing we use the
maximum likelihood method. In this case, there is a possibility of determining the altitude
parameter according to one of the two variants of range estimation; differentiation of the
likelihood function by the delay time, or by the radio pulse envelope. Within the scope of
this work, the search for the algorithm is carried out by differentiation by delay time.

In this work we write the natural logarithm of the likelihood function in the following form:

ln P
[
u(t)

∣∣∣ td

(→
r
)]

= ln k
(

td

(→
r
))
− 1

2

T∫
0

T∫
0

u(t1)Wu

(
t1, t2, td

(→
r
))

u(t2)dt1dt2, (15)

where k
(

td

(→
r
))

is a coefficient, the derivative of which depends on the information

parameter; Wu

(
t1, t2, td

(→
r
))

is a function, which is the inverse of the correlation function
(14) and is found from the solution of the inversion equation∫ T

0
Ru(t1, t2)Wu(t2, t3)dt2 = δ(t1 − t3) (16)
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When solving the problem, it should be noted the difficulties that naturally arise due
to the fact that the underlying surface can be significantly uneven and contain significant
differences in height within the area irradiated by the radiation pattern.

3. Results
3.1. Delay Time Estimation Algorithm Synthesis

To obtain the signal processing algorithm, we differentiate Equation (15) by the desired
parameter and equate the differentiation result to zero. That is, it is necessary to solve the
following equation

δ ln P
[
u(t)

∣∣∣ td

(→
r
)]

δt′d
(→

r
) = 0 (17)

where δ

δtd

(→
r
) is a functional derivative of the delay time, as a function of the underlying

surface coordinates.
Considering that it is possible to obtain the solution of the inversion Equation (16)

in an explicit form for a rather limited class of correlation functions, we will perform
calculations in the frequency or time–frequency domain [28]. To do this, we will rewrite the
correlation function in the frequency (frequency–time) domain. This is due to the fact that
all the factors under the integrals are symmetrical in terms of the function’s frequency. Let
us find the Fourier transformation of the correlation function and write the power spectral
density as follows:

GR(f, t1) = Fτ
{

Ru(t1, τ)|
σ0(∆f)δ(

→
r 1−

→
r 2)

}
= Gs(f, t1) + Gnr(f) + Gn(f) (18)

where

Gs(f, t1) = Fτ
{

Rs(t1, τ)|
σ0(∆f)δ(

→
r 1−

→
r 2)

}
= 1

2 N
∫

D

∫ ∞
−∞

.
G
(→

r , ∆f− f
) .

G
∗(→

r ,−f
)
σ0
(

∆f,
→
r
) .

Π(∆f− f)
.

Π
∗
(−f)×

×
∫ ∞
−∞

.
P
(
∆f− f− f′

) .
P
∗(
−f− f′

)
df′ e−j2π∆f t1ej2π∆f td(

→
r )d∆f d

→
r ,

(19)

Gnr(f) = Fτ{Rnr(τ)} = Nr

∣∣∣ .
Π(f)

∣∣∣2, (20)

Gn(f) = Fτ{Rn(τ)} = N
∞∫
−∞

δ(τ)e−j2πfτdτ = N. (21)

The inversion Equation (16) for a non-stationary process in the spectral domain is
found in the following form:

GW(t3,−f) = 2
ej2πf(t1−t3)

GR(t1, f)
(22)

The inversion Equation (22) in the frequency domain for the statistical characteristics of
non-stationary processes is obtained for the first time. Here, the minus sign at the frequency
can be omitted since the autocorrelation function of observation is an even function.

The likelihood equation in the time domain can be written as follows:

− 1
2

T∫
0

T∫
0

δR
(

t1, t2, td

(→
r
′))

δtd

(→
r
) W

(
t1, t2, td

(→
r
′))

dt1dt2 −
1
2

T∫
0

T∫
0

u(t1)
δW
(

t1, t2, td

(→
r
′))

δtd

(→
r
) u(t2)dt1dt2 = 0. (23)
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To solve this equation, it is necessary to determine the expression for function

W
(

t1, t2, td

(→
r
′))

. Let us rewrite likelihood equation in the spectral domain. For this,
the following preliminary calculations are performed:

1
2

T∫
0

T∫
0

δR
(

t1, t2, td

(→
r
′))

δtd

(→
r
) ∞∫

−∞

GW

(
t1, f, td

(→
r
′))

ej2πft2dfdt1dt2 =
1
2

T∫
0

∞∫
−∞

δĜR

(
t1, f, td

(→
r
′))

δtd

(→
r
) GW

(
t1, f, td

(→
r
′))

dfdt1, .

1
2

T∫
0

T∫
0

u(t1)
δW
(

t1, t2, td

(→
r
′))

δtd

(→
r
) u(t2)dt1dt2 =

1
2

T∫
0

u(t1)

∞∫
−∞

δGW

(
t1, f, td

(→
r
′))

δtd

(→
r
) .̂

U
∗
(j2πf)dfdt1,

where
.̂

U
∗
(j2πf) =

T∫
0

u(t2)ej2πft2dt2

and the sign «ˆ» does not denote the true value of the spectrum or spectral density, but
its an estimate obtained through the Fourier transformation of a limited observation or
correlation function realization.

Now let us write the likelihood equation in the time–frequency domain:

− 1
2

T∫
0

∞∫
−∞

δĜR

(
t1, f, td

(→
r
′))

δtd

(→
r
) GW

(
t1, f, td

(→
r
′))

dfdt1 −
1
2

T∫
0

u(t1)

∞∫
−∞

δGW

(
t1, f, td

(→
r
′))

δtd

(→
r
) .̂

U
∗
(j2πf)dfdt1 = 0. (24)

Substitute Equation (22) into the likelihood Equation (24) and take into account that

GW(tm,−f) = 2
ej2πf(tn−tm)

GR(tn, f)

∣∣∣∣∣
m=n

=
2

GR(tm, f)

We obtained the following calculation result:

−
T∫

0

∞∫
−∞

δĜR

(
t1, f, td

(→
r
′))

δtd

(→
r
) 1

GR

(
t1, f, td

(→
r
′))dfdt1 −

T∫
0

u(t1)

∞∫
−∞

 δ

δtd

(→
r
) 1

GR

(
t1, f, td

(→
r
))
 .̂

U
∗
(j2πf)dfdt1 = 0 (25)

Next, we find the derivatives that are included in Equation (25). To do this, we use
spectral densities (18) and (19). The derivative of the power spectral density (18) has the
following form:

δĜR

(
t1,f,td

(→
r
′))

δtd

(→
r
) = lim

α→0
d

dα ĜR

(
t1, f, td

(→
r
′)

+αδ
(

td

(→
r
′)
− td

(→
r
)))

= jπN
∫ ∞
−∞ ∆f

.
G
(→

r , ∆f− f′′
)
×

×
.

G
∗(→

r ,−f′′
)
σ0
(

∆f,
→
r
) .

Π(∆f− f′′ )
.

Π
∗
(−f′′ )

∫ ∞
−∞

.
P(∆f− f′′ − f)

.
P
∗
(−f′′ − f)df e−j2π∆f (t1−td(

→
r ))d∆f.

(26)

The derivative of the power spectral density, which is the inverse of the observation
signal power spectral density (taking into account Equation (26)), can be written as follows:

δ

δtd

(→
r
) 1

ĜR

(
t1,f,td

(→
r
′)) = − j2πN

Ĝ2
R

(
t1,f,td

(→
r
′))∫ ∞

−∞ ∆f
.

G
(→

r , ∆f− f′′
) .

G
∗(→

r ,−f′′
)
σ0
(

∆f,
→
r
)
×

×
.

Π(∆f− f′′ )
.

Π
∗
(−f′′ )

∫ ∞
−∞

.
P(∆f− f′′ − f)

.
P
∗
(−f′′ − f)dfe−j2π∆f (t1−td(

→
r ))d∆f.

(27)

Substitute Equations (26) and (27) into Equation (25) and obtain the likelihood equation
in the frequency–time domain
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T∫
0

∞∫
−∞



∫ ∞
−∞ ∆f

.
G
(→

r , ∆f− f
) .

G
∗(→

r ,−f
)

×σ0
(

∆f,
→
r
) .

Π(∆f− f)
.

Π
∗
(−f)

×
∫ ∞
−∞

.
P
(
∆f− f− f′

)
×

.
P
∗(
−f− f′

)
df′e−j2π∆f (t1−td(

→
r ))d∆f


GR

(
t1,f,td

(→
r
′)) dfdt1 =

T∫
0

u(t1)
∞∫
−∞

1
Ĝ2

R

(
t1,f,td

(→
r
′))∫ ∞

−∞ ∆f
.

G
(→

r , ∆f− f
)
×

×
.

G
∗(→

r ,−f
)
σ0
(

∆f,
→
r
) .

Π(∆f− f)
.

Π
∗
(−f)

∫ ∞
−∞

.
P
(
∆f− f− f′

) .
P
∗(
−f− f′

)
df′ ×

.
P
∗
(−f′′ − f)dfe−j2π∆f (t1−td(

→
r ))d∆f.

(28)

For further calculations, we introduce the following notation:

.
Q
(→

r ,−f, t1 − td

(→
r
))

=
∫ ∞

−∞
∆f

.
G
(→

r , ∆f− f
)
σ0
(

∆f,
→
r
) .

Π(∆f− f)
∫ ∞

−∞

.
P
(
∆f− f− f′

) .
P
∗(
−f− f′

)
df′ e−j2π∆f (t1−td(

→
r ))d∆f,

Q
(→

r , td

(→
r
))

=

T∫
0

∞∫
−∞

 .
G
∗(→

r ,−f
) .

Π
∗
(−f)

×
.

Q
(→

r ,−f, t1 − td

(→
r
)) 

GR

(
t1, f, td

(→
r
′)) dfdt1.

The function Q
(→

r , td

(→
r
))

contains information about the delay time from each
elementary section (within the area irradiated by the radiation pattern) of the underlying
surface. Usually, for the practical use of altimeters, it is necessary to have a delay time
from the nearest point, which can be obtained through integration over the irradiation area,
that is, to change Q

(→
r , td

(→
r
))

to
∫
D

Q
(→

r , td

(→
r
))

d
→
r = Q(td). Then Equation (28) can be

rewritten as follows

Q(td) =
∫
D

T∫
0

u(t1)
∞∫
−∞

.
Π
∗
(−f)

.
G
∗(→

r ,−f
)

Ĝ2
R

(
t1,f,td

(→
r
′)) ∫ ∞

−∞ ∆f
.

G
(→

r , ∆f− f
)
σ0
(

∆f,
→
r
) .

Π(∆f− f)×

×
∫ ∞
−∞

.
P
(
∆f− f− f′

) .
P
∗(
−f− f′

)
df′ × e−j2π∆f (t1−td(

→
r ))d∆f

.
U
∗
(j2πf)dfdt1d

→
r .

(29)

For further physical interpretation of the signal processing algorithm in the right part
of likelihood Equation (29), we introduce some physically based assumptions:

(1) The amplitude–phase current distribution in the antenna aperture is uniform. Then
the radiation pattern of the antenna in the coordinates of the underlying surface can
be represented by an expression

G
(
x′, f
)
= G

(
x′(ϑx), f

)
= G

(
h

cosα
cosγ

, f
)
=

f X
c

sin c
(
πh

cosα
cosγ

f X
c

)
(30)

where fx/c is an analogue of spatial frequencies, which in ultra-wideband radar depends
on both spatial coordinates and frequency; x ∈ [−X/2, X/2]; X is the size of the antenna
along the axis 0x. It should be noted that according to Equation (30), the radiation pattern
becomes more directional as the frequency increases, because the size of the antenna in
wavelengths increases;

(2) The function σ0
(

∆f,
→
r
)

for most real surfaces is described by polynomials, but for
the interpretation of the algorithm it is sufficient to consider it as a constant, i.e.,
σ0
(

∆f,
→
r
)
= 1;

(3) The range of operating frequencies is limited by the function
.

Π(f), which can be
considered uniformly passable in the frequency range from Fmin to Fmax:
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Π(f) =
{

1 Fmin ≤ |f| ≤ Fmax;
0 |f| < Fmin& |f| > Fmax.

(4) Let the radio pulse envelop be uniform, then

∫ ∞

−∞
P
(
∆f− f− f′

)
P
(
f + f′

)
df′ = T2sin c(πf T)

Taking into account the introduced assumptions, the inner part of the integral (29),
which can be represented in the following form

f X2T2

c2 sin c
(
πh

cosα
cosγ

· −f X
c

)
.

Π
∗
(−f)e−j2πf (t1−td(

→
r ))

.
M
(

t1 − td

(→
r
))

,

is a time–frequency–space function that describes the part of the decorrelating filter, where

.
M
(

t1 − td

(→
r
))

=
∫ ∞

−∞
∆f(∆f− f)× sinc

(
πh

cosα
cosγ

· (∆f− f)X
c

)
.

Π(∆f− f)sin c(π(∆f− f)T)e−j2π(∆f−f) (t1−td(
→
r ))d∆f.

Then likelihood Equation (29) should be represented as follows:

Q(td) =
∫
D

T∫
0

u(t1)

∞∫
−∞

.
Z
(

f,
→
r , t1 − td

(→
r
)) .

U
∗
(j2πf)e−j2πf (t1−td(

→
r ))dfdt1d

→
r =

∫
D

T∫
0

u(t1)uZ

(
t1 − td

(→
r
))

dt1d
→
r , (31)

where uZ

(
t1 − td

(→
r
))

is the observation after decorrelation in a filter with an amplitude–
frequency response

.
Z
(

f,
→
r , t1 − td

(→
r
))

=

.
Π
∗
(−f)

.
G
∗(→

r ,−f
)

Ĝ2
R

(
t1,f,td

(→
r
′)) ∫ ∞

−∞ ∆f
.

G
(→

r , ∆f− f
)
σ0
(

∆f,
→
r
)
×

×
.

Π(∆f− f)
∫ ∞
−∞

.
P
(
∆f− f− f′

) .
P
∗(
−f− f′

)
df′ e−j2π(∆f−f) (t1−td(

→
r ))d∆f.

(32)

The right part of Equation (31) contains a signal processing algorithm to determine
a function that depends on the delay time. However, considering the peculiarities of the
ultra-wideband signals used in the problem being solved, it is necessary to further consider
this algorithm, taking into account the following considerations. The internal correlation

integral
T∫
0

u(t1)uZ

(
t1 − td

(→
r
))

dt1 is always close to zero, except for the case when the

condition t1 − td

(→
r
)
= t1 is fulfilled. In addition, we neglect the decorrelation operation

and move from uZ

(
t1 − td

(→
r
))

to u
(

t1 − td

(→
r
))

. Then Equation (31) can be represented
as follows:

Q(td) =
∫
D

T∫
0

u2
(

t1 − td

(→
r
))

dt1d
→
r =

∣∣∣∣∣∣∣∣∣∣∣

t1 − td

(→
r
)
= z

dt1 = dz
t1 = 0 z = −td

(→
r
)

t1 = T z = T− td

(→
r
)

∣∣∣∣∣∣∣∣∣∣∣
=
∫
D

d
→
r

T−td(
→
r )∫

−td(
→
r )

u2(z)dz. (33)

Algorithm (33) actually involves the calculation of a parameter proportional to the
signal energy, and the averaging of the received energies from all areas of the underlying
surface. However, here there is an uncertainty about the need to immediately calculate the
detection threshold of the reflected signal with energy calculation in order to distinguish
it from the background of the receiver’s noise energy. In practice, this threshold can be
chosen based on heuristic considerations.
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3.2. Simulation Results

The structural diagram of the radar used for simulation is shown in Figure 2. The work
of the model is as follows. The Envelop Pulse block generates an envelope of a noise pulse
signal, which is then sent to the Signal Noise Generator block, which forms a wideband
pulse stochastic signal. The generated radio pulse passes through the Signal propagation
medium unit. In this unit, the signal is delayed for a time equivalent to a distance to the
underlying surface of 1476 feet. This block also takes into account the dissipative properties
of the signal propagation medium, as well as the fact that the radio pulse is reflected from
the extended surface. The delayed signal is made noisy by the Internal Noise block and
goes to the Signal Processing block, which performs the transformation in accordance with
the algorithm (33). As mentioned earlier, algorithm (33) does not allow direct estimation
of the range or the corresponding signal delay time. Thus, an envelope is observed at the
output of the Signal processing block, which is further detected and based on which the
delay time and the corresponding altitude to the underlying surface are calculated.
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The diagrams of the circuit operation, which describe the previously mentioned
sequence, are shown in Figure 3, and the result of the circuit operation is shown in Figure 4.
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According to the obtained results in Figures 3 and 4, it follows that considering the
dissipative properties of the atmosphere and reflection from an extended source leads to
the spreading of the pulse in time (Figure 3c). The envelope of the signal at the radar output
has also changed its shape and its falling front is more like an exponential function.

Similar changes will be observed in the case when there is a significant difference in
height within the area that reflects the signal (for example, the “forest-grassland” border).
However, this fundamentally does not change the result and the height measurement will
take place to the nearest front of the reflector.

The conducted modeling allows us to state that the synthesized signal processing
algorithm and the scheme implemented in accordance with it fully meet the formulated
task. It should also be noted that the altimeter determines the altitude according to the
value specified during modeling with a certain error.

4. Discussion

One of the promising paths in the development of many types of modern radar
systems is the transition from narrow-band deterministic to wide- and ultra-wideband
stochastic probing signals. In airborne radio altimeters, such a transition can increase the
accuracy of determining the required altitude parameter and significantly improve the
overall noise immunity of the complex. However, such changes require a more detailed
study and search for optimal and quasi-optimal signal processing algorithms, which is the
subject of this article.

The calculation of the optimal signal processing algorithm for the mentioned system is
performed using the maximum likelihood method. To obtain reliable results, this method
requires the most accurate determination of the initial data, namely, the models of useful
signals and noises used, their statistical characteristics and general physically reasoned
assumptions. All initial data and preliminary calculations are presented in the second
section of the article.

It should be noted that the transition from deterministic probing signals to stochastic
ones has significantly complicated the overall solution of the optimization problem. There-
fore, the desired delay time parameter (or advisory altitude) is usually present explicitly in
the likelihood functional for the case of deterministic signals. However, for the current case
of a stochastic probing signal, the formalization of the delay time is significantly compli-
cated by the impossibility of representing the reference signal in the form of a model or an
analytical record. As a result, in the likelihood Equation (28) there is no explicit delay time
td

(→
r
)

, and the altitude calculation is possible using indirect parameters that depend on it.
Thus, the resulting optimal algorithm (31) and quasi-optimal algorithm (33) provide for
the delay time determination based on the received signal envelope Q(td) calculation. The
obtained result is well consistent with practice since many modern pulsed radar systems
are also based on detecting the envelope of the received signal and further calculating the
time between the signal emitted and received.
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The main difference between the obtained optimal (31) and quasi-optimal (33) algo-
rithms is the decorrelation operation of the received signal in a decorrelating filter with
frequency response (32). The decorelation operation in the algorithm (31) improves the
potential signal envelope Q(td) calculating accuracy, but its implementation in practice
is extremely difficult due to the high complexity of obtaining all the decorrelating filter
parameters in real time, for example, the current radar cross-section σ0

(
∆f,
→
r
)

of the un-
derlying surface. Therefore, in practice, it is advisable to implement algorithm (33), which
is devoid of decorating filtering and requires only averaging the energies of the signals
received from all sections of the underlying surface. This greatly simplifies the technical
implementation at the cost of negligible loss in accuracy. However, determining the degree
of degradation in accuracy requires additional research and is not the goal of this work.

The overall performance of the quasi-optimal algorithm (33) is verified by simulation
using the simulation model shown in Figure 2. The general principle of the flight altitude
determination algorithm is to calculate the delay time between the envelope of the emitted
stochastic radio pulse and the envelope of the received one, which for the simulation case
are shown in Figure 4. Therefore, the delay between the two envelopes is approximately
3× 10−6 s, that can be converted into an altitude in feet using the well-known formula

H = 3.28084
ctd
2

.

In the simulation, the calculated altitude is 1476 feet, that is displayed on the altimeter
block in Figure 2. From the obtained simulation results, we can conclude that the signal-
processing algorithm (33) is operable, however, it requires the introduction of an additional
operation to determine the delay time between the envelopes of the emitted and received
radio pulses, and also assumes that the detection threshold of the received signal is known.
These features can be attributed to the shortcomings of the Equation (33) implementation;
however, in the practical implementation of radars, it is not difficult to implement a
block for accurately determining the delay time between envelopes. The threshold for
detecting the envelope of the received signal is also often determined heuristically. Thus,
the implementation of an altimeter with the signal processing algorithm (33) is possible,
and the accuracy of the altitude determining will largely depend on the selected received
signal detecting threshold and on the accuracy of the block for determining the delay time.

It should also be noted that the obtained structure of the radar, with the exception
of the use of broadband stochastic probing signals and the corresponding high-frequency
paths, largely corresponds both to the theory of other authors [14], and to the existing serial
samples of airborne altimeters [29,30].

Future research development. As part of further work, calculations of the potential
accuracy of the obtained algorithm will be performed. Also, taking into account that the
use of serial samples of radio electronic devices is quite relevant today in the technical
implementation of receivers, the task of synthesizing the altitude estimation algorithm
for a given system with a partially given structure of the input path will be considered.
Currently, an experimental model of a radio altimeter operating in the wavelength range of
3 mm is being developed, which will allow to examine the general possibility of practical
implementation of the obtained algorithms, as well as to determine the peculiarities of their
implementation in final systems.

5. Conclusions

In this paper, for the first time, an algorithm for processing wideband pulsed stochastic
signals in a radio altimeter is synthesized using the maximum likelihood method. The use
of wideband signals in the given system led to some difficulties in solving the problem.
Firstly, it concerns the difficulty of formalizing the delay time parameter in the likelihood
functional for a noisy reference signal, since it could not be represented in the form of
a model or an analytical equation. At the same time, due to the pulse signal being non-
stationarity, it became necessary to calculate the corresponding inversion equation, that is
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performed for the first time. However, regardless of the formal difficulties in the approach
to solving the problem, the synthesized signal processing algorithm is quite clear both for
analysis and for its further technical implementation.

In accordance with the obtained algorithm, a simulation model of the radar is de-
veloped, and its simulation is carried out considering the unevenness of the underlying
surface and the dispersed properties of the signal propagation medium. It is worth noting
that the resulting algorithm does not allow direct estimation of the delay time parameter
or the corresponding distance to the underlying surface, but only evaluates the envelope
of the received signal. Therefore, its practical implementation should provide additional
algorithms for estimating the delay time to the detected envelope. However, the result-
ing algorithm is quite convenient and understandable for technical implementation on a
modern radio element base.
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