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Abstract—Music signal processing may appear to be the junior
relation of the large and mature field of speech signal processing,
not least because many techniques and representations originally
developed for speech have been applied to music, often with good
results. However, music signals possess specific acoustic and struc-
tural characteristics that distinguish them from spoken language
or other nonmusical signals. This paper provides an overview of
some signal analysis techniques that specifically address musical
dimensions such as melody, harmony, rhythm, and timbre. We will
examine how particular characteristics of music signals impact and
determine these techniques, and we highlight a number of novel
music analysis and retrieval tasks that such processing makes pos-
sible. Our goal is to demonstrate that, to be successful, music audio
signal processing techniques must be informed by a deep and thor-
ough insight into the nature of music itself.

Index Terms—Beat, digital signal processing, harmony, melody,
music analysis, music information retrieval, music signals, pitch,
rhythm, source separation, timbre, voice separation.

I. INTRODUCTION

M
USIC is a ubiquitous and vital part of the lives of bil-
lions of people worldwide. Musical creations and per-

formances are among the most complex and intricate of our cul-
tural artifacts, and the emotional power of music can touch us in
surprising and profound ways. Music spans an enormous range
of forms and styles, from simple, unaccompanied folk songs, to
orchestras and other large ensembles, to a minutely constructed
piece of electronic music resulting from months of work in the
studio.

The revolution in music distribution and storage brought
about by personal digital technology has simultaneously fueled
tremendous interest in and attention to the ways that informa-
tion technology can be applied to this kind of content. From
browsing personal collections, to discovering new artists, to
managing and protecting the rights of music creators, com-
puters are now deeply involved in almost every aspect of music
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consumption, which is not even to mention their vital role in
much of today’s music production.

This paper concerns the application of signal processing tech-
niques to music signals, in particular to the problems of ana-
lyzing an existing music signal (such as piece in a collection) to
extract a wide variety of information and descriptions that may
be important for different kinds of applications. We argue that
there is a distinct body of techniques and representations that
are molded by the particular properties of music audio—such as
the pre-eminence of distinct fundamental periodicities (pitches),
the preponderance of overlapping sound sources in musical en-
sembles (polyphony), the variety of source characteristics (tim-
bres), and the regular hierarchy of temporal structures (beats).
These tools are more or less unlike those encountered in other
areas of signal processing, even closely related fields such as
speech signal processing. In any application, the more closely
the processing can reflect and exploit the particular properties
of the signals at hand, the more successful it will be. Musical
signals, despite their enormous diversity, do exhibit a number
of key properties that give rise to the techniques of music signal
processing, as we shall see.

The application of signal processing to music signals is hardly
new, of course. It could be argued to be the basis of the theremin,
a 1920s instrument in which an oscillator is controlled by the
capacitance of the player’s hands near its antennae. The devel-
opment of modern signal processing in the 1940s and 1950s led
directly the first wave of electronic music, in which composers
such as Karlheinz Stockhausen created music using signal gen-
erators, ring modulators, etc., taken straight from electronics
labs. Following the advent of general-purpose digital computers
in the 1960s and 1970s, it was not long before they were used
to synthesize music by pioneers like Max Matthews and John
Pierce. Experimental music has remained a steady source of
innovative applications of signal processing, and has spawned
a significant body of sophisticated techniques for synthesizing
and modifying sounds [1], [2].

As opposed to synthesis, which takes a compact, abstract de-
scription such as a musical score and creates a corresponding
signal, our focus is analysis—for instance, the inverse problem
of recovering a score-level description given only the audio. It
turns out that this problem is very computationally demanding,
and although efforts at automatic transcription, for example,
date back to the mid 1970s [3], the vastly improved computa-
tional resources of recent years, along with the demands and op-
portunities presented by massive online music collections, have
led to a recent explosion in this research. The first International
Symposium on Music Information Retrieval1 was held in 2000;
this annual meeting is now a thriving interdisciplinary commu-
nity with over 100 papers presented at the 2010 conference in
Utrecht.

1[Online]. Available: http://www.ismir.net/.
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In the rest of the paper, we will present several of the dis-
tinctive aspects of the musical signal, and the most significant
approaches that have been developed for its analysis. While
many techniques are initially borrowed from speech processing
or other areas of signal processing, the unique properties and
stringent demands of music signals have dictated that simple
repurposing is not enough, leading to some inspired and elegant
solutions. We have organized the material along particular
musical dimensions: In Section II, we discuss the nature of
pitch and harmony in music, and present time–frequency
representations used in their analysis. Then, in Section III,
we address the musical aspects of note onsets, beat, tempo,
and rhythm. In Section IV, we discuss models representing
the timbre and instrumentation of music signals and introduce
various methods for recognizing musical instruments on audio
recordings. Finally, in Section V, we show how acoustic and
musical characteristics can be utilized to separate musical
voices, such as the melody and bass line, from polyphonic
music. We conclude in Section VI with a discussion of open
problems and future directions.

II. PITCH AND HARMONY

Pitch is a ubiquitous feature of music. Although a strict def-
inition of music is problematic, the existence of sequences of
sounds with well-defined fundamental periods—i.e., individual
notes with distinct pitches—is a very common feature. In this
section, we discuss the objective properties of musical pitch and
its use to create musical harmony, then go on to present some
of the more common time–frequency representations used in
music signal analysis. A number of music applications based
on these representations are described.

A. Musical Pitch

Most musical instruments—including string-based instru-
ments such as guitars, violins, and pianos, as well as instruments
based on vibrating air columns such as flutes, clarinets, and
trumpets—are explicitly constructed to allow performers to
produce sounds with easily controlled, locally stable funda-
mental periods. Such a signal is well described as a harmonic
series of sinusoids at multiples of a fundamental frequency,
and results in the percept of a musical note (a single perceived
event) at a clearly defined pitch in the mind of the listener.
With the exception of unpitched instruments like drums, and
a few inharmonic instruments such as bells, the periodicity of
individual musical notes is rarely ambiguous, and thus equating
the perceived pitch with fundamental frequency is common.

Music exists for the pleasure of human listeners, and thus
its features reflect specific aspects of human auditory percep-
tion. In particular, humans perceive two signals whose funda-
mental frequencies fall in a ratio 2:1 (an octave) as highly similar
[4] (sometimes known as “octave equivalence”). A sequence of
notes—a melody—performed at pitches exactly one octave dis-
placed from an original will be perceived as largely musically
equivalent. We note that the sinusoidal harmonics of a funda-
mental at at frequencies are a proper
superset of the harmonics of a note with fundamental (i.e.,

Fig. 1. Middle C (262 Hz) played on a piano and a violin. The top pane shows
the waveform, with the spectrogram below. Zoomed-in regions shown above
the waveform reveal the 3.8-ms fundamental period of both notes.

), and this is presumably the basis of the per-
ceived similarity. Other pairs of notes with frequencies in simple
ratios, such as and will also share many harmonics,
and are also perceived as similar—although not as close as the
octave. Fig. 1 shows the waveforms and spectrograms of middle
C (with fundamental frequency 262 Hz) played on a piano and
a violin. Zoomed-in views above the waveforms show the rela-
tively stationary waveform with a 3.8-ms period in both cases.
The spectrograms (calculated with a 46-ms window) show the
harmonic series at integer multiples of the fundamental. Ob-
vious differences between piano and violin sound include the
decaying energy within the piano note, and the slight frequency
modulation (“vibrato”) on the violin.

Although different cultures have developed different musical
conventions, a common feature is the musical “scale,” a set of
discrete pitches that repeats every octave, from which melodies
are constructed. For example, contemporary western music is
based on the “equal tempered” scale, which, by a happy mathe-
matical coincidence, allows the octave to be divided into twelve
equal steps on a logarithmic axis while still (almost) preserving
intervals corresponding to the most pleasant note combinations.
The equal division makes each frequency larger
than its predecessor, an interval known as a semitone. The coin-
cidence is that it is even possible to divide the octave uniformly
into such a small number of steps, and still have these steps give
close, if not exact, matches to the simple integer ratios that re-
sult in consonant harmonies, e.g., , and

. The western major scale spans the
octave using seven of the twelve steps—the “white notes” on
a piano, denoted by C, D, E, F, G, A, B. The spacing between
successive notes is two semitones, except for E/F and B/C which
are only one semitone apart. The “black notes” in between are
named in reference to the note immediately below (e.g., ),
or above , depending on musicological conventions. The
octave degree denoted by these symbols is sometimes known as
the pitch’s chroma, and a particular pitch can be specified by the
concatenation of a chroma and an octave number (where each
numbered octave spans C to B). The lowest note on a piano is
A0 (27.5 Hz), the highest note is C8 (4186 Hz), and middle C
(262 Hz) is C4.
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Fig. 2. Middle C, followed by the E and G above, then all three notes to-
gether—a C Major triad—played on a piano. Top pane shows the spectrogram;
bottom pane shows the chroma representation.

B. Harmony

While sequences of pitches create melodies—the “tune”
of a music, and the only part reproducible by a monophonic
instrument such as the voice—another essential aspect of
much music is harmony, the simultaneous presentation of
notes at different pitches. Different combinations of notes
result in different musical colors or “chords,” which remain
recognizable regardless of the instrument used to play them.
Consonant harmonies (those that sound “pleasant”) tend to
involve pitches with simple frequency ratios, indicating many
shared harmonics. Fig. 2 shows middle C (262 Hz), E (330 Hz),
and G (392 Hz) played on a piano; these three notes together
form a C Major triad, a common harmonic unit in western
music. The figure shows both the spectrogram and the chroma
representation, described in Section II-E below. The ubiquity
of simultaneous pitches, with coincident or near-coincident
harmonics, is a major challenge in the automatic analysis of
music audio: note that the chord in Fig. 2 is an unusually easy
case to visualize thanks to its simplicity and long duration, and
the absence of vibrato in piano notes.

C. Time–Frequency Representations

Some music audio applications, such as transcribing perfor-
mances, call for explicit detection of the fundamental frequen-
cies present in the signal, commonly known as pitch tracking.
Unfortunately, the presence of multiple, simultaneous notes in
polyphonic music renders accurate pitch tracking very difficult,
as discussed further in Section V. However, there are many other
applications, including chord recognition and music matching,
that do not require explicit detection of pitches, and for these
tasks several representations of the pitch and harmonic infor-
mation—the “tonal content” of the audio—commonly appear.
Here, we introduce and define these basic descriptions.

As in other audio-related applications, the most popular
tool for describing the time-varying energy across different
frequency bands is the short-time Fourier transform (STFT),
which, when visualized as its magnitude, is known as the
spectrogram (as in Figs. 1 and 2). Formally, let be a dis-
crete-time signal obtained by uniform sampling of a waveform
at a sampling rate of Hz. Using an -point tapered window

(e.g., Hamming for
) and an overlap of half a

window length, we obtain the STFT

(1)

with and . Here, determines
the number of frames, is the index of the last unique
frequency value, and thus corresponds to the window
beginning at time in seconds and frequency

(2)

in Hertz (Hz). Typical values of and
give a window length of 92.8 ms, a time resolution of 46.4 ms,
and frequency resolution of 10.8 Hz.

is complex-valued, with the phase depending on the
precise alignment of each short-time analysis window. Often it
is only the magnitude that is used. In Figs. 1 and 2,
we see that this spectrogram representation carries a great deal
of information about the tonal content of music audio, even in
Fig. 2’s case of multiple, overlapping notes. However, close in-
spection of the individual harmonics at the right-hand side of
that figure—at 780 and 1300 Hz, for example—reveals ampli-
tude modulations resulting from phase interactions of close har-
monics, something that cannot be exactly modeled in a magni-
tude-only representation.

D. Log-Frequency Spectrogram

As mentioned above, our perception of music defines a log-
arithmic frequency scale, with each doubling in frequency (an
octave) corresponding to an equal musical interval. This mo-
tivates the use of time–frequency representations with a sim-
ilar logarithmic frequency axis, which in fact correspond more
closely to representation in the ear [5]. (Because the bandwidth
of each bin varies in proportion to its center frequency, these rep-
resentations are also known as “constant-Q transforms,” since
each filter’s effective center frequency-to-bandwidth ratio—its

—is the same.) With, for instance, 12 frequency bins per oc-
tave, the result is a representation with one bin per semitone of
the equal-tempered scale.

A simple way to achieve this is as a mapping applied to
an STFT representation. Each bin in the log-frequency spec-
trogram is formed as a linear weighting of corresponding
frequency bins from the original spectrogram. For a log-fre-
quency axis with bins, this calculation can be expressed in
matrix notation as , where is the log-frequency
spectrogram with rows and columns, is the original
STFT magnitude array (with indexing columns and

indexing rows). is a weighting matrix consisting of
rows, each of columns, that give the weight of STFT
bin contributing to log-frequency bin . For
instance, using a Gaussian window

(3)

where defines the bandwidth of the filterbank as the frequency
difference (in octaves) at which the bin has fallen to
of its peak gain. is the frequency of the lowest bin
and is the number of bins per octave in the log-frequency
axis. The calculation is illustrated in Fig. 3, where the top-left
image is the matrix , the top right is the conventional spectro-
gram , and the bottom right shows the resulting log-frequency
spectrogram .
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Fig. 3. Calculation of a log-frequency spectrogram as a columnwise linear
mapping of bins from a conventional (linear-frequency) spectrogram. The im-
ages may be interpreted as matrices, but note the bottom-to-top sense of the
frequency (row) axis.

Although conceptually simple, such a mapping often gives
unsatisfactory results: in the figure, the logarithmic frequency
axis uses (one bin per semitone), starting at

Hz (A2). At this point, the log-frequency bins have centers
only 6.5 Hz apart; to have these centered on distinct STFT bins
would require a window of 153 ms, or almost 7000 points at

Hz. Using a 64-ms window, as in the figure, causes
blurring of the low-frequency bins. Yet, by the same token, the
highest bins shown—five octaves above the lowest—involve av-
eraging together many STFT bins.

The long time window required to achieve semitone resolu-
tion at low frequencies has serious implications for the temporal
resolution of any analysis. Since human perception of rhythm
can often discriminate changes of 10 ms or less [4], an anal-
ysis window of 100 ms or more can lose important temporal
structure. One popular alternative to a single STFT analysis is to
construct a bank of individual bandpass filters, for instance one
per semitone, each tuned the appropriate bandwidth and with
minimal temporal support [6, Sec. 3.1]. Although this loses the
famed computational efficiency of the fast Fourier transform,
some of this may be regained by processing the highest octave
with an STFT-based method, downsampling by a factor of 2,
then repeating for as many octaves as are desired [7], [8]. This
results in different sampling rates for each octave of the analysis,
raising further computational issues. A toolkit for such analysis
has been created by Schorkhuber and Klapuri [9].

E. Time-Chroma Representations

Some applications are primarily concerned with the chroma
of the notes present, but less with the octave. Foremost among
these is chord transcription—the annotation of the current chord
as it changes through a song. Chords are a joint property of
all the notes sounding at or near a particular point in time, for
instance the C Major chord of Fig. 2, which is the unambiguous
label of the three notes C, E, and G. Chords are generally defined
by three or four notes, but the precise octave in which those notes
occur is of secondary importance. Thus, for chord recognition, a
representation that describes the chroma present but “folds” the
octaves together seems ideal. This is the intention of chroma
representations, first introduced as Pitch Class Profiles in [10];
the description as chroma was introduced in [11].

Fig. 4. Three representations of a chromatic scale comprising every note on
the piano from lowest to highest. Top pane: conventional spectrogram (93-ms
window). Middle pane: log-frequency spectrogram (186-ms window). Bottom
pane: chromagram (based on 186-ms window).

A typical chroma representation consists of a 12-bin vector
for each time step, one for each chroma class from C to B. Given
a log-frequency spectrogram representation with semitone res-
olution from the preceding section, one way to create chroma
vectors is simply to add together all the bins corresponding to
each distinct chroma [6, Ch. 3]. More involved approaches may
include efforts to include energy only from strong sinusoidal
components in the audio, and exclude non-tonal energy such as
percussion and other noise. Estimating the precise frequency of
tones in the lower frequency range may be important if the fre-
quency binning of underlying transform is not precisely aligned
to the musical scale [12].

Fig. 4 shows a chromatic scale, consisting of all 88 piano
keys played one a second in an ascending sequence. The top
pane shows the conventional, linear-frequency spectrogram, and
the middle pane shows a log-frequency spectrogram calculated
as in Fig. 3. Notice how the constant ratio between the funda-
mental frequencies of successive notes appears as an exponen-
tial growth on a linear axis, but becomes a straight line on a
logarithmic axis. The bottom pane shows a 12-bin chroma rep-
resentation (a “chromagram”) of the same data. Even though
there is only one note sounding at each time, notice that very
few notes result in a chroma vector with energy in only a single
bin. This is because although the fundamental may be mapped
neatly into the appropriate chroma bin, as will the harmonics at

, etc. (all related to the fundamental by octaves),
the other harmonics will map onto other chroma bins. The har-
monic at , for instance, corresponds to an octave plus 7 semi-
tones , thus for the C4 sounding at 40 s, we
see the second most intense chroma bin after C is the G seven
steps higher. Other harmonics fall in other bins, giving the more
complex pattern. Many musical notes have the highest energy in
the fundamental harmonic, and even with a weak fundamental,
the root chroma is the bin into which the greatest number of
low-order harmonics fall, but for a note with energy across a
large number of harmonics—such as the lowest notes in the
figure—the chroma vector can become quite cluttered.

One might think that attempting to attenuate higher har-
monics would give better chroma representations by reducing
these alias terms. In fact, many applications are improved by
whitening the spectrum—i.e., boosting weaker bands to make
the energy approximately constant across the spectrum. This
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helps remove differences arising from the different spectral
balance of different musical instruments, and hence better
represents the tonal, and not the timbral or instrument-depen-
dent, content of the audio. In [13], this is achieved by explicit
normalization within a sliding local window, whereas [14]
discards low-order cepstral coefficients as a form of “liftering.”

Chroma representations may use more than 12 bins per oc-
tave to reflect finer pitch variations, but still retain the property
of combining energy from frequencies separated by an octave
[15], [16]. To obtain robustness against global mistunings (re-
sulting from instruments tuned to a standard other than the 440
Hz A4, or distorted through equipment such as tape recorders
running at the wrong speed), practical chroma analyses need to
employ some kind of adaptive tuning, for instance by building
a histogram of the differences between the frequencies of all
strong harmonics and the nearest quantized semitone frequency,
then shifting the semitone grid to match the peak of this his-
togram [12]. It is, however, useful to limit the range of frequen-
cies over which chroma is calculated. Human pitch perception
is most strongly influenced by harmonics that occur in a “dom-
inance region” between about 400 and 2000 Hz [4]. Thus, after
whitening, the harmonics can be shaped by a smooth, tapered
frequency window to favor this range.

Notwithstanding the claims above that octave is less impor-
tant than chroma, the lowest pitch in a collection of notes has a
particularly important role in shaping the perception of simul-
taneous notes. This is why many musical ensembles feature a
“bass” instrument—the double-bass in an orchestra, or the bass
guitar in rock music—responsible for playing very low notes.
As discussed in Section V, some applications explicitly track
a bass line, but this hard decision can be avoided be avoided
by calculating a second chroma vector over a lower frequency
window, for instance covering 50 Hz to 400 Hz [17].

Code toolboxes to calculate chroma features are provided by
Ellis2 and Müller.3

F. Example Applications

Tonal representations—especially chroma features—have
been used for a wide range of music analysis and retrieval
tasks in which it is more important to capture polyphonic
musical content without necessarily being concerned about the
instrumentation. Such applications include chord recognition,
alignment, “cover song” detection, and structure analysis.

1) Chord Recognition: As discussed above, chroma features
were introduced as Pitch Class Profiles in [10], specifically for
the task of recognizing chords in music audio. As a global prop-
erty of the current notes and context, chords can be recognized
based on a global representation of a short window. Moreover,
shifting notes up or down by an octave rarely has much im-
pact on the chord identity, so the octave-invariant properties of
the chroma vector make it particularly appropriate. There has
been a large amount of subsequent work on chord recognition,

2[Online]. Available: http://www.ee.columbia.edu/~dpwe/resources/matlab/
chroma-ansyn/.

3[Online]. Available: http://www.mpi-inf.mpg.de/~mmueller/chroma-
toolbox/.

Fig. 5. Similarity matrix comparing a MIDI version of “And I Love Her” (hor-
izontal axis) with the original Beatles recording (vertical axis). From [24].

all based on some variant of chroma [15], [18]–[22]. Devel-
opments have mainly focused on the learning and classifica-
tion aspects of the system: for instance, [15] noted the direct
analogy between music audio with transcribed chord sequences
(e.g., in “real books”) that lack exact temporal alignments, and
the speech recordings with unaligned word transcriptions used
to train speech recognitions: they used the same Baum–Welch
procedure to simultaneously estimate both models for the fea-
tures of each chord, and the label alignment in the training data.
Although later work has been able to take advantage of an in-
creasing volume of manually labeled chord transcriptions [23],
significant benefits have been attributed to refinements in feature
extraction including separation of tonal (sinusoidal) and percus-
sive (transient or noisy) energy [22], and local spectral normal-
ization prior to chroma calculation [13].

2) Synchronization and Alignment: A difficult task such as
chord recognition or polyphonic note transcription can be made
substantially easier by employing an existing, symbolic descrip-
tion such as a known chord sequence, or the entire musical score.
Then, the problem becomes that of aligning or synchronizing

the symbolic description to the music audio [6, Ch. 5], making
possible innovative applications such as an animated musical
score display that synchronously highlights the appropriate bar
in time with the music [25]. The core of such an application is to
align compatible representations of each component with an ef-
ficient technique such as Dynamic Time Warping (DTW) [26],
[27]. A time-chroma representation can be directly predicted
from the symbolic description, or an electronic score such as
a MIDI file can be synthesized into audio, then the synthesized
form itself analyzed for alignment to the original recording [28],
[29]. Fig. 5 shows a similarity matrix comparing a MIDI version
of “And I Love Her” by the Beatles with the actual recording
[24]. A similarity matrix is populated by some
measure of similarity between representa-
tion at time and at . For instance, if both and

are chroma representations, could be the normalized cor-
relation, . Differences in structure
and timing between the two versions are revealed by wiggles in
the dark ridge closest to the leading diagonal; flanking ridges
relate to musical structure, discussed below.

A similar approach can synchronize different recordings of
the same piece of music, for instance to allow switching, in
real-time, between performances of a piano sonata by different
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pianists [25], [30], [31]. In this case, the relatively poor temporal
accuracy of tonal representations may be enhanced by the addi-
tion of features better able to achieve precise synchronization of
onset events [32].

3) “Cover Song” Detection: In popular music, an artist may
record his or her own version of another artist’s composition,
often incorporating substantial changes to instrumentation,
tempo, structure, and other stylistic aspects. These alternate
interpretations are sometimes known as “cover” versions, and
present a greater challenge to alignment, due to the substantial
changes. The techniques of chroma feature representation and
DTW are, however, still the dominant approaches over several
years of development and formal evaluation of this task within
the MIREX campaign [33]. Gross structural changes will
interfere with conventional DTW, so it must either be modified
to report “local matches” [34], or replaced by a different tech-
nique such as cross-correlation of beat-synchronous chroma
representations [12]. The need for efficient search within very
large music collections can be satisfied with efficient hash-table
representation of the music broken up into smaller fragments
[35]–[37].

4) Structure Recovery: A similarity matrix that compares a
piece of music to itself will have a perfectly straight leading di-
agonal ridge, but will likely have flanking ridges similar to those
visible in Fig. 5. These ridges indicate that a certain portion of
the signal resembles an earlier (or later) part—i.e., the signal ex-
hibits some repetitive structure. Recurring melodies and chord
sequences are ubiquitous in music, which frequently exhibits a
hierarchical structure. In popular music, for instance, the song
may consist of an introduction, a sequence of alternating verse
and chorus, a solo or bridge section, etc. Each of these segments
may in turn consist of multiple phrases or lines with related or
repeating structure, and the individual phrases may themselves
consist of repeating or nearly repeating patterns of notes. [38],
for instance, argues that the observation and acquisition of this
kind of structure is an important part of the enjoyment of music
listening.

Automatic segmentation and decomposition according to this
structure is receiving an increasing level of attention; see [39]
for a recent review. Typically, systems operate by 1) finding
off-diagonal ridges in a similarity matrix to identify and segment
into repeating phrases [40], [41], and/or 2) finding segmentation
points such that some measure of statistical similarity is max-
imized within segments, but minimized between adjacent seg-
ments [42], [43]. Since human labelers exhibit less consistency
on this annotation tasks than for, say, beat or chord labeling,
structure recovery is sometimes simplified into problems such
as identifying the “chorus,” a frequently repeated and usually
obvious part of popular songs [11]. Other related problems in-
clude searching for structures and motifs that recur within and
across different songs within a given body of music [44], [45].

III. TEMPO, BEAT, AND RHYTHM

The musical aspects of tempo, beat, and rhythm play a fun-
damental role for the understanding of and the interaction with
music [46]. It is the beat, the steady pulse that drives music for-
ward and provides the temporal framework of a piece of music

Fig. 6. Waveform representation of the beginning of Another one bites the dust

by Queen. (a) Note onsets. (b) Beat positions.

[47]. Intuitively, the beat can be described as a sequence of per-
ceived pulses that are regularly spaced in time and correspond
to the pulse a human taps along when listening to the music
[48]. The term tempo then refers to the rate of the pulse. Mu-
sical pulses typically go along with note onsets or percussive
events. Locating such events within a given signal constitutes a
fundamental task, which is often referred to as onset detection.
In this section, we give an overview of recent approaches for ex-
tracting onset, tempo, and beat information from music signals,
and then indicate how this information can be applied to derive
higher-level rhythmic patterns.

A. Onset Detection and Novelty Curve

The objective of onset detection is to determine the physical
starting times of notes or other musical events as they occur in a
music recording. The general idea is to capture sudden changes
in the music signal, which are typically caused by the onset of
novel events. As a result, one obtains a so-called novelty curve,
the peaks of which indicate onset candidates. Many different
methods for computing novelty curves have been proposed; see
[49] and [50] for an overview. For example, playing a note on
a percussive instrument typically results in a sudden increase of
the signal’s energy, see Fig. 6(a). Having such a pronounced at-
tack phase, note onset candidates may be determined by locating
time positions, where the signal’s amplitude envelope starts to
increase [49]. Much more challenging, however, is the detection
of onsets in the case of non-percussive music, where one often
has to deal with soft onsets or blurred note transitions. This is
often the case for vocal music or classical music dominated by
string instruments. Furthermore, in complex polyphonic mix-
tures, simultaneously occurring events may result in masking
effects, which makes it hard to detect individual onsets. As a
consequence, more refined methods have to be used for com-
puting the novelty curves, e.g., by analyzing the signal’s spec-
tral content [49], [51], pitch [51], [52], harmony [53], [54], or
phase [49], [55]. To handle the variety of different signal types,
a combination of novelty curves particularly designed for cer-
tain classes of instruments can improve the detection accuracy
[51], [56]. Furthermore, to resolve masking effects, detection
functions were proposed that analyze the signal in a bandwise
fashion to extract transients occurring in certain frequency re-
gions of the signal [57], [58]. For example, as a side-effect of
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Fig. 7. Excerpt of Shostakovich’s Waltz No. 2 from the Suite for Variety Or-

chestra No. 1. (a) Score representation (in a piano reduced version). (b) Magni-
tude spectrogram. (c) Compressed spectrogram using � � ����. (d) Novelty
curve derived from (b). (e) Novelty curve derived from (c).

a sudden energy increase, one can often observe an accompa-
nying broadband noise burst in the signal’s spectrum. This ef-
fect is mostly masked by the signal’s energy in lower frequency
regions, but it is well detectable in the higher frequency re-
gions of the spectrum [59]. A widely used approach to onset
detection in the frequency domain is the spectral flux [49], [60],
where changes of pitch and timbre are detected by analyzing the
signal’s short-time spectrum.

To illustrate some of these ideas, we now describe a typical
spectral-based approach for computing novelty curves. Given a
music recording, a short-time Fourier transform is used to ob-
tain a spectrogram with and

as in (1). Note that the Fourier coefficients of
are linearly spaced on the frequency axis. Using suitable binning
strategies, various approaches switch over to a logarithmically
spaced frequency axis, e.g., by using mel-frequency bands or
pitch bands; see [57], [58], and Section II-D. Keeping the linear
frequency axis puts greater emphasis on the high-frequency re-
gions of the signal, thus accentuating the aforementioned noise
bursts visible as high-frequency content. One simple, yet impor-
tant step, which is often applied in the processing of music sig-
nals, is referred to as logarithmic compression; see [57]. In our
context, this step consists in applying a logarithm to the magni-
tude spectrogram of the signal yielding
for a suitable constant . Such a compression step not only
accounts for the logarithmic sensation of human sound inten-
sity, but also balances out the dynamic range of the signal. In
particular, by increasing , low-intensity values in the high-fre-
quency spectrum become more prominent. This effect is clearly
visible in Fig. 7, which shows the magnitude spectrogram
and the compressed spectrogram for a recording of a Waltz by
Shostakovich. On the downside, a large compression factor
may also amplify non-relevant low-energy noise components.

To obtain a novelty curve, one basically computes the discrete
derivative of the compressed spectrum . More precisely, one

sums up only positive intensity changes to emphasize onsets
while discarding offsets to obtain the novelty function

:

(4)

for , where for a non-negative real
number and for a negative real number . In many
implementations, higher order smoothed differentiators are used
[61] and the resulting curve is further normalized [62], [63].
Fig. 7(e) shows a typical novelty curve for our Shostakovich
example. As mentioned above, one often process the spectrum
in a bandwise fashion obtaining a novelty curve for each band
separately [57], [58]. These novelty curves are then weighted
and summed up to yield a final novelty function.

The peaks of the novelty curve typically indicate the po-
sitions of note onsets. Therefore, to explicitly determine the
positions of note onsets, one employs peak picking strategies
based on fixed or adaptive thresholding [49], [51]. In the case
of noisy novelty curves with many spurious peaks, however,
this is a fragile and error-prone step. Here, the selection of the
relevant peaks that correspond to true note onsets becomes
a difficult or even infeasible problem. For example, in the
Shostakovich Waltz, the first beats (downbeats) of the 3/4
meter are played softly by non-percussive instruments leading
to relatively weak and blurred onsets, whereas the second
and third beats are played staccato supported by percussive
instruments. As a result, the peaks of the novelty curve cor-
responding to downbeats are hardly visible or even missing,
whereas peaks corresponding to the percussive beats are much
more pronounced, see Fig. 7(e).

B. Periodicity Analysis and Tempo Estimation

Avoiding the explicit determination of note onset, novelty
curves are often directly analyzed in order to detect reoccurring
or quasi-periodic patterns, see [64] for an overview of various
approaches. Here, generally speaking, one can distinguish be-
tween three different methods. The autocorrelation method al-
lows for detecting periodic self-similarities by comparing a nov-
elty curve with time-shifted (localized) copies [65]–[68]. An-
other widely used method is based on a bank of comb filter res-
onators, where a novelty curve is compared with templates that
consists of equally spaced spikes covering a range of periods
and phases [57], [58]. Third, the short-time Fourier transform
can be used to derive a time–frequency representation of the
novelty curve [62], [63], [67]. Here, the novelty curve is com-
pared with templates consisting of sinusoidal kernels each rep-
resenting a specific frequency. Each of the methods reveals pe-
riodicity properties of the underlying novelty curve from which
one can estimate the tempo or beat structure. The intensities
of the estimated periodicity, tempo, or beat properties typically
change over time and are often visualized by means of spectro-
gram-like representations referred to as tempogram [69], rhyth-

mogram [70], or beat spectrogram [71].
Exemplarily, we introduce the concept of a tempogram while

discussing two different periodicity estimation methods. Let
(as for the novelty curve) denote the sampled time axis,
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Fig. 8. Excerpt of Shostakovich’s Waltz No. 2 from the Suite for Variety Or-

chestra No. 1. (a) Fourier tempogram. (b) Autocorrelation tempogram.

which we extend to to avoid boundary problems. Furthermore,
let be a set of tempi specified in beats per minute
(BPM). Then, a tempogram is mapping
yielding a time-tempo representation for a given time-dependent
signal. For example, suppose that a music signal has a domi-
nant tempo of BPM around position , then the cor-
responding value is large, see Fig. 8. In practice, one
often has to deal with tempo ambiguities, where a tempo is
confused with integer multiples (referred to as har-

monics of ) and integer fractions (referred to
as subharmonics of ). To avoid such ambiguities, a mid-level
tempo representation referred to as cyclic tempograms can be
constructed, where tempi differing by a power of two are iden-
tified [72], [73]. This concept is similar to the cyclic chroma
features, where pitches differing by octaves are identified, cf.
Section II-E. We discuss the problem of tempo ambiguity and
pulse level confusion in more detail in Section III-C.

A tempogram can be obtained by analyzing a novelty curve
with respect to local periodic patterns using a short-time Fourier
transform [62], [63], [67]. To this end, one fixes a window func-
tion of finite length centered at (e.g., a
centered Hann window of size for some ). Then,
for a frequency parameter , the complex Fourier coef-
ficient is defined by

(5)

Note that the frequency parameter (measured in Hertz) cor-
responds to the tempo parameter (measured in
BPM). Therefore, one obtains a discrete Fourier tempogram

by

(6)

As an example, Fig. 8(a) shows the tempogram of our
Shostakovich example from Fig. 7. Note that reveals a
slightly increasing tempo over time starting with roughly

BPM. Also, reveals the second tempo harmonics
starting with BPM. Actually, since the novelty curve

locally behaves like a track of positive clicks, it is not hard
to see that Fourier analysis responds to harmonics but tends to
suppress subharmonics, see also [73], [74].

Also autocorrelation-based methods are widely used to esti-
mate local periodicities [66]. Since these methods, as it turns

out, respond to subharmonics while suppressing harmonics,
they ideally complement Fourier-based methods, see [73], [74].
To obtain a discrete autocorrelation tempogram, one again fixes
a window function centered at with support

, . The local autocorrelation is then computed
by comparing the windowed novelty curve with time shifted
copies of itself. Here, we use the unbiased local autocorrelation

(7)
for time and time lag . Now, to convert the
lag parameter into a tempo parameter, one needs to know the
sampling rate. Supposing that each time parameter cor-
responds to seconds, then the lag corresponds to the tempo

BPM. From this, one obtains the autocorrelation

tempogram by

(8)

for each tempo , . Finally, using
standard resampling and interpolation techniques applied to the
tempo domain, one can derive an autocorrelation tempogram

that is defined on the same tempo set
as the Fourier tempogram . The tempogram for

our Shostakovich example is shown in Fig. 8(b), which clearly
indicates the subharmonics. Actually, the parameter is
the third subharmonics of and corresponds to the tempo
on the measure level.

Assuming a more or less steady tempo, most tempo estima-
tion approaches determine only one global tempo value for the
entire recording. For example, such a value may be obtained
by averaging the tempo values (e.g., using a median filter [53])
obtained from a framewise periodicity analysis. Dealing with
music with significant tempo changes, the task of local tempo
estimation (for each point in time) becomes a much more dif-
ficult or even ill-posed problem; see also Fig. 9 for a com-
plex example. Having computed a tempogram, the framewise
maximum yields a good indicator of the locally dominating
tempo—however, one often has to struggle with confusions of
tempo harmonics and subharmonics. Here, tempo estimation
can be improved by a combined usage of Fourier and autocor-
relation tempograms. Furthermore, instead of simply taking the
framewise maximum, global optimization techniques based on
dynamic programming have been suggested to obtain smooth
tempo trajectories [61], [67].

C. Beat Tracking

When listening to a piece of music, most humans are able
to tap to the musical beat without difficulty. However, trans-
ferring this cognitive process into an automated system that re-
liably works for the large variety of musical styles is a chal-
lenging task. In particular, the tracking of beat positions be-
comes hard in the case that a music recording reveals signifi-
cant tempo changes. This typically occurs in expressive perfor-
mances of classical music as a result of ritardandi, accelerandi,
fermatas, and artistic shaping [75]. Furthermore, the extraction
problem is complicated by the fact that there are various levels
that are presumed to contribute to the human perception of beat.
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Fig. 9. Excerpt of the Mazurka Op. 30 No. 2 (played by Rubinstein, 1966).
(a) Score. (b) Fourier tempogram with reference tempo (cyan). (c) Beat positions
(quarter note level).

Most approaches focus on determining musical pulses on the
tactus level (the foot tapping rate) [65]–[67], but only few ap-
proaches exist for analyzing the signal on the measure level
[54], [57] or finer tatum level [76]–[78]. Here, a tatum or tem-

poral atom refers to the fastest repetition rate of musically mean-
ingful accents occurring in the signal [79]. Various approaches
have been suggested that simultaneously analyze different pulse
levels [57], [68], [80]. In [62] and [63], instead of looking at a
specific pulse level, a robust mid-level representation has been
introduced which captures the predominant local pulse even in
the presence of significant tempo fluctuations.

Exemplarily, we describe a robust beat tracking procedure
[66], which assumes a roughly constant tempo throughout the
music recording. The input of the algorithm consists of a novelty
curve as well as an estimate of the global
(average) tempo, which also determines the pulse level to be
considered. From and the sampling rate used for the novelty
curve, one can derive an estimate for the average beat
period (given in samples). Assuming a roughly constant tempo,
the difference of two neighboring beats should be close to

. To measure the distance between and , a neighborhood
function , , is introduced.
This function takes the maximum value of 0 for and
is symmetric on a log-time axis. Now, the task is to estimate
a sequence , for some suitable ,
of monotonously increasing beat positions
satisfying two conditions. On the one hand, the value
should be large for all , and, on the other hand, the
beat intervals should be close to . To this end, one
defines the score of a beat sequence
by

(9)

where the weight balances out the two conditions. Fi-
nally, the beat sequence maximizing yields the solution of the
beat tracking problem. The score-maximizing beat sequence can
be obtained by a straightforward dynamic programming (DP)
approach; see [66] for details.

As mentioned above, recent beat tracking procedures work
well for modern pop and rock music with a strong and steady
beat, but the extraction of beat locations from highly expressive
performances still constitutes a challenging task with many
open problems. For such music, one often has significant local
tempo fluctuation caused by the artistic freedom a musician
takes, so that the model assumption of local periodicity is
strongly violated. This is illustrated by Fig. 9, which shows a
tempo curve and the beat positions for a romantic piano music
recording (Mazurka by Chopin). In practice beat tracking is
further complicated by the fact that there may be beats with
no explicit note events going along with them [81]. Here, a
human may still perceive a steady beat by subconsciously inter-
polating the missing onsets. This is a hard task for a machine,
in particular in passages of varying tempo where interpolation
is not straightforward. Furthermore, auxiliary note onsets can
cause difficulty or ambiguity in defining a specific physical
beat time. In music such as the Chopin Mazurkas, the main
melody is often embellished by ornamented notes such as trills,
grace notes, or arpeggios. Also, for the sake of expressiveness,
the notes of a chord need not be played at the same time, but
slightly displaced in time. This renders a precise definition of a
physical beat position impossible [82]. Such highly expressive
music also reveals the limits of purely onset-oriented tempo
and beat tracking procedures, see also [63].

D. Higher-Level Rhythmic Structures

The extraction of onset, beat, and tempo information is of
fundamental importance for the determination of higher-level
musical structures such as rhythm and meter [46], [48]. Gener-
ally, the term rhythm is used to refer to a temporal patterning of
event durations, which are determined by a regular succession
of strong and weak stimuli [83]. Furthermore, the perception of
rhythmic patterns also depends on other cues such as the dy-
namics and timbre of the involved sound events. Such repeating
patterns of accents form characteristic pulse groups, which de-
termine the meter of a piece of music. Here, each group typically
starts with an accented beat and consists of all pulses until the
next accent. In this sense, the term meter is often used synony-
mously with the term time signature, which specifies the beat
structure of a musical measure or bar. It expresses a regular pat-
tern of beat stresses continuing through a piece thus defining a
hierarchical grid of beats at various time scales.

Rhythm and tempo are often sufficient for characterizing
the style of a piece of music. This particularly holds for dance
music, where, e.g., a waltz or tango can be instantly recognized
from the underlying rhythmic pattern. Various approaches have
been described for determining some kind of rhythm template,
which have mainly been applied for music classification tasks
[77], [84], [85]. Typically, the first step consists in performing
some beat tracking. In the next step, assuming additional
knowledge such as the time signature and the starting position
of the first bar, patterns of alternating strong and weak pulses
are determined for each bar, which are then averaged over all
bars to yield an average rhythmic pattern for the entire piece
[84], [85]. Even though such patterns may still be abstract, they
have been successfully applied for tasks such as dance style
classification. The automatic extraction of explicit rhythmic
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parameters such as the time signature constitutes a difficult
problem. A first step towards time signature estimation has
been described in [86], where the number of beats between
regularly recurring accents (or downbeats) are estimated to
distinguish between music having a duple or triple meter.

Another way for deriving rhythm-related features is to con-
sider intervals defined by successive onset or beat positions,
often referred as inter-onset-intervals (IOIs). Considering his-
tograms over the durations of occurring IOIs, one may then de-
rive hypotheses on the beat period, tempo, and meter [75], [76],
[87]. The drawback of these approaches is that they rely on an
explicit localization of a discrete set of onset and beat posi-
tions—a fragile and error-prone step. To compensate for such
errors, various approaches have been proposed to jointly or iter-
atively estimate onset, pulse, and meter parameters [54], [78].

IV. TIMBRE AND INSTRUMENTATION

Timbre is defined as the “attribute of auditory sensation in
terms of which a listener can judge two sounds similarly pre-
sented and having the same loudness and pitch as dissimilar”
[88]. The concept is closely related to sound source recogni-
tion: for example, the sounds of the violin and the flute may be
identical in their pitch and loudness, but are still easily distin-
guished. Furthermore, when listening to polyphonic music, we
are usually able to perceptually organize the component sounds
to their sources based on timbre information.

The term polyphonic timbre refers to the overall timbral mix-
ture of a music signal, the “global sound” of a piece of music
[89], [90]. Human listeners, especially trained musicians, can
switch between a “holistic” listening mode where they con-
sider a music signal as a coherent whole, and a more analytic
mode where they focus on the part played by a particular in-
strument [91], [92]. In computational systems, acoustic features
describing the polyphonic timbre have been found effective for
tasks such as automatic genre identification [93], music emotion
recognition [94], and automatic tagging of audio with semantic
descriptors [95]. A computational analogy for the analytical lis-
tening mode, in turn, includes recognizing musical instruments
on polyphonic recordings.

This section will first discuss feature representations for
timbre and then review methods for musical instrument recog-
nition in isolation and in polyphonic music signals.

A. Perceptual Dimensions of Timbre

Timbre is a multidimensional concept, having several under-
lying acoustic factors. Schouten [96] describes timbre as being
determined by five major acoustic parameters: 1) the range be-
tween tonal and noise-like character; 2) the spectral envelope;
3) the time envelope; 4) the changes of spectral envelope and
fundamental frequency; and 5) the onset of the sound differing
notably from the sustained vibration.

The perceptual dimensions of timbre have been studied
based on dissimilarity ratings of human listeners for sound
pairs; see [97] and [98]. In these studies, multidimensional
scaling (MDS) was used to project the dissimilarity ratings into
a lower-dimensional space where the distances between the
sounds match as closely as possible the dissimilarity ratings.
Acoustic correlates can then be proposed for each dimension

of this timbre space. Several studies report spectral centroid,
, and attack time as major

determinants of timbre. Also often reported are spectral irreg-
ularity (defined as the average level difference of neighboring
harmonics) and spectral flux, , where

.
Very few studies have attempted to uncover the perceptual

dimensions of polyphonic timbre. Cogan [99] carried out in-
formal musicological case studies using the spectrograms of di-
verse music signals and proposed 13 dimensions to describe the
quality of musical sounds. Furthermore, Kendall and Carterette
[100] studied the perceptual dimensions of simultaneous wind
instrument timbres using MDS, whereas Alluri and Toiviainen
[90] explored the polyphonic timbre of Indian popular music.
The latter observed relatively high correlations between certain
perceptual dimensions and acoustic features describing spectro-
temporal modulations.

B. Time-Varying Spectral Envelope

The acoustic features found in the MDS experiments bring
insight into timbre perception, but they are generally too low-di-
mensional to lead to robust musical instrument identification
[101]. In signal processing applications, timbre is typically de-
scribed using a parametric model of the time-varying spectral
envelope of sounds. This stems from speech recognition [102]
and is not completely satisfactory in music processing as will
be seen in Section IV-C, but works well as a first approximation
of timbre. Fig. 10 illustrates the time-varying spectral envelopes
of two example musical tones. Indeed, all the acoustic features
found in the MDS experiments are implicitly represented by
the spectral envelope, and among the five points on Schouten’s
list, 2)–5) are reasonably well covered. The first point, tonal
versus noiselike character, can be addressed by decomposing
a music signal into its sinusoidal and stochastic components
[103], [104], and then estimating the spectral envelope of each
part separately. This, for example, has been found to signifi-
cantly improve the accuracy of genre classification [105].

Mel-frequency cepstral coefficients (MFCCs), originally
used for speech recognition [102], are by far the most popular
way of describing the spectral envelope within an individual
analysis frame. MFCCs encode the coarse shape of the
log-power spectrum on the mel-frequency scale.4 They have the
desirable property that a small (resp. large) numerical change
in the MFCC coefficients corresponds to a small (resp. large)
perceptual change. MFCCs are calculated by simulating a bank
of about 40 bandpass filters in the frequency domain (the filters
being uniformly spaced on the Mel-frequency scale), calcu-
lating the log-power of the signal within each band, and finally
applying a discrete cosine transform to the vector of log-powers
to obtain the MFCC coefficients. Typically only the 10–15
lowest coefficients are retained and the rest are discarded in
order to make the timbre features invariant to pitch information
that is present in the higher coefficients. Time-varying aspects
are usually accounted for by appending temporal derivatives of
the MFCCs to the feature vector.

4The mel-frequency scale is one among several scales that model the fre-
quency resolution of the human auditory system. See [106] for a comparison of
different perceptual frequency scales.
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Fig. 10. Time-varying spectral envelopes of 260-Hz tones of the flute (left) and
the vibraphone (right). Here sound pressure level within auditory critical bands
(CB) is shown as a function of time.

Modulation spectrum encodes the temporal variation of spec-
tral energy explicitly [107]. This representation is obtained by
first using a filterbank to decompose an audio signal into sub-
bands, extracting the energy envelope within each band, and fi-
nally analyzing amplitude modulations (AM) within each band
by computing discrete Fourier transforms of the energy enve-
lope within longer “texture” windows (phases are discarded to
achieve shift-invariance). This results in a three-dimensional
representation where the dimensions correspond to time, fre-
quency, and AM frequency (typically in the range 0–200 Hz).
Sometimes the time dimension can be collapsed by analyzing
AM modulation in a single texture window covering the entire
signal. Spectro-temporal modulations play an important role in
the perception of polyphonic timbre [90]; therefore, representa-
tions based on modulation spectra are particularly suitable for
describing the instrumentation aspects of complex music sig-
nals. Indeed, state-of-the-art genre classification is based on the
modulation spectrum [108]. Other applications of the modula-
tion spectrum include speech recognition [109], audio coding
[107], and musical instrument recognition [110].

C. Source-Filter Model of Sound Production

Let us now consider more structured models of musical
timbre. Instrument acoustics provides a rich source of infor-
mation for constructing models for the purpose of instrument
recognition. The source-filter model of sound production is
particularly relevant here [111]. Many musical instruments can
be viewed as a coupling of a vibrating object, such as a guitar
string (“source”), with the resonance structure of the rest of the
instrument (“filter”) that colors the produced sound. The source
part usually determines pitch, but often contains also timbral
information.

The source-filter model has been successfully used in speech
processing for decades [112]. However, an important difference
between speech and music is that there is only one sound pro-
duction mechanism in speech, whereas in music a wide variety
of sound production mechanisms are employed. Depending on
the instrument, the sound can be produced for example by vi-
brating strings, air columns, or vibrating bars, and therefore the
source excitation provides valuable information about the in-
strument identity.

It is interesting to note that the regularities in the source exci-
tation are not best described in terms of frequency, but in terms
of harmonic index. For example the sound of the clarinet is char-
acterized by the odd harmonics being stronger than the even har-
monics. For the piano, every th partial is weaker because the

string is excited at a point along its length. The sound of
the vibraphone, in turn, exhibits mainly the first and the fourth
harmonic and some energy around the tenth partial. MFCCs and
other models that describe the properties of an instrument as
a function of frequency smear out this information. Instead, a
structured model is needed where the spectral information is
described both as a function of frequency and as a function of
harmonic index.

The source-filter model for the magnitude spectrum
of a harmonic sound can be written as

(10)

where , is the frequency of the th
harmonic of a sound with fundamental frequency . Note that

is modeled only at the positions of the harmonics and is
assumed zero elsewhere. The scalar denotes the overall gain
of the sound, is the amplitude of harmonic in the spec-
trum of the vibrating source, and represents the frequency
response of the instrument body. Perceptually, it makes sense
to minimize the modeling error on the log-magnitude scale and
therefore to take the logarithm of both sides of (10). This ren-
ders the model linear and allows the two parts, and

, to be further represented using a suitable linear basis
[113]. In addition to speech coding and music synthesis [111],
[112], the source-filter model has been used to separate the main
melody from polyphonic music [114] and to recognize instru-
ments in polyphonic music [115].

Above we assumed that the source excitation produces a spec-
trum where partial frequencies obey . Although such
sounds are the commonplace in Western music (mallet percus-
sion instruments being the exception), this is not the case in all
music cultures and the effect of partial frequencies on timbre has
been very little studied. Sethares [116] has investigated the re-
lationship between the spectral structure of musical sounds and
the structure of musical scales used in different cultures.

D. Recognition of Musical Instruments in Isolation

This section reviews techniques for musical instrument
recognition in signals where only one instrument is playing at
a time. Systems developed for this purpose typically employ
the supervised classification paradigm (see Fig. 11), where 1)
acoustic features are extracted in successive time frames in
order to describe the relevant aspects of the signal; 2) training
data representing each instrument class is used to learn a model
for within-class feature distributions; and 3) the models are
then used to classify previously unseen samples.

A number of different supervised classification methods have
been used for instrument recognition, including -nearest neigh-
bors, Gaussian mixture models, hidden Markov models, linear
discriminant analysis, artificial neural networks, support vector
machines, and decision trees [117], [118]. For a comprehensive
review of the different recognition systems for isolated notes
and solo phrases, see [119]–[122].

A variety of acoustic features have been used for instrument
recognition. Spectral features include the first few moments of
the magnitude spectrum (spectral centroid, spread, skewness,
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Fig. 11. General overview of supervised classification. See text for details.

and kurtosis), sub-band energies, spectral flux, spectral irreg-
ularity, and harmonic versus noise part energy [123]. Cepstral
features include MFCCs and warped linear prediction-based
cepstral coefficients, see [101] for a comparison. Modulation
spectra have been used in [110]. Temporal features include
the first few moments of the energy envelope within frames
of about one second in length, and the frequency and strength
of amplitude modulation in the range 4–8 Hz (“tremolo”) and
10–40 Hz (“roughness”) [122], [124]. The first and second
temporal derivatives of the features are often appended to the
features vector. For a more comprehensive list of acoustic
features and comparative evaluations, see [101], [122], [125],
[126].

Obviously, the above list of acoustic features is highly redun-
dant. Development of a classification system typically involves
a feature selection stage, where training data is used to identify
and discard unnecessary features and thereby reduce the compu-
tational load of the feature extraction, see Herrera et al. [119] for
a discussion on feature selection methods. In order to facilitate
the subsequent statistical modeling of the feature distributions,
the retained features are often decorrelated and the dimension-
ality of the feature vector is reduced using principal component
analysis, linear discriminant analysis, or independent compo-
nent analysis [117].

Most instrument classification systems resort to the so-called
bag-of-features approach where an audio signal is modeled by
the statistical distribution of its short-term acoustic features,
and the temporal order of the features is ignored. An exception
here are the instrument recognizers employing hidden Markov
models where temporal dependencies are taken into account ex-
plicitly [127], [128]. Joder et al. [122] carried out an exten-
sive evaluation of different temporal integration mechanisms
to see if they improve over the bag-of-features approach. They
found that a combination of feature-level and classifier-level
temporal integration improved over a baseline system, although
neither of them alone brought a significant advantage. Further-
more, HMMs performed better than GMMs, which suggests that
taking into account the temporal dependencies of the feature
vectors improves classification.

The techniques discussed above are directly applicable to
other audio signal classification tasks too, including genre
classification [93], automatic tagging of audio [95], and music
emotion recognition [94], for example. However, the optimal
acoustic features and models are usually specific to each task.

E. Instrument Recognition in Polyphonic Mixtures

Instrument recognition in polyphonic music is closely related
to sound source separation: recognizing instruments in a mix-

ture allows one to generate time–frequency masks that indicate
which spectral components belong to which instrument. Vice
versa, if individual instruments can be reliably separated from
the mixture, the problem reduces to that of single-instrument
recognition. The problem of source separation will be discussed
in Section V.

A number of different approaches have been proposed for
recognizing instruments in polyphonic music. These include ex-
tracting acoustic features directly from the mixture signal, sound
source separation followed by the classification of each sep-
arated signal, signal model-based probabilistic inference, and
dictionary-based methods. Each of these will be discussed in
the following.

The most straightforward approach to polyphonic instrument
recognition is to extract features directly from the mixture
signal. Little and Pardo [129] used binary classifiers to detect
the presence of individual instruments in polyphonic audio.
They trained classifiers using weakly labeled mixture signals,
meaning that only the presence or absence of the target sound
object was indicated but not the exact times when it was active.
They found that learning from weakly labeled mixtures led to
better results than training with isolated examples of the target
instrument. This was interpreted to be due to the fact that the
training data, in the mixed case, was more representative of
the polyphonic data on which the system was tested. Essid et

al. [124] developed a system for recognizing combinations

of instruments directly. Their method exploits hierarchical
classification and an automatically built taxonomy of musical
ensembles in order to represent every possible combination of
instruments that is likely to be played simultaneously in a given
genre.

Eggink and Brown [130] introduced missing feature theory
to instrument recognition. Here the idea is to estimate a binary
mask that indicates time–frequency regions that are dominated
by energy from interfering sounds and are therefore to be ex-
cluded from the classification process [131]. The technique is
known to be effective if the mask is correctly estimated, but es-
timating it automatically is hard. Indeed, Wang [132] has pro-
posed that estimation of the time–frequency masks of sound
sources can be viewed as the computational goal of auditory
scene analysis in general. Fig. 12 illustrates the use of binary
masks in the case of a mixture consisting of singing and piano
accompaniment. Estimating the mask in music is complicated
by the fact that consonant pitch intervals cause partials of dif-
ferent sources to co-incide in frequency. Kitahara et al. [133]
avoided the mask estimation by applying linear discriminant
analysis on features extracted from polyphonic training data.
As a result, they obtained feature weightings where the largest
weights were given to features that were least affected by the
overlapping partials of co-occurring sounds.

A number of systems are based on separating the sound
sources from a mixture and then recognizing each of them in-
dividually [115], [123], [134]–[136]. Heittola et al. [115] used
a source-filter model for separating the signals of individual
instruments from a mixture. They employed a multiple-F0
estimator to produce candidate F0s at each time instant, and
then developed a variant of the non-negative matrix factoriza-
tion algorithm to assign sounds to their respective instruments
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Fig. 12. Illustration of the use of binary masks. The left panels show the mag-
nitude spectrograms of a singing excerpt (top) and its piano accompaniment
(bottom). The right panels show spectrograms of the mixture of the singing and
the accompaniment, with two different binary masks applied. On the top-right,
white areas indicate regions where the accompaniment energy is higher than
that of singing. On the bottom-right, singing has been similarly masked out.

and to estimate the spectral envelope of each instrument. A
different approach to sound separation was taken by Martins
et al. [135] and Burred et al. [136] who employed ideas from
computational auditory scene analysis [137]. They extracted
sinusoidal components from the mixture spectrum and then
used cues such as common onset time, frequency proximity,
and harmonic frequency relationships to assign spectral com-
ponents to distinct groups. Each group of sinusoidal trajectories
was then sent to a recognizer.

Vincent and Rodet [138] viewed instrument recognition as a
parameter estimation problem for a given signal model. They
represented the short-term log-power spectrum of polyphonic
music as a weighted nonlinear combination of typical note
spectra plus background noise. The note spectra for each
instrument were learnt in advance from a database of isolated
notes. Parameter estimation was carried out by maximizing
the joint posterior probability of instrument labels and the
activation parameters of note and instrument at time
. Maximizing this joint posterior resulted in joint instrument

recognition and polyphonic transcription.
A somewhat different path can also be followed by relying

on sparse decompositions. The idea of these is to represent a
given signal with a small number of elements drawn from a large
(typically overcomplete) dictionary. For example, Leveau et al.

[139] represented a time-domain signal as a weighted sum
of atoms taken from a dictionary , and a
residual :

(11)

where is a finite set of indexes . Each atom consists of a
sum of windowed and amplitude-weighted sinusoidals at fre-
quencies that are integer multiples of a linearly varying funda-
mental frequency. An individual atom covers only a short frame
of the input signal, but continuity constraints can be placed on
the activations of atoms with successive temporal supports.

Leveau et al. [139] learned the dictionary of atoms in advance
from a database of isolated musical tones. A sparse decomposi-
tion for a given mixture signal was then found by maximizing
the signal-to-residual ratio for a given number of atoms. This
optimization process results in selecting the most suitable atoms
from the dictionary, and since the atoms have been labeled with
pitch and instrument information, this results in joint instrument
identification and polyphonic transcription. Also the instrument
recognition methods of Kashino and Murase [140] and Cont and
Dubnov [110] can be viewed as being based on dictionaries, the
former using time-domain waveform templates and the latter
modulation spectra.

The above-discussed sparse decompositions can be viewed as
a mid-level representation, where information about the signal
content is already visible, but no detection or thresholding has
yet taken place. Such a goal was pursued by Kitahara et al. [128]
who proposed a “note-estimation-free” instrument recognition
system for polyphonic music. Their system used a spectrogram-
like representation (“instrogram”), where the two dimensions
corresponded to time and pitch, and each entry represented the
probability that a given target instrument is active at that point.

V. POLYPHONY AND MUSICAL VOICES

Given the extensive literature of speech signal analysis, it
seems natural that numerous music signal processing studies
have focused on monophonic signals. While monophonic sig-
nals certainly result in better performance, the desire for wider
applicability has led to a gradual focus, in recent years, to the
more challenging and more realistic case of polyphonic music.
There are two main strategies for dealing with polyphony: the
signal can either be processed globally, directly extracting infor-
mation from the polyphonic signal, or the system can attempt to
first split up the signal into individual components (or sources)
that can then be individually processed as monophonic signals.
The source separation step of this latter strategy, however, is not
always explicit and can merely provide a mid-level represen-
tation that facilitates the subsequent processing stages. In the
following sections, we present some basic material on source
separation and then illustrate the different strategies on a selec-
tion of specific music signal processing tasks. In particular, we
address the tasks of multi-pitch estimation and musical voice
extraction including melody, bass, and drum separation.

A. Source Separation

The goal of source separation is to extract all individual
sources from a mixed signal. In a musical context, this trans-
lates in obtaining the individual track of each instrument (or
individual notes for polyphonic instruments such as piano). A
number of excellent overviews of source separation principles
are available; see [141] and [142].

In general, source separation refers to the extraction of full
bandwidth source signals but it is interesting to mention that sev-
eral polyphonic music processing systems rely on a simplified
source separation paradigm. For example, a filter bank decom-
position (splitting the signal in adjacent well defined frequency
bands) or a mere Harmonic/Noise separation [143] (as for drum
extraction [144] or tempo estimation [61]) may be regarded as
instances of rudimentary source separation.
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Fig. 13. Convolutive mixing model. Each mixture signal � ��� is then ex-
pressed from the source signals as: � ��� � � ��� � � ���.

Three main situations occur in source separation problems.
The determined case corresponds to the situation where there
are as many mixture signals as different sources in the mix-
tures. Contrary, the overdetermined (resp. underdetermined)
case refers to the situation where there are more (resp. less)
mixtures than sources. Underdetermined Source Separation
(USS) is obviously the most difficult case. The problem of
source separation classically includes two major steps that can
be realized jointly: estimating the mixing matrix and estimating
the sources. Let be the mixture
signals, the source signals,
and the mixing matrix with
mixing gains . The mixture signals
are then obtained by: . This readily corresponds to
the instantaneous mixing model (the mixing coefficients are
simple scalars). The more general convolutive mixing model
considers that a filtering occurred between each source and
each mixture (see Fig. 13). In this case, if the filters are repre-
sented as FIR filters of impulse response , the
mixing matrix is given by
with , and the mixing model
corresponds to .

A wide variety of approaches exist to estimate the mixing
matrix and rely on techniques such as Independent Compo-
nent Analysis (ICA), sparse decompositions or clustering ap-
proaches [141]. In the determined case, it is straightforward to
obtain the individual sources once the mixing matrix is known:

. The underdetermined case is much harder since
it is an ill-posed problem with an infinite number of solutions.
Again, a large variety of strategies exists to recover the sources
including heuristic methods, minimization criteria on the error

, or time–frequency masking approaches. One of
the popular approaches, termed adaptive Wiener filtering, ex-
ploits soft time–frequency masking. Because of its importance
for audio source separation, it is described in more details.

For the sake of clarity, we consider below the monophonic
case, i.e., where only one mixture signal is available. If
we consider that the sources are stationary Gaussian
processes of power spectral density (PSD) , then the op-
timal estimate of is obtained as

(12)

where and are the STFTs of the mixture
and source , respectively. In practice, audio signals

can only be considered as locally stationary and are generally

assumed to be a combination of stationary Gaussian processes.
The source signal is then given by

where are stationary Gaussian processes of PSD ,
are slowly varying coefficients, and is a set

of indices for source . Here, the estimate of is then
obtained as (see for example [145] or [144] for more details):

(13)

Note that in this case, it is possible to use decomposition
methods on the mixture such as non-negative matrix fac-
torization (NMF) to obtain estimates of the spectral templates

.
Music signal separation is a particularly difficult example

of USS of convolutive mixtures (many concurrent instruments,
possibly mixed down with different reverberation settings, many
simultaneous musical notes and, in general, a recording limited
to two channels). The problem is then often tackled by inte-
grating prior information on the different source signals. For
music signals, different kinds of prior information have been
used including timbre models [146], harmonicity of the sources
[147], temporal continuity, and sparsity constraints [148]. In
some cases, by analogy with speech signal separation, it is pos-
sible to exploit production models, see [114] or [149].

Concerning evaluation, the domain of source separation of
audio signals is also now quite mature and regular evaluation
campaigns exist5 along with widely used evaluation protocols
[150].

B. From Monopitch to Multipitch Estimation

The estimation of the fundamental frequency of a quasi-pe-
riodic signal, termed monopitch estimation, has interested the
research community for decades. One of the main challenges is
to obtain a versatile and efficient algorithm for a wide range of
possible fundamental frequencies which can cope with the devi-
ations of real audio signals from perfect periodicity. For speech
signals, extensive reviews of early algorithms can be found in
[151] and [152].

In general, the different methods can be roughly classified in
three classes depending on the used signal representation. The
frequency domain approaches exploit the fact that quasi-peri-
odic signals exhibit a quasi-harmonic distribution of peaks in
the spectral domain. The fundamental frequency is estimated
by searching the highest frequency that generates a spectral
comb best explaining the spectral content of the signal; see
[153]–[155]. The time domain approaches aim at directly
estimating the period on the basis of the signal’s waveform
by searching the smallest time-shift for which the waveform
and its time-shifted version match. This can be done using the
autocorrelation or the average magnitude difference functions
[156], [157] or applying kernel-based approaches [158]. Both
time and frequency domain approaches are prone to octave

5For example, see http://sisec.wiki.irisa.fr/tiki-index.php (SiSec campaign).
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errors. However, because frequency domain (resp. time-do-
main) approaches are prone to estimate integer multiples or
harmonics (resp. integer fractions or sub-harmonics) of the true
fundamental frequency, mixed domain approaches exploiting
both representations were also developed; see [159] or [160].

Even though monopitch estimation is now achievable with
a reasonably high accuracy, the problem of multipitch estima-
tion (e.g., estimating the fundamental frequency of concurrent
periodic sounds) remains very challenging. The problem is in-
deed particularly difficult for music signals for which concurrent
notes stand in close harmonic relation. Here, in some sense, the
worst case is when two simultaneous notes are played one or
several octaves apart. For extreme cases such as complex or-
chestral music, where one has a high level of polyphony, mul-
tipitch estimation becomes intractable with today’s methods.
For a review of recent approaches, we refer to [161]–[163].
Most approaches work, at least partially, in the spectral do-
main. On the one hand, some methods follow a global strategy
aiming at jointly estimating all fundamental frequencies. For
example, [164] or [165] employ parametric methods, [166] de-
scribes a dedicated comb approach, [167] and [168] use methods
based on machine learning paradigms, whereas [169] follows a
least-square strategy. On the other hand, a number of methods
rely on source separation principles which are more or less ex-
plicit. For example, the non-negative matrix factorization frame-
work was successfully used in several algorithms [147], [148],
[170]. In other approaches, the source separation may be less
explicit and can, for example, rely on an iterative procedure
[171]. Here, the dominant fundamental frequency is first esti-
mated, then the spectral peaks of the corresponding musical note
are identified and subtracted (sometimes only partially) from the
polyphonic signal to obtain a residual signal. The procedure is
iterated while the residual contains at least one musical note. De-
spite the inherent limitations of iterative procedures, these ap-
proaches are among the most efficient to date as regularly shown
in the MIREX evaluation campaign.6

It is worth emphasizing that most methods exploit musical
knowledge in one or the other way. Characteristic timbre infor-
mation may be used in the form of instrument spectral models
or templates as prior information to better separate the musical
sources (as in [172]). Also, spectral smoothness principles can
be exploited to subtract more realistic musical notes in itera-
tive methods (as in [171]). Furthermore, constraints on the syn-
chronous evolution of partials amplitude may further help to
identify the spectral contribution of a note in a mixture [165].
The specificities of the production mechanism can also be ex-
ploited, e.g., in the form of a source/filter production model
for the separation, or the introduction of inharmonicities in the
model for instruments such as piano [173]. It is also possible to
reach higher performances by means of duration or note evolu-
tion models (for example based on hidden Markov models as in
[173], [174]). This, indeed, permits to take advantage of obser-
vations in successive time frames. Finally, knowledge of audi-
tory perception has also been used with success in a number of
methods mostly as a front-end acoustic analysis, see [159] and
[175]. It is believed that future progress will be fueled by a better

6See http://www.music-ir.org/mirex/wiki/.

Fig. 14. General scheme underlying most melody transcription systems. From
[183].

understanding of the perception of sound mixtures. Here, an in-
teresting question is why a trained musician has no problem in
analyzing a chord containing two notes one octave apart. Better
understanding in which way two overlapping partials interact
and how their amplitude can be precisely estimated is certainly
of central importance [176].

C. Main Melody or Singing Voice Extraction

Main melody extraction, especially for the singing voice,
has received a great deal of interest. This is mainly motivated
by the wide range of potential applications including karaoke
[177], query-by-humming [178], lead-sheet generation [179],
query-by-examples and cover version detection [12], [33],
[180]. Following the definition by Paiva [181], “Melody is the

dominant individual pitched line in a musical ensemble,” the
task is often restricted to a mere predominant-F0 estimation
and tracking task [182]. Only few studies address the full
problem leading to a musical score of the melody line, which
integrates a note segmentation stage [174], [179]. As described
in [183], the problem of main melody extraction is traditionally
split into a preliminary analysis stage followed by a melody
identification phase and concluded by a smoothing or tracking
process; see Fig. 14.

The analysis stage can directly output a raw sequence of
predominant fundamental frequency candidates (as in [174]
or [181]) but can also produces an intermediate representation
or probabilistic model with posterior probabilities for each
potential note that would be further exploited in the melody
tracking stage (as in [182] or [114]). The analysis stage mostly
relies on a spectral domain representation as obtained by a tra-
ditional short-time Fourier transform, but may also be obtained
by specific multi-resolution transforms [184] or perceptually
motivated representations [181].

In the melody identification phase, the sequence of funda-
mental frequencies that most likely corresponds to the melody
is identified using, for example, ad hoc rules, constrained dy-
namic programming, or hidden Markov models. Finally, if not
integrated in the previous stage, a final smoothing or tracking
process occurs where the initial estimation of the melody line is
further smoothed in order to avoid sudden jumps in the melody
line. Such jumps may be caused by initial octave errors or other
extraction errors.

In terms of performance, it appears that the most accurate al-
gorithm evaluated in the MIREX evaluation campaigns follows
a rule based approach [185] although statistical based systems
indicate very promising directions for the future.7

To provide some insight on main melody extraction, we now
describe one of the existing statistical approaches in more de-
tail [114], [186]. For the sake of clarity, we consider here the

7www.music-ir.org/mirex/wiki/2009:Audio_Melody_Extraction_Results.
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monophonic case, where a single mixture signal is ob-
served. In this model, the observed signal is the sum
of two contributions: the leading voice and the musical
background . For a given frame, the STFT of the mixture
signal can then be expressed as

, where and are the STFTs of
and , respectively. Furthermore, and are
assumed to be center proper Gaussians:8

(14)

(15)

where (resp. ) is the power spectral density
(PSD) of the leading voice (resp. of the background music

). Assuming that the leading voice and the background
music are independent, the mixture signal at frame is also a
proper Gaussian vector:

(16)

(17)

For extracting the main melody, one then needs to estimate
and . This can be done by expressing the PSDs

as Gaussian mixture models learned on dedicated databases
[145]. In [114], assuming a singing voice, the approach is
entirely unsupervised, i.e., no learning step is involved. Instead
it relies on specific constraints for the voice and the musical
background signal. More precisely, the voice signal is assumed
to follow a source/filter production model where the source is
a periodic signal (referring to the periodic glottal pulse of the
singing voice) and where the filter is constrained to smoothly
evolve (referring to the slowly varying vocal tract shapes
while singing). For the musical background signal, no specific
constraints are assumed because of the wide variability of pos-
sible music instruments. The estimation of the various model
parameters is then conducted by iterative approaches based
on NMF techniques. Once the PSDs and of
both signals are obtained, the separated singing voice signal is
obtained using the Wiener filter approach for each frame as in
(12).

Since the model is rather generic, it is also directly applicable
to other leading instruments such as a trumpet within a Jazz
quartet; see Fig. 15.

D. Bass Line Extraction

Following [174], the term bass line refers to an organized se-
quence of consecutive notes and rests played with a bass guitar, a
double bass or a bass synthesizer. The bass line plays an impor-
tant role in several music styles particularly in popular music.
Having a separated bass line or a transcription of the bass line
opens the path to a number of applications including “music
minus one” for bass players or various indexing tasks such as
chord extraction, downbeat estimation, music genre or mood
classification [187].

8A complex proper Gaussian random variable is a complex random variable
whose real part and imaginary part are independent and follow a (real) Gaussian
distribution, with the same parameters: mean equal to 0 and identical variance
(co-variance matrix in the multi-variate case).

Fig. 15. Spectrograms of the original signal (top) and of the separated trumpet
signal (bottom) of the piece Caravan played by the Marsalis Jazz Quartet. From
[114].

Bass line transcription is amongst the earliest studies on
transcribing a single instrument track from a rich, polyphonic
music signal [188], [189]. The problem of bass line tran-
scription, which typically refers to the lower frequency range
between 30 and 250 Hz, bears many similarities with the
main melody extraction problem. Indeed, as for melody, the
task is often regarded as a mere predominant-F0 estimation,
where the tracking is now done in the lower frequency range.
Not surprisingly, there are a number of approaches that were
proposed to extract both melody and bass line within the same
general framework [17], [174].

As an example, we now describe the system proposed in [190]
in more detail. It is based on two frame-based feature extractors:
namely a multiple-F0 estimator that provides salience value for
four F0 estimates and an accent estimator that measures the
probability of having an onset. One of the specificities of this
approach is the integration of two different models: a note and a
rest model. Bass notes are modeled using a three-state left-right
HMM (the three states aim at capturing the attack, sustain and
release phases of a played note) while rest notes are represented
by a four-component GMM model (equivalent to a single state
HMM). In subsequent work, a third background model was in-
cluded to better represent the notes played by other instruments
[174]. Another specificity of this model is the use of a musico-
logical model that controls transition probabilities between the
note models and the rest model. These transition probabilities
depend on the musical key and on the preceding notes. The mu-
sical key is estimated from the set of four F0 candidates over
the entire history of the piece in combination with simple artifi-
cial key profiles. The sequence model is either a bi-gram model
or a more sophisticated variable-order Markov Model learned
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Fig. 16. Spectrograms of the original signal (top) and of the bass-line (bottom)
resynthesized from its estimated MIDI transcription. From [190].

on a collection of MIDI files. Finally, Viterbi decoding is per-
formed to obtain the most probable path through the models
which yields a transcription of the bass line. As an illustration,
Fig. 16 shows the spectrograms of a polyphonic music signal
and of the bass-line resynthesized from its estimated MIDI tran-
scription.

E. Drum Extraction

Historically, the analysis of the percussive or drum com-
ponent of music signals has attracted less attention from the
research community. Nevertheless, it has now been recognized
that numerous applications can benefit from an appropriate pro-
cessing of this percussive component including beat tracking,
content-based retrieval based on the query-by-tapping para-
digm, or beatboxing [191]–[194]. Furthermore, the rhythmic
content, if successfully extracted, is crucial for developing
music similarity measures as needed in music classification
tasks. Even though some studies have focussed on traditional
percussive instruments (see for example [195]–[197] for Indian
percussions), most research has targeted the western drum kit
composed of at least three main instrument classes (bass drum,
snare drum, and cymbals). Starting from solo drum signals (see
[198] for a review), most of the recent studies tackle the more
realistic scenario of extracting and transcribing drum signals
directly from polyphonic signals.

Following [144], the different approaches can be classified
in three categories: segment and classify, match and adapt, or
separate and detect. The segment and classify approaches ei-
ther first segment the signal into individual discrete segments
which are then classified using machine learning techniques
[199]–[201] or jointly perform the two steps using, for example,
hidden Markov models [202]. The match and adapt approaches
rather aim at searching for occurrences of reference templates in

Fig. 17. Spectrograms of the original signal (top) and of the separated drum
signal (bottom) obtained by enhanced Wiener filtering. From [144].

the music signal which can be further adapted to the specificity
of the analyzed signal [203], [204]. Finally, the separate and

detect approaches first aim at separating or extracting the per-
cussive component before further analysis to identify the drum
events. As it has turned out, the approaches based on Indepen-
dent Subspace Analysis (ISA) [205], [206], or [207] or non-neg-
ative matrix factorization [208], [209] are among the most suc-
cessful systems for drum track separation.

To illustrate some of the above ideas, we now describe the
drum track separation approach proposed in [144] in more de-
tail. This algorithm is based on the general Wiener filtering ap-
proach for source separation, optimized for drum separation.
The separation itself is performed using (13) but exploits dif-
ferent strategies for learning the spectral templates of
each source. The drum spectral templates are learned on solo
drum signals by non-negative matrix factorization (NMF) while
the spectral templates for the background music are learned by
a correlation-based clustering algorithm (as in [210]). A total of
144 templates are then learned—128 for the background music
and 16 for the drum component. Then, an adaptation procedure
is applied to better cope with the inherent variability of real
audio signals. This adaptation consists in extending the set of
16 learned drum spectral templates by the PSD of the stochastic
component obtained by subband subspace projection [211]. In-
deed, this additional template already provides a decent estimate
of the PSD of the drum signal and therefore facilitates the con-
vergence of the algorithm to an appropriate solution. Finally, in
order to represent at the same time the short drum onsets and
steady part of tonal components, a multi-resolution approach is
followed by implementing a window-size switching scheme for
time–frequency decomposition based on the output of a note
onset detection algorithm.
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Fig. 17 gives an example of the result of the above algorithm
by displaying the spectrograms of a polyphonic music signal
and its separated drum signal.

VI. CONCLUSION

Signal processing for music analysis is a vibrant and rapidly
evolving field of research, which can enrich the wider signal
processing community with exciting applications and new prob-
lems. Music is arguably the most intricate and carefully con-
structed of any sound signal, and extracting information of rel-
evance to listeners therefore requires the kinds of specialized
methods that we have presented, able to take account of music-
specific characteristics including pitches, harmony, rhythm, and
instrumentation.

It is clear, however, that these techniques are not the end of
the story for analyzing music audio, and many open questions
and research areas remain to be more fully explored. Some of
the most pressing and promising are listed below.

• Decomposing a complex music signal into different com-
ponents can be a powerful preprocessing step for many
applications. For example, since a cover song may pre-
serve the original melody but alter the harmonization, or
alternatively keep the same basic chord progression but
devise a new melody (but rarely both), a promising ap-
proach to cover version recognition is to separate the main
melody and accompaniment, and search in both parts inde-
pendently [180]. A different decomposition, into harmonic
and percussive components, has brought benefits to tasks
such as chord recognition [22], genre classification [105],
and beat tracking [61]. Note that such decompositions need
not be perfect to yield benefits—even a modest improve-
ment in the relative level between components can give a
significant improvement in a subsequent analysis.

• Improved recognition and separation of sources in poly-
phonic audio remains a considerable challenge, with great
potential to improve both music processing and much
broader applications in computational auditory scene anal-
ysis and noise-robust speech recognition. In particular, the
development, adaptation, and exploitation of sound source
models for the purpose of source separation seems to be
required in order to achieve an accuracy comparable to
that of human listeners in dealing with polyphonic audio
[212].

• In conjunction with the appropriate signal processing and
representations, machine learning has had some great suc-
cesses in music signal analysis. However, many areas are
limited by the availability of high-quality labeled data. In
chord recognition, for instance, the entire field is using the
same corpus of 200 tracks for which high-quality manual
chord transcripts have been prepared [23]. However, while
special-purpose human labeling remains the gold standard,
it is interesting to note that a given piece of music may
have multiple, closely related sources of information, in-
cluding alternate recordings or performances, partial mixes
derived from the original studio multitracks, score repre-
sentations including MIDI versions, lyric transcriptions,
etc. These different kinds of information, some available in

large quantities, present opportunities for innovative pro-
cessing that can solve otherwise intractable problems such
as score-guided separation [213], generate substitutes for
manual ground-truth labels using music synchronization
techniques [28], [29], [32], or use multi-perspective ap-
proaches to automatically evaluate algorithms [82], [214].

• Source separation and audio transcription, despite their
obvious relationship, are often tackled as independent and
separate tasks: As we have shown, a number of music
signal analysis systems include some level of source sep-
aration. Other work in source separation has shown that
performance is usually improved when appropriate prior
information is used—information such as musical scores.
Rather than relying on existing, ground-truth scores,
information of this kind could also be obtained from
rudimentary (or more elaborate) automatic transcription.
Significant progress can perhaps be made in both fields
by better exploiting transcription in source separation
(so-called “informed” source separation) and by better
integrating source separation in transcription systems.

• Many music analysis tasks have encountered a “glass
ceiling,” a point beyond which it has become very difficult
to make improvements. One tactic is to restrict the domain,
to allow an approach to specialize on a limited subset—for
example, by building a beat tracker that is specialized
for jazz, and a different one for classical music. This
suggests a broader strategy of deploying a context-adap-
tation layer, able to choose parameters and models best
suited to each particular signal. In the simplest case, this
can be implemented by training the methods separately
for, say, different genres, and then using automatic audio
classification to choose the best models for a given test
signal, but how to implement a more general and optimal
context adaptation is a deep and open research question.

• Surprisingly, knowledge about auditory perception has
a limited role is most music signal processing systems,
but since music exists purely to be heard, hearing science
promises to advance our understanding music perception
and should therefore inform the analysis of complex
signals such as polyphonic mixtures. In multipitch estima-
tion, for example, understanding the way that overlapping
partials interact and how their amplitudes can be precisely
estimated represents one promising direction [176], [215].

• Much current research focuses on individual aspects of
the music (e.g., the rhythm, or the chords, or the instru-
ments). These aspects, however, are anything but indepen-
dent, and we expect significant synergies from efforts to
analyze them jointly, with information from one aspect
helping to improve the extraction of another. Some exam-
ples of this include approaches that jointly use metric, har-
monic, and structural cues to support and stabilizing tempo
and beat tracking [20], [54], [75], [216], [217].

The work described in this paper illustrates the broad range of
sophisticated techniques that have been developed in the rapidly
evolving field of music signal analysis, but as shown by this list
of open questions, there is much room for improvement and for
new inventions and discoveries, leading to more powerful and
innovative applications. While, for the moment, human listeners
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remain far superior to machines in extracting and understanding
the information in music signals, we hope that continued devel-
opment of automatic techniques will lessen this gap, and may
even help to clarify some aspects of how and why people listen
to music.
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Abstract—Music signal processing may appear to be the junior
relation of the large and mature field of speech signal processing,
not least because many techniques and representations originally
developed for speech have been applied to music, often with good
results. However, music signals possess specific acoustic and struc-
tural characteristics that distinguish them from spoken language
or other nonmusical signals. This paper provides an overview of
some signal analysis techniques that specifically address musical
dimensions such as melody, harmony, rhythm, and timbre. We will
examine how particular characteristics of music signals impact and
determine these techniques, and we highlight a number of novel
music analysis and retrieval tasks that such processing makes pos-
sible. Our goal is to demonstrate that, to be successful, music audio
signal processing techniques must be informed by a deep and thor-
ough insight into the nature of music itself.

Index Terms—Beat, digital signal processing, harmony, melody,
music analysis, music information retrieval, music signals, pitch,
rhythm, source separation, timbre, voice separation.

I. INTRODUCTION

M
USIC is a ubiquitous and vital part of the lives of bil-
lions of people worldwide. Musical creations and per-

formances are among the most complex and intricate of our cul-
tural artifacts, and the emotional power of music can touch us in
surprising and profound ways. Music spans an enormous range
of forms and styles, from simple, unaccompanied folk songs, to
orchestras and other large ensembles, to a minutely constructed
piece of electronic music resulting from months of work in the
studio.

The revolution in music distribution and storage brought
about by personal digital technology has simultaneously fueled
tremendous interest in and attention to the ways that informa-
tion technology can be applied to this kind of content. From
browsing personal collections, to discovering new artists, to
managing and protecting the rights of music creators, com-
puters are now deeply involved in almost every aspect of music
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consumption, which is not even to mention their vital role in
much of today’s music production.

This paper concerns the application of signal processing tech-
niques to music signals, in particular to the problems of ana-
lyzing an existing music signal (such as piece in a collection) to
extract a wide variety of information and descriptions that may
be important for different kinds of applications. We argue that
there is a distinct body of techniques and representations that
are molded by the particular properties of music audio—such as
the pre-eminence of distinct fundamental periodicities (pitches),
the preponderance of overlapping sound sources in musical en-
sembles (polyphony), the variety of source characteristics (tim-
bres), and the regular hierarchy of temporal structures (beats).
These tools are more or less unlike those encountered in other
areas of signal processing, even closely related fields such as
speech signal processing. In any application, the more closely
the processing can reflect and exploit the particular properties
of the signals at hand, the more successful it will be. Musical
signals, despite their enormous diversity, do exhibit a number
of key properties that give rise to the techniques of music signal
processing, as we shall see.

The application of signal processing to music signals is hardly
new, of course. It could be argued to be the basis of the theremin,
a 1920s instrument in which an oscillator is controlled by the
capacitance of the player’s hands near its antennae. The devel-
opment of modern signal processing in the 1940s and 1950s led
directly the first wave of electronic music, in which composers
such as Karlheinz Stockhausen created music using signal gen-
erators, ring modulators, etc., taken straight from electronics
labs. Following the advent of general-purpose digital computers
in the 1960s and 1970s, it was not long before they were used
to synthesize music by pioneers like Max Matthews and John
Pierce. Experimental music has remained a steady source of
innovative applications of signal processing, and has spawned
a significant body of sophisticated techniques for synthesizing
and modifying sounds [1], [2].

As opposed to synthesis, which takes a compact, abstract de-
scription such as a musical score and creates a corresponding
signal, our focus is analysis—for instance, the inverse problem
of recovering a score-level description given only the audio. It
turns out that this problem is very computationally demanding,
and although efforts at automatic transcription, for example,
date back to the mid 1970s [3], the vastly improved computa-
tional resources of recent years, along with the demands and op-
portunities presented by massive online music collections, have
led to a recent explosion in this research. The first International
Symposium on Music Information Retrieval1 was held in 2000;
this annual meeting is now a thriving interdisciplinary commu-
nity with over 100 papers presented at the 2010 conference in
Utrecht.

1[Online]. Available: http://www.ismir.net/.

1932-4553/$26.00 © 2011 IEEE



IE
E
E
 P

ro
o
f

P
ri
n
t 
V
e
rs

io
n

2 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 0, NO. 0, 2011

In the rest of the paper, we will present several of the dis-
tinctive aspects of the musical signal, and the most significant
approaches that have been developed for its analysis. While
many techniques are initially borrowed from speech processing
or other areas of signal processing, the unique properties and
stringent demands of music signals have dictated that simple
repurposing is not enough, leading to some inspired and elegant
solutions. We have organized the material along particular
musical dimensions: In Section II, we discuss the nature of
pitch and harmony in music, and present time–frequency
representations used in their analysis. Then, in Section III,
we address the musical aspects of note onsets, beat, tempo,
and rhythm. In Section IV, we discuss models representing
the timbre and instrumentation of music signals and introduce
various methods for recognizing musical instruments on audio
recordings. Finally, in Section V, we show how acoustic and
musical characteristics can be utilized to separate musical
voices, such as the melody and bass line, from polyphonic
music. We conclude in Section VI with a discussion of open
problems and future directions.

II. PITCH AND HARMONY

Pitch is a ubiquitous feature of music. Although a strict def-
inition of music is problematic, the existence of sequences of
sounds with well-defined fundamental periods—i.e., individual
notes with distinct pitches—is a very common feature. In this
section, we discuss the objective properties of musical pitch and
its use to create musical harmony, then go on to present some
of the more common time–frequency representations used in
music signal analysis. A number of music applications based
on these representations are described.

A. Musical Pitch

Most musical instruments—including string-based instru-
ments such as guitars, violins, and pianos, as well as instruments
based on vibrating air columns such as flutes, clarinets, and
trumpets—are explicitly constructed to allow performers to
produce sounds with easily controlled, locally stable funda-
mental periods. Such a signal is well described as a harmonic
series of sinusoids at multiples of a fundamental frequency,
and results in the percept of a musical note (a single perceived
event) at a clearly defined pitch in the mind of the listener.
With the exception of unpitched instruments like drums, and
a few inharmonic instruments such as bells, the periodicity of
individual musical notes is rarely ambiguous, and thus equating
the perceived pitch with fundamental frequency is common.

Music exists for the pleasure of human listeners, and thus
its features reflect specific aspects of human auditory percep-
tion. In particular, humans perceive two signals whose funda-
mental frequencies fall in a ratio 2:1 (an octave) as highly similar
[4] (sometimes known as “octave equivalence”). A sequence of
notes—a melody—performed at pitches exactly one octave dis-
placed from an original will be perceived as largely musically
equivalent. We note that the sinusoidal harmonics of a funda-
mental at at frequencies are a proper
superset of the harmonics of a note with fundamental (i.e.,

Fig. 1. Middle C (262 Hz) played on a piano and a violin. The top pane shows
the waveform, with the spectrogram below. Zoomed-in regions shown above
the waveform reveal the 3.8-ms fundamental period of both notes.

), and this is presumably the basis of the per-
ceived similarity. Other pairs of notes with frequencies in simple
ratios, such as and will also share many harmonics,
and are also perceived as similar—although not as close as the
octave. Fig. 1 shows the waveforms and spectrograms of middle
C (with fundamental frequency 262 Hz) played on a piano and
a violin. Zoomed-in views above the waveforms show the rela-
tively stationary waveform with a 3.8-ms period in both cases.
The spectrograms (calculated with a 46-ms window) show the
harmonic series at integer multiples of the fundamental. Ob-
vious differences between piano and violin sound include the
decaying energy within the piano note, and the slight frequency
modulation (“vibrato”) on the violin.

Although different cultures have developed different musical
conventions, a common feature is the musical “scale,” a set of
discrete pitches that repeats every octave, from which melodies
are constructed. For example, contemporary western music is
based on the “equal tempered” scale, which, by a happy mathe-
matical coincidence, allows the octave to be divided into twelve
equal steps on a logarithmic axis while still (almost) preserving
intervals corresponding to the most pleasant note combinations.
The equal division makes each frequency larger
than its predecessor, an interval known as a semitone. The coin-
cidence is that it is even possible to divide the octave uniformly
into such a small number of steps, and still have these steps give
close, if not exact, matches to the simple integer ratios that re-
sult in consonant harmonies, e.g., , and

. The western major scale spans the
octave using seven of the twelve steps—the “white notes” on
a piano, denoted by C, D, E, F, G, A, B. The spacing between
successive notes is two semitones, except for E/F and B/C which
are only one semitone apart. The “black notes” in between are
named in reference to the note immediately below (e.g., ),
or above , depending on musicological conventions. The
octave degree denoted by these symbols is sometimes known as
the pitch’s chroma, and a particular pitch can be specified by the
concatenation of a chroma and an octave number (where each
numbered octave spans C to B). The lowest note on a piano is
A0 (27.5 Hz), the highest note is C8 (4186 Hz), and middle C
(262 Hz) is C4.
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Fig. 2. Middle C, followed by the E and G above, then all three notes to-
gether—a C Major triad—played on a piano. Top pane shows the spectrogram;
bottom pane shows the chroma representation.

B. Harmony

While sequences of pitches create melodies—the “tune”
of a music, and the only part reproducible by a monophonic
instrument such as the voice—another essential aspect of
much music is harmony, the simultaneous presentation of
notes at different pitches. Different combinations of notes
result in different musical colors or “chords,” which remain
recognizable regardless of the instrument used to play them.
Consonant harmonies (those that sound “pleasant”) tend to
involve pitches with simple frequency ratios, indicating many
shared harmonics. Fig. 2 shows middle C (262 Hz), E (330 Hz),
and G (392 Hz) played on a piano; these three notes together
form a C Major triad, a common harmonic unit in western
music. The figure shows both the spectrogram and the chroma
representation, described in Section II-E below. The ubiquity
of simultaneous pitches, with coincident or near-coincident
harmonics, is a major challenge in the automatic analysis of
music audio: note that the chord in Fig. 2 is an unusually easy
case to visualize thanks to its simplicity and long duration, and
the absence of vibrato in piano notes.

C. Time–Frequency Representations

Some music audio applications, such as transcribing perfor-
mances, call for explicit detection of the fundamental frequen-
cies present in the signal, commonly known as pitch tracking.
Unfortunately, the presence of multiple, simultaneous notes in
polyphonic music renders accurate pitch tracking very difficult,
as discussed further in Section V. However, there are many other
applications, including chord recognition and music matching,
that do not require explicit detection of pitches, and for these
tasks several representations of the pitch and harmonic infor-
mation—the “tonal content” of the audio—commonly appear.
Here, we introduce and define these basic descriptions.

As in other audio-related applications, the most popular
tool for describing the time-varying energy across different
frequency bands is the short-time Fourier transform (STFT),
which, when visualized as its magnitude, is known as the
spectrogram (as in Figs. 1 and 2). Formally, let be a dis-
crete-time signal obtained by uniform sampling of a waveform
at a sampling rate of Hz. Using an -point tapered window

(e.g., Hamming for
) and an overlap of half a

window length, we obtain the STFT

(1)

with and . Here, determines
the number of frames, is the index of the last unique
frequency value, and thus corresponds to the window
beginning at time in seconds and frequency

(2)

in Hertz (Hz). Typical values of and
give a window length of 92.8 ms, a time resolution of 46.4 ms,
and frequency resolution of 10.8 Hz.

is complex-valued, with the phase depending on the
precise alignment of each short-time analysis window. Often it
is only the magnitude that is used. In Figs. 1 and 2,
we see that this spectrogram representation carries a great deal
of information about the tonal content of music audio, even in
Fig. 2’s case of multiple, overlapping notes. However, close in-
spection of the individual harmonics at the right-hand side of
that figure—at 780 and 1300 Hz, for example—reveals ampli-
tude modulations resulting from phase interactions of close har-
monics, something that cannot be exactly modeled in a magni-
tude-only representation.

D. Log-Frequency Spectrogram

As mentioned above, our perception of music defines a log-
arithmic frequency scale, with each doubling in frequency (an
octave) corresponding to an equal musical interval. This mo-
tivates the use of time–frequency representations with a sim-
ilar logarithmic frequency axis, which in fact correspond more
closely to representation in the ear [5]. (Because the bandwidth
of each bin varies in proportion to its center frequency, these rep-
resentations are also known as “constant-Q transforms,” since
each filter’s effective center frequency-to-bandwidth ratio—its

—is the same.) With, for instance, 12 frequency bins per oc-
tave, the result is a representation with one bin per semitone of
the equal-tempered scale.

A simple way to achieve this is as a mapping applied to
an STFT representation. Each bin in the log-frequency spec-
trogram is formed as a linear weighting of corresponding
frequency bins from the original spectrogram. For a log-fre-
quency axis with bins, this calculation can be expressed in
matrix notation as , where is the log-frequency
spectrogram with rows and columns, is the original
STFT magnitude array (with indexing columns and

indexing rows). is a weighting matrix consisting of
rows, each of columns, that give the weight of STFT
bin contributing to log-frequency bin . For
instance, using a Gaussian window

(3)

where defines the bandwidth of the filterbank as the frequency
difference (in octaves) at which the bin has fallen to
of its peak gain. is the frequency of the lowest bin
and is the number of bins per octave in the log-frequency
axis. The calculation is illustrated in Fig. 3, where the top-left
image is the matrix , the top right is the conventional spectro-
gram , and the bottom right shows the resulting log-frequency
spectrogram .
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Fig. 3. Calculation of a log-frequency spectrogram as a columnwise linear
mapping of bins from a conventional (linear-frequency) spectrogram. The im-
ages may be interpreted as matrices, but note the bottom-to-top sense of the
frequency (row) axis.

Although conceptually simple, such a mapping often gives
unsatisfactory results: in the figure, the logarithmic frequency
axis uses (one bin per semitone), starting at

Hz (A2). At this point, the log-frequency bins have centers
only 6.5 Hz apart; to have these centered on distinct STFT bins
would require a window of 153 ms, or almost 7000 points at

Hz. Using a 64-ms window, as in the figure, causes
blurring of the low-frequency bins. Yet, by the same token, the
highest bins shown—five octaves above the lowest—involve av-
eraging together many STFT bins.

The long time window required to achieve semitone resolu-
tion at low frequencies has serious implications for the temporal
resolution of any analysis. Since human perception of rhythm
can often discriminate changes of 10 ms or less [4], an anal-
ysis window of 100 ms or more can lose important temporal
structure. One popular alternative to a single STFT analysis is to
construct a bank of individual bandpass filters, for instance one
per semitone, each tuned the appropriate bandwidth and with
minimal temporal support [6, Sec. 3.1]. Although this loses the
famed computational efficiency of the fast Fourier transform,
some of this may be regained by processing the highest octave
with an STFT-based method, downsampling by a factor of 2,
then repeating for as many octaves as are desired [7], [8]. This
results in different sampling rates for each octave of the analysis,
raising further computational issues. A toolkit for such analysis
has been created by Schorkhuber and Klapuri [9].

E. Time-Chroma Representations

Some applications are primarily concerned with the chroma
of the notes present, but less with the octave. Foremost among
these is chord transcription—the annotation of the current chord
as it changes through a song. Chords are a joint property of
all the notes sounding at or near a particular point in time, for
instance the C Major chord of Fig. 2, which is the unambiguous
label of the three notes C, E, and G. Chords are generally defined
by three or four notes, but the precise octave in which those notes
occur is of secondary importance. Thus, for chord recognition, a
representation that describes the chroma present but “folds” the
octaves together seems ideal. This is the intention of chroma
representations, first introduced as Pitch Class Profiles in [10];
the description as chroma was introduced in [11].

Fig. 4. Three representations of a chromatic scale comprising every note on
the piano from lowest to highest. Top pane: conventional spectrogram (93-ms
window). Middle pane: log-frequency spectrogram (186-ms window). Bottom
pane: chromagram (based on 186-ms window).

A typical chroma representation consists of a 12-bin vector
for each time step, one for each chroma class from C to B. Given
a log-frequency spectrogram representation with semitone res-
olution from the preceding section, one way to create chroma
vectors is simply to add together all the bins corresponding to
each distinct chroma [6, Ch. 3]. More involved approaches may
include efforts to include energy only from strong sinusoidal
components in the audio, and exclude non-tonal energy such as
percussion and other noise. Estimating the precise frequency of
tones in the lower frequency range may be important if the fre-
quency binning of underlying transform is not precisely aligned
to the musical scale [12].

Fig. 4 shows a chromatic scale, consisting of all 88 piano
keys played one a second in an ascending sequence. The top
pane shows the conventional, linear-frequency spectrogram, and
the middle pane shows a log-frequency spectrogram calculated
as in Fig. 3. Notice how the constant ratio between the funda-
mental frequencies of successive notes appears as an exponen-
tial growth on a linear axis, but becomes a straight line on a
logarithmic axis. The bottom pane shows a 12-bin chroma rep-
resentation (a “chromagram”) of the same data. Even though
there is only one note sounding at each time, notice that very
few notes result in a chroma vector with energy in only a single
bin. This is because although the fundamental may be mapped
neatly into the appropriate chroma bin, as will the harmonics at

, etc. (all related to the fundamental by octaves),
the other harmonics will map onto other chroma bins. The har-
monic at , for instance, corresponds to an octave plus 7 semi-
tones , thus for the C4 sounding at 40 s, we
see the second most intense chroma bin after C is the G seven
steps higher. Other harmonics fall in other bins, giving the more
complex pattern. Many musical notes have the highest energy in
the fundamental harmonic, and even with a weak fundamental,
the root chroma is the bin into which the greatest number of
low-order harmonics fall, but for a note with energy across a
large number of harmonics—such as the lowest notes in the
figure—the chroma vector can become quite cluttered.

One might think that attempting to attenuate higher har-
monics would give better chroma representations by reducing
these alias terms. In fact, many applications are improved by
whitening the spectrum—i.e., boosting weaker bands to make
the energy approximately constant across the spectrum. This
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helps remove differences arising from the different spectral
balance of different musical instruments, and hence better
represents the tonal, and not the timbral or instrument-depen-
dent, content of the audio. In [13], this is achieved by explicit
normalization within a sliding local window, whereas [14]
discards low-order cepstral coefficients as a form of “liftering.”

Chroma representations may use more than 12 bins per oc-
tave to reflect finer pitch variations, but still retain the property
of combining energy from frequencies separated by an octave
[15], [16]. To obtain robustness against global mistunings (re-
sulting from instruments tuned to a standard other than the 440
Hz A4, or distorted through equipment such as tape recorders
running at the wrong speed), practical chroma analyses need to
employ some kind of adaptive tuning, for instance by building
a histogram of the differences between the frequencies of all
strong harmonics and the nearest quantized semitone frequency,
then shifting the semitone grid to match the peak of this his-
togram [12]. It is, however, useful to limit the range of frequen-
cies over which chroma is calculated. Human pitch perception
is most strongly influenced by harmonics that occur in a “dom-
inance region” between about 400 and 2000 Hz [4]. Thus, after
whitening, the harmonics can be shaped by a smooth, tapered
frequency window to favor this range.

Notwithstanding the claims above that octave is less impor-
tant than chroma, the lowest pitch in a collection of notes has a
particularly important role in shaping the perception of simul-
taneous notes. This is why many musical ensembles feature a
“bass” instrument—the double-bass in an orchestra, or the bass
guitar in rock music—responsible for playing very low notes.
As discussed in Section V, some applications explicitly track
a bass line, but this hard decision can be avoided be avoided
by calculating a second chroma vector over a lower frequency
window, for instance covering 50 Hz to 400 Hz [17].

Code toolboxes to calculate chroma features are provided by
Ellis2 and Müller.3

F. Example Applications

Tonal representations—especially chroma features—have
been used for a wide range of music analysis and retrieval
tasks in which it is more important to capture polyphonic
musical content without necessarily being concerned about the
instrumentation. Such applications include chord recognition,
alignment, “cover song” detection, and structure analysis.

1) Chord Recognition: As discussed above, chroma features
were introduced as Pitch Class Profiles in [10], specifically for
the task of recognizing chords in music audio. As a global prop-
erty of the current notes and context, chords can be recognized
based on a global representation of a short window. Moreover,
shifting notes up or down by an octave rarely has much im-
pact on the chord identity, so the octave-invariant properties of
the chroma vector make it particularly appropriate. There has
been a large amount of subsequent work on chord recognition,

2[Online]. Available: http://www.ee.columbia.edu/~dpwe/resources/matlab/
chroma-ansyn/.

3[Online]. Available: http://www.mpi-inf.mpg.de/~mmueller/chroma-
toolbox/.

Fig. 5. Similarity matrix comparing a MIDI version of “And I Love Her” (hor-
izontal axis) with the original Beatles recording (vertical axis). From [24].

all based on some variant of chroma [15], [18]–[22]. Devel-
opments have mainly focused on the learning and classifica-
tion aspects of the system: for instance, [15] noted the direct
analogy between music audio with transcribed chord sequences
(e.g., in “real books”) that lack exact temporal alignments, and
the speech recordings with unaligned word transcriptions used
to train speech recognitions: they used the same Baum–Welch
procedure to simultaneously estimate both models for the fea-
tures of each chord, and the label alignment in the training data.
Although later work has been able to take advantage of an in-
creasing volume of manually labeled chord transcriptions [23],
significant benefits have been attributed to refinements in feature
extraction including separation of tonal (sinusoidal) and percus-
sive (transient or noisy) energy [22], and local spectral normal-
ization prior to chroma calculation [13].

2) Synchronization and Alignment: A difficult task such as
chord recognition or polyphonic note transcription can be made
substantially easier by employing an existing, symbolic descrip-
tion such as a known chord sequence, or the entire musical score.
Then, the problem becomes that of aligning or synchronizing

the symbolic description to the music audio [6, Ch. 5], making
possible innovative applications such as an animated musical
score display that synchronously highlights the appropriate bar
in time with the music [25]. The core of such an application is to
align compatible representations of each component with an ef-
ficient technique such as Dynamic Time Warping (DTW) [26],
[27]. A time-chroma representation can be directly predicted
from the symbolic description, or an electronic score such as
a MIDI file can be synthesized into audio, then the synthesized
form itself analyzed for alignment to the original recording [28],
[29]. Fig. 5 shows a similarity matrix comparing a MIDI version
of “And I Love Her” by the Beatles with the actual recording
[24]. A similarity matrix is populated by some
measure of similarity between representa-
tion at time and at . For instance, if both and

are chroma representations, could be the normalized cor-
relation, . Differences in structure
and timing between the two versions are revealed by wiggles in
the dark ridge closest to the leading diagonal; flanking ridges
relate to musical structure, discussed below.

A similar approach can synchronize different recordings of
the same piece of music, for instance to allow switching, in
real-time, between performances of a piano sonata by different
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pianists [25], [30], [31]. In this case, the relatively poor temporal
accuracy of tonal representations may be enhanced by the addi-
tion of features better able to achieve precise synchronization of
onset events [32].

3) “Cover Song” Detection: In popular music, an artist may
record his or her own version of another artist’s composition,
often incorporating substantial changes to instrumentation,
tempo, structure, and other stylistic aspects. These alternate
interpretations are sometimes known as “cover” versions, and
present a greater challenge to alignment, due to the substantial
changes. The techniques of chroma feature representation and
DTW are, however, still the dominant approaches over several
years of development and formal evaluation of this task within
the MIREX campaign [33]. Gross structural changes will
interfere with conventional DTW, so it must either be modified
to report “local matches” [34], or replaced by a different tech-
nique such as cross-correlation of beat-synchronous chroma
representations [12]. The need for efficient search within very
large music collections can be satisfied with efficient hash-table
representation of the music broken up into smaller fragments
[35]–[37].

4) Structure Recovery: A similarity matrix that compares a
piece of music to itself will have a perfectly straight leading di-
agonal ridge, but will likely have flanking ridges similar to those
visible in Fig. 5. These ridges indicate that a certain portion of
the signal resembles an earlier (or later) part—i.e., the signal ex-
hibits some repetitive structure. Recurring melodies and chord
sequences are ubiquitous in music, which frequently exhibits a
hierarchical structure. In popular music, for instance, the song
may consist of an introduction, a sequence of alternating verse
and chorus, a solo or bridge section, etc. Each of these segments
may in turn consist of multiple phrases or lines with related or
repeating structure, and the individual phrases may themselves
consist of repeating or nearly repeating patterns of notes. [38],
for instance, argues that the observation and acquisition of this
kind of structure is an important part of the enjoyment of music
listening.

Automatic segmentation and decomposition according to this
structure is receiving an increasing level of attention; see [39]
for a recent review. Typically, systems operate by 1) finding
off-diagonal ridges in a similarity matrix to identify and segment
into repeating phrases [40], [41], and/or 2) finding segmentation
points such that some measure of statistical similarity is max-
imized within segments, but minimized between adjacent seg-
ments [42], [43]. Since human labelers exhibit less consistency
on this annotation tasks than for, say, beat or chord labeling,
structure recovery is sometimes simplified into problems such
as identifying the “chorus,” a frequently repeated and usually
obvious part of popular songs [11]. Other related problems in-
clude searching for structures and motifs that recur within and
across different songs within a given body of music [44], [45].

III. TEMPO, BEAT, AND RHYTHM

The musical aspects of tempo, beat, and rhythm play a fun-
damental role for the understanding of and the interaction with
music [46]. It is the beat, the steady pulse that drives music for-
ward and provides the temporal framework of a piece of music

Fig. 6. Waveform representation of the beginning of Another one bites the dust

by Queen. (a) Note onsets. (b) Beat positions.

[47]. Intuitively, the beat can be described as a sequence of per-
ceived pulses that are regularly spaced in time and correspond
to the pulse a human taps along when listening to the music
[48]. The term tempo then refers to the rate of the pulse. Mu-
sical pulses typically go along with note onsets or percussive
events. Locating such events within a given signal constitutes a
fundamental task, which is often referred to as onset detection.
In this section, we give an overview of recent approaches for ex-
tracting onset, tempo, and beat information from music signals,
and then indicate how this information can be applied to derive
higher-level rhythmic patterns.

A. Onset Detection and Novelty Curve

The objective of onset detection is to determine the physical
starting times of notes or other musical events as they occur in a
music recording. The general idea is to capture sudden changes
in the music signal, which are typically caused by the onset of
novel events. As a result, one obtains a so-called novelty curve,
the peaks of which indicate onset candidates. Many different
methods for computing novelty curves have been proposed; see
[49] and [50] for an overview. For example, playing a note on
a percussive instrument typically results in a sudden increase of
the signal’s energy, see Fig. 6(a). Having such a pronounced at-
tack phase, note onset candidates may be determined by locating
time positions, where the signal’s amplitude envelope starts to
increase [49]. Much more challenging, however, is the detection
of onsets in the case of non-percussive music, where one often
has to deal with soft onsets or blurred note transitions. This is
often the case for vocal music or classical music dominated by
string instruments. Furthermore, in complex polyphonic mix-
tures, simultaneously occurring events may result in masking
effects, which makes it hard to detect individual onsets. As a
consequence, more refined methods have to be used for com-
puting the novelty curves, e.g., by analyzing the signal’s spec-
tral content [49], [51], pitch [51], [52], harmony [53], [54], or
phase [49], [55]. To handle the variety of different signal types,
a combination of novelty curves particularly designed for cer-
tain classes of instruments can improve the detection accuracy
[51], [56]. Furthermore, to resolve masking effects, detection
functions were proposed that analyze the signal in a bandwise
fashion to extract transients occurring in certain frequency re-
gions of the signal [57], [58]. For example, as a side-effect of
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Fig. 7. Excerpt of Shostakovich’s Waltz No. 2 from the Suite for Variety Or-

chestra No. 1. (a) Score representation (in a piano reduced version). (b) Magni-
tude spectrogram. (c) Compressed spectrogram using � � ����. (d) Novelty
curve derived from (b). (e) Novelty curve derived from (c).

a sudden energy increase, one can often observe an accompa-
nying broadband noise burst in the signal’s spectrum. This ef-
fect is mostly masked by the signal’s energy in lower frequency
regions, but it is well detectable in the higher frequency re-
gions of the spectrum [59]. A widely used approach to onset
detection in the frequency domain is the spectral flux [49], [60],
where changes of pitch and timbre are detected by analyzing the
signal’s short-time spectrum.

To illustrate some of these ideas, we now describe a typical
spectral-based approach for computing novelty curves. Given a
music recording, a short-time Fourier transform is used to ob-
tain a spectrogram with and

as in (1). Note that the Fourier coefficients of
are linearly spaced on the frequency axis. Using suitable binning
strategies, various approaches switch over to a logarithmically
spaced frequency axis, e.g., by using mel-frequency bands or
pitch bands; see [57], [58], and Section II-D. Keeping the linear
frequency axis puts greater emphasis on the high-frequency re-
gions of the signal, thus accentuating the aforementioned noise
bursts visible as high-frequency content. One simple, yet impor-
tant step, which is often applied in the processing of music sig-
nals, is referred to as logarithmic compression; see [57]. In our
context, this step consists in applying a logarithm to the magni-
tude spectrogram of the signal yielding
for a suitable constant . Such a compression step not only
accounts for the logarithmic sensation of human sound inten-
sity, but also balances out the dynamic range of the signal. In
particular, by increasing , low-intensity values in the high-fre-
quency spectrum become more prominent. This effect is clearly
visible in Fig. 7, which shows the magnitude spectrogram
and the compressed spectrogram for a recording of a Waltz by
Shostakovich. On the downside, a large compression factor
may also amplify non-relevant low-energy noise components.

To obtain a novelty curve, one basically computes the discrete
derivative of the compressed spectrum . More precisely, one

sums up only positive intensity changes to emphasize onsets
while discarding offsets to obtain the novelty function

:

(4)

for , where for a non-negative real
number and for a negative real number . In many
implementations, higher order smoothed differentiators are used
[61] and the resulting curve is further normalized [62], [63].
Fig. 7(e) shows a typical novelty curve for our Shostakovich
example. As mentioned above, one often process the spectrum
in a bandwise fashion obtaining a novelty curve for each band
separately [57], [58]. These novelty curves are then weighted
and summed up to yield a final novelty function.

The peaks of the novelty curve typically indicate the po-
sitions of note onsets. Therefore, to explicitly determine the
positions of note onsets, one employs peak picking strategies
based on fixed or adaptive thresholding [49], [51]. In the case
of noisy novelty curves with many spurious peaks, however,
this is a fragile and error-prone step. Here, the selection of the
relevant peaks that correspond to true note onsets becomes
a difficult or even infeasible problem. For example, in the
Shostakovich Waltz, the first beats (downbeats) of the 3/4
meter are played softly by non-percussive instruments leading
to relatively weak and blurred onsets, whereas the second
and third beats are played staccato supported by percussive
instruments. As a result, the peaks of the novelty curve cor-
responding to downbeats are hardly visible or even missing,
whereas peaks corresponding to the percussive beats are much
more pronounced, see Fig. 7(e).

B. Periodicity Analysis and Tempo Estimation

Avoiding the explicit determination of note onset, novelty
curves are often directly analyzed in order to detect reoccurring
or quasi-periodic patterns, see [64] for an overview of various
approaches. Here, generally speaking, one can distinguish be-
tween three different methods. The autocorrelation method al-
lows for detecting periodic self-similarities by comparing a nov-
elty curve with time-shifted (localized) copies [65]–[68]. An-
other widely used method is based on a bank of comb filter res-
onators, where a novelty curve is compared with templates that
consists of equally spaced spikes covering a range of periods
and phases [57], [58]. Third, the short-time Fourier transform
can be used to derive a time–frequency representation of the
novelty curve [62], [63], [67]. Here, the novelty curve is com-
pared with templates consisting of sinusoidal kernels each rep-
resenting a specific frequency. Each of the methods reveals pe-
riodicity properties of the underlying novelty curve from which
one can estimate the tempo or beat structure. The intensities
of the estimated periodicity, tempo, or beat properties typically
change over time and are often visualized by means of spectro-
gram-like representations referred to as tempogram [69], rhyth-

mogram [70], or beat spectrogram [71].
Exemplarily, we introduce the concept of a tempogram while

discussing two different periodicity estimation methods. Let
(as for the novelty curve) denote the sampled time axis,
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Fig. 8. Excerpt of Shostakovich’s Waltz No. 2 from the Suite for Variety Or-

chestra No. 1. (a) Fourier tempogram. (b) Autocorrelation tempogram.

which we extend to to avoid boundary problems. Furthermore,
let be a set of tempi specified in beats per minute
(BPM). Then, a tempogram is mapping
yielding a time-tempo representation for a given time-dependent
signal. For example, suppose that a music signal has a domi-
nant tempo of BPM around position , then the cor-
responding value is large, see Fig. 8. In practice, one
often has to deal with tempo ambiguities, where a tempo is
confused with integer multiples (referred to as har-

monics of ) and integer fractions (referred to
as subharmonics of ). To avoid such ambiguities, a mid-level
tempo representation referred to as cyclic tempograms can be
constructed, where tempi differing by a power of two are iden-
tified [72], [73]. This concept is similar to the cyclic chroma
features, where pitches differing by octaves are identified, cf.
Section II-E. We discuss the problem of tempo ambiguity and
pulse level confusion in more detail in Section III-C.

A tempogram can be obtained by analyzing a novelty curve
with respect to local periodic patterns using a short-time Fourier
transform [62], [63], [67]. To this end, one fixes a window func-
tion of finite length centered at (e.g., a
centered Hann window of size for some ). Then,
for a frequency parameter , the complex Fourier coef-
ficient is defined by

(5)

Note that the frequency parameter (measured in Hertz) cor-
responds to the tempo parameter (measured in
BPM). Therefore, one obtains a discrete Fourier tempogram

by

(6)

As an example, Fig. 8(a) shows the tempogram of our
Shostakovich example from Fig. 7. Note that reveals a
slightly increasing tempo over time starting with roughly

BPM. Also, reveals the second tempo harmonics
starting with BPM. Actually, since the novelty curve

locally behaves like a track of positive clicks, it is not hard
to see that Fourier analysis responds to harmonics but tends to
suppress subharmonics, see also [73], [74].

Also autocorrelation-based methods are widely used to esti-
mate local periodicities [66]. Since these methods, as it turns

out, respond to subharmonics while suppressing harmonics,
they ideally complement Fourier-based methods, see [73], [74].
To obtain a discrete autocorrelation tempogram, one again fixes
a window function centered at with support

, . The local autocorrelation is then computed
by comparing the windowed novelty curve with time shifted
copies of itself. Here, we use the unbiased local autocorrelation

(7)
for time and time lag . Now, to convert the
lag parameter into a tempo parameter, one needs to know the
sampling rate. Supposing that each time parameter cor-
responds to seconds, then the lag corresponds to the tempo

BPM. From this, one obtains the autocorrelation

tempogram by

(8)

for each tempo , . Finally, using
standard resampling and interpolation techniques applied to the
tempo domain, one can derive an autocorrelation tempogram

that is defined on the same tempo set
as the Fourier tempogram . The tempogram for

our Shostakovich example is shown in Fig. 8(b), which clearly
indicates the subharmonics. Actually, the parameter is
the third subharmonics of and corresponds to the tempo
on the measure level.

Assuming a more or less steady tempo, most tempo estima-
tion approaches determine only one global tempo value for the
entire recording. For example, such a value may be obtained
by averaging the tempo values (e.g., using a median filter [53])
obtained from a framewise periodicity analysis. Dealing with
music with significant tempo changes, the task of local tempo
estimation (for each point in time) becomes a much more dif-
ficult or even ill-posed problem; see also Fig. 9 for a com-
plex example. Having computed a tempogram, the framewise
maximum yields a good indicator of the locally dominating
tempo—however, one often has to struggle with confusions of
tempo harmonics and subharmonics. Here, tempo estimation
can be improved by a combined usage of Fourier and autocor-
relation tempograms. Furthermore, instead of simply taking the
framewise maximum, global optimization techniques based on
dynamic programming have been suggested to obtain smooth
tempo trajectories [61], [67].

C. Beat Tracking

When listening to a piece of music, most humans are able
to tap to the musical beat without difficulty. However, trans-
ferring this cognitive process into an automated system that re-
liably works for the large variety of musical styles is a chal-
lenging task. In particular, the tracking of beat positions be-
comes hard in the case that a music recording reveals signifi-
cant tempo changes. This typically occurs in expressive perfor-
mances of classical music as a result of ritardandi, accelerandi,
fermatas, and artistic shaping [75]. Furthermore, the extraction
problem is complicated by the fact that there are various levels
that are presumed to contribute to the human perception of beat.
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Fig. 9. Excerpt of the Mazurka Op. 30 No. 2 (played by Rubinstein, 1966).
(a) Score. (b) Fourier tempogram with reference tempo (cyan). (c) Beat positions
(quarter note level).

Most approaches focus on determining musical pulses on the
tactus level (the foot tapping rate) [65]–[67], but only few ap-
proaches exist for analyzing the signal on the measure level
[54], [57] or finer tatum level [76]–[78]. Here, a tatum or tem-

poral atom refers to the fastest repetition rate of musically mean-
ingful accents occurring in the signal [79]. Various approaches
have been suggested that simultaneously analyze different pulse
levels [57], [68], [80]. In [62] and [63], instead of looking at a
specific pulse level, a robust mid-level representation has been
introduced which captures the predominant local pulse even in
the presence of significant tempo fluctuations.

Exemplarily, we describe a robust beat tracking procedure
[66], which assumes a roughly constant tempo throughout the
music recording. The input of the algorithm consists of a novelty
curve as well as an estimate of the global
(average) tempo, which also determines the pulse level to be
considered. From and the sampling rate used for the novelty
curve, one can derive an estimate for the average beat
period (given in samples). Assuming a roughly constant tempo,
the difference of two neighboring beats should be close to

. To measure the distance between and , a neighborhood
function , , is introduced.
This function takes the maximum value of 0 for and
is symmetric on a log-time axis. Now, the task is to estimate
a sequence , for some suitable ,
of monotonously increasing beat positions
satisfying two conditions. On the one hand, the value
should be large for all , and, on the other hand, the
beat intervals should be close to . To this end, one
defines the score of a beat sequence
by

(9)

where the weight balances out the two conditions. Fi-
nally, the beat sequence maximizing yields the solution of the
beat tracking problem. The score-maximizing beat sequence can
be obtained by a straightforward dynamic programming (DP)
approach; see [66] for details.

As mentioned above, recent beat tracking procedures work
well for modern pop and rock music with a strong and steady
beat, but the extraction of beat locations from highly expressive
performances still constitutes a challenging task with many
open problems. For such music, one often has significant local
tempo fluctuation caused by the artistic freedom a musician
takes, so that the model assumption of local periodicity is
strongly violated. This is illustrated by Fig. 9, which shows a
tempo curve and the beat positions for a romantic piano music
recording (Mazurka by Chopin). In practice beat tracking is
further complicated by the fact that there may be beats with
no explicit note events going along with them [81]. Here, a
human may still perceive a steady beat by subconsciously inter-
polating the missing onsets. This is a hard task for a machine,
in particular in passages of varying tempo where interpolation
is not straightforward. Furthermore, auxiliary note onsets can
cause difficulty or ambiguity in defining a specific physical
beat time. In music such as the Chopin Mazurkas, the main
melody is often embellished by ornamented notes such as trills,
grace notes, or arpeggios. Also, for the sake of expressiveness,
the notes of a chord need not be played at the same time, but
slightly displaced in time. This renders a precise definition of a
physical beat position impossible [82]. Such highly expressive
music also reveals the limits of purely onset-oriented tempo
and beat tracking procedures, see also [63].

D. Higher-Level Rhythmic Structures

The extraction of onset, beat, and tempo information is of
fundamental importance for the determination of higher-level
musical structures such as rhythm and meter [46], [48]. Gener-
ally, the term rhythm is used to refer to a temporal patterning of
event durations, which are determined by a regular succession
of strong and weak stimuli [83]. Furthermore, the perception of
rhythmic patterns also depends on other cues such as the dy-
namics and timbre of the involved sound events. Such repeating
patterns of accents form characteristic pulse groups, which de-
termine the meter of a piece of music. Here, each group typically
starts with an accented beat and consists of all pulses until the
next accent. In this sense, the term meter is often used synony-
mously with the term time signature, which specifies the beat
structure of a musical measure or bar. It expresses a regular pat-
tern of beat stresses continuing through a piece thus defining a
hierarchical grid of beats at various time scales.

Rhythm and tempo are often sufficient for characterizing
the style of a piece of music. This particularly holds for dance
music, where, e.g., a waltz or tango can be instantly recognized
from the underlying rhythmic pattern. Various approaches have
been described for determining some kind of rhythm template,
which have mainly been applied for music classification tasks
[77], [84], [85]. Typically, the first step consists in performing
some beat tracking. In the next step, assuming additional
knowledge such as the time signature and the starting position
of the first bar, patterns of alternating strong and weak pulses
are determined for each bar, which are then averaged over all
bars to yield an average rhythmic pattern for the entire piece
[84], [85]. Even though such patterns may still be abstract, they
have been successfully applied for tasks such as dance style
classification. The automatic extraction of explicit rhythmic
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parameters such as the time signature constitutes a difficult
problem. A first step towards time signature estimation has
been described in [86], where the number of beats between
regularly recurring accents (or downbeats) are estimated to
distinguish between music having a duple or triple meter.

Another way for deriving rhythm-related features is to con-
sider intervals defined by successive onset or beat positions,
often referred as inter-onset-intervals (IOIs). Considering his-
tograms over the durations of occurring IOIs, one may then de-
rive hypotheses on the beat period, tempo, and meter [75], [76],
[87]. The drawback of these approaches is that they rely on an
explicit localization of a discrete set of onset and beat posi-
tions—a fragile and error-prone step. To compensate for such
errors, various approaches have been proposed to jointly or iter-
atively estimate onset, pulse, and meter parameters [54], [78].

IV. TIMBRE AND INSTRUMENTATION

Timbre is defined as the “attribute of auditory sensation in
terms of which a listener can judge two sounds similarly pre-
sented and having the same loudness and pitch as dissimilar”
[88]. The concept is closely related to sound source recogni-
tion: for example, the sounds of the violin and the flute may be
identical in their pitch and loudness, but are still easily distin-
guished. Furthermore, when listening to polyphonic music, we
are usually able to perceptually organize the component sounds
to their sources based on timbre information.

The term polyphonic timbre refers to the overall timbral mix-
ture of a music signal, the “global sound” of a piece of music
[89], [90]. Human listeners, especially trained musicians, can
switch between a “holistic” listening mode where they con-
sider a music signal as a coherent whole, and a more analytic
mode where they focus on the part played by a particular in-
strument [91], [92]. In computational systems, acoustic features
describing the polyphonic timbre have been found effective for
tasks such as automatic genre identification [93], music emotion
recognition [94], and automatic tagging of audio with semantic
descriptors [95]. A computational analogy for the analytical lis-
tening mode, in turn, includes recognizing musical instruments
on polyphonic recordings.

This section will first discuss feature representations for
timbre and then review methods for musical instrument recog-
nition in isolation and in polyphonic music signals.

A. Perceptual Dimensions of Timbre

Timbre is a multidimensional concept, having several under-
lying acoustic factors. Schouten [96] describes timbre as being
determined by five major acoustic parameters: 1) the range be-
tween tonal and noise-like character; 2) the spectral envelope;
3) the time envelope; 4) the changes of spectral envelope and
fundamental frequency; and 5) the onset of the sound differing
notably from the sustained vibration.

The perceptual dimensions of timbre have been studied
based on dissimilarity ratings of human listeners for sound
pairs; see [97] and [98]. In these studies, multidimensional
scaling (MDS) was used to project the dissimilarity ratings into
a lower-dimensional space where the distances between the
sounds match as closely as possible the dissimilarity ratings.
Acoustic correlates can then be proposed for each dimension

of this timbre space. Several studies report spectral centroid,
, and attack time as major

determinants of timbre. Also often reported are spectral irreg-
ularity (defined as the average level difference of neighboring
harmonics) and spectral flux, , where

.
Very few studies have attempted to uncover the perceptual

dimensions of polyphonic timbre. Cogan [99] carried out in-
formal musicological case studies using the spectrograms of di-
verse music signals and proposed 13 dimensions to describe the
quality of musical sounds. Furthermore, Kendall and Carterette
[100] studied the perceptual dimensions of simultaneous wind
instrument timbres using MDS, whereas Alluri and Toiviainen
[90] explored the polyphonic timbre of Indian popular music.
The latter observed relatively high correlations between certain
perceptual dimensions and acoustic features describing spectro-
temporal modulations.

B. Time-Varying Spectral Envelope

The acoustic features found in the MDS experiments bring
insight into timbre perception, but they are generally too low-di-
mensional to lead to robust musical instrument identification
[101]. In signal processing applications, timbre is typically de-
scribed using a parametric model of the time-varying spectral
envelope of sounds. This stems from speech recognition [102]
and is not completely satisfactory in music processing as will
be seen in Section IV-C, but works well as a first approximation
of timbre. Fig. 10 illustrates the time-varying spectral envelopes
of two example musical tones. Indeed, all the acoustic features
found in the MDS experiments are implicitly represented by
the spectral envelope, and among the five points on Schouten’s
list, 2)–5) are reasonably well covered. The first point, tonal
versus noiselike character, can be addressed by decomposing
a music signal into its sinusoidal and stochastic components
[103], [104], and then estimating the spectral envelope of each
part separately. This, for example, has been found to signifi-
cantly improve the accuracy of genre classification [105].

Mel-frequency cepstral coefficients (MFCCs), originally
used for speech recognition [102], are by far the most popular
way of describing the spectral envelope within an individual
analysis frame. MFCCs encode the coarse shape of the
log-power spectrum on the mel-frequency scale.4 They have the
desirable property that a small (resp. large) numerical change
in the MFCC coefficients corresponds to a small (resp. large)
perceptual change. MFCCs are calculated by simulating a bank
of about 40 bandpass filters in the frequency domain (the filters
being uniformly spaced on the Mel-frequency scale), calcu-
lating the log-power of the signal within each band, and finally
applying a discrete cosine transform to the vector of log-powers
to obtain the MFCC coefficients. Typically only the 10–15
lowest coefficients are retained and the rest are discarded in
order to make the timbre features invariant to pitch information
that is present in the higher coefficients. Time-varying aspects
are usually accounted for by appending temporal derivatives of
the MFCCs to the feature vector.

4The mel-frequency scale is one among several scales that model the fre-
quency resolution of the human auditory system. See [106] for a comparison of
different perceptual frequency scales.
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Fig. 10. Time-varying spectral envelopes of 260-Hz tones of the flute (left) and
the vibraphone (right). Here sound pressure level within auditory critical bands
(CB) is shown as a function of time.

Modulation spectrum encodes the temporal variation of spec-
tral energy explicitly [107]. This representation is obtained by
first using a filterbank to decompose an audio signal into sub-
bands, extracting the energy envelope within each band, and fi-
nally analyzing amplitude modulations (AM) within each band
by computing discrete Fourier transforms of the energy enve-
lope within longer “texture” windows (phases are discarded to
achieve shift-invariance). This results in a three-dimensional
representation where the dimensions correspond to time, fre-
quency, and AM frequency (typically in the range 0–200 Hz).
Sometimes the time dimension can be collapsed by analyzing
AM modulation in a single texture window covering the entire
signal. Spectro-temporal modulations play an important role in
the perception of polyphonic timbre [90]; therefore, representa-
tions based on modulation spectra are particularly suitable for
describing the instrumentation aspects of complex music sig-
nals. Indeed, state-of-the-art genre classification is based on the
modulation spectrum [108]. Other applications of the modula-
tion spectrum include speech recognition [109], audio coding
[107], and musical instrument recognition [110].

C. Source-Filter Model of Sound Production

Let us now consider more structured models of musical
timbre. Instrument acoustics provides a rich source of infor-
mation for constructing models for the purpose of instrument
recognition. The source-filter model of sound production is
particularly relevant here [111]. Many musical instruments can
be viewed as a coupling of a vibrating object, such as a guitar
string (“source”), with the resonance structure of the rest of the
instrument (“filter”) that colors the produced sound. The source
part usually determines pitch, but often contains also timbral
information.

The source-filter model has been successfully used in speech
processing for decades [112]. However, an important difference
between speech and music is that there is only one sound pro-
duction mechanism in speech, whereas in music a wide variety
of sound production mechanisms are employed. Depending on
the instrument, the sound can be produced for example by vi-
brating strings, air columns, or vibrating bars, and therefore the
source excitation provides valuable information about the in-
strument identity.

It is interesting to note that the regularities in the source exci-
tation are not best described in terms of frequency, but in terms
of harmonic index. For example the sound of the clarinet is char-
acterized by the odd harmonics being stronger than the even har-
monics. For the piano, every th partial is weaker because the

string is excited at a point along its length. The sound of
the vibraphone, in turn, exhibits mainly the first and the fourth
harmonic and some energy around the tenth partial. MFCCs and
other models that describe the properties of an instrument as
a function of frequency smear out this information. Instead, a
structured model is needed where the spectral information is
described both as a function of frequency and as a function of
harmonic index.

The source-filter model for the magnitude spectrum
of a harmonic sound can be written as

(10)

where , is the frequency of the th
harmonic of a sound with fundamental frequency . Note that

is modeled only at the positions of the harmonics and is
assumed zero elsewhere. The scalar denotes the overall gain
of the sound, is the amplitude of harmonic in the spec-
trum of the vibrating source, and represents the frequency
response of the instrument body. Perceptually, it makes sense
to minimize the modeling error on the log-magnitude scale and
therefore to take the logarithm of both sides of (10). This ren-
ders the model linear and allows the two parts, and

, to be further represented using a suitable linear basis
[113]. In addition to speech coding and music synthesis [111],
[112], the source-filter model has been used to separate the main
melody from polyphonic music [114] and to recognize instru-
ments in polyphonic music [115].

Above we assumed that the source excitation produces a spec-
trum where partial frequencies obey . Although such
sounds are the commonplace in Western music (mallet percus-
sion instruments being the exception), this is not the case in all
music cultures and the effect of partial frequencies on timbre has
been very little studied. Sethares [116] has investigated the re-
lationship between the spectral structure of musical sounds and
the structure of musical scales used in different cultures.

D. Recognition of Musical Instruments in Isolation

This section reviews techniques for musical instrument
recognition in signals where only one instrument is playing at
a time. Systems developed for this purpose typically employ
the supervised classification paradigm (see Fig. 11), where 1)
acoustic features are extracted in successive time frames in
order to describe the relevant aspects of the signal; 2) training
data representing each instrument class is used to learn a model
for within-class feature distributions; and 3) the models are
then used to classify previously unseen samples.

A number of different supervised classification methods have
been used for instrument recognition, including -nearest neigh-
bors, Gaussian mixture models, hidden Markov models, linear
discriminant analysis, artificial neural networks, support vector
machines, and decision trees [117], [118]. For a comprehensive
review of the different recognition systems for isolated notes
and solo phrases, see [119]–[122].

A variety of acoustic features have been used for instrument
recognition. Spectral features include the first few moments of
the magnitude spectrum (spectral centroid, spread, skewness,
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Fig. 11. General overview of supervised classification. See text for details.

and kurtosis), sub-band energies, spectral flux, spectral irreg-
ularity, and harmonic versus noise part energy [123]. Cepstral
features include MFCCs and warped linear prediction-based
cepstral coefficients, see [101] for a comparison. Modulation
spectra have been used in [110]. Temporal features include
the first few moments of the energy envelope within frames
of about one second in length, and the frequency and strength
of amplitude modulation in the range 4–8 Hz (“tremolo”) and
10–40 Hz (“roughness”) [122], [124]. The first and second
temporal derivatives of the features are often appended to the
features vector. For a more comprehensive list of acoustic
features and comparative evaluations, see [101], [122], [125],
[126].

Obviously, the above list of acoustic features is highly redun-
dant. Development of a classification system typically involves
a feature selection stage, where training data is used to identify
and discard unnecessary features and thereby reduce the compu-
tational load of the feature extraction, see Herrera et al. [119] for
a discussion on feature selection methods. In order to facilitate
the subsequent statistical modeling of the feature distributions,
the retained features are often decorrelated and the dimension-
ality of the feature vector is reduced using principal component
analysis, linear discriminant analysis, or independent compo-
nent analysis [117].

Most instrument classification systems resort to the so-called
bag-of-features approach where an audio signal is modeled by
the statistical distribution of its short-term acoustic features,
and the temporal order of the features is ignored. An exception
here are the instrument recognizers employing hidden Markov
models where temporal dependencies are taken into account ex-
plicitly [127], [128]. Joder et al. [122] carried out an exten-
sive evaluation of different temporal integration mechanisms
to see if they improve over the bag-of-features approach. They
found that a combination of feature-level and classifier-level
temporal integration improved over a baseline system, although
neither of them alone brought a significant advantage. Further-
more, HMMs performed better than GMMs, which suggests that
taking into account the temporal dependencies of the feature
vectors improves classification.

The techniques discussed above are directly applicable to
other audio signal classification tasks too, including genre
classification [93], automatic tagging of audio [95], and music
emotion recognition [94], for example. However, the optimal
acoustic features and models are usually specific to each task.

E. Instrument Recognition in Polyphonic Mixtures

Instrument recognition in polyphonic music is closely related
to sound source separation: recognizing instruments in a mix-

ture allows one to generate time–frequency masks that indicate
which spectral components belong to which instrument. Vice
versa, if individual instruments can be reliably separated from
the mixture, the problem reduces to that of single-instrument
recognition. The problem of source separation will be discussed
in Section V.

A number of different approaches have been proposed for
recognizing instruments in polyphonic music. These include ex-
tracting acoustic features directly from the mixture signal, sound
source separation followed by the classification of each sep-
arated signal, signal model-based probabilistic inference, and
dictionary-based methods. Each of these will be discussed in
the following.

The most straightforward approach to polyphonic instrument
recognition is to extract features directly from the mixture
signal. Little and Pardo [129] used binary classifiers to detect
the presence of individual instruments in polyphonic audio.
They trained classifiers using weakly labeled mixture signals,
meaning that only the presence or absence of the target sound
object was indicated but not the exact times when it was active.
They found that learning from weakly labeled mixtures led to
better results than training with isolated examples of the target
instrument. This was interpreted to be due to the fact that the
training data, in the mixed case, was more representative of
the polyphonic data on which the system was tested. Essid et

al. [124] developed a system for recognizing combinations

of instruments directly. Their method exploits hierarchical
classification and an automatically built taxonomy of musical
ensembles in order to represent every possible combination of
instruments that is likely to be played simultaneously in a given
genre.

Eggink and Brown [130] introduced missing feature theory
to instrument recognition. Here the idea is to estimate a binary
mask that indicates time–frequency regions that are dominated
by energy from interfering sounds and are therefore to be ex-
cluded from the classification process [131]. The technique is
known to be effective if the mask is correctly estimated, but es-
timating it automatically is hard. Indeed, Wang [132] has pro-
posed that estimation of the time–frequency masks of sound
sources can be viewed as the computational goal of auditory
scene analysis in general. Fig. 12 illustrates the use of binary
masks in the case of a mixture consisting of singing and piano
accompaniment. Estimating the mask in music is complicated
by the fact that consonant pitch intervals cause partials of dif-
ferent sources to co-incide in frequency. Kitahara et al. [133]
avoided the mask estimation by applying linear discriminant
analysis on features extracted from polyphonic training data.
As a result, they obtained feature weightings where the largest
weights were given to features that were least affected by the
overlapping partials of co-occurring sounds.

A number of systems are based on separating the sound
sources from a mixture and then recognizing each of them in-
dividually [115], [123], [134]–[136]. Heittola et al. [115] used
a source-filter model for separating the signals of individual
instruments from a mixture. They employed a multiple-F0
estimator to produce candidate F0s at each time instant, and
then developed a variant of the non-negative matrix factoriza-
tion algorithm to assign sounds to their respective instruments
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Fig. 12. Illustration of the use of binary masks. The left panels show the mag-
nitude spectrograms of a singing excerpt (top) and its piano accompaniment
(bottom). The right panels show spectrograms of the mixture of the singing and
the accompaniment, with two different binary masks applied. On the top-right,
white areas indicate regions where the accompaniment energy is higher than
that of singing. On the bottom-right, singing has been similarly masked out.

and to estimate the spectral envelope of each instrument. A
different approach to sound separation was taken by Martins
et al. [135] and Burred et al. [136] who employed ideas from
computational auditory scene analysis [137]. They extracted
sinusoidal components from the mixture spectrum and then
used cues such as common onset time, frequency proximity,
and harmonic frequency relationships to assign spectral com-
ponents to distinct groups. Each group of sinusoidal trajectories
was then sent to a recognizer.

Vincent and Rodet [138] viewed instrument recognition as a
parameter estimation problem for a given signal model. They
represented the short-term log-power spectrum of polyphonic
music as a weighted nonlinear combination of typical note
spectra plus background noise. The note spectra for each
instrument were learnt in advance from a database of isolated
notes. Parameter estimation was carried out by maximizing
the joint posterior probability of instrument labels and the
activation parameters of note and instrument at time
. Maximizing this joint posterior resulted in joint instrument

recognition and polyphonic transcription.
A somewhat different path can also be followed by relying

on sparse decompositions. The idea of these is to represent a
given signal with a small number of elements drawn from a large
(typically overcomplete) dictionary. For example, Leveau et al.

[139] represented a time-domain signal as a weighted sum
of atoms taken from a dictionary , and a
residual :

(11)

where is a finite set of indexes . Each atom consists of a
sum of windowed and amplitude-weighted sinusoidals at fre-
quencies that are integer multiples of a linearly varying funda-
mental frequency. An individual atom covers only a short frame
of the input signal, but continuity constraints can be placed on
the activations of atoms with successive temporal supports.

Leveau et al. [139] learned the dictionary of atoms in advance
from a database of isolated musical tones. A sparse decomposi-
tion for a given mixture signal was then found by maximizing
the signal-to-residual ratio for a given number of atoms. This
optimization process results in selecting the most suitable atoms
from the dictionary, and since the atoms have been labeled with
pitch and instrument information, this results in joint instrument
identification and polyphonic transcription. Also the instrument
recognition methods of Kashino and Murase [140] and Cont and
Dubnov [110] can be viewed as being based on dictionaries, the
former using time-domain waveform templates and the latter
modulation spectra.

The above-discussed sparse decompositions can be viewed as
a mid-level representation, where information about the signal
content is already visible, but no detection or thresholding has
yet taken place. Such a goal was pursued by Kitahara et al. [128]
who proposed a “note-estimation-free” instrument recognition
system for polyphonic music. Their system used a spectrogram-
like representation (“instrogram”), where the two dimensions
corresponded to time and pitch, and each entry represented the
probability that a given target instrument is active at that point.

V. POLYPHONY AND MUSICAL VOICES

Given the extensive literature of speech signal analysis, it
seems natural that numerous music signal processing studies
have focused on monophonic signals. While monophonic sig-
nals certainly result in better performance, the desire for wider
applicability has led to a gradual focus, in recent years, to the
more challenging and more realistic case of polyphonic music.
There are two main strategies for dealing with polyphony: the
signal can either be processed globally, directly extracting infor-
mation from the polyphonic signal, or the system can attempt to
first split up the signal into individual components (or sources)
that can then be individually processed as monophonic signals.
The source separation step of this latter strategy, however, is not
always explicit and can merely provide a mid-level represen-
tation that facilitates the subsequent processing stages. In the
following sections, we present some basic material on source
separation and then illustrate the different strategies on a selec-
tion of specific music signal processing tasks. In particular, we
address the tasks of multi-pitch estimation and musical voice
extraction including melody, bass, and drum separation.

A. Source Separation

The goal of source separation is to extract all individual
sources from a mixed signal. In a musical context, this trans-
lates in obtaining the individual track of each instrument (or
individual notes for polyphonic instruments such as piano). A
number of excellent overviews of source separation principles
are available; see [141] and [142].

In general, source separation refers to the extraction of full
bandwidth source signals but it is interesting to mention that sev-
eral polyphonic music processing systems rely on a simplified
source separation paradigm. For example, a filter bank decom-
position (splitting the signal in adjacent well defined frequency
bands) or a mere Harmonic/Noise separation [143] (as for drum
extraction [144] or tempo estimation [61]) may be regarded as
instances of rudimentary source separation.
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Fig. 13. Convolutive mixing model. Each mixture signal � ��� is then ex-
pressed from the source signals as: � ��� � � ��� � � ���.

Three main situations occur in source separation problems.
The determined case corresponds to the situation where there
are as many mixture signals as different sources in the mix-
tures. Contrary, the overdetermined (resp. underdetermined)
case refers to the situation where there are more (resp. less)
mixtures than sources. Underdetermined Source Separation
(USS) is obviously the most difficult case. The problem of
source separation classically includes two major steps that can
be realized jointly: estimating the mixing matrix and estimating
the sources. Let be the mixture
signals, the source signals,
and the mixing matrix with
mixing gains . The mixture signals
are then obtained by: . This readily corresponds to
the instantaneous mixing model (the mixing coefficients are
simple scalars). The more general convolutive mixing model
considers that a filtering occurred between each source and
each mixture (see Fig. 13). In this case, if the filters are repre-
sented as FIR filters of impulse response , the
mixing matrix is given by
with , and the mixing model
corresponds to .

A wide variety of approaches exist to estimate the mixing
matrix and rely on techniques such as Independent Compo-
nent Analysis (ICA), sparse decompositions or clustering ap-
proaches [141]. In the determined case, it is straightforward to
obtain the individual sources once the mixing matrix is known:

. The underdetermined case is much harder since
it is an ill-posed problem with an infinite number of solutions.
Again, a large variety of strategies exists to recover the sources
including heuristic methods, minimization criteria on the error

, or time–frequency masking approaches. One of
the popular approaches, termed adaptive Wiener filtering, ex-
ploits soft time–frequency masking. Because of its importance
for audio source separation, it is described in more details.

For the sake of clarity, we consider below the monophonic
case, i.e., where only one mixture signal is available. If
we consider that the sources are stationary Gaussian
processes of power spectral density (PSD) , then the op-
timal estimate of is obtained as

(12)

where and are the STFTs of the mixture
and source , respectively. In practice, audio signals

can only be considered as locally stationary and are generally

assumed to be a combination of stationary Gaussian processes.
The source signal is then given by

where are stationary Gaussian processes of PSD ,
are slowly varying coefficients, and is a set

of indices for source . Here, the estimate of is then
obtained as (see for example [145] or [144] for more details):

(13)

Note that in this case, it is possible to use decomposition
methods on the mixture such as non-negative matrix fac-
torization (NMF) to obtain estimates of the spectral templates

.
Music signal separation is a particularly difficult example

of USS of convolutive mixtures (many concurrent instruments,
possibly mixed down with different reverberation settings, many
simultaneous musical notes and, in general, a recording limited
to two channels). The problem is then often tackled by inte-
grating prior information on the different source signals. For
music signals, different kinds of prior information have been
used including timbre models [146], harmonicity of the sources
[147], temporal continuity, and sparsity constraints [148]. In
some cases, by analogy with speech signal separation, it is pos-
sible to exploit production models, see [114] or [149].

Concerning evaluation, the domain of source separation of
audio signals is also now quite mature and regular evaluation
campaigns exist5 along with widely used evaluation protocols
[150].

B. From Monopitch to Multipitch Estimation

The estimation of the fundamental frequency of a quasi-pe-
riodic signal, termed monopitch estimation, has interested the
research community for decades. One of the main challenges is
to obtain a versatile and efficient algorithm for a wide range of
possible fundamental frequencies which can cope with the devi-
ations of real audio signals from perfect periodicity. For speech
signals, extensive reviews of early algorithms can be found in
[151] and [152].

In general, the different methods can be roughly classified in
three classes depending on the used signal representation. The
frequency domain approaches exploit the fact that quasi-peri-
odic signals exhibit a quasi-harmonic distribution of peaks in
the spectral domain. The fundamental frequency is estimated
by searching the highest frequency that generates a spectral
comb best explaining the spectral content of the signal; see
[153]–[155]. The time domain approaches aim at directly
estimating the period on the basis of the signal’s waveform
by searching the smallest time-shift for which the waveform
and its time-shifted version match. This can be done using the
autocorrelation or the average magnitude difference functions
[156], [157] or applying kernel-based approaches [158]. Both
time and frequency domain approaches are prone to octave

5For example, see http://sisec.wiki.irisa.fr/tiki-index.php (SiSec campaign).
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errors. However, because frequency domain (resp. time-do-
main) approaches are prone to estimate integer multiples or
harmonics (resp. integer fractions or sub-harmonics) of the true
fundamental frequency, mixed domain approaches exploiting
both representations were also developed; see [159] or [160].

Even though monopitch estimation is now achievable with
a reasonably high accuracy, the problem of multipitch estima-
tion (e.g., estimating the fundamental frequency of concurrent
periodic sounds) remains very challenging. The problem is in-
deed particularly difficult for music signals for which concurrent
notes stand in close harmonic relation. Here, in some sense, the
worst case is when two simultaneous notes are played one or
several octaves apart. For extreme cases such as complex or-
chestral music, where one has a high level of polyphony, mul-
tipitch estimation becomes intractable with today’s methods.
For a review of recent approaches, we refer to [161]–[163].
Most approaches work, at least partially, in the spectral do-
main. On the one hand, some methods follow a global strategy
aiming at jointly estimating all fundamental frequencies. For
example, [164] or [165] employ parametric methods, [166] de-
scribes a dedicated comb approach, [167] and [168] use methods
based on machine learning paradigms, whereas [169] follows a
least-square strategy. On the other hand, a number of methods
rely on source separation principles which are more or less ex-
plicit. For example, the non-negative matrix factorization frame-
work was successfully used in several algorithms [147], [148],
[170]. In other approaches, the source separation may be less
explicit and can, for example, rely on an iterative procedure
[171]. Here, the dominant fundamental frequency is first esti-
mated, then the spectral peaks of the corresponding musical note
are identified and subtracted (sometimes only partially) from the
polyphonic signal to obtain a residual signal. The procedure is
iterated while the residual contains at least one musical note. De-
spite the inherent limitations of iterative procedures, these ap-
proaches are among the most efficient to date as regularly shown
in the MIREX evaluation campaign.6

It is worth emphasizing that most methods exploit musical
knowledge in one or the other way. Characteristic timbre infor-
mation may be used in the form of instrument spectral models
or templates as prior information to better separate the musical
sources (as in [172]). Also, spectral smoothness principles can
be exploited to subtract more realistic musical notes in itera-
tive methods (as in [171]). Furthermore, constraints on the syn-
chronous evolution of partials amplitude may further help to
identify the spectral contribution of a note in a mixture [165].
The specificities of the production mechanism can also be ex-
ploited, e.g., in the form of a source/filter production model
for the separation, or the introduction of inharmonicities in the
model for instruments such as piano [173]. It is also possible to
reach higher performances by means of duration or note evolu-
tion models (for example based on hidden Markov models as in
[173], [174]). This, indeed, permits to take advantage of obser-
vations in successive time frames. Finally, knowledge of audi-
tory perception has also been used with success in a number of
methods mostly as a front-end acoustic analysis, see [159] and
[175]. It is believed that future progress will be fueled by a better

6See http://www.music-ir.org/mirex/wiki/.

Fig. 14. General scheme underlying most melody transcription systems. From
[183].

understanding of the perception of sound mixtures. Here, an in-
teresting question is why a trained musician has no problem in
analyzing a chord containing two notes one octave apart. Better
understanding in which way two overlapping partials interact
and how their amplitude can be precisely estimated is certainly
of central importance [176].

C. Main Melody or Singing Voice Extraction

Main melody extraction, especially for the singing voice,
has received a great deal of interest. This is mainly motivated
by the wide range of potential applications including karaoke
[177], query-by-humming [178], lead-sheet generation [179],
query-by-examples and cover version detection [12], [33],
[180]. Following the definition by Paiva [181], “Melody is the

dominant individual pitched line in a musical ensemble,” the
task is often restricted to a mere predominant-F0 estimation
and tracking task [182]. Only few studies address the full
problem leading to a musical score of the melody line, which
integrates a note segmentation stage [174], [179]. As described
in [183], the problem of main melody extraction is traditionally
split into a preliminary analysis stage followed by a melody
identification phase and concluded by a smoothing or tracking
process; see Fig. 14.

The analysis stage can directly output a raw sequence of
predominant fundamental frequency candidates (as in [174]
or [181]) but can also produces an intermediate representation
or probabilistic model with posterior probabilities for each
potential note that would be further exploited in the melody
tracking stage (as in [182] or [114]). The analysis stage mostly
relies on a spectral domain representation as obtained by a tra-
ditional short-time Fourier transform, but may also be obtained
by specific multi-resolution transforms [184] or perceptually
motivated representations [181].

In the melody identification phase, the sequence of funda-
mental frequencies that most likely corresponds to the melody
is identified using, for example, ad hoc rules, constrained dy-
namic programming, or hidden Markov models. Finally, if not
integrated in the previous stage, a final smoothing or tracking
process occurs where the initial estimation of the melody line is
further smoothed in order to avoid sudden jumps in the melody
line. Such jumps may be caused by initial octave errors or other
extraction errors.

In terms of performance, it appears that the most accurate al-
gorithm evaluated in the MIREX evaluation campaigns follows
a rule based approach [185] although statistical based systems
indicate very promising directions for the future.7

To provide some insight on main melody extraction, we now
describe one of the existing statistical approaches in more de-
tail [114], [186]. For the sake of clarity, we consider here the

7www.music-ir.org/mirex/wiki/2009:Audio_Melody_Extraction_Results.
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monophonic case, where a single mixture signal is ob-
served. In this model, the observed signal is the sum
of two contributions: the leading voice and the musical
background . For a given frame, the STFT of the mixture
signal can then be expressed as

, where and are the STFTs of
and , respectively. Furthermore, and are
assumed to be center proper Gaussians:8

(14)

(15)

where (resp. ) is the power spectral density
(PSD) of the leading voice (resp. of the background music

). Assuming that the leading voice and the background
music are independent, the mixture signal at frame is also a
proper Gaussian vector:

(16)

(17)

For extracting the main melody, one then needs to estimate
and . This can be done by expressing the PSDs

as Gaussian mixture models learned on dedicated databases
[145]. In [114], assuming a singing voice, the approach is
entirely unsupervised, i.e., no learning step is involved. Instead
it relies on specific constraints for the voice and the musical
background signal. More precisely, the voice signal is assumed
to follow a source/filter production model where the source is
a periodic signal (referring to the periodic glottal pulse of the
singing voice) and where the filter is constrained to smoothly
evolve (referring to the slowly varying vocal tract shapes
while singing). For the musical background signal, no specific
constraints are assumed because of the wide variability of pos-
sible music instruments. The estimation of the various model
parameters is then conducted by iterative approaches based
on NMF techniques. Once the PSDs and of
both signals are obtained, the separated singing voice signal is
obtained using the Wiener filter approach for each frame as in
(12).

Since the model is rather generic, it is also directly applicable
to other leading instruments such as a trumpet within a Jazz
quartet; see Fig. 15.

D. Bass Line Extraction

Following [174], the term bass line refers to an organized se-
quence of consecutive notes and rests played with a bass guitar, a
double bass or a bass synthesizer. The bass line plays an impor-
tant role in several music styles particularly in popular music.
Having a separated bass line or a transcription of the bass line
opens the path to a number of applications including “music
minus one” for bass players or various indexing tasks such as
chord extraction, downbeat estimation, music genre or mood
classification [187].

8A complex proper Gaussian random variable is a complex random variable
whose real part and imaginary part are independent and follow a (real) Gaussian
distribution, with the same parameters: mean equal to 0 and identical variance
(co-variance matrix in the multi-variate case).

Fig. 15. Spectrograms of the original signal (top) and of the separated trumpet
signal (bottom) of the piece Caravan played by the Marsalis Jazz Quartet. From
[114].

Bass line transcription is amongst the earliest studies on
transcribing a single instrument track from a rich, polyphonic
music signal [188], [189]. The problem of bass line tran-
scription, which typically refers to the lower frequency range
between 30 and 250 Hz, bears many similarities with the
main melody extraction problem. Indeed, as for melody, the
task is often regarded as a mere predominant-F0 estimation,
where the tracking is now done in the lower frequency range.
Not surprisingly, there are a number of approaches that were
proposed to extract both melody and bass line within the same
general framework [17], [174].

As an example, we now describe the system proposed in [190]
in more detail. It is based on two frame-based feature extractors:
namely a multiple-F0 estimator that provides salience value for
four F0 estimates and an accent estimator that measures the
probability of having an onset. One of the specificities of this
approach is the integration of two different models: a note and a
rest model. Bass notes are modeled using a three-state left-right
HMM (the three states aim at capturing the attack, sustain and
release phases of a played note) while rest notes are represented
by a four-component GMM model (equivalent to a single state
HMM). In subsequent work, a third background model was in-
cluded to better represent the notes played by other instruments
[174]. Another specificity of this model is the use of a musico-
logical model that controls transition probabilities between the
note models and the rest model. These transition probabilities
depend on the musical key and on the preceding notes. The mu-
sical key is estimated from the set of four F0 candidates over
the entire history of the piece in combination with simple artifi-
cial key profiles. The sequence model is either a bi-gram model
or a more sophisticated variable-order Markov Model learned
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Fig. 16. Spectrograms of the original signal (top) and of the bass-line (bottom)
resynthesized from its estimated MIDI transcription. From [190].

on a collection of MIDI files. Finally, Viterbi decoding is per-
formed to obtain the most probable path through the models
which yields a transcription of the bass line. As an illustration,
Fig. 16 shows the spectrograms of a polyphonic music signal
and of the bass-line resynthesized from its estimated MIDI tran-
scription.

E. Drum Extraction

Historically, the analysis of the percussive or drum com-
ponent of music signals has attracted less attention from the
research community. Nevertheless, it has now been recognized
that numerous applications can benefit from an appropriate pro-
cessing of this percussive component including beat tracking,
content-based retrieval based on the query-by-tapping para-
digm, or beatboxing [191]–[194]. Furthermore, the rhythmic
content, if successfully extracted, is crucial for developing
music similarity measures as needed in music classification
tasks. Even though some studies have focussed on traditional
percussive instruments (see for example [195]–[197] for Indian
percussions), most research has targeted the western drum kit
composed of at least three main instrument classes (bass drum,
snare drum, and cymbals). Starting from solo drum signals (see
[198] for a review), most of the recent studies tackle the more
realistic scenario of extracting and transcribing drum signals
directly from polyphonic signals.

Following [144], the different approaches can be classified
in three categories: segment and classify, match and adapt, or
separate and detect. The segment and classify approaches ei-
ther first segment the signal into individual discrete segments
which are then classified using machine learning techniques
[199]–[201] or jointly perform the two steps using, for example,
hidden Markov models [202]. The match and adapt approaches
rather aim at searching for occurrences of reference templates in

Fig. 17. Spectrograms of the original signal (top) and of the separated drum
signal (bottom) obtained by enhanced Wiener filtering. From [144].

the music signal which can be further adapted to the specificity
of the analyzed signal [203], [204]. Finally, the separate and

detect approaches first aim at separating or extracting the per-
cussive component before further analysis to identify the drum
events. As it has turned out, the approaches based on Indepen-
dent Subspace Analysis (ISA) [205], [206], or [207] or non-neg-
ative matrix factorization [208], [209] are among the most suc-
cessful systems for drum track separation.

To illustrate some of the above ideas, we now describe the
drum track separation approach proposed in [144] in more de-
tail. This algorithm is based on the general Wiener filtering ap-
proach for source separation, optimized for drum separation.
The separation itself is performed using (13) but exploits dif-
ferent strategies for learning the spectral templates of
each source. The drum spectral templates are learned on solo
drum signals by non-negative matrix factorization (NMF) while
the spectral templates for the background music are learned by
a correlation-based clustering algorithm (as in [210]). A total of
144 templates are then learned—128 for the background music
and 16 for the drum component. Then, an adaptation procedure
is applied to better cope with the inherent variability of real
audio signals. This adaptation consists in extending the set of
16 learned drum spectral templates by the PSD of the stochastic
component obtained by subband subspace projection [211]. In-
deed, this additional template already provides a decent estimate
of the PSD of the drum signal and therefore facilitates the con-
vergence of the algorithm to an appropriate solution. Finally, in
order to represent at the same time the short drum onsets and
steady part of tonal components, a multi-resolution approach is
followed by implementing a window-size switching scheme for
time–frequency decomposition based on the output of a note
onset detection algorithm.



IE
E
E
 P

ro
o
f

P
ri
n
t 
V
e
rs

io
n

18 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 0, NO. 0, 2011

Fig. 17 gives an example of the result of the above algorithm
by displaying the spectrograms of a polyphonic music signal
and its separated drum signal.

VI. CONCLUSION

Signal processing for music analysis is a vibrant and rapidly
evolving field of research, which can enrich the wider signal
processing community with exciting applications and new prob-
lems. Music is arguably the most intricate and carefully con-
structed of any sound signal, and extracting information of rel-
evance to listeners therefore requires the kinds of specialized
methods that we have presented, able to take account of music-
specific characteristics including pitches, harmony, rhythm, and
instrumentation.

It is clear, however, that these techniques are not the end of
the story for analyzing music audio, and many open questions
and research areas remain to be more fully explored. Some of
the most pressing and promising are listed below.

• Decomposing a complex music signal into different com-
ponents can be a powerful preprocessing step for many
applications. For example, since a cover song may pre-
serve the original melody but alter the harmonization, or
alternatively keep the same basic chord progression but
devise a new melody (but rarely both), a promising ap-
proach to cover version recognition is to separate the main
melody and accompaniment, and search in both parts inde-
pendently [180]. A different decomposition, into harmonic
and percussive components, has brought benefits to tasks
such as chord recognition [22], genre classification [105],
and beat tracking [61]. Note that such decompositions need
not be perfect to yield benefits—even a modest improve-
ment in the relative level between components can give a
significant improvement in a subsequent analysis.

• Improved recognition and separation of sources in poly-
phonic audio remains a considerable challenge, with great
potential to improve both music processing and much
broader applications in computational auditory scene anal-
ysis and noise-robust speech recognition. In particular, the
development, adaptation, and exploitation of sound source
models for the purpose of source separation seems to be
required in order to achieve an accuracy comparable to
that of human listeners in dealing with polyphonic audio
[212].

• In conjunction with the appropriate signal processing and
representations, machine learning has had some great suc-
cesses in music signal analysis. However, many areas are
limited by the availability of high-quality labeled data. In
chord recognition, for instance, the entire field is using the
same corpus of 200 tracks for which high-quality manual
chord transcripts have been prepared [23]. However, while
special-purpose human labeling remains the gold standard,
it is interesting to note that a given piece of music may
have multiple, closely related sources of information, in-
cluding alternate recordings or performances, partial mixes
derived from the original studio multitracks, score repre-
sentations including MIDI versions, lyric transcriptions,
etc. These different kinds of information, some available in

large quantities, present opportunities for innovative pro-
cessing that can solve otherwise intractable problems such
as score-guided separation [213], generate substitutes for
manual ground-truth labels using music synchronization
techniques [28], [29], [32], or use multi-perspective ap-
proaches to automatically evaluate algorithms [82], [214].

• Source separation and audio transcription, despite their
obvious relationship, are often tackled as independent and
separate tasks: As we have shown, a number of music
signal analysis systems include some level of source sep-
aration. Other work in source separation has shown that
performance is usually improved when appropriate prior
information is used—information such as musical scores.
Rather than relying on existing, ground-truth scores,
information of this kind could also be obtained from
rudimentary (or more elaborate) automatic transcription.
Significant progress can perhaps be made in both fields
by better exploiting transcription in source separation
(so-called “informed” source separation) and by better
integrating source separation in transcription systems.

• Many music analysis tasks have encountered a “glass
ceiling,” a point beyond which it has become very difficult
to make improvements. One tactic is to restrict the domain,
to allow an approach to specialize on a limited subset—for
example, by building a beat tracker that is specialized
for jazz, and a different one for classical music. This
suggests a broader strategy of deploying a context-adap-
tation layer, able to choose parameters and models best
suited to each particular signal. In the simplest case, this
can be implemented by training the methods separately
for, say, different genres, and then using automatic audio
classification to choose the best models for a given test
signal, but how to implement a more general and optimal
context adaptation is a deep and open research question.

• Surprisingly, knowledge about auditory perception has
a limited role is most music signal processing systems,
but since music exists purely to be heard, hearing science
promises to advance our understanding music perception
and should therefore inform the analysis of complex
signals such as polyphonic mixtures. In multipitch estima-
tion, for example, understanding the way that overlapping
partials interact and how their amplitudes can be precisely
estimated represents one promising direction [176], [215].

• Much current research focuses on individual aspects of
the music (e.g., the rhythm, or the chords, or the instru-
ments). These aspects, however, are anything but indepen-
dent, and we expect significant synergies from efforts to
analyze them jointly, with information from one aspect
helping to improve the extraction of another. Some exam-
ples of this include approaches that jointly use metric, har-
monic, and structural cues to support and stabilizing tempo
and beat tracking [20], [54], [75], [216], [217].

The work described in this paper illustrates the broad range of
sophisticated techniques that have been developed in the rapidly
evolving field of music signal analysis, but as shown by this list
of open questions, there is much room for improvement and for
new inventions and discoveries, leading to more powerful and
innovative applications. While, for the moment, human listeners
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remain far superior to machines in extracting and understanding
the information in music signals, we hope that continued devel-
opment of automatic techniques will lessen this gap, and may
even help to clarify some aspects of how and why people listen
to music.
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