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Signal processing approaches to minimize or
suppress calibration time in oscillatory

activity-based Brain-Computer Interfaces

Fabien LOTTE

Abstract—One of the major limitations of Brain-Computer Interfaces (BCI) is their long calibration time, which limits their

use in practice, both by patients and healthy users alike. Such long calibration times are due to the large between-user

variability and thus to the need to collect numerous training electroencephalography (EEG) trials for the machine learning

algorithms used in BCI design. In this paper, we first survey existing approaches to reduce or suppress calibration

time, these approaches being notably based on regularization, user-to-user transfer, semi-supervised learning and a-

priori physiological information. We then propose new tools to reduce BCI calibration time. In particular, we propose to

generate artificial EEG trials from the few EEG trials initially available, in order to augment the training set size. These

artificial EEG trials are obtained by relevant combinations and distortions of the original trials available. We propose 3

different methods to do so. We also propose a new, fast and simple approach to perform user-to-user transfer for BCI.

Finally, we study and compare offline different approaches, both old and new ones, on the data of 50 users from 3

different BCI data sets. This enables us to identify guidelines about how to reduce or suppress calibration time for BCI.

Index Terms—Brain-Computer Interfaces (BCI), ElectroEncephaloGraphy (EEG), signal processing, machine learning,

small sample settings, calibration

✦

1 INTRODUCTION

Brain-Computer Interfaces (BCI) are systems
that enable their users to interact with a com-
puter by means of brain activity only, this
activity being typically measured by ElectroEn-
cephaloGraphy (EEG) [1]. A typical BCI exam-
ple would be a system with which a user can
move a computer cursor on a screen towards
left or right by imagining left or right hand
movements respectively, see, e.g., [2][3]. BCI
have proven to be a very promising technology,
e.g., to provide some communication abilities
to severely disabled users [4], as a new con-
trol device for gaming for healthy users [5][6]
or to design adaptive human-computer inter-
faces that can react to the user’s mental state
[7], among many other promising applications
[8][1]. However, most of these applications are
prototypes and current BCI are still scarcely
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used outside laboratories. Among the different
reasons currently preventing BCI from being
widely used outside laboratories for practical
applications, one can cite their lack of robust-
ness and reliability, their cumbersome setup
and their long calibration time [1][8][9].

This last point, namely the long calibration
time of BCI, is due to the fact that many
examples of the user’s EEG signals must be
recorded in order to calibrate the BCI using
machine learning [10]. Indeed, most current
BCI are based on machine learning and are
organized as described in Figure 1. First, EEG
signals are acquired from the BCI user. Then,
they are preprocessed, usually with different
types of filters, to remove noise and enhance
the relevant information. The relevant informa-
tion contained in the signals is extracted under
the form of values called features. Such features
are given as input to a classifier whose aim is
to identify which feature values correspond to
which class of EEG signals (e.g., EEG signals
corresponding to left hand or right hand move-
ment imagination). The signals class is then
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Fig. 1. A typical architecture of a BCI based on
machine learning

translated into a command for the computer
(e.g., an imagined left hand movement is trans-
lated into moving a cursor towards the left)
before providing feedback to the user about
the mental command recognized by the system.
Typically, the preprocessing, feature extraction
and/or classification algorithms are all cali-
brated specifically for each user. This need for
user-specific calibration of a BCI is due to the
large inter-user variability, making the creation
of a universal BCI difficult, if not impossible.
Unfortunately such calibrations and associated
necessary data collection are both inconvenient
and time consuming. For instance, a typical
online BCI based on motor-imagery (i.e., imag-
ination of movements) requires a calibration
time of about 20 minutes [11], which is still
far too long. As a comparison, nobody would
indeed use a computer mouse if it required
a 20 minute-long calibration before each use.
Therefore, an ideal BCI system should require
a calibration time that is as short as possible or
even do not require calibration at all.

Interestingly enough, there are 2 main types
of BCI systems, which exploit 2 different
types of information: 1) Event-Related Poten-
tials (ERP)-based BCI, which are based on
brain responses to attended stimulus. A typical
example of an ERP is the P300, which is a
Positive deflection of the EEG signals occurring
about 300ms after a rare, relevant and attended
stimulus. ERP have been extensively used to
design BCI-based spellers exploiting the user’s
brain responses to attended visual stimulus,
including the P300 and the N200 [12]; 2) Oscil-
latory activity-based BCI which exploit changes

in the amplitudes of EEG oscillations due to
spontaneously performed mental tasks (e.g.,
a movement imagination). Figure 2 gives an
example of EEG oscillations (here the so-called
sensorimotor rhythms in the 8-30Hz frequency
band) whose amplitude is changing due to
hand movement imagination.

It should be noted that although the nec-
essary long calibrations mentioned above af-
fect all types of BCI, ERP-based BCI, e.g.,
spellers, do not suffer from this issue as
much as oscillatory activity-based BCI do.
Indeed, ERP are usually more stable across
users than EEG oscillations [13][14], and the
specific structures of ERP-spellers can be ex-
ploited in a smart way to reduce or sup-
press the need for calibration [15][16]. As a
consequence, there are now a number of ef-
ficient solutions to drastically reduce or sup-
press calibration time for ERP-spellers, see
e.g., [17][18][19][20][21][15][16][22]. In contrast,
reducing or suppressing calibration time of
oscillatory activity-based BCI such as mental
imagery-based BCI is still an open and chal-
lenging research question. Moreover, oscilla-
tory activity-based BCI can be useful for a num-
ber of applications for which ERP-based BCI
cannot be used, including (but not limited to)
self-paced BCI control [23][24], stroke rehabili-
tation [25][26] or passive BCI that monitor and
adapt an application based on users’ mental
states such as attention or workload [27][7][28].

Therefore, this paper explores signal pro-
cessing and machine learning tools to reduce
or suppress calibration times in oscillatory
activity-based BCI. More particularly, this pa-
per first contributes a survey of the calibra-
tion time reduction or suppression methods
proposed so far. Then, it contributes a couple
of new approaches to address this objective.
Finally, it compares several of these approaches
in order to identify guidelines about how to
efficiently reduce or suppress BCI calibration
times.

This paper is organized as follows: Section
2 reviews existing approaches to reduce (Sec-
tion 2.2) or suppress (Section 2.3) calibration
times for oscillatory-activity BCI. Then, Section
3 proposes a couple of new approaches to
reduce calibration time, notably three methods



PROCEEDINGS OF THE IEEE 3

Fig. 2. Example of EEG oscillations in the 8-30Hz band (i.e., the sensorimotor rhythm), over the
left motor cortex (after spatial filtering). The decrease in signal amplitude in that band during right
hand motor imagery is clearly visible and can thus be exploited to operate a BCI.

based on artificial EEG data generation and a
simple user-to-user transfer approach. Section
4 evaluates and studies the newly proposed
approaches as well as several existing ones.
Finally, Section 6 extracts guidelines from these
analyses about which method to use. The paper
is concluded in Section 7.

2 STATE-OF-THE-ART

BCI calibration time reduction being a difficult
problem to solve, it has been only scarcely
addressed in the literature so far. Nevertheless,
a few authors proposed interesting approaches
to do so. However, before discussing advanced
technical approaches, the following section first
presents the standard way to design oscillatory
activity-based BCI. Indeed, understanding this
standard design and its limitations is essential
to design and understand more advanced ap-
proaches that address these limitations.

2.1 Standard oscillatory activity-based BCI
design

A typical oscillatory activity-based BCI is de-
signed around two main algorithms: the Com-
mom Spatial Patterns (CSP) algorithm to op-
timize spatial filters1 and the Linear Discrim-
inant Analysis (LDA) algorithm for classifica-
tion. The CSP algorithm aims at learning spa-
tial filters such that the variance of the spatially
filtered signals is maximized for one class (e.g.,
one mental imagery task) and minimized for
the other class. Since the variance of a band-
pass filtered signal corresponds to the band-
power of the signal in that band, CSP optimizes

1. A spatial filter is a (usually linear) combination of the
original channels. Performing spatial filtering helps to over-
come the EEG spatial blurring that occurs due to EEG signals
travelling through the skull and scalp [29]

spatial filters that lead to optimally discrimi-
nant band-power features [29]. This is partic-
ularly interesting and relevant for the design
of oscillatory activity-based BCI since such BCI
exploit changes in EEG oscillations amplitude,
i.e., changes in the EEG signals band power.
As an example, during left hand motor imagery
(i.e., the imagination of a left hand movement),
the EEG band power in the mu (8-12Hz) and
beta (16-24Hz) frequency bands will decrease
in the right sensorimotor cortex [30]. More
formally, optimizing CSP spatial filters w (w
being a weight vector2) consists in extremizing
the following function:

JCSP (w) =
wC1w

T

wC2wT
(1)

where Ci is the average spatial covariance
matrix of the band-pass filtered EEG signals
from class i, and T denotes transpose. Typically,
these spatial covariance matrices are obtained
by computing the spatial covariance matrix
C

j
i from each trial T

j
i from class i, and then

averaging them:

Ci =
1

Ni

Ni∑

j

C
j
i =

1

Ni

Ni∑

j

T
j
i (T

j
i )

T (2)

with Ni the number of trials in class i and
T

j
i ∈ ℜC×S is the jth EEG trial from class i,

with S the number of samples in a trial, and C
the number of channels. Note that the EEG sig-
nals are assumed here to be band-pass filtered
and thus to have zero mean. This optimization
problem is solved by Generalized Eigen Value
Decomposition (GEVD) of the two matrices C1

2. In this manuscript, all vectors are assumed to be row
vectors
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and C2 [29]. The spatial filters which maxi-
mize/minimize JCSP (w) are the eigen vectors
corresponding to the largest and smallest eigen
values of this GEVD, respecticely. Once the
filters w are obtained, CSP feature extraction
consists in filtering the EEG signals using the w
and then computing the resulting signals vari-
ance. In other words, a feature f is computed
as f = log(wCctw

T ), where Cct is the current
trial covariance matrix. It is common to select
3 pairs of CSP spatial filters, corresponding to
the 3 largest and smallest eigenvalues, hence
resulting in a trial being described by 6 CSP
features.

The LDA classifier uses a linear hyperplane
to separate feature vectors from two classes
[10]. The intercept b and normal vector a of this
hyperplane are computed as follow:

aT = C−1(µ1 − µ2)
T (3)

and

b = −
1

2
(µ1 + µ2)a

T (4)

with µ1 and µ2 being the mean feature vectors
for each class and C the covariance matrix of
both classes. With LDA, for an input feature
vector x, the classification output is axT + b.
If this output is positive, the feature vector
is assigned to the first class, otherwise it is
assigned to the second class. The whole process
is summarized in Figure 3.

It is interesting to note that both algorithms
require the estimation of covariance matrices.
If few training data is available, or if the data
available does not reflect most of the variability
that can occur during BCI use, the covariance
matrices may be poorly estimated and/or not
representative of the EEG during use. This
would lead to inadequate classifiers or spatial
filters. This explains why many examples of
EEG signals should be collected in order to cali-
brate BCI systems, thus making BCI calibration
long and tedious. For instance, in the study in
[31], the authors found that at least 40 trials
per class were necessary to obtain reasonnable
performances with their motor imagery-based
BCI.

2.2 Calibration time reduction

So far, reducing BCI calibration time has been
achieved using four main types of approaches:

• by using Regularization approaches that en-
able to perform machine learning effi-
ciently even with few training data.

• by relying on user-to-user transfer, i.e., by
using relevant data from other users to
improve calibration for the target user for
which few training data is available.

• by using Semi-supervised learning, which
adapt and refine the initially optimized
model (e.g., CSP+LDA) based on data ob-
tained during BCI use.

• by using a priori physiological information
about which features are expected to be
relevant to design the BCI.

These different methods are surveyed hereafter.

2.2.1 Regularization approaches

As mentioned aboved, what makes CSP and
LDA vulnerable to the lack of training data
is the need for both algorithms to estimate
representative and reliable covariance matrices.
More precisely, it is known that when covari-
ance matrices are estimated from too few train-
ing data, their largest and smallest eigen values
will be respectively over and under estimated
[32]. To mitigate this estimation bias, two main
approaches, based on regularization, have been
used: shrinkage and divide-and-conquer.

2.2.1.1 Shrinkage: Shrinkage consists in
using a regularized estimate of the covariance
matrices:

C̃i = Ci + λI (5)

where I is the identity matrix. This regular-
ized estimate requires to choose the extent of
the regularization with the free parameter λ.
Fortunately, a closed-form solution to obtain
the optimal value of λ has been proposed,
hence avoiding the need for costly procedures
such as cross-validation [32]. Incorporating this
automatically regularized estimator into CSP
and LDA algorithms leads to BCI that can be
trained with less training data than the stan-
dard estimator [33], hence reducing calibration
time.
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Fig. 3. The training (a.k.a. calibration) and testing steps involved in the standard design of an
oscillatory activity-based BCI. During calibration, both the CSP spatial filters and the LDA classifier
are optimized based on training data. During testing (i.e., actual use of the BCI with new EEG
signals), the CSP filters are used to spatially filter the signals from which band power features
are computed. These features are classified using the optimized LDA to identify the mental task
performed by the user.

2.2.1.2 Divide-and-Conquer: Like any
other parameter estimation problem, the
higher the dimensionality of the covariance
matrix estimations, the more difficult and thus
the poorer the estimation from few data. As
such, performing several easier estimations
on sub-parts of the problem, thus with a
lower-dimensionality, and then combining
them (hence the “divide-and-conquer” name)
is likely to give better results than performing
a single estimation on all the data (with thus
a high dimensionality). This is notably true
for covariance estimation which requires to
estimate d2 parameters, with d being the
dimensionality of the problem (e.g., the
number of channels for CSP or the number of
features for LDA). This was the idea explored
with the CSP patches approach, in which
several CSP filters were optimized on subsets
of the available channels, and then used
together, effectively outperforming CSP in
small training set settings [34].

2.2.2 User-to-User transfer

Another approach that has been used to reduce
calibration times in BCI, is to perform user-to-
user transfer, i.e., to transfer data (EEG signals),
features and/or classifiers from users for which
many data are available to the target user for
which there are few data. This approach has
notably been used to learn CSP spatial filters
or LDA classifiers in 3 different ways: multi-
users covariance matrix estimation, multi-task
learning and domain adaptation. They are de-
scribed below.

2.2.2.1 Multi-users covariance matrix es-
timation: With this approach, the covariance
matrix estimate used in CSP and/or LDA for
each class can be regularized to ressemble the
covariance matrices of other users as follows:

Ĉ = λC + (1− λ)P (6)

where P can be the average covariance ma-
trix of the other users [35], a weighted average
of them [36], or an average of the covariance
matrices of selected users [33]. These regu-
larization approaches guide the optimization
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algorithms towards good solutions, similar to
that of the other users, thus enabling a better
learning from few data.

2.2.2.2 Multi-task learning: Multi-task
learning consists in learning simultaneously
multiple tasks that share some constraints or
prior information [37]. For BCI, each such task
is usually to learn a classification model for
a given user, which ensures a similarity be-
tween users, and thus a better learning even
for users with few training data. This has been
explored successfully for multi-task linear clas-
sifier learning [38] and multi-task CSP learning
[39][40][41].

2.2.2.3 Domain adaptation: Domain
adaptation consists in transfering classifiers or
features (and in particular spatial filters), that
were optimized on other users, to the target
user. In [42], spatial filters were optimized
separately on the data of each other user
available, and then the spatial filters that work
well across users and for the target user were
identified. They were finally combined with
the features optimized from the target user’s
training data. In [43] and [44], data features
optimized for the other users were transformed
in order to match the feature distribution of
the target user and thus increase the number
of training data. In [45], classifiers were
optimized on different users, and combined
in a weighted scheme whose weights depend
on how well the classifier can perform on the
data available for the target user.

2.2.3 Semi-supervised learning

If few training data is available to calibrate the
BCI for a given user, another approach that can
be used to still reach reasonable classification
performance is to use an adaptive approach
[46][47], i.e., to refine the calibration of the BCI
during use, as new EEG data (labelled or not)
become available.

To do so, the main approach that has been
used so far is semi-supervised learning. Semi-
supervised learning consists in learning a
model from both labelled and unlabelled data
[48]. This can be achieved by learning an initial
model from the labelled training data available,
and then using this model prediction (typically
the classifier output class) to label the test

data encountered during model use. The newly
labelled data are then incorporated into the
already available training set and used to re-
train the model, hence generally improving it.
This principle is illustrated in Figure 4. For BCI,
this approach has been used with CSP features
and an LDA or SVM (support vector machine)
classifier [49][50][51]. More precisely the CSP
and LDA/SVM were first optimized on the
few labelled training data available. Then, they
were used on the unlabeled testing data, to
predict the class label of these data. The test
data classified and labelled (with the predicted
class) were then incorporated into the training
set, and the CSP and LDA/SVM retrained. This
process was repeated for successive blocks of
testing data, hence generally adaptively im-
proving the quality of the CSP and classifiers
as more testing data are encountered. Along
the same line of ideas, [52] also adapted the
CSP spatial filters in a unsupervised way. To
do so, they measured three types of differ-
ences/similarities between the (unlabeled) test
trials and the training trials in order to adapt
the estimated covariance matrices from each
class with the test trials; with a stronger adap-
tation for the class for which the test trials were
more similar.

2.2.4 A-priori physiological information

Another way to reduce calibration time is to
use a-priori information about which features
or channels are likely to be useful, in order
to guide the optimization of the spatial fil-
ters or classifier towards a good solution even
with few training data. For instance, inverse
solutions or beamforming have been used to
specify prior regions of interest from which
relevant features are likely to be found, hence
making BCI calibration possible with fewer
training trials [53][54]. Similarly, one can use as
prior information which channels are the most
likely to be useful and use that as a regularizer
to optimize spatial filters [55].

2.3 Calibration time suppression

In order to completely suppress BCI calibra-
tion time, it is necessary to build a user-
independent BCI system, i.e., to have features
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Fig. 4. Principle of semi-supervised learning: 1) a model (e.g., CSP+LDA classifier) is first trained
on the few available labelled training data. 2) This model is then used to classify and thus label the
many unlabeled data (the test data) available. 3) The newly labelled data are combined with the
originally available labelled ones to retrain the model with many more data, and thus hopefully to
obtain a better model.

and classifiers that work well across users.
This is a difficult challenge due to the large
between-user variability in oscillatory activity-
based BCI. So far, it has been addressed using
two main approaches: 1) pooled designs, i.e.,
calibrating a BCI on the pooled data (pos-
sibly transformed) from multiple users, and
2) ensemble designs, in which user-specific
BCI are combined together to create a user-
independent one.

2.3.1 Pooled design

A straightforward approach to user-
independent BCI design is to optimize
features (typically CSP spatial filters) and the
classifier on the combined data from multiple
users [56] (see Figure 5, top). Note that it
may be necessary to use feature parameters
(e.g., frequency band width) that are broad
enough to be relevant for multiple users [56].
Interestingly enough, some authors suggested
that when designing such user-independent
BCI, using gender-specific BCI (e.g., a BCI
calibrated on EEG signals from female users
only for a target female user) may improve
performances [57]. To address the between-user
variability, a spatial normalization scheme,
based on unlabeled data, can be used to make
the data of different users spatially similar,
and thus improve the performance of a user-
independent BCI system optimized on data

from multiple users [58]. In [59], a clustering
approach was used to suppress re-calibration
for a user for which data from previous days
were available. CSP filters optimized on this
user’s data from previous days were clustered
in order to identify filters that were robust
across days and could thus be re-used for a
new day without recalibration. To the best
of our knowledge, this approach was not
used to completely suppress calibration for a
completely new user though.

2.3.2 Ensemble design

More advanced and efficient approaches con-
sist in using ensemble methods. With ensemble
methods, one can learn a BCI model (typ-
ically CSP+LDA) for each one of the users
available, and then combine them to be ef-
ficient across users, as in [60] (see Figure 5,
bottom). More recently, the same group ex-
plored l1-penalized linear mixed-effect models
to identify and separate within-user variability
from between-user variability, hence extract-
ing a more efficient user-independent model
[61]. Alternatively, among the different models
learnt for each user, the most relevant ones to
use to classify the data from the target user
(not part of the training set) can be dynamically
selected using a meta-classifier that has been
trained to identify whether or not a given
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Pooled design:

Ensemble design:

Fig. 5. Two approaches to user-independent
BCI design for calibration suppression: Top:
pooled design optimizing a single model
(CSP+classifier) on the combined data of mul-
tiple users. Bottom: ensemble design, for which
a model is optimized for each user and these
models are then combined. These two ap-
proaches are assessed in Section 4

classifier is relevant to classify the target data
[62].

3 NEW METHODS

To further contribute to reducing BCI cali-
bration time, we propose here a couple of
new approaches. In particular we propose a
new type of method to reduce calibration time
based on Artificial Data Generation (ADG). The
idea is to generate multiple trials from the few
training trials available in order to increase the

training set size. We also propose a new and
simple user-to-user transfer approach. These
new methods are described herafter.

3.1 Artificial EEG data generation

The problematic need for large amounts of
training data is not unique to the BCI field,
and can also be encountered in other fields
in which machine learning is involved, al-
though the problem might be more severe for
BCI. In these fields, some authors proposed to
deal with this issue by generating numerous
artificial training data from the few original
training data available, and use it to augment
the training set. This has been shown to lead
to increased classification accuracies in fields
such as speech processing [63] or hand-writing
recognition [64]. We therefore propose here to
explore this idea for BCI design. In particular,
we propose three ways to generate artificial
EEG trials for BCI: 1) using signal segmentation
and recombination in the time domain, 2) using
signal segmentation and recombination in the
time-frequency domain and 3) using analogies.
Note that all three methods are applied on the
already band-pass filtered EEG signals.

3.1.1 Signal segmentation and recombination
in the time domain:

The idea of this first simple approach to ADG3

is to first divide each training EEG trial into
several segments, and then generate new ar-
tificial trials as a concatenation of segments
coming from different and randomly selected
training trials from the same class. More for-
mally, let us denote as Ω = {Ti}, i ∈ [1, N ] as
the set of N band-pass filtered EEG trials that
are available for training for a given class (note
that this ADG is performed separately for each
class), Ti ∈ ℜC×S , with S the number of sam-
ples in a trial, and C the number of channels.
The first step consists in dividing the signals
(from each channel) of each training trial Ti

into K consecutive and non-overlapping seg-
ments T k

i ∈ ℜC×S/K , k ∈ [1, K] (each segment
containing the same number of EEG samples).
Then, from these segments, we can generate a

3. We already presented preliminary results with this ap-
proach in a short conference paper [65].
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new artificial trial T̃j as T̃j = [T 1

R1
T 2

R2
. . . TK

RK
],

where [AB] denote the concatenation of the
samples from segment A and B (in other words
a concatenation of the columns, i.e., along the
time dimension), and Rk is a randomly selected
integer (random selection with replacement)
from [1, N ]. The whole process is schematized
in Figure 6. This simple approach enables us to
generate a large number of new trials, different
from the original ones, but still relevant and
likely to be similar to future trials, as they were
made from parts of real trials and have the
same temporal structure. Therefore, each new
artificial trial will have a spatial covariance ma-
trix different from that of the original trials, but
with covariance values (and thus signal power
- which is the only information used by the CSP
and LDA) that are within a credible range for
the current user as they were computed from
data of this very same user. It will thus lead to a
different average covariance matrix C̃i for CSP
optimization, that will be in fact regularized
towards the average covariance matrix of the
artificial trials, as the estimation of this average
covariance matrix can be rewritten as follows:

C̃i =
Norig

Norig +Nart

C
orig
i +

Nart

Norig +Nart

Cart
i (7)

where C
orig
i is the average spatial covariance

matrix for class i estimated from the original
trials, Cart

i is the average spatial covariance
matrix estimated from the artificial trials, and
Norig and Nart are the number of original and
artificial trials, respectively. Similarly, the fea-
ture covariance matrix of LDA will take into
account these new trials, and thus the resulting
LDA classifier will be able to deal with this
increased variability better.

3.1.2 Signal segmentation and recombination
in the time-frequency domain:

While the previous approach is extremely sim-
ple, and yet effective (see Section 4), it is also
brutal. Indeed, simply concatenating segments
from different trials may result in inadequate
matching between the EEG samples at the
boundary between two consecutive segments
and thus add some unwanted high frequency
noise. To avoid this issue, it could be useful to

Fig. 6. Principle of artificial EEG data generation
in the time domain

perform the trial segmentation and random re-
combinations into the time-frequency domain
rather than directly in the time domain. To do
so, we first transform each band-pass filtered
training trial Ti in a time-frequency representa-
tion TFi by using a Short-Time Fourier Trans-
form (STFT) for each channel (to do so we used
250ms-long hamming windows with 50% over-
lap). We denote as TF k

i the kth time window
(containing a Fourier spectrum for each chan-
nel) of trial Ti in the time-frequency domain.
Then, from these time windows, we can gener-
ate a new artificial trial in the time-frequency
domain ˜TF j as ˜TF j = [TF 1

R1
TF 2

R2
. . . TFK

RK
],

i.e., by concatenating together STFT windows
from different trials from the same class. The
final artificial trial T̃j is obtained by using in-
verse STFT on ˜TF j . This process, illustrated in
Figure 7, is repeated multiple times to generate
multiple artificial trials.

3.1.3 Artificial trial generation based on anal-
ogy:

The last approach we propose for ADG is based
on analogies. The idea of analogy-based data
generation, explored in [66] for hand-writing
recognition, consists in first taking 3 data ex-
amples A, B and C, and in generating a 4th

example D which is to C what B is to A. In
other words, we compute the analogy between
A and B, and create a data D which has the
same analogy to C. This is a way to generate
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Fig. 7. Principle of artificial EEG data generation
in the time-frequency domain

artificial trials that are different from the exist-
ing ones but whose difference is relevant since
it can already be found between other available
trials. To apply this principle in practice for
EEG signals, we used the following approach,
for each class:

1) compute the covariance matrix C of all
the available data for this class (using
shrinkage [32] for a better estimate)

2) compute the eigen vectors V of this ma-
trix (C = V DV T with D the diagonal
matrix of eigen values), i.e., the Principal
Components (PC) of the data [67]

3) randomly select 3 distinct trials XA, XB

and XC

4) project the first two on the PC, i.e., XAV
and XBV , and compute the signal power
piA and piB along each PC V i (V i being the
ith column of V )

5) create artificial trial XD by transforming

trial XC as XCV diag(p
−1/2
A )diag(p

1/2
B )V T ,

where diag(p) is a purely diagonal ma-
trix whose diagonal elements are those of
vector p. This amounts to creating a trial
D whose signal power along the PC is
as different from those of trial C, as the
signal power along the PC of trial B is
different from those of trial A.

6) return to step 3 and repeat the process to
generate more artificial trials.

In other words this approach consist in com-
puting a transformation to make trial A similar
to trial B (here similar in terms of PC signal

Fig. 8. Principle of artificial EEG data generation
based on Analogies

power) and then applying this transformation
to trial C to create artificial trial D. Note that
we chose here to work with power along the
PC because the signal power is what is used
by CSP and LDA for classifying the EEG sig-
nals. Note also that here we expect PC that
do not correspond to discriminant directions
(i.e., the noise) to be more variable that those
corresponding to discriminant direction (i.e.,
the signal). As such our analogy approach will
mostly generate new trials with various levels
of noise, thus helping the subsequent classifier
to deal with such noise. Naturally, other trans-
formations than the one used here could and
should be explored in the future. This analogy-
based ADG is illustrated in Figure 8.

3.2 Combining user-to-user transfer, en-
semble approaches and Riemannian geom-
etry for calibration time reduction

In order to perform a simple, computationally
fast and efficient user-to-user transfer for cal-
ibration time reduction, we propose to re-use
the idea of multi-users covariance matrix esti-
mation (see Section 2.2.2), that we and others
explored in [33][35][36]. However, rather than
using all other users together as in [35] or
weighting or selecting them using heuristics as
in [33][36], we propose to use a sound theo-
retical framework to assess which other users’
data should be used based on their similarity
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to the data of the target user. In particular,
we propose to use Riemannian geometry [68],
which recently proved very promising for BCI
design [69], to measure how different the aver-
age covariance matrices of the other users are
from that of the target user. Indeed, Rieman-
nian geometry has been specifically designed
to manipulate and measure distances between
Symmetric and Positive Definite (SPD) matri-
ces, which covariance matrices are. Formally,
the Riemannian distance δR between two SPD
matrices A and B is the following:

δR(A,B) = ‖ log(A−1B)‖F = [
n∑

i=1

log(λi)
2]1/2

(8)
where the λi are the eigen values of A−1B.

Using this distance, we can easily and quickly
identify which other users have covariance ma-
trices that are close to that of the target user and
thus use them as regularizers. More precisely,
we propose to perform user-to-user transfer by
regularizing the target user covariance matrices
(both CSP and LDA covariance matrices as we
did in [33]) as follows:

ˆCtarget = λCtarget + (1− λ)
∑

i

1

γi
Csi (9)

with

γi =
δR(Ctarget, Csi)∑
j δR(Ctarget, Csj)

(10)

where Ctarget is a covariance matrix estimated
for the target user and Csi the covariance
matrix estimated for the ith other user. In
other words, the Riemannian distance enables
us to emphasize covariance matrices that
are close to that of the target user in the
regularization term, and de-emphasize those
that are too different. These regularized
covariance matrices are then plugged into
the CSP (spatial covariance matrices) and
LDA (feature covariance matrix) algorithms
to perform user-to-user transfer. Naturally,
this would only work if the target user’s
data available do contain some class-related
information. If they do not (e.g., if the user
cannot produce the desired EEG patterns,

or if the covariance estimate is too poorly
estimated, for instance due to outliers), then
regularizing towards the closest covariance
matrices from other users may not help. This
approach therefore helps by 1) regularizing
the covariance matrix towards well estimated
covariance matrices, and thus performing
some implicit shrinkage and 2) by adding
variability (i.e., noise) that is likely to occur (as
it was observed in other users) to the data, to
help the CSP and LDA to deal with it. To avoid
the selection of the regularization parameter
λ (which is difficult when few training data
is available - thus preventing cross-validation
use), we re-use the trick introduced in [35]
and optimize several CSP and LDA pairs, one
for each value of λ among [0.1, 0.2, . . . , 0.9].
When classifying a new trial, these different
CSP+LDA pairs are combined by summing the
LDA outputs (signed distance of the feature
vector from the LDA separating hyperplane)
from each of them to determine the final class.
This results in a simple, fast, theoretically
sound and parameter free multi-user BCI
design.

Overall, a number of methods have been pro-
posed to reduce or suppress calibration time
in oscillatory activity-based BCI. The differ-
ent methods categories and sub-categories are
summarized in Table 1, together with the new
methods proposed in this paper. This table also
indicates which references correspond to which
method category, as well as whether a given
family of method is evaluated in this paper (see
Section 4).

4 EVALUATIONS AND ANALYSES

In order to study and compare different ap-
proaches to BCI calibration time reduction or
suppression we analyzed the performance of
various methods on EEG data from 50 users,
from 3 data sets, for different number of train-
ing trials, offline. We aimed at finding out how
few training data were necessary to achieve
a desired level of performance, and thus how
long the calibration time would be for different
methods. The data sets used, the methods stud-
ied and the evaluation results are described in
the following sections.
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TABLE 1
Overview of the different methods used to reduce or suppress calibration time in BCI.

Method type Sub-category References Evaluated here
Calibration reduction

Regularization approaches Shrinkage [33] X
Divide-and-conquer [34]

User-to-user transfer Multi-users covariance matrix estimation [35], [36], [33] X
Multi-task learning [38], [39], [40], [41]
Domain adaptation [43], [44], [45], [42]

Semi-supervised learning [49], [50], [51], [52] X
A priori physiological information [53], [54], [55]

Artificial data generation [65] X
Calibration suppression

Pooled design [56], [57], [58], [59] X
Ensemble design [60], [61], [62] X

4.1 EEG Data Sets

4.1.1 Data set 1, Motor Imagery data:

The first data set used is data set 2a from BCI
competition IV, provided by the Graz group
[70]. This data set comprises EEG signals from
N1 = 9 users who performed left hand, right
hand, foot and tongue Motor Imagery (MI).
Users were instructed to perform a given motor
imagery task following the appearance of an
arrow pointing left, right, up or down, and
to do so repeateadly for 4 seconds. The EEG
signals were recorded using 22 EEG channels
located over the motor cortex. For the purpose
of this study, only EEG signals corresponding
to left and right hand MI were used. EEG
signals were band-pass filtered in the 8-30 Hz
frequency band. Features were extracted from
the 2-second time window starting 0.5 s after
the cue. 72 trials per class were available for
both training and testing, as provided for the
competition.

4.1.2 Data set 2, Workload data:

This data set is an in-house data set, recorded
while N2 = 21 users performed two tasks in-
volving different mental workload levels (easy
tasks vs difficult tasks). The cognitive difficulty
of the task was manipulated using the N-back
task. With this task, users saw a sequence of
letters on screen, the letters being displayed
one by one, every 2 seconds. For each letter
the user had to indicate with a mouse click
whether the displayed letter was the same one
as the letter displayed N letters before. Each

user participated into 12 blocks, alternating
between easy blocks with the 0-back task (the
user had to identify whether the current letter
was the letter ’X’) and difficult block with the
2-back task (the user had to identify whether
the current letter was the same letter as the
one displayed 2 letters before). Each block con-
tained 30 letter presentations. EEG signals were
recorded using 30 EEG channels. This data set
is described in more details in [27][71]. We used
each 2-second long time window of EEG data
immediately following a letter presentation as
a trial, as in [27]. The first 6 blocks were used as
the training set (180 trials per class) and the last
6 blocks as the testing set (180 trials per class as
well). All EEG signals were band-pass filtered
in 8-12Hz as this band was identified as the
most useful one for mental workload discrimi-
nation in [27]. For such workload classification,
the relevant discriminative activity is expected
to originate mainly from the occipital area.

4.1.3 Data set 3, Mental Imagery data:

This last data set is another in-house data set
which comprises EEG data from N3 = 20
users who performed mental imagery tasks
[72]. More precisely, following a protocol sim-
ilar to the one used for data set 1, users were
prompted to perform either left hand motor
imagery, mental rotation of a geometric figure
(the figure being displayed on screen) or men-
tal subtractions (successive subtraction of a two
digits number from a three digits number, both
numbers being displayed on screen) follow-
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ing the appearance of an arrow pointing left,
right or up respectively. The arrow was point-
ing towards a picture representing the mental
imagery task to be performed. Users had to
perform the instructed mental imagery task for
4.25 seconds starting from the arrow appear-
ance. Each user participated to 5 runs, each run
containing 15 trials per mental imagery task,
presented in a random order. For the purpose
of this study, only EEG signals corresponding
to left motor imagery and mental rotation of a
geometric figure were used. EEG signals were
band-pass filtered in the 8-30 Hz frequency
band, as in [73]. For each user, the first two
runs were used as the training set (i.e., 30 trials
per class) and the last three runs as the testing
set (i.e., 45 trials per class). As for data set 1,
features were extracted in a 2-second long time
window starting 0.5s after the cue.

4.2 Methods analysed and compared

In order to identify and understand the signal
processing tools that can effectively reduce or
suppress BCI calibration times, we studied and
compared several of them for different number
of training data. In particular we studied:

Baseline: We used the standard BCI design,
described in Section 2.1, which simply consists
in training CSP filters and a LDA classifier on
the available training trials.

Regularization approach with Shrinkage:
We studied the performance of the auto-
matic covariance matrix shrinkage approach
described in Section 2.2.1, for both CSP and
LDA. Note that for CSP, we used it to estimate
the covariance matrices of each trial in equation
2.

User-to-User transfer: We studied the Multi-
User BCI design approach that we proposed in
Section 3.2. With this approach, we used λ ∈
[0.1, 0.2, . . . , 0.9] in equation 9.

Semi-supervised learning: We studied semi-
supervised learning (see Section 2.2.3). To do
so we straightforwardly applied the semi-
supervised learning principle to a BCI design
based on CSP+LDA. First, we trained the CSP
filters and LDA classifier on the available train-
ing trials. Then, we used them to classify the
first 5 trials from the testing set. We labelled

these 5 trials with the estimated class given
by the CSP+LDA, added them to the train-
ing trials, and retrained the CSP+LDA on this
newly augmented training set. We repeated the
process for each subsequent block of 5 testing
trials until the whole testing set was classified.

User-independent design: For user-
independent BCI design we studied:

• A pooled user-independent design, studied in
[56], which simply consists in pooling to-
gether the EEG data of all available users,
and then training CSP filters and a LDA
classifier on them. We studied this user-
independent design both with and without
automatic covariance matrix shrinkage (for
both CSP+LDA).

• An ensemble approach, similar to that of
[60], which consists in first training a set
of CSP filters and a LDA classifier on
the data of each available user separately,
and then combining the outputs of this
ensemble of CSP+LDA to classify the data
of a new unseen user. This is achieved
by simply using each CSP+LDA for each
training user on the new unseen trial, then
by concatenating the LDA outputs (signed
distance to the LDA hyperplane) together
and used them as input to an higher level
LDA (also trained previously) which takes
the final decision. Automatic covariance
matrix shrinkage was used for both CSP
and LDA with this approach.

Artificial data generation: For ADG, we
studied all three approaches newly proposed
in Section 3.1, i.e., ADG in the time domain,
in the time-frequency domain and based on
analogies. For each method, we generated 100
artificial trials4 from the available training trials
and added them to this initial training set
before training the CSP+LDA. For ADG in the
time and time-frequency domains, the 2 second
long EEG trials were divided into 8 segments
before being recombined into artificial trials.
Due to the random process involved (random
trial selection from which generating a new
artificial trial), this process was repeated 10

4. According to our preliminary study in [65], using more
than 100 artificial trials does not lead to further significant
performance improvements.
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times and the performance results obtained
averaged over the 10 repetitions.

For each method, we used 6 filters for CSP
(corresponding to the 3 largest and 3 small-
est eigen values of the GEVD problem). We
studied the performance of each calibration
time reduction method for different numbers
of training trials, starting from only the first 5
training trials per class, to all available training
trials, by step of 5 training trials per class. For
the calibration time suppression approaches,
for each data set, the user-independent BCI
were trained on the training EEG trials from
all available users expect one, and tested on the
testing set of this remaining user. This process
was repeated so that each user is used once as
the testing set. In other words we used a leave-
one-user-out cross-validation scheme. The re-
ported classification performance (percentage
of trials whose class was correctly estimated)
are those obtained on the testing sets of each
user, for which all available trials were used.

4.3 Results

Figure 9 first displays the average classification
performances (averaged over users) obtained
by the standard design (Baseline) and the dif-
ferent ADG approaches. Results first suggest,
as expected, that for the standard design, for
all data sets, the less trials used for training,
the lower the performances. In particular for
small training sets, typically with less than 20
trials per class, the performances are very low,
near or at chance level (50%), and decrease
dramatically when the number of training trials
decreases. This confirms the need for numerous
training trials for each user, and thus the result-
ing long calibration time. Then, what can be ob-
served is that ADG approaches often increase
classification performances, particularly when
few training data is available. These differences
are statistically significant for data set 3 (paired
t-test5, p < 0.01) for both ADG in the time
domain and ADG based on analogy, and show
a trend for ADG in the time-frequency domain
(p = 0.07). On Data set 2, both ADG based on

5. The paired t-test was applied here on the average perfor-
mance of each user, i.e., averaged across the different numbers
of training trials used for each user.

analogy and ADG in the time-frequency do-
main are significantly better than the baseline
(p < 0.05). Overall, ADG in the time-frequency
domain is the best method, significantly better
than ADG based on analogy (p < 0.01), and on
average better than ADG in the time-domain,
although not significantly so. Overall, these
results indeed support that ADG methods can
be used to reduce BCI calibration time, since
they can achieve a given performance with less
training data than the baseline approach.

Then, Figure 10 displays the results ob-
tained by the baseline and the different user-
independent BCIs. As could be expected, the
User-Independent (UI) methods have lower
performances than the user-specific methods
when all available training data are used.
However, when very few training data are
available (i.e., less than 10-15 trials per class),
then UI methods often outperform the baseline
on average. When comparing the different UI
methods, no clear picture emerges. The pooled
design reached reasonnable, better-than-chance
performance, on Data sets 1 and 3, but com-
pletely failed (chance level) on Data set 2. The
ensemble approach is better than the pooled
approach on Data set 2, but poorer on the other
two data sets. Overall, there is no significant
differences between the three UI designs.

Finally, Figure 11 compares the methods
from each category, evaluating only the best
one from a given category if this category con-
tained several methods. In particular for ADG
we compared only the method based on time-
frequency information to other categories since
this was the most efficient ADG method. In
the following we denote this method as ADG-
TF. For ADG-TF, we also used automatic co-
variance matrix shrinkage for CSP+LDA, since
the two methods can be combined. For the
UI methods, we studied the performance of
the pooled design with shrinkage. Overall, we
compared the baseline design, automatic co-
variance matrix shrinkage, ADG-TF with and
without shrinkage, semi-supervised learning,
multi-user design and UI design based on
pooled data with shrinkage.

First, results showed that automatic covari-
ance matrix shrinkage significantly outper-
formed the baseline (p << 0.01), on all data
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Fig. 9. Average classification performances (over users) for the artificial data generation (ADG)
methods (i.e., ADG in the time domain, ADG in the time-frequency domain and ADG based on
analogy) and the baseline. Standard deviation bars are omitted for clarity. See text for statistical
analyses.

Fig. 10. Average classification performances (over users) for the user-independent (UI) BCI design
methods (i.e., pooled UI design, pooled UI with shrinkage and ensemble UI design) and the
baseline. Standard deviation bars are omitted for clarity. See text for statistical analyses.
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Fig. 11. Average classification performances (over users) for the different methods from each
category (i.e., shrinkage, semi-supervised learning, multi-user design, ADG-TF, ADG-TF with
shrinkage, pooled UI design with shrinkage) and the baseline. Standard deviation bars are omitted
for clarity. See text for statistical analyses.

sets. This increase of classification performance
is particularly clear when the number of train-
ing trials is very low, but is still present even
when the maximum number of training tri-
als is used. When comparing ADG-TF and
shrinkage, there were no significant differences
between the two methods on data set 1 and
2, but shrinkage was significantly better than
ADG-TF on data set 3 (p < 0.05). However,
combining ADG-TF with shrinkage makes the
performance of ADG-TF better. Indeed, ADG-
TF+shrinkage outperformed simple shrinkage
on data set 2 (p < 0.05), whereas there
was no significant differences between ADG-
TF+shrinkage and shrinkage on the two other
data sets. This suggests that shrinkage and
ADG-TF regularize the covariance matrices in
different ways, and thus might be comple-
mentary. This also suggests that ADG indeed
seems to had noise (and/or variability) to the
training set, making the CSP/LDA more ro-
bust to deal with this noise/variability. Semi-
Supervised Learning (SSL) applied to CSP and
LDA, on the other hand, essentially failed.
Indeed, it was poorer than the baseline most

of the time, except sometimes with very few
training data. The fact that CSP and LDA are
sensitive to noise and mislabels can explain
this failure, since mislabels are bound to occur
using SSL. A more robust approach to SSL
should probably be used, e.g., using an SVM
instead of an LDA as in [51]. The proposed
Multi-User BCI (MU-BCI) design also proved
very efficient. Even when the maximum num-
ber of training trials is used, this approach can
substantially improve performances, suggest-
ing that it is not only useful for calibration time
reduction but also for performance improve-
ment in general. On average over all data sets,
MU-BCI notably significantly outperformed all
other methods (p < 0.05), except shrinkage
which was significantly outperformed by MU-
BCI only on data set 3 (p < 0.05). Overall,
the best three methods for calibration time re-
duction are shrinkage, ADG-TF with shrinkage,
and MU-BCI. Regarding UI-BCI designs, they
are most of the time clearly outperformed by
the other approaches, except when no training
trial is available (obviously) or only 5 training
trials per class. For 10 trials per class onwards,
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the different methods studied (except the base-
line) are more efficient than the UI designs.
This suggests that such UI-BCI could be used to
provide feedback to the user for the first 5 trials
per class, and that a calibration time reduction
method should be used once these 5 trials
per class acquired. Overall, it is interesting to
notice that with only 10 trials per class, several
calibration time reduction methods can reach a
classification performance equivalent to that of
the baseline with 30 to 40 trials per class, hence
effectively reducing the calibration time by 3 or
4. When only 5 trials per class are available, all
calibration time reduction approaches except
SSL can increase classification performance by
10 to 15%, e.g., from 55% to 70% in Data set 1,
or from 55% to 65% in Data set 3.

5 FURTHER ANALYSES

In order to gain more insights into the obtained
results, we conducted some additional experi-
ments. First, we explored what was the impact
of the lack of training data on CSP and LDA
separately. Then, we present a case study about
what makes ADG work. We also studied the
impact of the segment size on the performances
of ADG. Finally, we provide a glimpse on how
different methods impact the performances of
different users.

5.1 Impact of training data scarcity on CSP
and LDA separately

As seen in the evaluation results so far, and
as could be theoretically expected, the fewer
the training data available, the lower the clas-
sification performances of the BCI. This is due
to both the CSP and LDA being optimized on
these training data, and therefore being poorly
designed when too few data are available.
However, are CSP and LDA affected by train-
ing data scarcity in the same way? To find out,
we studied the performance of the BCI, when
only CSP, only LDA or both are faced with
training data scarcity, for different number of
training data, on data set 3. We also performed
the same analysis when using shrinkage for
LDA or for CSP, in order to assess the impact
of regularization on the capability of these two

Fig. 12. Classification performances obtained
on data set 3, when 1) only CSP uses fewer
training trials (but LDA uses all training trials
available), 2) only LDA uses few trials (but CSP
uses all), 3) both CSP and LDA uses fewer
training trials, for different numbers of training
trials used, 4) CSP is regularized with shrinkage
and uses fewer trials (but regular LDA uses all
training trials available), 5) LDA is regularized
with shrinkage and uses fewer trials (but regular
CSP uses all training trials available) and 6) both
CSP and LDA use regularization with shrinkage
and use fewer training trials, for different num-
bers of training trials used.

algorithms to deal with training data scarcity.
The obtained results are displayed in Figure 12.

As can be seen on this figure, both CSP and
LDA do suffer from training data scarcity, as
their performances decrease with the number
of available training data. However, it is inter-
esting to observe that LDA appears to be more
sensitive to training data scarcity than CSP.
Indeed, when only CSP uses fewer training
data, the performances of the resulting BCI are
clearly higher than when only LDA uses fewer
training data. When using regularization with
shrinkage, both CSP and LDA performances
improve, although LDA benefits much more
than CSP from regularization. This further con-
firms that LDA is the most sensitive algorithm
to training data scarcity. This may be explained
by the fact that the covariance matrices used in
CSP are defined as the average covariance ma-
trices over training trials. As such adding train-
ing trials essentially improves the averaging
process, but does not involve representing the
variability of the covariance matrices. In other
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words, CSP does not consider the variability
over trials, but only the average trial (repre-
sented by the average spatial covariance ma-
trix). As for LDA, the covariance matrix used
is the covariance of the training feature vectors,
as such adding training trials improves the es-
timation of this covariance matrix, which thus
involves representing the variability of these
training feature vectors. Moreover, although
the input dimensionality of CSP is higher than
that of LDA, the CSP covariance matrices are
estimated from hundreds of EEG samples per
trial, whereas the covariance of LDA is esti-
mated only from one example per trial. Overall,
this could explain why LDA benefits more
than CSP from increased training data, and is
therefore the most sensitive algorithm to data
scarcity.

5.2 A case study of artificial data genera-
tion impact

In this paper, we have proposed to generate
artificial training EEG data to reduce BCI cal-
ibration time. In this section, we present a
case study to gain more insights about why it
does work and how these artificial trials impact
the CSP and LDA estimation. To do so, we
looked at the CSP filters, features and LDA
classifier obtained with or without artificial
data generation, for user number 3 from data
set 1, with 5 original training trials per class.
Indeed, with only the original trials, this user
reached a classification accuracy on the test set
of 57.6%, whereas it reached 94.4% when using
artificial data generation in the time domain.
It is therefore interesting to study the reasons
of this sharp performance increase. Figure 13
displays the CSP spatial filters obtained with
and without artificial data generation. It can be
observed that the CSP filters are actually very
similar in the two conditions: ADG had little
impact on CSP optimization.

The resulting CSP feature vectors (containing
6 CSP features) extracted from the training set
can be visualized in Figure 14. Here we can see
that ADG indeed populates the feature space
in a plausible way, which seems to respect
the structure of the original trials. ADG also
increases the variability of the training data as

Fig. 15. Weights attributed to each of the 6 CSP
features by the LDA classifier with or without
artificial data generation, for user number 3 from
data set 1, with 5 original training trials per class.
It can be observed that the weights are very
different between the two conditions.

compared to that of the original data. This is
expected to help the subsequent classifier to
learn to cope with this variability and thus to
use the most invariant features.

The weights attributed to each CSP feature
by the LDA classifier, with or without ADG,
are displayed in Figure 15. It can be seen that
the feature weights are rather different when
using ADG or not. Feature 4 weight has even
a different sign in the two conditions. Given
that the CSP filters are almost identical in the
two conditions, the LDA differences between
the two conditions are the one which explain
the sharp increased in performance obtained
when using ADG. This is also consistent with
the study in Section 5.1 in which we found out
that LDA was much more sensitive than CSP
to data scarcity.

Overall it seems that ADG can improve BCI
design with few training data mostly by im-
proving the estimation of the LDA covariance
matrix and increasing the training data vari-
ability to make the LDA classifier more robust
to such variability.

5.3 Impact of the segment size on artificial
data generation

Another interesting question regarding ADG, is
how the number of segments, used to segment
trials before recombining them into new artifi-
cial trials, impacts the performances obtained.
To study this point, we computed the perfor-
mances of ADG in the time and time-frequency
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Fig. 13. CSP Spatial Filters (i.e., weights attributed to each channel) obtained with and without
artificial data generation for user number 3 from data set 1, with 5 original training trials per class.
It can be observed that these filters are very similar between the two conditions. (Note: the sign of
the CSP filter is arbitrary, as filters w and −w would give exactely the same features.)

domain, on data set 3, for a 4, 8 or 12 segments.
The results can be seen in Figure 16

It can be observed that the higher the num-
ber of segments, i.e., the finer the segmenta-
tion, the better the performances. However, the
differences between the performances obtained
for 8 and 12 segments are very small and thus
not substantial. In practice, it therefore makes
sense to use more than 4 segments, but 8 or 12
segments would give similar performances.

5.4 Individual variations between users

In order to obtain a glimpse about how dif-
ferent methods impact different types of users,
we looked at the individually obtained per-
formances for the 20 users of data set 3, for
10 original training trials per class. Indeed,
for this number of training trials, many of
the calibration reduction methods lead to a
substantial improvement. The obtained results
are displayed on Figure 17.

What the results suggest is that for users
with poor performances with the baseline de-
sign (e.g., users 7, 8, 17, 19, 20), most of them

can increase substantially their performances
by using a user-independent BCI design. For
users with already high performances with the
basic design (e.g., users 1, 3, 6, 12), they can
further improve their performances by using
the multi-user transfer approach we proposed.
These two observations suggest that different
methods affect differently different types of
users. Nevertheless, most users can improve
their performances using multi-user transfer
and shrinkage.

6 DISCUSSION AND GUIDELINES

From the results obtained, we can identify a
number of useful guidelines about which tools
to use to reduce or suppress calibration time in
which context. Overall, the first important and
interesting point is that these results suggest
that there are a number of signal processing
tools that can significantly and subtantially im-
prove classification performance as compared
to the standard BCI design when very few
training data are available. This also suggests
that good classification performances can be



PROCEEDINGS OF THE IEEE 20

Fig. 14. Training set with and without artificial data generation, for user number 3 from data set
1, with 5 original training trials per class. The two classes are displayed with different shapes and
colors. Here each pair of CSP features are diplayed (left: CSP feature 1 versus CSP feature 6,
center CSP feature 2 versus CSP feature 5, right: CSP feature 3 versus CSP feature 4). It can be
seen that artificial data generation indeed leads to different training examples and thus populate in
a relevant way the feature space.

Fig. 16. Performances obtained by ADG methods for different number of segments used for data
generation, on data set 3. Left: ADG in the time domain, Right: ADG in the time-frequency domain.
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Fig. 17. Individual performances obtained by the 20 users from data set 3, with 10 original training
trials per class, for different calibration reduction methods.

maintained with much fewer training data,
thus effectively reducing BCI calibration time.
On a more detailled level, we propose here the
following guidelines:

• Automatic covariance matrix shrinkage
should always be used, whatever the num-
ber of training trials. Indeed, it does not
only enable calibration time reduction but
also overall performance improvement,
even when many training trials are used.
Since this is a simple, computationally effi-
cient and parameter free method, we advo-
cate that it should become a standard tool
for BCI design, including for oscillatory
activity-based BCI (it is already becoming
a rather standard tool for ERP classification
[74]).

• If data from other users are available, user-
to-user transfer is an efficient way to fur-
ther reduce calibration time or even boost
classification performance irrespectively of
the number of training data, and should
be used as a method of choice. The MU-
BCI design proposed in this paper is a fast,
simple and efficient method to do so.

• If no data from other users is available,
artificial EEG trial generation combined

with shrinkage can be considered to fur-
ther reduce calibration time.

• Semi-supervised learning should NOT be
used straightforwardly with CSP and
LDA, due to their lack of robustness to
mislabelling.

• There is not yet a gold standard for user-
independent BCI design, no method sig-
nificantly outperforming the other ones.

• Although user-independent BCI design is
possible, performances are still rather poor
and need further research to be improved.

Overall, although reducing BCI calibration
time with the different approaches mentioned
in this paper is possible and useful, calibration
time reduction is still not a solved problem.
Indeed, as the results suggested, the more the
training data, the better the performances, even
with the best calibration time reduction ap-
proaches so far. This is therefore still an open
challenge. In the future, a number of points
would be interesting to explore to further im-
prove calibration time reduction or suppres-
sion, including 1) exploring optimal frequency
band(s) selection as well (most methods dis-
cussed here only considered spatial filters and
classifier optimization from few training data),
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several algorithms being available to optimize
such bands with CSP and LDA, see, e.g., [75],
[76], [77], [78], [79], [80], [81], 2) outlier/artifact
removal in small sample size settings, as when
few data are available, a single outlier (arte-
facts being unfortunately rather common in
EEG measurements [82]) can have dramatic
negative effects on the quality of the optimized
BCI, 3) combining user-independent BCI de-
sign followed by online adaptation to com-
pletely remove calibration and quickly reach
high performances, as suggested in [69], [83].
It would also be interesting to study the im-
pact of calibration reduction technique on BCI
training. Indeed, on the one hand, calibration
reduction enables to provide BCI users with
feedback as early as possible, such feedback be-
ing necessary for efficient training [84]. On the
other hand, a poor feedback, due to a poorly
calibrated BCI, may actually impede successful
training. Online studies with calibration reduc-
tion techniques and online BCI training would
thus need to be conducted.

7 CONCLUSION

In this paper we studied and analysed BCI
design approaches that aim at reducing or
suppressing calibration time for oscillatory
activity-based BCI. We first surveyed existing
approaches, which we identified as belonging
to five categories of approaches: regularization
approaches, user-to-user transfer approaches,
semi-supervised learning, a-priori physiolog-
ical information-based approaches and user-
independent design. We then proposed a new
category of methods to reduce calibration time,
based on artificial data generation (ADG), and
proposed three methods to do so. We also
proposed a new and simple method for user-to-
user transfer. Finally, we studied and compared
methods from the different categories in order
to identify guidelines about which method to
use in which context. In short, automatic co-
variance matrix shrinkage should be used at
all times, if data from other users are avail-
able user-to-user transfer approaches should
be used to further boost performances and
reduce calibration time, otherwise ADG with
shrinkage can prove useful. User-independent

approaches still have too modest performances
to be used on the long-term, and are only
useful for the very beginning of BCI use, before
about 5 to 10 training trials per class become
available.

Overall, this study suggested that there are a
number of simple, fast and efficient tools that
can and should be used routinely to reduce
oscillatory activity-based BCI calibration time.
For several of the calibration time reduction
methods analyzed we can observe that only 10
trials per class are enough to reach the same
performances as that obtained with 30 trials
per class with the baseline design, hence effec-
tively reducing BCI calibration time by 3. To
encourage the adoption of such methods, the
Matlab code of the different methods studied
in this paper will be made available for free
and open-source on http://sites.google.com/
site/fabienlotte/code-and-softwares.

Nevertheless there is still a lot of room
for improvements to further reduce calibra-
tion time and even more to suppress it al-
together. New methods should be identified
to alleviate between user-variability, e.g., by
designing invariant features or efficient unsu-
pervised adaptive BCI. Gathering and working
with very large data bases of EEG signals may
also help. Indeed, in the infancy of speech or
hand-writing recognition, the pattern recogni-
tion systems were also user-specific. However,
when data-bases with thousands of users’ data
became available, efficient user-independent
systems could be created. So far, BCI data bases
only very rarely reach 100 users, so we may
also expect improvements in this direction.
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