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Private companies, government entities, and institutions such as hospitals routinely gather
vast amounts of digitized personal information about the individuals who are their
customers, clients, or patients. Much of this information is private or sensitive, and a key
technological challenge for the future is how to design systems and processing techniques
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for drawing inferences from this large-scale data while maintaining the privacy and security
of the data and individual identities. Individuals are often willing to share data, especially
for purposes such as public health, but they expect that their identity or the fact of their
participation will not be disclosed. In recent years, there have been a number of privacy
models and privacy-preserving data analysis algorithms to answer these challenges. In this
article, we will describe the progress made on differentially private machine learning and
signal processing.

INTRODUCTION
There are many definitions and models for privacy-preserving computation, and a recent
survey by Fung et al. compares several different approaches [1]. Many of these models have
been shown to be susceptible to composition attacks, in which an adversary observing the
output of the algorithm exploits prior knowledge to reidentify individuals [2]. For example,
the adversary could use publicly available records such as voting polls [3]. Defining privacy
is not simple, and the words privacy, confidentiality, and security have many different
meanings across different communities. It has become increasingly clear that there is no real
separation between individuals’ identity and their data—the pattern of data associated with
an individual is itself uniquely identifying.

Differential privacy is a cryptographically motivated definition of privacy [4] that has
gained significant attention over the past few years in the machine-learning and data-mining
communities. There are a few variant definitions [5]–[7], but for the purposes of this survey,
differential privacy measures privacy risk by a parameter ε that bounds the log-likelihood
ratio of the output of a (private) algorithm under two databases differing in a single
individual's data. When ε is small, the inferences that an adversary can make observing the
output of the algorithm will be similar regardless of whether that individual is in the data set
or not. There have been other surveys of differential privacy literature; in particular, Dwork
and Smith's survey [8] covers much of the earlier theoretical work. The privacy guarantees
made in differential privacy are statistical in nature and are different than those based on
cryptography [9] or information theory [10].

Initial work on differential privacy was motivated by problems in official statistics such as
publishing “sanitized” data tables. A different approach is the interactive query model: a
user poses queries to a curator of the database who then provides approximate answers. The
approximation is designed to protect the privacy of individual data entries. From these two
settings, the literature has spread to cover more complex data processing algorithms such as
real-time signal processing [11]–[13], classification [14]–[16], dimensionality reduction
[17], [18], and auction design [19].

DIFFERENTIAL PRIVACY IS A CRYPTOGRAPHICALLY MOTIVATED
DEFINITION OF PRIVACY THAT HAS GAINED SIGNIFICANT ATTENTION
OVER THE PAST FEW YEARS IN THE MACHINE-LEARNING AND DATA-
MINING COMMUNITIES.

In these applications, the key challenge is evaluating the impact of the privacy constraint on
the performance or utility of the algorithm. Privacy is in tension with utility; a completely
private algorithm releases nothing. However, if the available data set contains many
individuals, there is a tradeoff between the privacy guarantee ε, utility, and the number of
data points (or sample size) n. This tradeoff will, in general, depend on properties of the
data, such as its dimension, range, or sparsity. The choice of how to measure utility differs
across application areas. For example, for statistical estimation, we may measure the quality
of the estimate by mean-squared error (MSE), whereas for classification, we may measure
the expected loss. Calculating the achievable privacy and accuracy levels for a given amount
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of data provides a way of comparing different differentially private algorithms for the same
task.

While the theory of differential privacy has undergone significant development, there is
substantial work left to be done to extend the framework to practical applications. In
particular, much of the theory has been developed for data taking discrete values, and there
are many challenges raised by continuous data, ranging from the implementation of
differentially private algorithms [20] to theoretical foundations [21]. In this tutorial, we will
focus on differentially private statistical methods and algorithms that operate on continuous
data. We will describe statistical estimators, classification procedures, dimensionality
reduction techniques, and signal processing techniques.

The theory for differential privacy using continuous data is different than for discrete data.
For example, learning classifiers is easier with discrete data. If the number of possible
classifiers, or hypotheses, is finite or the data is discrete, learning the best classifier is
possible if the number of data points n grows logarithmically with the size of the hypothesis
set or the data domain [22], [23]: for data in {0, 1}d, the sample size n must grow linearly
with d. On the other hand, when data is allowed to be continuous and the hypothesis class is
allowed to be infinite, distribution-free learning is impossible [24]: either we need prior
knowledge about the data distribution, or n will depend on the data distribution. Thus there
is no uniform upper bound on the sample requirement. This holds even for simple classes
such as learning thresholds and linear classifiers: in the absence of a privacy constraint, we
can pick an n such that we learn the true hypothesis for any data distribution, but to learn the
true hypothesis with differential privacy we must choose n as a function of the data
distribution.

Techniques from signal processing have the potential to greatly expand differentially private
algorithms for continuous data. Our focus on continuous data means we will not discuss the
many active research topics in differential privacy for discrete data—in particular, we will
not discuss some of the progress made in software systems engineering for differential
privacy [25]–[27], algorithms for computing histograms and contingency tables [28], [29],
or the large body of work on privacy-preserving data release (references can be found in
recent works [18], [30]).

LEARNING FROM SENSITIVE DATA
There are n records in the database , where each xi is a vector in  and
corresponds to the data of an individual i. The d elements of a vector x correspond to
different numerical features. We will assume that the ranges of these features are normalized
such that ∥x∥ ≤ 1, where ∥·∥ is the Euclidean norm. Although we are focusing on continuous
data in this survey, there is extensive literature on differentially private methods for discrete
data.

AN EXAMPLE
Suppose that each record x(i) represents the numerical readings from d different sensors that
are monitoring different quantities (temperature, heart rate) related to the health of a patient.
For simplicity, we will assume that each of the measurements has been normalized so that xi
∈ [0,1]d. Given readings from these sensors across a large group of n patients, we can ask
many statistical and signal processing questions. What is the average reading across the
population of a given feature? How are two of the features correlated with each other? Can
we predict one of the features from another? Do the data points lie (approximately) on a k-
dimensional subspace with k < d? We would like to answer these questions while satisfying
a quantifiable notion of privacy.
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DEFINING PRIVACY
Differential privacy seeks to provide guarantees about the process of computing functions
on sensitive data and has a number of features that make it an attractive approach to
quantifying privacy. Privacy is guaranteed by ensuring that the process is randomized with
the following promise: an algorithm is differentially private if the participation of any record
(corresponding to a single individual) in the database does not alter the probability of any
outcome by very much. This definition has many features: it is resistant to attacks to which
other privacy models are susceptible [2], it bounds the privacy risk to each individual, and it
degrades gracefully as an individual's data is used in multiple computations.

DEFINITION 1

An algorithm  taking values in a set  provides ε-differential privacy if

(1)

for all measurable  and all data sets  and  differing in a single entry. It provides
(ε, δ)-differential privacy if

(2)

for all  and all data sets  and  differing in a single entry.

Here we assume that each entry in the database  corresponds to a single individual.
Privacy parameters are ε and δ, and low ε and δ ensure more privacy [4], [21]. The second
privacy guarantee [31] is weaker, and reduces to the first one when δ = 0. Variants of (ε, δ)-
differential privacy such as (1, ε, δ)-indistinguishability [7] and δ-probabilistic privacy [32]
have also been considered in the literature; we focus on the most popular variant for our
purpose.

There are two important features of differentially private algorithms. First, if v is the output
of an ε-differentially private algorithm , then any function g(v) of the output also
guarantees ε-differential privacy. That is, postprocessing of the output does not change the
privacy guarantee, as long as that postprocessing does not use the original data. The second
key feature is how the privacy guarantees are affected by multiple computations on the data.

If we run algorithms  and  on the data with privacy guarantees ε1 and e2, then the

pair ( , ) guarantees differential privacy with privacy risk at most ε1 + ε2.
Somewhat better guarantees may be obtained if we are allowed (ε, δ)-differential privacy
[33].

GENERIC METHODS FOR DIFFERENTIAL PRIVACY
For a given algorithm or function , there are many general methods for generating
an approximation  of the algorithm that satisfies one of these privacy definitions. These
approaches are illustrated in Figure 1. The methods introduce the privacy-preserving
randomness in different ways, but most involve adding noise during some step of the
original algorithm . We describe below four key approaches for obtaining
differential privacy.
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INPUT PERTURBATION
Suppose we would like to provide the data from our body-network sensors to a third party.
The easiest method for guaranteeing differential privacy is to add noise to the data itself. If x
is a real d-dimensional vector, then a differentially private version of x is

(3)

where Z is a random d-dimensional vector with density

(4)

By adding this noise to each individual data vector xi in , we can guarantee that the
resulting database D̂ = (x̂1, x̂2, . . . , x̂n) is an ε-differentially private approximation to . In
the scalar case this corresponds to adding noise with a Laplace distribution. This is not the
only distribution that can guarantee differential privacy—in particular, for a given utility on
the output the noise distribution that maximizes utility while providing differential privacy
may have a different shape.

OUTPUT PERTURBATION
Suppose now that we wish to calculate the average of each of the sensor readings across the
population. In this situation, our desired algorithm  simply computes a function

 of the data, and we can obtain differential privacy by adding noise to . The
amount of noise we need to add depends on the sensitivity of the function f to changes in its
input. The global sensitivity is the maximum difference of the function over all pairs of
databases  and  differing in a sin gle individual

(5)

where ∥·∥ is the Euclidean norm. We can then compute an ε-differentially private
approximation of f:

(6)

where Z is a random d-dimensional vector with density

(7)

For example, to compute the average vector , the sensitivity S(f)=2/n.
This is the (global) sensitivity method [4], and there are many variants to handle other more
relaxed notions of sensitivity. For example, the smoothed sensitivity method [34] tries to
approximate a function f which has large S(f) only in the “worst case” by adding noise as a
function of a “smoothed” version of the sensitivity at the given .

EXPONENTIAL MECHANISM
Suppose we would like to publish a predictor of a patient's heart rate after an activity using k
readings of the heart rate during the activity. Given a set of linear predictors {Pk}, which are
publicly known, we would select one of them in a differentially private way. We can
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measure the quality of a linear predictor Pk of order k by the MSE M(P) of the predictions.
Using these measurements, we can determine k*, the k that maximizes . In this
setting, adding noise to the optimal k may not make sense, but the exponential mechanism
[35] gives a way of choosing an output biased toward having higher utility. Let

 measure the utility of the order-k predictor and define its sensitivity as

(8)

This is the maximum change in the quality for any output k and any database . The
exponential mechanism picks a random value of k with distribution

(9)

FOR DATA THAT LIES IN A BOUNDED DOMAIN, MANY BASIC
STATISTICS CAN BE EASILY COMPUTED WITH DIFFERENTIAL
PRIVACY AND RELATIVELY HIGH ACCURACY.

This approach, due to McSherry and Talwar [35], is very general and is not restricted to
selecting from discrete sets; it can be used whenever a natural performance measure 
exists for the algorithm . In many cases, sampling from the distribution in (9) is
easy, but for some  we do not know how to sample from the corresponding
distribution in polynomial time.

OBJECTIVE PERTURBATION
Suppose in our example that some of the patients we are monitoring had heart attacks. We
would like to classify future patients into high or low risk for heart attacks using the same
monitoring data. We can learn such a classifier using regularized convex optimization.
Chaudhuri et al. [14] introduced an approach that adds noise to the objective function of the
optimization to obtain a differentially private approximation. That is, given an algorithm

, which computes an output f via a minimization of a (strongly) convex function
, we can get a differentially private algorithm  by adding noise prior to

minimization

(10)

where the distribution of Z has the same shape as (4) in the previous examples, but the
coefficient in the exponent must be chosen as a function of the sensitivity of the
optimization [14].

If we use Gaussian noise for input, output, and objective perturbation, we can obtain
algorithms that will guarantee (ε, δ)-differential privacy—the parameters of the Gaussian
noise will depend on ε, δ, and the specific target function . In general, the sensitivity
parameters depend on the  that we want to approximate but not on the actual data 
that is given. The sample-and-aggregate framework [34] tries to relax this condition by
approximating the function value on subsets of the actual data; this may result in less noise
for many data sets. More recent work has focused on how to exploit properties of the data
(for example, incoherence [36], [37]) to develop algorithms that add less noise and have
better performance. Notable among these methods is the propose-test-release framework
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[38], which uses a differentially private test on the data to check if a property holds and then
picks an algorithm tuned to exploit this property.

DIFFERENTIAL PRIVACY IN STATISTICS
One of the most basic tasks in sensitive data analysis is the computation of basic descriptive
statistics, such as means, variances, and other parameters of the data distribution. In our
patient-monitoring example, we may wish to know the average resting heart rate of patients
or how heart rate correlates with activity level. Publishing the exact value does not preserve
differential privacy. For example, two data sets  and  differing in a single entry will have
different means, so the inequality (1) will not hold when  contains  but not

. To prevent such privacy violation, we can compute these statistics in a
differentially private way. We can often use standard methods such as those in Figure 1 to
guarantee differential privacy. For data that lies in a bounded domain, many basic statistics
can be easily computed with differential privacy and relatively high accuracy. When each
individual's data is a scalar xi ∈ [0, 1] and this interval is known in advance, many statistical
estimates can be made private and consistent [39]. Starting from the first works on
differential privacy, estimators have been proposed for statistics such as the mean [4],
median [34], covariance matrices [40], [41], and a wide range of nonparametric problems
[21], including density estimation [42].

EXAMPLE 1: SAMPLE MEAN
Suppose we wanted to compute the average heart rate across the patient population. For
bounded data, the global sensitivity method of [4] gives us a very simple differentially
private approximation to sample mean. If (x1, . . . , xn) is the input data set, then the estimate
is

where ε is the privacy parameter and Z is random noise drawn from a Laplace distribution
with unit variance. If n and ε are large, this provides a fairly accurate additive approximation
to the sample mean. Figure 2(a) shows a histogram of outputs of this procedure for a data set
of size n = 1,000 and for ε = 0.1. The same technique can be used to develop differentially
private approximations to variance and higher moments, that is, to all linear statistical
functionals.

EXAMPLE 2: SAMPLE MEDIAN
Suppose instead that we want to compute the median heart rate. The global sensitivity
approach, however, does not apply to the sample median because the global sensitivity of
sample median is high: in a data set with m zeros and m + 1 ones, switching a single element
can move the sample median from one to zero. Here we can use the exponential mechanism
to compute a differentially private approximation to the sample median for data drawn from
a bounded domain. For any y ∈ [0, 1], let Fn(y) be the empirical cumulative distribution
function of the input data (x1, . . . , xn). That is, Fn(y) is the fraction of data points xi for
which xi ≤ y. By choosing the quality function , we have S(q) = 1/
n. This quality function is maximized at the true median, and the variance of a sample drawn
from the exponential mechanism decreases with n. Sampling an estimate from the
distribution in (9) guarantees ε-differential privacy. Figure 2(b) illustrates the distribution of
outputs for this procedure for a data set of size n = 1,000 and ε = 0.1. A different algorithm
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for computing a differentially private approximation to the sample median that adds noise
proportional to the smoothed sensitivity was provided by Nissim et al. [34].

CONNECTION TO ROBUST STATISTICS
The success of individual statistical estimators raises the question of whether we can find
properties that make a statistical estimator easier to approximate under differential privacy.
It turns out that a key property is robustness. Robust statistics is a subfield of statistics that
studies the effect of contaminations and changes in the data on the performance of
estimators. Robust estimators are insensitive to changes in the data. For example, for data
drawn from an unbounded domain, the sample mean is not robust because a single outlier
can arbitrarily perturb the mean. On the other hand, the median is robust for distributions
where the density at the median is positive. There are several measures of robustness, and an
extensive literature on robust statistical estimation [43].

Dwork and Lei [38] identified a connection between robust statistics and differential
privacy, and introduced differentially private approximations to several robust statistical
estimators, including trimmed mean, interquartile range and regression. This connection was
made concrete by Chaudhuri and Hsu [44], who showed that the gross error sensitivity
(GES), a measure of robustness, dictates the finite sample convergence rate of a
differentially private approximation to any estimator T on a distribution F.

Given an estimator T and a distribution F, the influence function of T at F along x at scale ρ
is defined as

where δx is a point mass at x. The influence function can be intuitively thought of as a
directional derivative of T at F along the point mass at x at a step size of ρ. The GES of T at
F at scale ρ is defined to be GESρ(T, F) = supx | IFρ (T, F, x)|; thus the GES is the absolute
value of the maximum directional derivative. Chaudhuri and Hsu [44] prove two results.
First, they give a differentially private approximation to the plug-in estimator T(Fn) when T
has a bounded range—the additional error due to privacy grows as O(GESρ(T, F)/εn).
Second, they show that the convergence rate of any differentially private approximation to
T(F) has to grow as Ω(GESρ(T, F)/εn) either for F or for some F′ in a small neighborhood
around F. In both cases, the scale parameter ρ is O(1/εn). These results show that GES
characterizes how amenable an estimator is to differentially private approximation.

Lei [45] provided differentially private approximations of M-estimators, a class of robust
estimators, by quantizing the data and then building an estimator on a perturbed histogram.
Suppose, in our example, that all of the features have been normalized to lie in [0, 1] so the
data lie in [0, 1]d. The algorithm chooses a parameter hn, partitions the space into cubes of
side-length hn, computes an estimate of the data density by counting the fraction of points
lying in each cube, and adds Laplace noise to these counts to guarantee differential privacy.
Computing an M-estimator using this density estimate preserves differential privacy. Lei
shows hn appropriately the error of the estimator can be driven to 0 as n → ∞.

SIGNAL PROCESSING AND MACHINE LEARNING WITH PRIVACY
There is a growing body of research on privacy-preserving algorithms for machine-learning
and signal processing tasks. For example, there are algorithms for privacy-preserving
classification [14], [15], [46], [47], regression [16], [45], principal components analysis
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(PCA) [17], [37], [40], [48], boosting [33], and online learning [49]. A different framework
was proposed by Duchi et al. [50], who analyze statistical risk minimization via a noisy
(privacy-preserving) gradient descent procedure. There has been much work on the theory of
learning with differential privacy; in this section we instead focus on recent applied work
and open practical challenges in differentially private machine learning.

CLASSIFICATION AND REGRESSION
In our example, suppose that we would like to learn a rule for classifying patients into high-
or low-risk categories for a heart attack. Classification is a simple and fundamental machine-
learning task and, for discrete data, researchers have developed algorithms to compute
differentially private decision trees [51]–[53]. For continuous data, the most common
approach to classification is empirical risk minimization (ERM). For example, for logistic
regression, a regularized ERM procedure takes labeled data {(xi, yi): i = 1, 2, . . . , n} with

features  and labels yi ∈ {–1, +1} and finds vector f such that new points can be
labeled by sgn(fTx). This is done by solving the following minimization:

(11)

where ∥g∥2 is a regularizer to prevent overfitting and Λ is a tradeoff parameter. There have
been several approaches to differentially private classification. Output perturbation
computes the ERM solution in (11) and adds noise. Objective perturbation [14] solves a
modified version of the program

(12)

The noise Z guarantees differential privacy. To measure utility for classification we can
calculate the expected loss of the differentially private classifier. The theoretical guarantee
on the loss for objective perturbation is lower than that for output perturbation, which adds
noise to f in (11). Objective perturbation also has an empirical performance closer to the
non-private classifier f in (11). Follow-up work has expanded the class of functions for
which the classifier works [46], and the initial empirical evidence is promising [54], [55].
Another method for that is based on perturbing the objective function, the functional
mechanism, was recently proposed by Zhang et al. [16]. They claim, incorrectly, that
Chaudhuri et al. [14] solve a nonstandard form of logistic regression; however, their method,
based on adding noise to a Taylor-series approximation of (11), can also achieve lower
classification error than output perturbation. In general, differentially private approximations
(both output and objective perturbation) to the optimization in (11) guarantee differential
privacy for the exact minimizer. The effect of approximate computation from numerical
methods on the privacy guarantee is an open question.

DIMENSIONALITY REDUCTION
Another fundamental building block of machine-learning and signal processing systems is
dimensionality reduction. Data may be presented in high dimension, but the underlying
phenomenon may be fundamentally low dimensional. The simplest example of this is when
the data all lie on or close to a low-dimensional subspace of the original space. In this
setting, the singular value decomposition (SVD) of the data covariance matrix computes this
low-dimensional subspace—this is also known as the PCA algorithm. Given a set of n

vectors , where each  corresponds to the private data of one
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individual, let X = [x1, . . . , xn]T be the matrix whose rows are the data vectors {xi}, and A =
(1/n)XTX denote the d×d second moment matrix of the data. The SVD gives A = VTΛV,
where Λ is a d × d diagonal matrix with diagonal elements λ1(A) ≥ λ2(A) ≥ ··· ≥ λd(A) ≥ 0
and V is orthonormal. The top-k subspace of A is the first k rows of V, which we denote by
Vk(A).

There have been several proposed approaches to approximating the top-k PCA subspace
while preserving differential privacy. The sublinear queries (SULQ) method [40] adds noise
to the matrix A and then computes the SVD of the noisy matrix. Chaudhuri et al. [17]
propose using the exponential mechanism [35] to sample a random k-dimensional subspace
that approximates the top-k PCA subspace. This corresponds to sampling from the matrix
Bingham distribution, which has the density

(13)

where U is a k × d matrix whose rows are orthonormal. This distribution has maximal
density at U = Vk(A), and samples a random subspace which is close to the true subspace
[17], [48].

A major difficulty is sampling from the Bingham distribution. Because differential privacy
is a property of the output distribution, the privacy guarantees are contingent on accurately
sampling from the distribution. Kapralov and Talwar [48] propose an intricate procedure for
drawing samples according to (13) when k = 1, but the running time can become prohibitive
in the data dimension. Chaudhuri et al. propose using a Gibbs sampler [56], which is simple
to implement; unfortunately, there is no rigorous analysis of the convergence time of the
sampler. Developing a practical and exact sampler for this distribution is an open question.

ONE OF THE GOALS OF THIS ARTICLE IS TO INSPIRE ENGINEERS TO
TAKE SOME OF THE IDEAS FROM DIFFERENTIAL PRIVACY AND APPLY
IT TO THEIR SIGNAL PROCESSING PROBLEMS.

TIME SERIES AND FILTERING
One of the goals of this article is to inspire engineers to take some of the ideas from
differential privacy and apply it to their signal processing problems. There has been some
recent work connecting problems in signal processing and information theory to issues in
differential privacy. Rastogi and Nath [57] proposed a method for dealing with queries on
data sets where each individual's data is a time-series data, such as body weight. Their
approach performs differentially private perturbation of a query sequence in the Fourier
domain and uses homomorphic encryption to enable distributed noise addition. Fan and
Xiong [13] look at how to publish a differentially private version of a single time series by
learning a linear predictor and using Kalman filtering. To control the amount of privacy lost,
they adaptively choose whether to release the output of the differentially private predictor or
add Laplace noise to the true sample. This approach improves over the discrete Fourier
transform approach [57] in many cases.

Le Ny and Pappas [11], [12] recently studied differential privacy in a signal processing
framework. They studied the difference between input and output perturbation in the context
of aggregating signals and using Kalman filter estimation and show that in some cases noise
addition at the input is better due to the benefits of filtering. This stands in contrast to many
machine-learning examples in which noise addition at the input may incur too much
perturbation for learning to be possible.
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PRACTICAL ISSUES AND LIMITATIONS
The literature on differentially private algorithms is growing rapidly, but there are many
open questions that remain. While many of the theoretical results imply that estimating
statistics or learning while preserving differential privacy is possible [22], [39], some of
these results depend on technical assumptions [24], [58], such as discrete data, finite
hypothesis sets, or bounded range, which may not hold in all settings. Understanding the
fundamental limits for continuous data may shed some light on which signal processing
tasks are possible under differential privacy.

A more immediate issue is how to choose ε and and δ in the first place. It is clear that
smaller ε and δ guarantee more privacy [4], and while there are heuristics [8] for choosing ε,
interpreting the privacy risk for practitioners is challenging. Because a single data set may
be used in multiple computations, the composition rule for privacy implies that we should
choose a total ε for all computations on the data and “budget” privacy for each computation.
There is little consensus on how to choose δ for (ε, δ) differential privacy: experiments often
use small but constant δ but Ganta et al. [2] suggest δ much less than 1/n2 is more
appropriate.

For a given privacy level ε, we need a larger sample size n to achieve the same level of
utility or approximation error. For smaller sample sizes, the randomization for differential
privacy can some times be prohibitive [29]. In such settings it may not be possible to
provide a meaningful level of differential privacy. In some applications, such as medical
data mining, the amount of data n is fixed, and the question becomes one of finding the
lowest ε such that the sacrifice in utility is acceptable.

The privacy definitions rely on an idealized model of computation. Recent work has shown
that standard implementations of floating point arithmetic may be problematic from a
privacy perspective [20]. Since every computation has to be made differentially private,
more complex systems such as PINQ [25], AIRAVAT [26], and GUPT [27] may only work
with a large value of ε. Even so, there are privacy risks arising from how these systems are
implemented, in particular, the time it takes to respond to a query can disclosed information
[59].

FUTURE CHALLENGES
Ideas from differential privacy are already beginning to influence some systems, but many
theoretical and practical challenges remain. Some core topics in signal processing are being
explored now, and the rich body of expertise in the signal processing community can help
spur the development of new privacy-preserving data processing algorithms and systems.
The literature on differential privacy is growing rapidly, and we were only able to touch on a
few topics here. We hope that interested readers will investigate the wide range of topics
that have been studied through the lens of differential privacy.

From a signal processing perspective, there are several directions that should be explored in
future research. First, in many signal processing applications, signal acquisition is part of the
design; an open question is how to best integrate privacy considerations while measuring the
signal. For example, how should we represent the signal if it is later going to be used in a
differentially private system? Can we design signal acquisition methods which themselves
guarantee privacy?

Second, the signals associated with an individual may be more complex than the d-
dimensional vectors we considered in this survey. Although some work has been done with
unidimensional time series, there are many interesting open questions for prediction and
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forecasting methods, transforms, and other core signal processing tasks. Image processing is
another important topic that received little attention in the existing privacy literature. Images
are very high-dimensional signals, and the data requirements of many differentially private
machine-learning methods scale poorly with the data dimension. However, images are also
very structured signals, and this structure could potentially be used to develop algorithms
with better theoretical guarantees and practical performance.

Networked information systems are another emerging application for differential privacy.
Large-scale data mining often involves parties who wish to collaborate but do not wish to
divulge their data. While there have been cryptographic approaches to this problem,
differentially private distributed algorithms are still in their infancy [60], [61]. Social
networks and other distributed collection and measurement systems also provide a rich
source of applications for privacy-preserving algorithms.

In this article, we were only able to give an introduction to the extensive literature on
differential privacy. Differentially private algorithms for continuous data are the most
relevant for signal processing. Privacy impacts time series and real-time processing
differently than offline algorithms such as parameter estimation. Through application of
domain-specific metrics and signal assumptions, we believe that it will be possible to
achieve meaningful privacy-utility tradeoff curves for many signal processing applications.
However, more work is needed to explore the potential of differential privacy and related
ideas in signal processing systems; we hope that this article will help motivate that work.
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[FIG1].
An illustration of different approaches for guaranteeing differential privacy.
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[FIG2].
a comparison of computing the mean and the median. (a) outputs of 1,000 runs of the
differentially private sample mean algorithm. (b) outputs of 1,000 runs of the differentially
private sample median algorithm.
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