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C
ortically controlled prostheses are able to translate neural activity from the cerebral

cortex into control signals for guiding computer cursors or prosthetic limbs. While

both noninvasive and invasive electrode techniques can be used to measure neural

activity, the latter promises considerably higher levels of performance and therefore

functionality to patients. The process of translating analog voltages recorded at the

electrode tip into control signals for the prosthesis requires sophisticated signal acquisition and

processing techniques. In this article we briefly review the current state-of-the-art in invasive,

electrode-based neural prosthetic systems, with particular attention to the advanced signal pro-

cessing algorithms that enable that performance. Improving prosthetic performance is only
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part of the challenge, however. A clinically viable prosthetic

system will need to be more robust and autonomous and,

unlike existing approaches that depend on multiple computers

and specialized recording units, must be implemented in a

compact, implantable prosthetic processor (IPP). In this article

we summarize recent results which indicate that state-of-the-

art prosthetic systems can be implemented in an IPP using

current semiconductor technology, and the challenges that

face signal processing engineers in improving prosthetic per-

formance, autonomy and robustness within the restrictive

constraints of the IPP.

INTRODUCTION

An emerging class of prostheses aims to provide control of para-

lyzed upper limbs, prosthetic arms, and computers by translat-

ing cortical neural activity into control signals. A number of

research groups have now demonstrated that monkeys and

humans can learn to move computer cursors and robotic arms

to various locations simply by activating the neural populations

that participate in natural arms movements [1]–[7]. These com-

pelling proof-of-concept laboratory demonstration systems

motivate the development of clinically viable, electrode-based

neural prosthetic systems that exhibit the level of cortical con-

trol needed for many everyday behaviors. The process of trans-

lating analog voltages recorded at the electrode tip into control

signals for a prosthesis requires sophisticated signal acquisition

and processing techniques. The challenge then to signal pro-

cessing engineers is twofold: develop neural signal processing

algorithms that achieve the maximum possible prosthetic per-

formance and do so in a clinically viable manner.

Neural prosthetic systems are only clinically viable when the

anticipated quality of life improvement outweighs the potential

risks. Noninvasive techniques [8] are attractive due to their

reduced surgical risk (and well studied, see other articles in this

issue), however, invasive, electrode-based techniques have

become a major research thrust, as they offer high signal quality

and thus the potential for increased performance relative to

noninvasive approaches. For example, the current state-of-the-

art electrode-based system in our laboratory achieves an infor-

mation transfer rate of 6.5 b/s [7], many fold higher than

previously reported invasive and noninvasive systems. The

tradeoffs for invasive approaches, however, are increased surgi-

cal risk and high cost. As a result, at present, chronic electrode-

based prosthetic systems are a long-term approach, with

near-term applications potentially limited to only the most

severely disabled patients. The transition from research to wide-

spread use will require improving the performance-risk-cost

balance by increasing overall prosthetic performance and reduc-

ing surgical risk and device cost through system integration. 

The prosthesis performance cited above is made possible

through high-quality neural signal measurement and advanced

signal processing methods, in particular uncompromising real-

time action potential identification (spike sorting) [9] and prob-

abilistic movement decoding algorithms (in particular, a special

case of [10]). These techniques are differentiated from other

approaches by their ability to extract more unique neurons,

more accurately, in the spike identification process, and incor-

porate more, and make better use of, neural activity in the

decoding process. It is anticipated that >10 b/s systems are

achievable with further improvements in neural measurement

and signal processing methods [11]. 

Equipment intensive, laboratory-based experiments, like

those cited above, in which a restrained subject performs a high-

ly controlled task under supervision by a trained researcher are a

powerful experimental platform but not necessarily the best

approximation of a clinical environment. Clinical systems cannot

be reliant on trained operators and external control; they must

be autonomous and capable of identifying patient intent, specifi-

cally whether neural activity actually corresponds to an intended

movement, using that neural activity alone. Furthermore, pros-

thetic systems must provide these capabilities continuously (24

h/day, everyday) and robustly, not just during the short, discrete

daily recording periods used in current experimental protocols.

Spike sorting algorithms that utilize unsupervised learning

reduce the need for a trained operator and offer the potential for

robust, adaptive algorithms which respond autonomously to

changes in the neural recordings. Similarly decoding algorithms

with autonomous neural state detection (movement intended or

not) eliminate the need for external cues to identify time periods

with relevant neural activity.

Prosthetic systems need to reduce surgical risk and device

cost by enabling system integration and eliminating chronic

transcutaneous connectors. The goal is a fully integrated pros-

thetic system, where electrodes, digital post-processing and

wireless telemetry comprise a single implantable unit that will

provide state-of-the-art performance in a self-contained package

with reduced physical footprint and no chronic tissue openings

[12]. In such an approach, however, signal acquisition and pro-

cessing must be performed within a very restrictive power budg-

et. The transmission of neural information out of the electrode

implantation site is a key challenge. While the required band-

width is within the capability of current wireless links, the

power consumption of such a link is prohibitive. Some form of

bandwidth reduction is essential. There are a number of

approaches to achieve this reduction; however, many utilize

lossy compression and thus can potentially reduce prosthetic

performance. Our goal is to not sacrifice any prosthesis per-

formance; thus we wish to implement the same high perform-

ance signal processing algorithms we use in the laboratory,

which can reduce the required bandwidth by a factor of ∼106,

in the implantable system, while meeting power constraints.

The combination of strict power constraints, aggressive per-

formance goals, and robustness and autonomy requirements

present a difficult design challenge to signal processing engi-

neers, and new algorithms and implementations will be needed.

In this article, we provide a brief introduction to chronic elec-

trode-based neural prosthetic systems, with particular attention

to the digital post-processing algorithms in current state-of-

the-art laboratory based systems. We will show that such algo-

rithms along with the relevant signal acquisition hardware are
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in principle realizable as an IPP in current CMOS technology

within power consumption constraints [13], [14]. Better per-

forming, more robust algorithms are possible, and, as we will

present, will be required to transition from laboratory-based

systems to an IPP operating continuously, and autonomously,

in a clinical setting.

CHRONIC ELECTRODE-BASED NEURAL PROSTHESES

The basic architecture of motor and communication prosthe-

ses are shown in Figure 1(a). Motor prostheses aim to pro-

vide neural control of the paralyzed limb, while

communication prostheses aim to provide a communication

channel equivalent to “typing” on a computer. The relation-

ship between a movement and the neural response (tuning)

is used to design estimation

(decoding) algorithms to infer the

desired movement from only the

neural activity, a sample of which is

shown in Figure 1(b). The system

can then generate control signals

appropriate for continuously guid-

ing a paralyzed or prosthetic arm

through space (motor prosthesis)

or positioning a computer cursor

on the desired letter on a keyboard (communication prosthe-

sis). Two types of neural spike activity, plan and movement,

are well suited for driving prosthetic systems plan activity,

present from soon after the reach target is identified until

just after the movement begins, is tuned for the target of the

movement. (In the context of this article, neural activity is

almost exclusively spiking activity recorded in the motor

(M1) and dorsal premotor (PMd) cortex. While the local field

potential (LFP) has been shown to predict movement direc-

tion in other cortical regions [16], its role in M1 and PMd

remains unclear.) This goal information can be decoded to

drive communication prostheses, which only need to esti-

mate the movement endpoint [5], [7]. Motor prostheses must

incorporate movement activity since the goal is to recreate

the desired movement. Plan activity can play a role in motor

prostheses, however, by providing a probabilistic prior, or tar-

get estimation, to constrain movement estimation [15], [10]. 

ACHIEVING STATE-OF-THE-ART PERFORMANCE

As shown in Figure 1, there are four major components—neural

signal acquisition, spike sorting, neural

decoding and control signal genera-

tion—that can be engineered to

improved prosthetic system perform-

ance. Control signals are considered to

be part of the actuation system and are

not discussed. Neural signal quality, and

particularly the number of independent

neurons that could possibly be observed

is a function of the electrode technology,

surgical placement and time since implantation, all topics beyond

the scope this article. The two remaining blocks, spike sorting

and neural decoding, are where significant improvements in per-

formance can be realized through advanced signal processing

algorithms, and thus will be the focus of the remainder of this

article. In the following section we will describe the algorithms

[FIG1] (a) Concept sketch of cortically controlled motor and communication prostheses. Adapted from [11]. (b) Neural activity (spikes
indicated by black dots) during typical instructed-delay reaching task. Adapted from [15].

IO sT

Pr

FrO

IIO

Pr

FrO

O TsT

Occipital

Temporal

Parietal

PO

Lu

iPd

spcd

OT

iA

spA

IP
S1MIP

VIP

M1

cPMv

SMA
preSMA

rPMv

7a

Motor
Prosthesis

A B C D E F G 
H I J K L M N 

Estimate Desired
Movement

Control Signals

Spike Times

N
e
u
ro

n
s

Center Hold Target Onset Movement
Onset

Go Cue

Occipital

Frontal
Parietal

PO

Lu

iPd

spcd

OT

iA

spA

IP
S1

VIP
AIP

LIP

cPMv

rPMv

O P Q R S T U 

EC

Neural Signals cPMdrPMd
sA

FEF

sprd
C

7b

Communication Prosthesis

V W X Y Z

Spike Sort

(a) (b)

IEEE SIGNAL PROCESSING MAGAZINE [20] JANUARY 2008

NEURAL PROSTHETIC SYSTEMS
ARE ONLY CLINICALLY VIABLE

WHEN THE ANTICIPATED
QUALITY OF LIFE 

IMPROVEMENT OUTWEIGHS
THE POTENTIAL RISKS.

Authorized licensed use limited to: Univ of Calif San Francico. Downloaded on July 27, 2009 at 15:31 from IEEE Xplore.  Restrictions apply. 



used to achieve the 6.5 b/s transfer rate communication prosthe-

ses described in [7]. Although these are not the most advanced

algorithms available, they are some of the highest performing in

active use in a complete prosthetic system, and are excellent

examples of the types of algorithms currently being developed.

SPIKE SORTING

The neural signal captured by an extracellular electrode contains

the overlapping, noisy measurement of action potentials (spikes)

from several nearby neurons. Automatic or semi-automatic tech-

niques for disambiguating between unique neurons, often termed

“spike sorting,” have been heavily investigated (see [17] for a review

and [18] for a description of more recent methods). For a given

channel, each neuron is assumed to produce a unique and consis-

tent spike waveform (100–400 µV peak-to-peak, 1 ms in duration),

which is then corrupted by noise. Spike-sorting techniques attempt

to identify and classify these distinct spike shapes. Most algorithms

consist of two phases, a training phase, when the sort parameters

are set using a subset of the neural recording, and a classification

phase, during which all identified spikes are assigned to originating

neurons using previously determined parameters. 

Although numerous automated spike sorters have been

developed, they are only beginning to come into widespread use

among electrophysiology researchers. The benefit of a manual,

or semimanual approach is direct control of the spike identifica-

tion; the tradeoffs are long sorting times and inconsistency

(measured average false positive and false negative rates for

manual sorting are 23 and 30% respectively [19]). In contrast,

automated sorters are faster, more consistent (for a given data

set), often more sensitive and accurate (i.e., able to extract more

unique neurons, more accurately) and, most importantly for

clinical applications, able to operate without human interven-

tion. We describe one particular automated spike sorting algo-

rithm, the Sahani algorithm [9], which is in daily use in our

laboratory, and is an excellent example of a large class of statisti-

cally rigorous sorters.

It must be noted that while some form of spike sorting is

employed in most systems, it is neither required nor universally

used. In [20], the authors describe a threshold based spike iden-

tification methodology that does not attempt to disambiguate

between multiple neurons recorded on a single electrode.

Implemented with a simple analog circuit, this approach has

very low power consumption and significantly reduces telemetry

bandwidth, both important when developing an IPP. However,

this approach conflates all the neurons recorded on a given

channel to a single neuron. Two neurons observed on the same

channel are not guaranteed, however, to have identical response

properties. Therefore when unique neurons are not disam-

biguated information is irrecoverably lost, artificially limiting

overall system performance.

Figure 2(a) shows the block diagram for the Sahani sorting

algorithm. After digitization the broadband neural signal (sam-

pled at 30 kHz) is high-pass filtered (cut off at 250 Hz) to

remove the low frequency components (termed LFP) and

expose the spikes. The rms of the filtered signal is computed,

and a threshold of 3× the rms voltage is used to identify spike

events. These events are “snipped” from the signal waveform,

forming a set of ∼1 ms (32 sample) spike snippets. Segments

that do not exceed the threshold are also collected and used to

estimate the background noise process. The characterization of

[FIG2] Sahani spike sorting algorithm (a) Block diagram showing signal flow for Sahani spike sorting algorithm. Both training and real
time classification paths are shown. (b) Aggregate error rate versus neuron signal-to-noise ratio (SNR) for Sahani algorithm (blue) and
K-means/PCA based sorting (green). Adapted from [14].
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the background noise enables the projection of the spike wave-

forms into a robust noise-whitened principal components

(NWrPCA) space. During training, relaxation expectation-maxi-

mization (REM) and cascading model selection (CMS) are used

to cluster the data and fit the clusters to a mixture model. The

mixture model represents the prior probability of observing

each neuron identified as well as the probability of threshold

crossings corresponding to noise rather than neural activity.

While computationally complex, the Sahani algorithm

(and other similar algorithms) offer significant performance

improvement. In comparing performance with a much sim-

pler K-means/PCA-based technique, two critical aspects are

made apparent. By using cascading model selection, the

Sahani algorithm can typically determine the correct number

of neurons autonomously, a crucial feature for an unsuper-

vised spike sorter. Furthermore, the mixture model approach

provides a well-founded technique for rejecting threshold-

crossing events that do not actually

correspond to neural spikes. Figure

2(b) shows the aggregate error rate

of the Sahani algorithm (blue) and a

K-means/PCA based sorting

approach (green) for a synthetically

generated data set [14]. The aggre-

gate error rate is defined as the sum

of false positives and false negatives

divided by the total number of spikes

generated. The hollow circles indi-

cate missed neurons or error rates

greater than 100%. The median aggregate classification error

rate (false positive and false negative) for the Sahani algo-

rithm is 3.7%. In contrast, the K-means/PCA approach, which

assumed three unique neuron per electrode, misclassified

many neurons entirely. Even if these misclassified neurons

are removed, the aggregate median error rate is 20%. (See

[14] for description of synthetic data generation and the K-

means/PCA sorting methodology.) 

NEURAL DECODING

The intended movement can be estimated from the neural activ-

ity (as identified by the spike sorter) using parameterized mod-

els. Examples of decoding algorithms currently in use include

population vectors [3] and linear filters, [2], [4], [6]. Both of

these decoders assume a linear relationship between the neural

activity and intended movement. The linear algorithms are

effective, and attractive due to their low latency and simple

implementations, but more accurate movement estimation can

be obtained using recursive Bayesian decoders [21]–[23]. Unlike

the linear decoders, the probabilistic methods allow for nonlin-

ear relationships between the neural activity and the intended

movement and provide confidence regions for the movement

estimates. And although the probabilistic decoders tend to be

more complex than the linear methods, the latency can be kept

low by combining the results of many simple probabilistic

decoders running in parallel [10].

As discussed previously, the plan activity reliably indicates

the intended reach goal and can serve either as the primary

source of information (for a communication prosthesis) or as a

probabilistic prior constraining movement estimation [2]. Let z

be a q × 1 vector of spike counts across the q simultaneously

recorded neurons in a prespecified time window (e.g., 100 ms)

during the delay period preceding the reach. The distribution of

spike counts (from training data) for each reach goal m can be

fit to either a product of Gaussians or a product of Poissons. In

both models the neurons are assumed to be independent given

the reach goal.

For any test trial, the probability that the upcoming reach

goal is m given the plan activity z can be computed by applying

Bayes’ rule

P(m|z) =
P(z|m)P(m)

P(z)
=

P(z|m)
∑

m ′ P(z|m ′)
(1)

where P(m) is assumed to be uni-

form. The most likely reach goal (i.e.,

the one with the largest P(m|z)) is

taken to be the decoded reach goal.

The accuracy of the goal decoder

varies with the duration and place-

ment of the time window in which

spikes are counted, as well as the pre-

cise spike count model P(z|m) that is

used. The 6.5 b/s communication

prosthetic performance cited earlier

is achieved in large part by optimizing the configuration of the

time window with respect to overall prosthetic performance [7].

Earlier placement with respect to target appearance and shorter

duration enables more trials in a fixed unit of time, but with

reduced accuracy, with the opposite true for longer duration.

The maximum information transfer rate capacity (ITRC) actual-

ly occurs using eight targets at short window durations (∼70

ms, corresponding to short trials), despite the relatively low sin-

gle-trial accuracy at these durations (∼70% versus ∼90%

achieved with long windows).

The results of goal decoding can be used to constrain trajec-

tory estimation for motor prosthesis in several ways. Goal

directed reaches are observed to be highly stereotyped and thus

can be recreated with high accuracy using a set of canonical

trajectories selected by a goal decoder [15]. Alternately, P(m|z)

can be incorporated into a probabilistic trajectory estimator in

place of the otherwise uniform probability of a given target on a

given trial [10]. 

BUILDING AN IPP

Current neural prosthetic systems, which use microconnectors

to bring neural signals out of the body and a rack full of com-

puters and specialized post-processing hardware, are not clini-

cally viable in the long term. Although already in use for human

clinical trials [6], these systems, all of which required skilled

operators, will not scale for use outside laboratory settings. In

IEEE SIGNAL PROCESSING MAGAZINE [22] JANUARY 2008
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previous sections we described algorithms, like unsupervised

spike sorting, which reduce the need for a trained operator.

Equally as important is reducing the physical system footprint,

cost, and surgical risk. By integrating the entire prosthetic sys-

tem, or a large portion thereof, into a single unit with wireless

telemetry and powering, the cost and size can be reduced and

the transcutaneous connector, a potential source of infection,

can be eliminated. To address these needs we propose an inte-

grated IPP, which combines a variable precision analog-to-digi-

tal converter array (ADC) [13], a digital spike sorter [14],

maximum-likelihood neural decoder [15], and a wireless data

and power transceiver (an integrated analog front end with

wireless transceiver is described in [12]).

The IPP described here is not the only approach for building

an implantable neural prosthetic system. Other low power

designs have been proposed. In [12] and [20], described earlier,

the authors proposed analog comparator-based spike identifica-

tion. However this system does not

differentiate between different neu-

rons recorded on the same channel,

thereby reducing the amount of infor-

mation extracted. In [24], the authors

limited the number of channels, ADC

resolution and sophistication of the

spike sorting algorithm to reduce

power consumption. In [25], a lossy

wavelet encoding scheme is used to

reduce the necessary data bandwidth

(and thus reducing transmitter

power). The shapes of the action

potentials are preserved and post-pro-

cessing can be used perform spike

sorting. However the data bandwidth

reduction is smaller than can be achieved with integrated sort-

ing and decoding. Furthermore, the effect of the compression

loss on the ability to distinguish spikes from different neurons

is unknown. 

In all the systems described above, the designers were

forced to make tradeoffs to reduce power consumption.

However, we argue that such concessions are not necessary.

Instead, current laboratory class capabilities can be retained by

implementing the digital post processing in hardware as part

of the implantable system. Using a metric of 1 GOPS/mW, the

sorting and decoding algorithms described previously, along

with the ADC and amplifiers are estimated to consume less

than 10 µW per channel [14], well below the limit for safe

power dissipation into the brain (80 mW/cm2 [26]). The ADC

array is a large power consumer, and reducing its power dissi-

pation is key to minimizing overall power consumption; the

per channel power consumption is: ADC: 4.2 µW, digital filter

and threshold: 1.32 µW, real-time sorting: .1 µW, spike-sorter

training: 2.8 µW [14]. ADC power consumption can be

reduced by 3.6× to 1.16 µW using a variable precision ADC

array [13], which sets the optimal bit depth of each ADC (no

higher than necessary to save power, but no lower than neces-

sary to maintain spike sorting accuracy) using the results of

the downstream spike sorter. The current focus is on designing

more power-efficient implementations for the digital filtering

and spike sorter training, efforts that would benefit from signal

processing expertise. In the case of the spike sorter training,

the solution might lie in similar forms synergy, such as the

neural decoder feeding back to the spike sorter, an as of yet

largely unexplored but potentially bountiful source of perform-

ance improvements. 

NEW CHALLENGES FOR NEURAL PROSTHESES

The spike sorting and decoding techniques described above are

relatively mature and ready for research into low-power imple-

mentations. The transition from experimental to clinical set-

tings, however, requires prosthetic systems to be more robust

and autonomous, challenges not addressed by the established

techniques. Although some solutions have been proposed, most

are in their infancy, and thus the primary

research focus is the development of prin-

cipled algorithms. The following sections

describe some of the signal processing

research underway to provide robust spike

sorting and autonomous prosthetic con-

trol and neural decoding.

CONTEXT DETECTION

A typical, daily, laboratory prosthetic ses-

sion lasts two to three hours and is con-

ducted by highly trained researchers. A

clinical prosthetic system, however, will

need to operate continuously (24 h/day,

everyday) with minimal outside assis-

tance. Reliable prosthetic performance

across different behavioral contexts is imperative. Prosthetic sys-

tems will need to interpret the user’s current behavioral context

(i.e., sleeping versus active) so as to most efficiently use

resources, by going into low-power sleep mode for example, and,

perhaps, more importantly, so as to not generate undesired

actions, such as arm movements while sleeping. Any approach

that utilizes outside assistance to identify these various contexts

will not be clinically viable due to cost and scalability, and sys-

tems that rely on the user to manually select modes might have

basic technological problems (e.g., how does a user reliant on a

prosthetic system for movement wake it up?). As neural pros-

thetic systems transition from the laboratory to the clinical set-

ting, new types of information beyond just reaching control and

discrete target selection will be required.

Although such topics are only beginning to be examined,

there is strong evidence that these macro-behavioral contexts

can, and must, be determined form the same neural activity

used to drive the prosthetic systems. Using an autonomous,

long-duration neural recording system for freely behaving

primates that we developed, called HermesB, we recorded

numerous neural channels nearly continuously over 54 h (5-

min recording periods separated with 2.5-min break) [27]. With

MOTOR PROSTHESES AIM

TO PROVIDE NEURAL

CONTROL OF THE

PARALYZED LIMB, 

WHILE COMMUNICATION

PROSTHESES AIM TO

PROVIDE A

COMMUNICATION

CHANNEL EQUIVALENT 

TO “TYPING” 

ON A COMPUTER.
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the accelerometer built into the HermesB system, the recording

blocks could be classified as active or inactive. We noticed that

while the spiking statistics were not a good indicator of behav-

ioral context, the LFP power in 5–25 Hz band was different in

the two contexts. Using a simple LFP power threshold, >89% of

5-min blocks were correctly classified as active/inactive, suggest-

ing that using a small subset of the neural information (just one

channel in this case) we could accurately monitor the subject’s

behavioral context. Although a simple example, this type of

analysis highlights the types of additional information that will

be useful in developing responsive, intuitive clinical prostheses.

ROBUST SPIKE SORTING

Part of reducing outside assistance is making prosthetic systems

more robust. In most experimental protocols the parameters

used in spike sorting and decoding are regenerated at the begin-

ning of the session and then assumed to remain constant for the

duration of the session. Daily parameter regeneration is

required to compensate for changes in the neural signals

observed between recording sessions. However, the timescales at

which these changes occur are much shorter than one day [27],

suggesting that prosthetic systems will need to regenerate their

parameters (termed retraining) more often. Using the long

duration recordings made with the HermesB system we charac-

terized the stability of neural recordings at the intermediate

timescales (i.e., between discrete daily recording periods) inac-

cessible with traditional experimental protocols. We observed

variations of up to 30% in mean waveform amplitude over peri-

ods ranging from 5 min to several hours, up to 5 µV change in

background RMS voltage, and abrupt changes in waveform

amplitude of up to 25% (V
after

pp /V
before

pp ) in response to high

acceleration movements of the subject’s head.

Figure 3(a) shows the waveform amplitude for two neu-

rons for selected 5-min blocks across 54 h recorded from a

freely behaving subject. The lines of constant voltage provide

a reference against which one can see the large changes in the

waveform amplitude. These changes in action potential shape

have been previously observed across once-daily recordings

[28]. Here, the results gathered with HermesB from a freely

behaving primate indicates substantial variation in spikes

waveforms over intermediate timescales as well. Figure 3(b)

shows the local change in waveform amplitude

(V
after

pp /V
before

pp ) when the head mounted accelerometer meas-

ured a > 3G acceleration event. Most of ∼1,700 events show

little or no change in waveform amplitude, however, two

events (indicated by arrows) show much larger, abrupt

changes in waveform amplitude. Figure 3(c) shows the wave-

form amplitude as a function of time for the 5-min block dur-

ing which event 1 occurred. The red vertical line marks the

the >3 G acceleration. The close alignment between the

acceleration event and the step change in waveform ampli-

tude strongly suggests that the relationship between the

waveform variation and acceleration event is not coincidental.

The profile is consistent with an abrupt change in array posi-
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[FIG3] Neural recording stability for freely behaving primate. (a) Spike waveforms of two neurons for selected five-min blocks across 54
h. Colored regions indicate 10–90th percentile in amplitude. Horizontal lines indicate maximum and minimum voltages for each neuron.
(b) Local change in mean waveform amplitude (V after

pp /V
before

pp ) (red + symbols) for 200 snippets before and after 3G acceleration events.
(c) Waveform Vpp moving average (over 200 snippets) centered about the time indicated for the 5-min block containing event 1 from
panel (b). Time of event 1 is indicated with red vertical bar. In (b) the wide grey regions indicate night and the thin pink regions indicate
“pit stops” when the monkey was taken form the home cage and placed in the primate chair to service the recording equipment.
Adapted from [27].
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tion. The second event shows similar behavior but is not

shown. Variations in waveform amplitude and background

noise can both have adverse affects on spike sorting perform-

ance, either through the use of inappropriate threshold or out-

right misclassification. The spike identification threshold is

typically set as a multiple of the rms noise (typically 3×), thus

a 5 µV change in the RMS noise will translate into a much

larger change in the threshold, potentially resulting in missed

spikes, or an increase in noise generated, nonneural snippets.

Spike classification is based on the waveform shape, and in

particular the amplitude, and so changes in the waveform

amplitude will result in misclassification. Using the types of

variations shown in Figure 3, recorded neural waveforms were

artificially perturbed (either to increase or decrease amplitude)

prior to spike sorting and decoding. As would be expected, as

the number of neurons and the extent of perturbation increas-

es, the decoding accuracy in commu-

nication prosthetic experiments

decreases. For the particular experi-

mental data (taken from [7]) used in

this simulation, the 30% variation in

waveform amplitude observed with

HermesB translated to a reduction in

decoding accuracy from 92% to 62%

(unpublished observation, V. Gilja).

Tolerance to some variations in

neural recordings has already been

incorporated into sorting algorithms.

Firing rate dependent changes in

spike shape can be addressed by incorporating firing statistics

into the spike sorting algorithm [29] and changes in rms volt-

age can be addressed through adaptive thresholding [20]. Long

time-scale variations, however, may require periodic retraining

of the spike sorting parameters. There does not appear to be a

consensus on exactly what retraining period is required.

Experiments that use discrete daily recording periods typically

only update once per day, but future prosthetic systems that

operate continuously will likely need to retrain more regularly.

If the necessary retraining interval is short enough, adaptive

approaches, which link together otherwise independent retrain-

ing operations might be appropriate. 

In [30], the authors propose an algorithm that divides the

data into a set of short frames, sorts each frame independently,

and then performs a second global clustering operation. Each

frame (∼1,000 spikes) is assumed stationary, allowing all varia-

tions to be addressed at the global level. In [31], the authors

propose tracking changes in waveform shape by linking high-

dimensional spike clusters between frames, essentially follow-

ing the “crumbs” of shifting clusters. The tradeoffs for both

approaches is the computational overhead of continually

retraining and the large memory footprint of maintaining

global information over long time scales. For these reasons it

is unlikely that these algorithms could be successfully imple-

mented on a clinical IPP. Instead, a truly adaptive approach,

which continuously integrates and updates the parameters

might be the best approach. A suitable algorithm would have

an effective training interval short enough to track variations

in waveform shape and background process, without the cost

of discrete retraining, and long duration global waveform

shape tracking. 

AUTONOMOUS DECODE CONTROL

The macro-behavioral introspection described previously can

provide insight into the general behavioral context (e.g.,

awake versus sleeping) but is insufficiently precise for guiding

the decoding of a particular movement. During each move-

ment, motor cortical firing rates transition through a

sequence of discrete and stable states, termed “epochs,” such

as baseline, prepare, and execute (the latter two corresponding

to the plan and movement periods). Most prosthetic systems,

including those described previously, require knowing when

one or both of plan and movement

activity is present. When the transi-

tion between epochs is not detected,

and neural activity is incorrectly or

imprecisely “labeled,” decoding per-

formance suffers. Current experimen-

tal protocols require human

intervention to differentiate between

epochs; to be useful outside the labo-

ratory, however, prosthetic systems

will need to determine the epoch

autonomously. Researchers have

begun to tackle this problem; a finite

state machine (FSM)-based state detector was recently pro-

posed in [32]. This approach uses a sliding-window maxi-

mum-likelihood state classifier coupled to a finite state

machine (FSM) to estimate the current epoch.

The state transition can be modeled as a Markov process

in which the hidden state transitions through three epochs

identified above. Using the moment-by-moment a posteriori

likelihoods of the states of the resultant hidden Markov

model (HMM), the current epoch (baseline, preparatory, or

execution) can be accurately, and autonomously, estimated

[15]. Compared to the ad-hoc FSM-based approach, the

HMM-based epoch estimator provides increased accuracy,

and offers a principled approach that can leverage the exist-

ing body of work on HMMs; can more readily be extended to

incorporate other classes of neural data, such as LFP; and

can potentially adapt to the nonstationarities in neural

recordings described previously [27]. A simplified, didactic

version, of the HMM-based decoder using two targets and

ten neurons is shown in Figure 4. During the baseline phase,

a small number of states (drawn as one for simplicity) model

the variation in background of neural activity. For each pos-

sible target, one state models plan activity and second mod-

els execution, or movement, activity. The HMM structure

enables the inference of state likelihoods using a simple,

well-known recursive computation in which the a priori esti-

mate and the newest observation are used to compute an a

THERE ARE FOUR MAJOR

COMPONENTS—NEURAL

SIGNAL ACQUISITION, SPIKE

SORTING, NEURAL DECODING

AND CONTROL SIGNAL

GENERATION—THAT CAN BE

ENGINEERED TO IMPROVED

PROSTHETIC 

SYSTEM PERFORMANCE. 
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posteriori estimate (abbreviated APL and defined specifically

as L(i, t), the likelihood of being in state i at time t ). Figure

4(c) depicts the estimated APL for this trial. In this example,

the transitions form the baseline to plan to movement

regimes of activity are quite apparent in the spikes, and as

expected, the estimated state probabilities track these transi-

tions accurately and closely.

The state probabilities can be used in two ways. First, as

described earlier, the epoch can be determined by combining

the APL of activity regimes across goals. For plan activity,

Pr (preparatory regime | n0:t ) =

∑
i ∈P L(i, t)

∑
jL( j, t)

, (2)

where n0:t is the neural activity up until time t and P repre-

sents plan states (in this case planning left or right). The proba-

bility of movement states can be found similarly. The time at

which the probability crosses a predetermined threshold is an

estimate of the time of transition between epochs. An

autonomous neural prosthesis can be formed by combining

this epoch estimation with the recursive Bayesian decoder

described previously. The second use for the state probabilities

is as a decoder and not just an epoch detector. At any moment

during the trial, it is possible to estimate the target of the

intended movement as the target whose combined preparatory

and movement APL is highest.

CONCLUSIONS

The success of laboratory-based neural prosthetic systems pro-

vide proof of concept and motivate the continued development

of clinical prostheses. Although the basic neuroscience

research will always be ongoing, many of the obstacles facing

the prosthetics community as it develops a clinically viable

implantable prosthetic processor are primarily engineering

challenges. In this article we identified some of these chal-

lenges, namely improving the robustness, autonomy and power

efficiency of the prosthetics systems, along with potential solu-

tions. The challenges are formidable, but familiar to the engi-

neering community, and the field of neural prosthetics will

benefit greatly from the early and continued involvement of
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[FIG4] HMM regime detection. (a) Simple five-state reaching movement HMM. (b) An example of the neural activity for a rightward
movement. Ten neurons, recorded simultaneously are shown. Black bars indicate spike times. (c) Time series of state likelihoods for each
HMM state. The arrow depicts the estimated time of the beginning of the planning regime for the threshold value depicted. Adapted
from [15].
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experts in signal acquisition, signal processing and analog and

digital system design. 
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