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Abstract

This thesis contains a description of SAS processing algorithms, offering improvements

in Fourier-based reconstruction, motion-compensation, and autofocus.

Fourier-based image reconstruction is reviewed and improvements shown as the

result of improved system modelling. A number of new algorithms based on the

wavenumber algorithm for correcting second order effects are proposed. In addition, a

new framework for describing multiple-receiver reconstruction in terms of the bistatic

geometry is presented and is a useful aid to understanding.

Motion-compensation techniques for allowing Fourier-based reconstruction in wide-

beam geometries suffering large-motion errors are discussed. A motion-compensation

algorithm exploiting multiple receiver geometries is suggested and shown to provide

substantial improvement in image quality. New motion compensation techniques for

yaw correction using the wavenumber algorithm are discussed.

A common framework for describing phase estimation is presented and techniques

from a number of fields are reviewed within this framework. In addition a new proof

is provided outlining the relationship between eigenvector-based autofocus phase esti-

mation kernels and the phase-closure techniques used astronomical imaging. Micron-

avigation techniques are reviewed and extensions to the shear average single-receiver

micronavigation technique result in a 3–4 fold performance improvement when operat-

ing on high-contrast images.

The stripmap phase gradient autofocus (SPGA) algorithm is developed and extends

spotlight SAR PGA to the wide-beam, wide-band stripmap geometries common in

SAS imaging. SPGA supersedes traditional PGA-based stripmap autofocus algorithms

such as mPGA and PCA—the relationships between SPGA and these algorithms is

discussed. SPGA’s operation is verified on simulated and field-collected data where it

provides significant image improvement. SPGA with phase-curvature based estimation

is shown and found to perform poorly compared with phase-gradient techniques. The

operation of SPGA on data collected from Sydney Harbour is shown with SPGA able

to improve resolution to near the diffraction-limit.

Additional analysis of practical stripmap autofocus operation in presence of under-

sampling and space-invariant blurring is presented with significant comment regarding
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the difficulties inherent in autofocusing field-collected data. Field-collected data from

trials in Sydney Harbour is presented along with associated autofocus results from a

number of algorithms.
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Preface

This thesis is written in eleven chapters. Chapters 2–6 describe the deterministic as-

pects of SAS imaging: governing SAS principles, reconstruction and compensation for

known path-deviations. The later chapters (7–10) detail aspects of micronavigation

and autofocus needed to overcome random path-deviations and medium fluctuations.

Chapter 7 covers fundamentals of autofocus and chapter 8 summarises a number of spot-

light autofocus techniques. Techniques for micronavigation and autofocus of stripmap

systems are presented in chapters 9 and 10. The last chapter summarises the work in

the thesis and presents recommendations for future research.
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Nomenclature

This section defines the notation used in the thesis—a variant on the notation of Gough

and Hawkins [1997] and Hawkins [1996]. In particular, the Fourier dual of a variable

uses a subscript notation—i.e., kx is the radial Fourier frequency (wavenumber) cor-

responding to the along-track variable x (kx = 2πfx). The 2-D Fourier transform for

example is defined as

E(ω, ku) =

∫∫
∞

−∞

e(t, u) exp (−j(ωt+ kuu)) dtdu. (1)

The double letter notation of Gough and Hawkins [1997] does not scale well to 3+

dimensions and has been replaced in favour of a single letter notation. Capitalisation

of the single letter denotes a temporal Fourier relationship. Note that spatial Fourier

transforms are not capitalised. An example of this notation is given below, (note ↔t

indicates a Fourier transform over the time variable t)

e(t, u) ↔t E(ω, u) e(t, u) ↔u e(t, ku) (temporal, spatial)

whereas

f(x, y) ↔x f(kx, y), f(x, y) ↔y f(x, ky) (spatial, spatial)

This notation is also consistent with that commonly used to describe time sequences

such as [Haykin 1994],

p(t) ↔t P (ω).

Definitions for the remainder of the symbols in the thesis are as follows:

Arg {} Angle operator

θ3dB -3 dB beamwidth

θnull-to-null Null-to-null beamwidth

Bc Signal bandwidth

Conj {} Complex conjugate

⊙t Convolution along time coordinate

⋆t Correlation along time coordinate



x Nomenclature

c Wave-speed in the medium

CRLB Cramér-Rao lower bound

D Effective combined transmit/receive element along-track length

Dr Receive element along-track length

Dt Transmit element along-track length

∆u Along-track sample spacing (echo data)

∆y Along-track sample spacing (image)

∆t Time sample spacing

∆x Across-track sample spacing

ǫ Phase centre approximation error

e(t, u) Raw echo data

etvg(t, u) Raw echo data after TVG applied

Ft{} Fourier transform along time axis

f̃(x, y) Blurred image

F−1
ω {} Inverse Fourier transform along frequency axis

f(x, y) Image

f̂(x, y) Image estimate

fn(x, y) Small image section

h Height of the platform

Im {} Imaginary part operator

it Transducer aperture function

k Wavenumber in the medium—is equivalent to ω/c

k0 Carrier wavenumber

kb Baseband wavenumber

λ Wavelength

∇2 Laplacian

m Along-track position of co-located transmitter/receiver pair

η Elevation angle, also used for complex phasor

ψ(x, y, z) Field measured at (x, y, z)

pb(t) Baseband transmitted signal

u Along-track position of the platform; usually used to describe the

varying position during recording

Re {} Real part operator

τrep Repetition period

δr Range resolution

δt Time resolution
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δx Across-track resolution

δy Along-track resolution

ρin Range from target to receiver

ρout Range from transmitter to target

σ Along-track position of receiver relative to platform

s(t, u) Pulse compressed data

srmc(t, u) Range-migration corrected pulse compressed data

stvg(t, u) Pulse compressed data after TVG applied

s̃(t, u) Blurred pulse compressed data

τc Signal length

t Time coordinate

vs Along-track velocity of the platform

ω Temporal frequency (radians / s)

ω0 Carrier frequency (radians / s)

ωmax Maximum temporal frequency (radians / s)

Φ̃shear,γ Tow-fish crab

Ẋ(u) Sway differential

Xp Sway (with respect to sonar pulse p)

X(u) Sway

Φσ(u) Pulse-by-pulse array yaw

Φ Global yaw

x Across-track position in global coordinates

xs Slant-range

y Along-track position in global coordinates

ytx Along-track position of transmitter

yrx Along-track position of hydrophone

Cs Curvature factor

Ksrc Geometry induced chirp rate

Ks Measured chirp rate

Rs Range-migration factor

z Height in global coordinates

H Number of receivers

M Order of eigenvector estimator

N Number of time samples

P Number of pulses

O{} Big ‘O’ notation, computational complexity
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2-D PCA 2-D Phase curvature autofocus

DPC Displaced phase centre

DPCA Displaced phase centre antenna

FFBP Fast factorised back projection

FLOS-PGA Fractional lower order statistics phase gradient autofocus

MD Map drift autofocus

MOCOMP Motion compensation

PCA Phase curvature autofocus

PDA Phase difference autofocus

PGA Phase gradient autofocus

PMA Phase matching autofocus

PPP Prominent point autofocus

QPGA Weighted phase gradient autofocus

RPC Redundant phase centres

SPGA Stripmap phase gradient autofocus

WPGA Weighted phase gradient autofocus



Contents

Abstract iii

Acknowledgements v

Preface vii

Nomenclature ix

Contents xiii

Chapter 1 Introduction 1

1.1 Underwater imaging 1

1.1.1 Echo detection 1

1.1.2 Sonar 1

1.2 Side-scan imaging geometry 2

1.2.1 Conventional side-scan sonar 3

1.2.2 Synthetic aperture sonar (SAS) 4

Spotlight mode 4

Stripmap mode 4

1.2.3 Navigation errors 4

1.3 Assumed knowledge 6

1.4 Thesis contributions 6

1.5 Thesis outline 8

Chapter 2 Synthetic Aperture Sonar (SAS) fundamentals 11

2.1 Complex signals 11

2.2 Sampling of complex baseband signals 12

2.3 Pulse-compression 12

2.4 Acoustic wave propagation 13

2.5 Array theory 15

2.5.1 Transducers and beam-patterns 15

Rectangular transducer 17

2.5.2 Real arrays 19

2.5.3 Synthetic arrays 19

Factor of two resolution improvement 20



xiv Contents

2.6 Sidescan SAS imaging 21

2.6.1 Collection geometry 21

2.6.2 Range resolution 22

2.6.3 Range constraints 22

2.6.4 Along-track resolution 23

2.6.5 Along-track sampling constraint 23

Multiple-receiver systems (vernier arrays) 24

2.7 Summary 24

Chapter 3 System modelling 27

3.1 Ground plane geometry 27

3.1.1 Multiple-receiver geometry 29

3.2 Multiple-receiver system model 30

3.2.1 Offset variables 31

Example—across-track offset: 32

3.2.2 Phase-centre approximation 33

3.3 Single-receiver model 34

3.4 3-D model 35

3.5 Second order effects 37

3.5.1 Stop-and-hop approximation 37

Temporal Doppler 37

Image Skew 38

Avoiding stop-and-hop modelling 39

3.5.2 Motion effects 40

3.5.3 Medium coherence 40

3.6 Summary 41

Chapter 4 Image reconstruction techniques 43

4.1 System model 44

4.1.1 Fourier algorithm system model 44

4.1.2 Amplitude compensation / Time varying gain (TVG) 44

4.2 Time-domain correlation 45

4.3 Back projection 47

4.3.1 Fast factorised back projection (FFBP) 48

4.4 Fast correlation 49

4.5 Range-Doppler algorithm 50

4.5.1 Secondary range compression (SRC) 51

4.6 Chirp-scaling algorithm 52

4.6.1 Accelerated chirp-scaling 55

4.7 Post-processing 55

4.7.1 Speckle-reduction / multi-look imagery 55

4.7.2 Non-coherent processing 56

4.8 Summary 57



Contents xv

Chapter 5 Wavenumber domain processing 59

5.1 Wavenumber algorithm for single-receiver systems 60

5.1.1 Implementation details 60

Baseband mapping 61

Reconstruction accuracy versus efficiency 62

Quick-look imagery 63

5.2 Wavenumber reconstruction for multiple-receiver systems 64

5.2.1 Phase-centre approximation inversion 64

Phase-centre compensation 65

Along-track interpolation 66

Improved phase-centre compensation 67

Imaging example 67

5.2.2 Bistatic inversion 68

Interpretation 69

Imaging example 72

5.2.3 Bathymetric wavenumber reconstruction 72

5.3 Correction of second order effects in wavenumber processing 74

5.3.1 Moving sonar compensation (avoiding the stop-

and-hop approximation) 74

5.4 Summary 76

Chapter 6 Motion compensation for known path errors 77

6.1 Overview 77

6.2 Motion compensation geometry 78

6.2.1 Narrowbeam approximation 79

6.3 Timing-error based sway compensation 79

6.4 Improved wide-beam sway compensation 80

6.4.1 Single-receiver wide-beam motion compensation 80

6.4.2 Multiple-receiver wide-beam motion compensation 81

6.4.3 Multiple pulse motion compensation 82

6.4.4 Individual element motion compensation 83

6.4.5 Across-track motion during the ping 84

6.4.6 Bulk yaw compensation 85

Standard yaw correction 87

6.4.7 Multiple-receiver yaw correction 88

6.5 Results from simulated system 89

6.5.1 Summary 89

6.6 Summary 89

Chapter 7 Autofocus fundamentals 91

7.1 Motivation for autofocus 91

7.2 The autofocus problem 92

7.2.1 Motion errors 93

7.2.2 Medium fluctuation (acoustic variability) 93

7.3 Revisiting the motion constraints 94



xvi Contents

7.4 Micronavigation/autofocus 96

7.5 Spotlight vs stripmap autofocus 96

7.6 Autofocus techniques 97

7.6.1 Correlation of complex baseband signals 97

Amplitude-only envelope correlation 99

Narrow-band correlation 100

Shear product 100

Quasi-narrowband framework 101

7.6.2 Phase estimation kernels 102

Differentiation kernel 102

Eigenvector kernel 103

Maximum likelihood (ML) estimation kernel [Jakowatz

and Wahl 1993] 105

Fractional low order statistics (FLOS) estimator 105

Weighted PGA (WPGA) estimator 106

Knox-Thompson 107

Bispectrum method 108

Nikias method (HOSPA) 109

7.6.3 Gradient versus curvature phase kernels 110

7.7 Overview of current SAS autofocus algorithms 111

7.7.1 Echo-correlation based autofocus 111

7.7.2 Global optimisation based autofocus 113

7.7.3 Phase gradient/curvature based autofocus 113

7.8 Summary 114

Chapter 8 Spotlight autofocus 117

8.1 Spotlight autofocus blurring model 117

8.2 Shear average for spotlight systems 119

8.3 Map-drift autofocus (MD) 120

8.4 Multi-aperture MD 121

8.5 Phase difference autofocus (PDA) 121

8.6 Phase gradient autofocus (PGA) 122

8.6.1 Centre shifting 125

8.6.2 Windowing 126

8.6.3 Phase estimation 127

8.7 PGA variants 127

8.7.1 2-D PGA 127

8.7.2 FLOS-PGA 127

8.7.3 Weighted PGA (WPGA) 128

8.7.4 Quality PGA (QPGA) 128

8.7.5 Mosaic PGA (mPGA) 128

8.8 Summary 129



Contents xvii

Chapter 9 Micronavigation using reverberation based autofocus 131

9.1 Redundant phase centre (RPC) algorithm (DPC, DPCA) 131

9.1.1 RPC operation 132

9.1.2 Directivity 133

9.2 Image correlation 134

9.2.1 Cascade algorithm 136

9.3 Shear average 136

9.3.1 Amplitude weighting 140

9.3.2 Shear average Results 142

Simulated imagery 142

Field-collected data 144

9.3.3 Multi-band estimation 144

9.3.4 Non-coherent estimation 147

9.4 Summary 148

Chapter 10 Stripmap autofocus 149

10.1 Stripmap blurring model 149

10.1.1 Wavenumber transform and the small sway ap-

proximation 151

10.1.2 Wide-band vs narrow-band blurring 152

10.1.3 Wide-beam vs narrow-beam blurring 153

10.1.4 The failure of the spotlight blurring model for strip-

map systems (PGA failure) 154

10.1.5 Phase curvature autofocus (PCA) blurring model 155

Failure of the PCA blurring model 155

10.2 Traditional stripmap autofocus algorithms 157

10.2.1 Prominent point positioning (inverse filter) 157

10.2.2 Phase curvature autofocus (PCA) 159

2-D PCA 163

10.2.3 Phase matching autofocus (PMA) 163

10.3 Stripmap phase gradient autofocus (SPGA) 165

10.3.1 Target region selection 169

10.3.2 Windowing and window width selection 170

10.3.3 Along-track position estimation 172

10.3.4 Wavenumber transform coordinate change 174

10.3.5 Phase estimation 175

10.3.6 Improved blur modelling—sidestepping the limita-

tions of the wavenumber transform 175

10.3.7 SPGA versus traditional algorithms 177

PGA 177

mPGA 177

PCA 177

2-D PCA 177

PPP 177



xviii Contents

10.3.8 Future work 178

10.4 Range offset 179

10.5 Aperture undersampling 181

10.6 Autofocus results 185

10.6.1 Simulated data 185

Summary 193

10.6.2 Field-collected data 194

10.6.3 SAS autofocus testing difficulties 200

Simulation approximations and autofocus 201

10.7 Summary 202

Chapter 11 Conclusions 205

11.1 Recommendations for future research 207

Appendix A SAS system parameters 211

Appendix B Derivation of Weyl’s Identity 213

Appendix C Time varying gain for Fourier-based reconstruction 217

Appendix D Derivation of the wavenumber transform 221

D.1 Stationary phase derivation 221

D.2 Geometry based derivation 222

Appendix E Eigenvector phase kernel and phase-closure 225

Appendix F Bispectrum and eigenvector phase estimation

equivalence 229

F.1 Bispectrum kernel 229

F.2 Eigenvector kernel 229

Appendix G Fourier transform properties 231

References 233

Index 251



Chapter 1

Introduction

1.1 Underwater imaging

The earth is an aquatic planet and, with as much as 80% of the surface covered in water,

there is a strong interest in knowing what lies below. Optical wavelengths penetrate

poorly into sea-water with common visibilities ranging from 10s of metres down to the

order of a metre. This makes the charting and imaging of underwater scenes using

lights and cameras difficult. In contrast, acoustic signals and sounds travel well in the

ocean, particularly low frequency signals (< 1 kHz). The result is that acoustic imaging

is often the only means of large scale underwater imaging.

1.1.1 Echo detection

Echo detection—the location and detection of objects using sound—is a technique likely

to have been in use as long as humans have existed. With the advent of sea-faring craft,

echo detection became a way of avoiding running vessels aground. Some evidence exists

of Phoenician fishermen (circa 500 B.C) using the echos of ringing bells and the like to

detect nearby headlands [Kaharl 2003].

Echo detection, and its extension, echolocation, became popular techniques after

the sinking of the Titanic in 1911, with the first patent filed within two weeks of the

sinking [Urick 1975]. The echolocation patent was granted for location of icebergs using

sound in air. The inventor, J. F. Richardson, was soon awarded another patent for the

application of the same technique underwater where the propagation of sound is much

better. Underwater echolocation became more important with the threat of submarine

warfare in World War I and a range of techniques using steerable arrays of hydrophones

came into use. Gradually, these techniques became the beginning of what is now the

sonar imaging field.

1.1.2 Sonar

The idea and application of sonar techniques occurred earlier than many realise with

Leonardo da Vinci writing late in the 15th century [Burdic 1984]:
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If you cause your ship to stop, and place the head of a long tube in the

water and place the other extremity to your ear, you will hear ships at a

great distance from you.

The technique da Vinci outlines is a crude form of passive sonar; more sophisticated

passive systems of similar construction were used until late in World War I when

electronic devices started to take over [Urick 1975].

The term SONAR came into use late in World War II to describe the SOund,

NAvigation and Ranging techniques used in anti-submarine warfare at the time and

to parallel the then newly coined term RADAR [Urick 1975]. Sonar systems were

employed to find the bearing and range of submarine targets often using a mechanically

steered hydrophone array and echo-location. Post World War II, sonar techniques

found application in civilian activities such as sea-bed imaging, depth sounding, and

fish-echolocation [Tucker 1966].

Today, side-scan sonar provides part of the basis for both civilian and military sea-

bed imaging. This thesis describes synthetic aperture sonar (SAS) imaging in a side-

scanning mode—other sonar imaging geometries also benefit from aperture synthesis

although not as greatly as side-scan mode.

1.2 Side-scan imaging geometry

Side-scan (side-looking) sonar systems, both conventional and synthetic aperture, send

sound pulses perpendicular to the direction of tow. The returning echo signals are

formed into a narrow imaging beam (either by using a large real-aperture in conven-

tional systems or via synthetic aperture processing). The image strips that the beam

illuminates are mapped onto a continuous plot as the sonar moves forward—i.e., built

into a stripmap image or sonograph.

Figure 1.1 illustrates a typical side-scan sonar geometry. The imaging platform

travels a rectilinear path in the along-track or azimuth direction u at a fixed height off

the mean seafloor H. Sound pulses are transmitted perpendicular to the direction of

travel, along the cross-track direction, x, and propagate radially outward. The echos for

a particular pulse are recorded as a function of time-delay since transmission t, which

is proportional to the two-way range of the scattering target t = rtwoway/c, where c is

the speed of propagation in the medium.

Images are formed (reconstructed via synthetic aperture processing) on a grid in

global (x, y, z) coordinates or possibly in a slant-range coordinate system (xs, y) (see

Section 3.1).
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Figure 1.1 Illustration of the typical imaging geometry of side-scanning sonar systems. The sonar
image is built up by mosaicking each pulse onto a stripmap.

1.2.1 Conventional side-scan sonar

Conventional side-scan sonars operate by transmitting a narrow beam of sound energy,

then plotting the echo returns onto a recording chart one pulse at a time. The along-

track resolution in the final image is proportional to beam-width—the narrower the

beam the better the resolution. Narrowing the beam is possible by either increasing

the frequency of the acoustic pulses or increasing the length of the aperture. Thus

conventional side-scan sonars typically use high-frequency signals for high resolution

imaging.

The disadvantage of using high frequency sonars is that attenuation of the signal

is greater at higher frequencies. High-resolution conventional side-scan systems only

operate at short range. Another difficulty occurs when conventional systems are used

for detection. With sonar beams of 0.1–1◦, minor path variations make it easy for

the sonar to completely miss imaging a target. This problem cannot be fixed in post-

processing—if no energy hits a target it can not give reflections. This has lead to

the separate development of low-frequency detection and high-frequency classification

sonars.

Regardless of the disadvantages, real-time operation and inherent simplicity make

conventional side-scan sonar systems an invaluable mapping tool.
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1.2.2 Synthetic aperture sonar (SAS)

Synthetic aperture sonar operates by sending wide-beam acoustic pulses and combin-

ing the echoes from many pulses to obtain high-resolution images. The benefit of this

approach is that low-frequency signals can generate high-resolution imagery without

the need for excessively long arrays. The high along-track resolution is also range-

independent—something not possible in conventional systems. However, the disad-

vantage is that the echoes must retain phase coherency for the length of the synthetic

aperture. Without echo coherency the SAS image is severely degraded. The prevention

of image degradation requires strict motion and sampling requirements.

The other major disadvantages SAS brings are requirements for heavy computation

and increased system complexity. Computing advances and improved reconstruction

techniques have only recently made real-time (and thus commercial) SAS feasible.

Spotlight mode

Spotlight-mode imagery is common in synthetic aperture radar (SAR—the radar equiv-

alent of SAS). A spotlight system steers a narrow beam (either mechanically or elec-

tronically) onto a small patch of the target area as it passes—see Figure 1.2(b). This

allows a large reduction in the data storage and transmission requirements (important

in satellite SAR systems).

Spotlight systems are a special case of the stripmap geometry that allow approxi-

mations simplifying the image reconstruction process. No published SAS system uses

spotlight mode, although with improving navigation accuracy the more relaxed along-

track sampling constraints of spotlight mode may be useful. Spotlight mode imaging

is discussed in the autofocus chapters of this thesis. Detailed descriptions of spotlight

SAR imaging are given by Carrera et al. [1995] and by Jakowatz et al. [1996].

Stripmap mode

Stripmapping is the conventional imaging mode for SAS systems. In stripmap mode

the sonar beam always points in the same direction during imaging—see Figure 1.2(a).

Stripmap imagery does not allow many simplifying assumptions, making it more diffi-

cult than spotlight imagery to reconstruct and autofocus. The majority of the discus-

sion in this thesis relates to stripmap SAS/SAR systems.

1.2.3 Navigation errors

SAS systems require that the recorded echos retain phase coherency for the length

of the synthetic aperture. Coherency requires phase accuracies of better than λ/8

and positioning accuracy of at least λ/16. Without echo coherency, the resulting SAS
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(a) (b)

Figure 1.2 Stripmap and Spotlight imaging modes. (a) Stripmap mode, the beam points the same
direction during imaging. (b) Spotlight mode, the beam is continuously steered onto a small scene
patch during imaging. [Hawkins 1996]

Surge

Sway

Yaw

Roll

Pitch

Heave

Figure 1.3 Sonar system motion errors [Johnson 1992].

images suffer severe degradation1. Even on tightly constrained, rail-based systems this

type of accuracy is difficult to achieve.

Of the six possible motions shown in Figure 1.3, across-track motion (sway) is

the most important to constrain for side-scan SAS operation [Hayes and Gough 1992].

With low grazing angles to the scene, towfish sway2 accounts for the majority of echo

1Realistic systems require millimetre accuracy in position over aperture lengths of 10’s of metres
(due to typical wavelengths of 10 mm–50 mm).

2In multiple-receiver systems, yaw motions are similarly important.
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de-correlation [Cutrona 1975]. Although sway has the most effect on SAS imagery, it

is the combined effect of all six degrees of freedom on slant-range motion that must

be controlled. Designing a free-towed or autonomous system able to control all those

degrees of freedom to within SAS motion tolerances in general conditions is impractical.

Despite the tight tolerances on motion, diffraction-limited imagery has been shown

with free-towed SAS systems, albeit in benign operating conditions [Hawkins 1996;

Hayes and Gough 1999]. In conditions where navigation errors would otherwise cause

image blurring, inertial navigation system (INS) motion measurements combined with

data-driven micronavigation/autofocus offer the potential for producing blur-free im-

agery. This thesis presents both methods for using INS measurements to correct image-

blurring (when using efficient Fourier-based reconstruction techniques), and techniques

for data-driven image compensation (autofocus).

1.3 Assumed knowledge

It is expected that the reader has an advanced understanding of the principles of

synthetic aperture imaging and a good working knowledge of digital signal processing

techniques. In particular, a good knowledge of discrete interpolation techniques is

important. Oppenheim and Schafer [1999] and Jakowatz et al. [1996] give detailed

descriptions of digital signal processing and discrete interpolation techniques. Fourier

transformation is used extensively in the thesis and the reader should have an advanced

understanding of Fourier domain concepts. Bracewell [1986] provides a good description

of advanced Fourier techniques although a summary of important Fourier properties is

provided in Appendix G.

Specialised knowledge of sonar systems design is not required although an un-

derstanding of the physical and mathematical constraints are beneficial. The reader

should be familiar with aperture synthesis techniques and general imaging procedures.

In particular, a basic understanding of SAR imaging ([Carrera et al. 1995; Soumekh

1994, 1999]) and the differences between SAS and SAR (see [Bonifant 1999; Hawkins

1996; Hayes and Gough 1992]) is useful. Wahl et al. [1994a], Jakowatz and Wahl [1993]

and Wahl et al. [1994b] provide a good background to PGA and PCA based autofocus

for the interested reader.

1.4 Thesis contributions

This thesis presents a number of contributions to the SAS and SAR fields.

Improved SAS system models are derived based on the Helmholtz wave equation

and Weyl’s identity. These models provide wide-beam, wide-band wavenumber-domain

amplitude modelling and allow improvements to reconstruction techniques. A summary
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of common reconstruction algorithms in consistent notation and their computational

efficiencies is presented in light of the improved modelling. New wavenumber-domain

derivations are shown that model Doppler and position shifting effects for continuously

moving sonars. An improved reconstruction algorithm making use of this modelling is

proposed in Chapter 5.

A number of improvements to the wavenumber algorithm and insights into its

use are presented. Phase-centre compensation is improved with a new method for

ultra-wide-beam systems proposed. The multiple-receiver reconstruction problem is

formulated in terms of a bistatic geometry, providing new insight into the problem.

A new multiple-receiver reconstruction algorithm based on the bistatic formulation is

proposed and test results presented.

This thesis described wide-beam sway compensation to be used in conjunction

with Fourier-based reconstruction algorithms. A summary of single-receiver algorithms

and a new multiple-receiver algorithm is presented. Simulation results from the new

algorithm are shown to provide image improvement. Another new algorithm for the

compensation of sway movement occurring during the pulse and additional wide-beam

yaw compensation techniques provide further motion compensation improvement.

Chapter 7 provides a comprehensive summary of the techniques and ideas behind

autofocus. New motion constraints are derived and show that sway gradient errors

provide closer correspondence to image blurring than absolute sway errors. Time-delay

and phase estimation techniques from a number of fields are summarised in a common

framework. The Cramér-Rao lower bounds of each of the techniques are provided

to give insight into algorithm accuracy. PGA’s eigenvector phase estimator is shown

to implement phase-closure for order M ≥ 3 and also shown to be equivalent to the

bispectrum and trispectrum techniques used in astronomical imaging.

Chapter 8 provide a summary of spotlight autofocus and various PGA algorithms

is presented in consistent notation. The parametric PDA method is shown to use a

phase estimator closely related to PGA’s ML estimator.

Chapter 9 provides a summary of micronavigation techniques and the limitations

of image correlation—it is effectively limited by the same constraints as traditional

phase gradient autofocus. This thesis gives a description of the problems facing shear

average autofocus on field-collected data. Extensions are suggested to alleviate those

problems. The autofocus improvement the extensions provide is demonstrated both on

simulated data and data collected in the field at Sydney Harbour.

Chapter 10 provides an extensive investigation into stripmap autofocus using phase

gradient techniques. A new wide-band, wide-beam stripmap blurring model is derived

allowing improvements to autofocus algorithms. The blurring model is extended for the

case of large sways and the implications of narrow-band, narrow-beam approximations

are discussed. A consistent and in-depth summary of traditional autofocus techniques,
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the blurring models they employ, and their (stripmap) autofocus limitations is also

given in Chapter 10.

This thesis presents the new SPGA algorithm. The algorithm is based on the

wide-beam, wide-band blurring model and the new insight that Doppler spectrum

shifting can be used to aid autofocus. In-depth discussion of SPGA’s technical aspects

and implementation issues provide the necessary information for successful operation.

Extensions to the algorithm for operating where gross sway is present are presented.

SPGA supersedes traditional algorithms and the implementation of traditional algo-

rithms using the SPGA framework is discussed. The autofocus problems caused by

aperture undersampling and space-invariant blurring are also presented leading to dis-

cussions on the mitigation of those effects. Results from in-depth quantitative testing

of SPGA on simulated data are shown and provide a guide to the selection of various

autofocus parameters.

Real data testing on field collected data from Sydney Harbour is demonstrated

with SPGA offering significant image improvement. Analysis of the failure of 2-D PCA

(SPGA with a phase curvature kernel) on the same data is presented, demonstrating

the benefit of phase-gradient processing. Realistic quantitative autofocus testing is

difficult and a summary of testing difficulties shows the areas where improvement is

necessary.

1.5 Thesis outline

Chapter 2 covers the fundamental principles of SAS imaging including a section on

complex-valued data collection and sampling. Acoustic propagation is reviewed

leading to the methods used for SAS system modelling. A discussion on array

theory and the resolution constraints on a typical side-scan SAS system are also

presented.

Chapter 3 covers the system models chosen for SAS systems and provides spatial and

wavenumber domain model derivations. New wavenumber domain derivations for

multiple-receiver SAS systems and second-order effects models are presented.

Chapter 4 reviews the common SAS reconstruction algorithms and presents new

derivations with amplitude terms to appropriately compensate spreading loss.

Chapter 5 goes into the detail of wavenumber algorithm based reconstruction and

implementation issues, providing a discussion on the trade-offs between recon-

struction accuracy and efficiency. In addition, a new bistatic path derivation for

multiple-receiver reconstruction and improved phase-centre approximation com-

pensation are presented. New inversions for moving sonar compensation and
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temporal Doppler effects are provided. An additional 3-D wavenumber recon-

struction is presented to aid the understanding of interferometric processing.

Chapter 6 reviews current techniques for motion compensation and suggests improve-

ments for multiple-receiver wide-beam sonar systems. The approximations made

in current motion compensation are considered and more accurate descriptions

and corrections of yaw and sway effects are provided.

Chapter 7 provides introductory material for the following chapters and discusses

the issues underlying SAS autofocus. The autofocus problem is presented and

the differences between stripmap and spotlight autofocus considered. A sum-

mary of wide-band echo-correlation techniques with their theoretical accuracies

is also given. Phase estimation techniques from a number of difference fields are

discussed and compared with phase-only time-delay estimation. An overview of

current SAS autofocus techniques is presented to introduce the following chapters.

Chapter 8 provides a detailed investigation into phase gradient based autofocus for

stripmap systems. Traditional algorithms are summarised and related to a new

technique based on the use of the wavenumber transform. Autofocus results for

simulated and field-collected data are presented. Discussions on the difficulties of

stripmap autofocus, the failure of traditional and wavenumber transform based

blurring models, simulation deficiencies with regard to autofocus, and aperture

undersampling and its effect on autofocus are included.

Chapter 9 provides a review of the echo-correlation based autofocus algorithms. The

redundant phase centre (RPC) algorithm is analysed and considered relative to

image correlation and to the single-receiver shear average algorithm. Improve-

ments to the shear average algorithm for operation in scenes with high contrast

and for bulk motion estimation are presented. Real-world autofocus results on

both simulated and field collected data are demonstrated.

Chapter 10 presents the novel wide-beam, wide-band stripmap phase gradient aut-

ofocus (SPGA) algorithm. The derivation of an appropriate stripmap blurring

model and the failure of traditional blurring models are presented. Traditional

SAS autofocus algorithms are investigated in relation to autofocus implemen-

tation and related to the new SPGA algorithm. A number of the major steps

of the SPGA algorithm are described and those common to spotlight autofocus

discussed from a stripmap SAS viewpoint. Aperture undersampling and the prob-

lems caused by space-invariant blurring are also discussed. Autofocus testing on

both simulated and field-collected data is presented and conclusions regarding

SPGA’s operational parameters drawn.
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Chapter 11 presents the conclusions drawn from this work and provides recommen-

dations for future research.



Chapter 2

Synthetic Aperture Sonar (SAS) fundamentals

This chapter describes the notation and fundamental theory needed to describe SAS

imaging. Complex and band-pass signals are covered in Section 2.1 and the sampling

constraints on band-pass signals in Section 2.2. A description of pulse-compression

techniques in Section 2.3 is followed by acoustic wave propagation theory required for

accurate SAS system modelling. The chapter finishes with an overview of sidescan SAS

resolution and sampling constraints.

2.1 Complex signals

The waveforms used in echo imaging systems may be expressed in the form

p(t) = a(t) cos (Φ(t)), (2.1)

where a(t) is a time-varying, amplitude-only function (often called the signal envelope)

and Φ(t) is a phase modulation term. Usually, the signal, p(t), is a band-pass signal

and (2.1) may be written as

p(t) = a(t) cos (φ(t) + ω0t), (2.2)

where the phase function Φ(t) = φ(t)+ω0t is composed of a time-varying phase function

φ(t) and an arbitrary carrier frequency ω0. Notation is often simplified for band-pass

signals by rewriting (2.2) in terms of a low-pass complex envelope signal, pb(t), and

exponential carrier

p(t) = Re {pb(t) exp (jω0t)}, (2.3)

where p+(t) = pb(t) exp (jω0t) is the pre-envelope and the Re {} operator takes the

real part of the signal [Haykin 1994]. The baseband complex envelope, pb(t), may be

obtained from the pre-envelope, p+(t), by demodulating by the carrier frequency1

pb(t) = p+(t) exp (−jω0t). (2.4)

1In practice, the baseband signal is usually created using quadrature (I-Q) sampling [Haykin 1994].
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The baseband signal pb(t) = a(t) exp (jφ(t)) is sufficient to describe the band-pass

signal, completely independent of the carrier frequency [Haykin 1994].

The use of baseband signals makes for simplified computer processing and reduces

the amount of storage space required (see Section 2.2).

2.2 Sampling of complex baseband signals

If the sonar signal is a bandpass signal, as described above in Section 2.1, traditional

sampling at the Nyquist rate [Haykin 1994] often results in more samples being taken

than required to fully characterise the signal. The low-pass baseband signal, pb(t),

contains all of the information of the real signal, p(t), thus only the band-width of pb(t)

need be Nyquist sampled2. For typical signals in pulse-echo imaging systems, sam-

pling the baseband signal can result in a large reduction in data storage requirements.

Nyquist sampling results in a sample spacing of

∆t =
4π

ωmax + ω0
, (2.5)

where ωmax is the maximum frequency component contained in pb(t) and ω0 is the

carrier frequency. Complex-baseband sampling by contrast results in a sample spacing

of [Haykin 1994]

∆t =
2π

ωmax
, (2.6)

where each sample is now complex. For bandpass signals the storage saving is approx-

imately equal to the bandwidth to carrier ratio (Q). When sampled baseband signals

are used, high-Q sonar systems gain a significant saving in the storage space needed

for the echo data.

2.3 Pulse-compression

The range of a sonar system, and the dynamic range of the final imagery are propor-

tional to the transmitted signal’s energy. High power impulse-like pulses of extremely

short duration are unable to be used due to constraints on the maximum signal ampli-

tude in water (owing to non-linearity and cavitation effects [Urick 1975])3. The range

resolution of a waveform is proportional to its pulse duration (for impulse-like signals4)

but the energy able to be transmitted when using impulse-like signals is severely con-

strained. This trades resolution against energy; high-energy, high-resolution imaging is

2Only the real and imaginary parts of pb(t) (the I-Q channels) need be sampled at 2π/ωmax where
ωmax is the maximum frequency component contained in pb(t).

3Radar has similar constraints on peak amplitude, these are constraints on the transmitter electron-
ics rather than the medium.

4Shorter duration pulses result in higher resolution because they have a larger bandwidth (see
Section 2.6.2).
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not possible. Lowering the signal energy decreases the SNR and causes a corresponding

decrease in system dynamic range.

The constraint on signal amplitude may be avoided by transmitting long-duration

phase-modulated signals. The use of such signals allows more energy to be put into

the water and gives an increase in system SNR proportional to the time-bandwidth

product of the signal (τcBc) [Cook and Bernfeld 1967; Curlander and McDonough 1996;

Hawkins 1996; Hayes 1989]. Moreover, resolution (which is proportional to the signal

bandwidth) is also improved. To improve the resolution of the system, the received

echo signal is pulse-compressed [Hovanessian 1980, page 130]. This operation is usually

performed as a matched-filtering with the transmitted signal and gives a final resolution

that is proportional to the signal bandwidth. The classical matched-filtering used is

the same as complex correlation methods outlined in Section 7.6.1 and in Haykin [1994]

and Camp [1970].

In the notation used in this thesis, the pulse-compressed echo signal, s(t, u), is

calculated from the raw echo signal, e(t, u) via correlation

s(t, u) =

∫
e(t′, u)p∗(t′ − t) dt′ (2.7)

= e(t, u) ⊙t p
∗(−t) (2.8)

= e(t, u) ⋆t p(t), (2.9)

where p(t) is the transmitted signal and ⊙t and ⋆t denote convolution and correlation

respectively in the time axis. The operation of (2.7) may also be represented in the

temporal-frequency domain as

S(ω, u) = E(ω, u)P ∗(ω), (2.10)

which is how the calculation is normally performed.

Pulse-compression, in conjunction with transmitted signals with large time-band-

width products, allows for the use of high-resolution, high-energy signals in sonar imag-

ing and avoids the constraint imposed by the cavitation limit of the medium [Hayes

and Gough 1992].

2.4 Acoustic wave propagation

Sonar systems “paint” images using acoustic energy. The round-trip range and acoustic

scattering strength of the sea-floor are combined to create images of the sea-floor. Due

to the sonar’s reliance on sound propagation, it is important that the effect is modelled

properly. This section describes the linear wave equation that approximately models

the sound pulses of most sidescan sonars. With many SAS inversion techniques relying
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on wavenumber representations of the signal, acoustic propagation modelling in the

wavenumber domain is also covered.

The propagation of small-signal acoustic waves in the ocean is approximately gov-

erned by the Helmholtz wave equation for a scalar field, ψ, in an unbounded homoge-

neous medium [Morse and Feshbach 1953]5,

(
∇2 + k2

)
ψ(x, y, z) = 0, (2.11)

where ∇2 is the Laplacian operator,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2.12)

k = ω/c, is the wavenumber for a given acoustic frequency ω, with c the field propaga-

tion speed in the medium. If an acoustic field f(x, y, z) exists then (2.11) becomes the

forced Helmholtz equation,

(
∇2 + k2

)
ψ(x, y, z) = −f(x, y, z). (2.13)

Taking the 3-D spatial Fourier transform of both sides the frequency response is rep-

resented as

(
−k2

x − k2
y − k2

z + k2
)
ψ(kx, ky, kz) = − f(kx, ky, kz), (2.14)

ψ(kx, ky, kz) =
−f(kx, ky, kz)(

k2 − k2
x − k2

y − k2
z

) . (2.15)

Substituting in an impulse (point) source at (x0, y0, z0) as the forcing field into (2.15)

−f(kx, ky , kz) = exp (−jkxx0 − jkyy0 − jkzz0),

ψ(kx, ky, kz) =
exp (−jkxx0 − jkyy0 − jkzz0)(

k2 − k2
x − k2

y − k2
z

) .
(2.16)

and taking the inverse Fourier transform of (2.16), we get the spatial response,

ψ(x, y, z) =
exp

(
−jk

√
(x− x0)

2 + (y − y0)
2 + (z − z0)

2
)

4π

√
(x− x0)

2 + (y − y0)
2 + (z − z0)

2
. (2.17)

The unconstrained (3-D) spatial response given by (2.17) is the result of convolving a

5[Ziomek 1995] provides another derivation of (2.11) beginning with the basic physical properties of
the medium.
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point scatterer at (x0, y0, z0) with the system Green’s function,

g(x, y, z) =
exp

(
−jk

√
x2 + y2 + z2

)

4π
√
x2 + y2 + z2

. (2.18)

Superposition of the responses from many point-sources can be used to derive an ex-

pression for the measured field ψ(x, y, z) for an arbitrary distribution of sources.

Assuming a model where the spreading of energy is contained in 2-D, similar deriva-

tions can be undertaken [Chew 1995], starting with the 2-D version of (2.15) and (2.18),

g(kx, ky) =
−1

k2 − k2
x − k2

y

. (2.19)

Inverse Fourier transforming (2.19) gives the 2-D spatial impulse response (Green’s

function) as,

g(x, y) = − j
4
H

(2)
0 (kρ), (2.20)

where ρ =
√
x2 + y2 and H

(2)
0 is a Hankel function of the 2nd kind. When ρ ≫ λ =

2π/k, i.e., the range is much greater than the wavelength, (2.20) may be approximated

by an asymptotic expansion [Morse and Feshbach 1953],

g(x, y) ≈ −1√
j8πkρ

exp (−jkρ). (2.21)

Using these models for the propagation of sound in water, the data received by

the sonar may be synthesised and reconstruction algorithms derived. This modelling

is covered in more detail in Chapter 3.

2.5 Array theory

This section develops the theory required to understand basic imaging with real aper-

ture arrays—such as that used in conventional sidescan imaging sonars. The extension

to synthetic aperture arrays follows with a summary of resolution and sampling con-

straints.

2.5.1 Transducers and beam-patterns

Sonar transducers are often rectangular and the beam-patterning problem is able to

be separated into two 1-D problems. The following analysis may be extended to non-

separable aperture functions in 2-D.

Given a 1-D aperture illumination function, it(y), the field incident on a target

at (x, y), for a transducer centred on (0, 0), is given by (using the 2-D Green’s func-
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Figure 2.1 Ground-plane geometry for beam-pattern calculations.

tion (2.20))

ψi(x, y) = −j 1

4

∫
it(u)H

(2)
0

(
k
√
x2 + (y − u)2

)
du. (2.22)

Taking a 1-D Fourier transform of (2.22) in y and employing Weyl’s identity

(Appendix B) gives

ψi(x, ky) = −
∫
it(u)

exp
(
−j |x|

√
k2 − k2

y − kyu
)

√
k2 − k2

y

du. (2.23)

Recognising the Fourier transform relation in (2.23) allows the incident field to be

written

ψi(x, ky) = −It(ky)
exp

(
−j |x|

√
k2 − k2

y

)

√
k2 − k2

y

, (2.24)

where It(ky) is the Fourier transform of it(y). Using the stationary phase method [Cook

and Bernfeld 1967; Gough and Hawkins 1997; Soumekh 1994] to perform an Inverse

Fourier transform over ky, the spatial equivalent of (2.24) may be written

ψi(x, y) ≈
−j
4
It(k sin θ) H

(2)
0

(
k
√
x2 + y2

)
, (2.25)

where θ = sin−1
(
y/
√
x2 + y2

)
. Equation (2.25) is a weighted version of (2.20). This

result shows a transducer may be treated as a point-transducer (i.e., as having no

spatial-extent) with the physical spatial-extent of the transducer causing a filtering of

the spatial-frequency bandwidth. This filtering is usually known as the beam-pattern

of the transducer.
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Figure 2.2 Aperture illumination for a rectangular aperture, it(y).

Rectangular transducer

Given a transducer with an aperture illumination function

it(y) = rect

(
y

D

)
, (2.26)

(shown in Figure 2.2) its beam-pattern is given by

It(ky) = D sinc

(
kyD

2π

)
. (2.27)

The beam-pattern, It(ky), is shown in Figure 2.3. With the nulls of (2.27) being given

by ky = 2πn/D where n ∈ ±1,±2,±3, . . ., and using the relation ky = k sin θ, the

null-to-null width of the transducer’s main-lobe may be calculated as

θnull-to-null = sin−1

(
4π

kD

)

= sin−1

(
2λ

D

)

≈ 2λ

D
,

(2.28)
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Figure 2.3 Aperture illumination for a rectangular aperture, It(ky).

and the -3 dB6 beam-width, θ3dB, is

θ3dB ≈ λ

D
, (2.29)

where the result applies in the far-field of the transducer. This far-field (or Fraunhofer)

region starts at a range of [Goodman 1968]

2D2

λ
, (2.30)

which is called the Rayleigh range. The far-field region is the distance from the trans-

ducer where the wave fronts arriving from a single point source may be treated as

plane-waves (i.e., where the wavefront curvature may be ignored). For distances closer

than this region, the near-field or Fresnel region, the effective beam-pattern is much

more complicated7.

The resolution possible from a rectangular transducer is fixed by the effective length

6λ/D is actually the -3.9 dB bandwidth; for the purposes of the discussion in this thesis the approx-
imation is sufficient.

7The ranges of interest are usually in the far field of an individual transducer due to its small D.
When considering the beam-pattern of an array of transducers, the effective D may be large causing
near-field effects at the ranges of interest.
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of the transducer

D = max{Dr,Dt}, (2.31)

where Dt and Dr are the transmit and receive transducer lengths respectively. Thus

the along-track resolution, δy, can by expressed in terms of the transducer length D as

δy = Rθ3dB,

=
Rλ

D
.

(2.32)

This resolution is fixed immediately on signal transmission and again on reception by

the physical extent of the transducer.

2.5.2 Real arrays

A real array is formed when the signals from several transducers are combined. The

coherent summation of signals from the individual transducers produces a signal equiv-

alent to that from a single transducer the same shape as the array8.

The benefit of recording the transducers separately is that the array may be fo-

cused or beam-steered [Nielsen 1991; Urick 1975] using computer processing. This extra

flexibility is possible because the echo data are recorded. Receive beam-steering and

focusing may be performed for the entire image in post-recording processing (also called

dynamic focusing).

The along-track resolution of a focused linear array is given by

δy =
Rλ

L
, (2.33)

where R is the range to target and L is the length of the array—either the transmitter

or receiver array, whichever is longer. This resolution is fixed for a given length L at

the time the signal is focused. The motivation for the use of synthetic aperture arrays

is to increase L and gain an associated increase in resolution.

2.5.3 Synthetic arrays

Synthetic arrays are conceptually similar to real arrays; a synthetic array samples the

transducer locations of a real array using the constant forward motion of the imag-

ing platform. If the scene does not vary with time (and the path of the platform is

predictable) then an equivalent aperture of arbitrary length may be synthesised. Res-

olution is given by δy = Rλ/(2L), where L is the aperture length and R the range to

the target, thus increasing the length of the effective aperture improves resolution.

8This is possible to show by partitioning (2.22) for multiple-receivers and summing the resulting
signals.
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The resolution of a synthetic aperture system is improved by a factor of 2 when

compared to a real aperture system9. Taking this into account, the resolution of a

synthetic aperture system is given by

δy =
Rλ

2Lsynthetic
, (2.34)

which gives the resolution for a spotlight system. In practice, the effective aperture

length of a spotlight systems is constrained by its beam steering angle limit.

Stripmap systems have their maximum possible synthetic array length Lsynthetic

limited by beam-patterning effects. In practice, the length of aperture able to be

synthesised for a given range is limited by the transducer beam-width,

L = Rθ3dB,

=
Rλ

D
,

(2.35)

where D is the larger of transmit, Dt, and receive, Dr, aperture extents, and the -3 dB

beam-width is given by (2.29). Thus the resolution of a stripmap synthetic aperture

system is given by

δy =
RλD

2Rλ
, (2.36)

=
D

2
, (2.37)

where D, as before, is the effective transducer extent. Note that this resolution is

independent of range and imaging frequency, something not possible with a real aper-

ture system. This allows long-range, low-frequency, high-resolution imagery without

excessively long arrays.

Factor of two resolution improvement

Synthetic aperture arrays have a resolution that is half of that a real array of the

same length achieves. This factor of two improvement comes about because of the

phase-doubling effect caused by two-way propagation over multiple transmitted pulses.

For illustration, a hypothetical real aperture system that has an omni-directional

transmitter and a receiver array of length Lreal is considered and compared with a

monostatic synthetic aperture system obeying the stop-and-hop approximation (see

Chapter 3 for a more thorough discussion of these models). The extent of spatial

frequencies (and thus) resolution of the real aperture system is fixed by the angular

9See later in the section.
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extent at reception. The spatial frequencies at reception are described by

ku = k sin θ, (2.38)

and resolution is directly calculated from beam-width. In the synthetic system both

the transmitter and receiver move causing a phase-doubling (because of the two-way

propagation). The phase doubling is sometimes treated as if the wave-speed were

halved (which is equivalent to wave-number doubling—see Chapter 3) and the spatial

frequencies are described by

ku = 2k sin θ. (2.39)

Comparing the spatial frequencies of the real and synthetic systems (2.38) and (2.39),

it is apparent that for the same beam-width the synthetic aperture system has twice

the spatial frequency extent. This leads to the factor of two resolution improvement of

synthetic systems (and also altered sampling constraints).

Another way of considering the problem is to treat the real array using the phase-

centre approximation (see Chapter 3). Under this approximation (a transmitter/receiver

pair is modelled as a co-located transducer midway between), a real array can be seen

to be equivalent to a synthetic array of half the length (and thus resolution is poorer

by a factor of two). Bistatic modelling, such as used in Chapter 3, or spatial frequency

analysis [Hawkins 1996; Soumekh 1994] can be used to arrive at the same conclusion.

2.6 Sidescan SAS imaging

The sidescan imaging mode refers to the scenario where the sonar system images to

the side at a low grazing-angle. This mode is commonly used for mapping, producing

images roughly similar to aerial photographs in appearance. This section summarises

some of the important features and constraints of the particular imaging mode as it

relates to SAS imaging.

2.6.1 Collection geometry

As described above, the imaging sonar looks to the side and effectively maps many

range-image strips. To simplify understanding, the geometry is regarded as being 2-D

but the extension of the ideas into 3-D space is straightforward. Chapter 3 delves into

the 3-D geometry in more detail.

Figure 2.4 illustrates the commonly used 2-D ground-plane (flat) geometry. The

sonar system records the response of the targets in range within the beam as a func-

tion of time-delay, t, for many different along-track positions, u. The scene is then

reconstructed into the image coordinates x, y.
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Figure 2.4 Ground-plane geometry for a sidescan SAS system. Image coordinates (x, y), sonar
coordinates (u, t), scene offset (x0, y0).

2.6.2 Range resolution

The range resolution of a sidescan SAS system is the same as for any pulse-echo ranging

system. The resolution of a pulse-echo system is given by

δr =
c

2
δt,

δr =
c

2Bc
,

(2.40)

where Bc is the transmitted bandwidth and c the wave speed in the medium.

2.6.3 Range constraints

The repeated pulse transmission of side-scan systems causes targets outside a given

range to appear in the echo from the subsequent pulse. This results in range ambiguity.

The unambiguous range of the system is limited by the pulse repetition frequency

(PRF). A higher PRF implies that the maximum unambiguous range is reduced. The

maximum range is given by the distance that the transmitted sound pulse travels out

and back before the next pulse is transmitted,

xunambiguous =
c τrep

2
, (2.41)

where τrep is the repetition period of the transmitting system.

By way of example, for the KiwiSAS-III travelling at 4 knots (2 ms−1) and using
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D/4 sampling10 τrep must be kept below 0.04 sec (a sample rate of close to 25 Hz) giving

a maximum unambiguous range of only 30 m.

If a larger unambiguous range is desired, either the system pulse repetition fre-

quency (PRF) must be decreased or multiple orthogonal signals must be sent. De-

creasing the system PRF tends to cause along-track undersampling requiring slower

system speeds or additional transducers. Alternating two orthogonal pulses is roughly

equivalent to doubling the system PRF. Using multiple orthogonal pulses in flight si-

multaneously is a technique employed in space-borne SAR imaging systems [Curlander

and McDonough 1996]. However, a system employing orthogonal chirp transmission

suffers a degradation in SNR [Axelsson 2001]. When the orthogonal signals are cross-

correlated some energy still occurs as no finite-time signal can be truly orthogonal with

another finite-time signal. This undesired cross-correlation energy causes an increase

in the noise floor of the image.

2.6.4 Along-track resolution

The along-track resolution of a synthetic aperture system is half of the transducer

extent, i.e.,

δy =
D

2
, (2.42)

where D is the larger of either the transmitting aperture, Dt, or the receiving aperture,

Dr. The resolution limit is due to the limiting of the synthetic aperture length by the

transducers. The resolution is also half that of a real aperture system of the same length

as the synthetic aperture. This is due to the transmitter and receiver both moving in

a synthetic system causing phase (and along-track spatial frequency) doubling.

2.6.5 Along-track sampling constraint

The appropriate along-track sampling constraint is a contentious issue in the SAS com-

munity. The true along-track sampling constraint of any synthetic aperture system11

requires sampling finer than λ/4. Practically, this constraint is much tighter than nec-

essary and a figure of D/2, where D is calculated as in Sections 2.5.2 and 2.6.4, is often

given as a sampling constraint [Douglas and Lee 1992; Hayes and Gough 1992; Rolt

and Schmidt 1992; Tomiyasu 1978]12.

The sampling constraint chosen for a synthetic aperture system is dependent on

the along-track ambiguity to signal ratio (AASR) and peak to grating lobe peak ra-

tio (PGLR) desired in the final image. PGLR provides an estimate of the dynamic

range and improves with increasing system bandwidth due to grating lobe smearing.

10See Section 2.6.5.
11This is equivalent to having 180◦ beam-width—i.e., point transducers.
12This constraint is arrived at by considering the windowing (bandwidth limiting) effects the finite

aperture has on the spatial frequency spectrum.
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AASR does not improve with increasing bandwidth13 and grating lobe smearing is finite

[Châtillon 2000; Gough and Hawkins 1997]. A better along-track sampling requirement

which avoids some of the adverse effects is

∆u =
D

4
. (2.43)

Sampling at a rate of D/4 prevents the main-lobe of the beam-pattern being aliased

[Hawkins 1996]. When the main-lobe does not alias, the alias target energy is much

lower than the energy of the true target; however, the side lobes of the beam-pattern

do still alias resulting in some finite energy being aliased. For example the AASR for

a D/2 sampled system is ≈ -8 dB whereas is ≈ -21 dB for a D/4 sampled system.

Multiple-receiver systems (vernier arrays)

Multiple-receiver arrays provide a method of overcoming the along-track sampling con-

straint. Systems using multiple-receiver geometry gain an increase in the sampling

rate equal to the number of receivers used [de Heering 1982; Gilmour 1978]. Thus the

sampling constraint (2.43) becomes

∆u =
NhD

4
. (2.44)

Noting that NhD is the length of the receiver array, Darray, the sampling constraint

may instead be written

∆u =
Darray

4
. (2.45)

Systems employing many receivers on relatively short arrays are thus able to provide

high-resolution imagery at realistic mapping rates.

Vernier-array systems are now common in SAS imaging and their use is likely to

continue. Image reconstruction algorithms have to be adapted slightly to account for

the altered collection geometry (see Section 5.2).

2.7 Summary

A good grasp of the SAS fundamentals helps the understanding of its more difficult

problems. This chapter summarises some of the fundamental principles required for

designing and processing data from SAS systems. The relationship between recorded

sonar echoes and the complex baseband signals has been summarised. Complex base-

band representations of sonar signals offer storage benefits as well as simplified algo-

rithm implementation. Complex baseband signals and their pre-envelopes are used

throughout this thesis. Pulse-compression, which allows improved resolution without

13 Increasing the system bandwidth only causes increased smearing of the grating-lobe. Since it does
not have an influence on the grating lobe energy the AASR is unchanged.
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sacrificing range, has been summarised. Pulse-compressed data is the preferred input

for the majority of the SAS reconstruction techniques. Improved wave propagation

modelling for SAS imaging has been presented. This modelling is used in the following

chapter to obtain improved SAS system models. Beam-patterning effects are derived

using the improved modelling and correspond to those used previously. SAS along-track

sampling requirements and other important design parameters have been summarised

with regard to the aperture extent and swath-width requirements. An along-track

sampling rate of D/3 to D/4 is recommended based on AASR considerations.





Chapter 3

System modelling

To be able to reconstruct images of a sea-floor scene an understanding of the imag-

ing process is necessary. An accurate system model is a good step in achieving that

understanding, particularly if the approximations made in deriving the model are well

understood.

This chapter outlines the basic SAS system modelling needed to design and im-

plement reconstruction and autofocus techniques. To do this, the bistatic scattering

geometry for multiple-receiver sonars is considered and compared to the more usual

monostatic (single receiver sonar) system modelling. This modelling is performed as

if in the ground-plane geometry—Section 3.1 describes this particular geometry. (A

system model in 3-D is described in Section 3.4.) It is shown in Section 3.3 that

multiple-receiver sonars can be treated as a monostatic equivalent sonar using the

phase-centre approximation. Errors resulting from the phase-centre approximation are

discussed with the intent of correction during reconstruction. A summary of some of

the (often neglected) second-order effects in SAS modelling (such as the stop-and-hop

approximation and temporal Doppler shifting) is also included.

Modelling of the complicated scattering from objects on the sea-floor and ray-

bending (common in underwater imaging) are only discussed in passing in this thesis,

the interested reader is referred to Ziomek [1995] for information on these topics. Scene

variant ray-bending (medium fluctuation) has the potential to cause image blurring and

is discussed briefly with regard to autofocus in Chapter 7.

3.1 Ground plane geometry

The imaging sonar travels a nominally straight flight-path at a given height above the

sea-floor. In side-scanning mode, the sonar images the sea-floor at a low grazing-angle.

This is illustrated in Figure 3.1

To simplify the mathematics, the height dimension to the problem is removed

[Soumekh 1992]. This is done by replacing the across-track and height dimensions with

a single dimension of slant-range. Figure 3.2 illustrates this transformation. The new
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Figure 3.1 General 3-D geometry for side-scan SAS imaging. The sonar travels above the floor at a
fixed height and images down and to the side. Axis variables are as shown.
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Figure 3.2 Slant-range mapping. The across-track distance variable x and the height variables h, z
are replaced by a single parameter xs.

slant-range variable is xs, which is given by the non-linear (polar) mapping

xs =
√
x2 + (h− z)2, (3.1)

η = tan−1

(
h− z

x

)
, (3.2)
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where z is the sea-floor height and h the height of the sonar. If the image is recon-

structed in the slant-range (normal procedure for 2-D reconstruction algorithms), the

new slant-plane image, fs(xs, y), is given by

fs(xs, y) =

∫ π

−π
f(xs, y, η)xs dη, (3.3)

where f(x, y, z) and f(xs, y, η) represent the true 3-D reflectivity function on cartesian

and slant-range coordinates.

2-D image reconstruction techniques reconstruct the slant-plane image, fs(xs, y);

i.e., the image coordinates are in xs, y. Reconstruction without correcting for the

ground-plane mapping causes some range variant image compression and shifting. Re-

construction onto the true ground map x, z is possible if the elevation map is known

before reconstruction [Soumekh 1992], or estimated using some form of bathymetry

[Banks et al. 2001].

The system models derived in the following sections assume a ground-plane where

the imaging height h− z = 0; this makes x and xs equivalent. A 3-D system model is

presented in Section 3.4 for dealing with situations where h− z 6= 0.

Aside from making the mathematics easier, another reason for making the slant-

plane transformation is that the sea-floor is usually the only object of interest in a

sonar image. Reconstructing a full 3-D image is not required when most of the image

is empty space.

3.1.1 Multiple-receiver geometry

Current SAS systems employ multiple-element receiver-arrays to mitigate the sampling

constraints described in Section 2.6.5. The constraints are now based on the length of

the receiver-array rather than the length of an individual receiver. The benefit of

multiple-receiver geometry is that resolution is determined by the individual receiver

length and sampling determined by the array length. A SAS with Nh receivers is thus

able to travel Nh times faster than a single-receiver SAS with the same resolution.

Sonar system models must account for the extra complexity caused by multiple-

receiver collection. Multiple-receiver sonars transmit from a single transmitter. The

reflected wave propagates back to the sonar and is received at the hydrophones of the

receiver array.

In the ground-plane (discussed in the previous section), the geometry of a multiple-

receiver system is as shown in Figure 3.3 where u is the along-track transmitter position,

σ is the distance from transmitter to hydrophone, and x, y are the across and along

track positions of the scene.



30 Chapter 3 System modelling

u

s

Target

x

y

RxTx

Rx

Rx

Rx

Figure 3.3 Bistatic collection geometry of a multiple-receiver sonar. The received echo is a function
of both the projector position, u, and the hydrophone position relative to the projector, σ, as well as
the target location.

3.2 Multiple-receiver system model

Synthetic aperture sonars perform undersea-imaging by interrogating the sea-floor with

acoustic energy and measuring the back-scattered field. The outgoing acoustic pulse

hits a region of differing density or refractive index, causing some energy to be scattered

back to the sonar receiver.

To model this interaction accurately, both the outgoing and incoming acoustic

paths should be regarded separately. Modelling both paths is known as the bistatic

imaging model. This is important in modelling multiple-receiver SAS systems. The

simpler alternative, monostatic modelling (described in Section 3.3), is to treat the

sonar as if both transmission and reception were made on the same element and the

incoming and outgoing paths are identical.

The multiple-receiver SAS model starts by approximating the reflection caused by

the propagating incident acoustic pulse as a set of re-radiating secondary sources (fol-

lowing Huygen’s principle [Goodman 1968]). The energy from the secondary sources

propagates back to the sonar and is measured by the receiver hydrophones. During the

time the pulse is in the water column, it is assumed that the imaging sonar is station-

ary1. This allows the slow-time dimension (travel along the u axis) to be decoupled

from fast-time (the time variable t) and simplifies the mathematics (see Section 3.5.1).

Bistatic system modelling is common in many fields related to Fourier imaging.

Soumekh [1991, 1994, 1999] outlines system models for both a true bistatic SAR ar-

rangement of separate transmit and receive imaging platforms and the multiple receive

1This approximation is called the stop-and-hop approximation [Douglas 1993; Hawkins 1996; Hayes
1989] and is dealt with in more detail in Section 3.5.1.
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element systems considered here. Bistatic imaging models are also in common use in

the seismic imaging fields [Soumekh 1994], medical ultrasound [Lerner and Waag 1988],

and ground penetrating radar [Leuschen and Plumb 2001].

Using the 2-D Green’s function (2.20) for both outgoing and incoming propagation

paths, the response from a general scene f(x, y) may be given as

e(ω, σ, u) =
1

16
P (ω)

∫∫
f(x, y)H

(2)
0 (kρin)H

(2)
0 (kρout) dxdy, (3.4)

where u is the position of the transmitter, σ is the position of the hydrophone relative

to the transmitter position, ρout =
√
x2 + (y − u)2, and ρin =

√
x2 + (y − u− σ)2.

If the asymptotic approximation of Hankel functions is used [Chew 1995; Morse and

Feshbach 1953], (3.4) may be approximated as

e(ω, σ, u) ≈ 1

8πjk
P (ω)

∫∫
f(x, y)√
ρinρout

exp (−jk(ρin + ρout)) dxdy, (3.5)

which is valid for

ρin, ρout ≫ λ ≡ 2πc

ω
≡ 2π

k
.

For designing inversion/reconstruction methods it is useful to have wavenumber

domain representations of the above system models. Starting with (3.4) and taking

2-D spatial Fourier transforms in similar manner to that employed in Section 2.4, gives

the wavenumber domain system model as [Callow et al. 2001a, 2002b; Soumekh 1991]

E(ω, kσ , ku) = P (ω)
f(kx, ky)√

k2 − k2
σ

√
k2 − (ku − kσ)2

, (3.6)

where the Fourier variables are related via [Callow et al. 2001a]

kx =
√
k2 − k2

σ +
√
k2 − (ku − kσ)2, (3.7)

ky = ku. (3.8)

3.2.1 Offset variables

The models presented above are presented for the bandpass signals (pre-envelope sig-

nals). The signals in the sonar/radar fields are usually complex baseband with a known

offset frequency. Spatial variables are usually measured relative to an offset where, for

example, a small swath is taken about a large range offset. In addition, reconstruction

algorithms perform better if mapping between baseband variables as this prevents in-

terpolation error caused by high-frequency phase functions [Gough and Hawkins 1997].

In his thesis, Hawkins [1996] takes particular care in discussing offset frequency
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measurements (baseband signals) when considering reconstruction algorithms. Sys-

tem models for offset measurements are derived by substituting offset measurement

parameters and remembering that a spatial-offset causes phase-shifting in the Fourier

domain.

Example—across-track offset:

Often the collected image is centred about a particular range offset. Making the sub-

stitution x′ ≡ x − x0 and t′ ≡ t − t0, where x0 is the scene offset and t0 is the time

offset of the echo signal, (3.4) becomes

et′(ω, σ, u) =
1

16
P (ω) exp (jωt0)
∫∫

fx′(x′, y)H
(2)
0

(
k
√

(x′ + x0)2 + (y − u)2
)

H
(2)
0

(
k
√

(x′ + x0)2 + (y − u− σ)2
)

dx′ dy,

(3.9)

where et′(ω, σ, u) is the equivalent of e(ω, σ, u) referenced to t0.

The equivalent of (3.6) follows as

Et′(ω, kσ , ku) = P (ω) exp (jωt0)
fx′(kx, ky) exp (−jkxx0)√
k2 − k2

σ

√
k2 − (ku − kσ)2

, (3.10)

where the Fourier phases of fx′(kx, ky) are relative to the offset variable x′—i.e.,

fx′(kx, ky) is the offset equivalent of f(kx, ky). In the usual imaging scenario, the

echo signal’s time offset is related to the scene offset by

t0 =
2x0

c
, (3.11)

and (3.10) becomes

Et′(ω, kσ , ku) = P (ω) exp (j2k x0)
fx′(kx, ky) exp (−jkxx0)√
k2 − k2

σ

√
k2 − (ku − kσ)2

, (3.12)

expanding for kx

Et′(ω, kσ, ku) =

P (ω)
fx′(kx, ky) exp

(
−j(

√
k2 − k2

σ +
√
k2 − (ku − kσ)2 − 2k)x0

)

√
k2 − k2

σ

√
k2 − (ku − kσ)2

. (3.13)

Comparable derivations for offsets in frequency [Gough and Hawkins 1997] (also

Section 5.1.1) and along-track position [Soumekh 1994] are calculated in the same way.
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Figure 3.4 Phase-center geometry, the bistatic transmitter/receiver pair is modelled using an equiv-
alent co-located transducer midway between the two.

3.2.2 Phase-centre approximation

One approximate method of modelling a true bistatic sonar is to treat it as a monostatic

sonar measuring many individual samples. This modelling method is often chosen to

show the possibility of using fast single-receiver reconstruction techniques on multiple-

receiver data. The phase-centre approximation [Bellettini and Pinto 2002; Bonifant

1999; Wilkinson 2001] allows this modelling. The basis of the approximation is to treat

a bistatic transmitter/receiver pair as if it were a single co-located transducer located

midway between the two. By doing this, a vernier-array sonar may be modelled as a

single-receiver sonar taking samples at the positions of the phase centres.

It is possible to show how this approximation affects the wavenumber domain

representations of the system model (3.4) [Callow et al. 2001a; Soumekh 1991]. Noting

that the phase-centre sonar Fourier data only exists on the line where [Callow et al.

2001a]2

2kσ = ku,

then (3.6) becomes

E(ω, kσ , ku) = P (ω)
f(kx, ky)

|k2 − k2
σ|
, (3.14)

where the coordinate transform of (3.7) becomes

kx =
√
k2 − k2

σ +
√
k2 − k2

σ, (3.15)

=
√

4k2 − k2
u, (3.16)

ky = ku. (3.17)

2This assumption is equivalent to assuming that the angle of transmission and reception is identical.
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The error caused in making the phase-centre approximation is the difference be-

tween the two-way bistatic path and the two-way equivalent monostatic path. Writing

out the approximation error, ǫ, gives

ǫ =
√
x2 + (u− y)2 +

√
x2 + (u+ σ − y)2 − 2

√
x2 + (u+ σ/2 − y)2, (3.18)

where σ is the position of the hydrophone. The approximation error (3.18) has been

derived previously [Bellettini and Pinto 2002; Bonifant 1999; Wilkinson 2001]. Taking

a Taylor expansion about σ = 0 to linearise the problem gives the error as [Pinto et al.

2002; Soumekh 1991]

ǫ ≈ σ2

4r
cos2 θ +

σ4

64r3
cos2 θ

(
4 − 5 cos2 θ

)
+ . . . , (3.19)

where θ and r are the angle and range to the target from the co-located transducer.

The phase-centre approximation treats the in-scene targets as if they were in the

far-field of the physical receiver array [Banks and Griffiths 2002] (but not that of the

synthetic array). Reconstruction techniques using the approximation must take the

error of phase-centre approximation into account when the targets are in the near-field

of the receiver array.

3.3 Single-receiver model

A monostatic sonar transmits and receives using the same physical element. Similar

data are obtained using a bistatic sonar where a single-receiver element is used that

is physically located close to the transmitter element; these sonars are usually treated

as monostatic [Gough and Hawkins 1997]. Most early SAS and the majority of SAR

systems may be modelled in this fashion [Gough and Hawkins 1998; Hayes and Gough

1992; Jakowatz and Wahl 1993].

To model a monostatic sonar, some approximations regarding the physical model

are made to make the mathematics tractable. Instead of treating the scene as a collec-

tion of scatterers and modelling the two-way path, the scene is modelled as a collection

of self radiating, coherent sources where the acoustic wave travels at half the true

propagation speed. This physical approximation models the phase terms correctly but

the amplitude terms are approximate since only one-way spreading losses are consid-

ered. Making this physical approximation, called the exploding sources model [Bonifant

1999], it is possible to directly apply the wave equation results from Section 2.4.

Using the exploding sources model, the spatial impulse response for a realistic

monostatic sonar is given by (assuming ρ≫ λ, see Section 2.4)

g(x, y) =
−1√
j16πkρ

exp (−j2kρ), (3.20)
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(cf. with (2.21), in particular note the additional factor of 2). Rewriting this in more

familiar notation by expanding ρ gives the response, E(ω, u), from a scene f(x, y) as

E(ω, u) ≈ P (ω)

∫∫ −f(x, y)√
j16πk

√
x2 + (u− y)2

exp
(
−j2k

√
x2 + (u− y)2

)
dxdy.

(3.21)

If the amplitude terms are neglected (because of incorrect spreading losses inherent

in the previous sonar model), this is the same model seen in previous sonar literature

[Hawkins 1996; Hayes and Gough 1992],

E(ω, u) ≈ P (ω)

∫∫
f(x, y)

8π
√
x2 + (u− y)2

exp
(
−j2k

√
x2 + (u− y)2

)
dxdy. (3.22)

The time-domain equivalent of (3.22) is given by

e(t, u) ≈
∫∫ f(x, y)p

(
t− 2

c

√
x2 + (u− y)2

)

8π
√
x2 + (u− y)2

dxdy, (3.23)

where again the amplitude terms are approximated as a one-way spreading loss.

Similar derivations to those in previous sections (using Weyl’s identity and avoiding

approximation) allow the wavenumber domain representation of (3.21) to be written

as

E(ω, ku) = P (ω)
f(kx, ky)√
4k2 − k2

u

, (3.24)

where the Fourier coordinate transform (the Stolt mapping [Bamler 1992; Hawkins

1996]) is given by

kx =
√

4k2 − k2
u, (3.25)

ky = ku. (3.26)

Note that (3.24), (3.25), and (3.26) are equivalent to (3.14), (3.16), and (3.17).

Thus a monostatic sonar collects the same data as a phase-centre sonar sampling at

the same positions. Aside from the amplitude terms, a hypothetical phase centre sonar

is equivalent to a monostatic sonar. Using the phase-centre approximation, single-

receiver reconstruction techniques are able to be employed on multiple-receiver data

sets.

3.4 3-D model

Bathymetry (height measurement) is possible using a system with multiple, vertically-

displaced receivers. Interferometric techniques for performing this estimate are of par-
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ticular interest to the sonar community. This section presents a model for a single-

receiver SAS system in an unbounded 3-D medium.

Following similar arguments to those of Sections 3.2 and 3.3, and using the free

space Green’s function for 3-D instead of 2-D, the wavenumber domain representation

of the echo signal may be calculated as3

E(ω, ku, kh) =
f(kx, ky, kz)P (ω)√

4k2 − k2
u − k2

h

. (3.27)

The Fourier domain coordinate transform in (3.27) is given by

kx =
√

4k2 − k2
u − k2

h, (3.28)

ky = ku, (3.29)

kz = kh, (3.30)

and (z, h) ↔ (kz , kh) are the Fourier pairs for the global and sonar height respectively.

Another representation of (3.27) is obtained by inverse Fourier transformation over

kx, kz and kh. Thus

E(ω, ku, h) = −j 1

4
P (ω)

∫∫
f(x, ky, z)H

(2)
0

(√
x2 + (h− z)2

√
4k2 − k2

u

)
dxdz. (3.31)

Using the slant-range mapping of Section 3.1 this may be written

E(ω, ku, h) = −j 1

4
P (ω)

∫∫
f(xs, ky, η)H

(2)
0

(
xs

√
4k2 − k2

u

)
xs dxs dη, (3.32)

or more compactly as

E(ω, ku, h) =
P (ω)fs(kxs, ky)√

4k2 − k2
u

, (3.33)

where

kxs =
√

4k2 − k2
u. (3.34)

Modelling the 3-D propagation problem in this way shows that the beam-forming

in azimuth and elevation are separable. Each direction can be reconstructed separately.

2-D reconstruction simply obtains various slant-plane images which may be combined

to achieve 3-D imagery. Alternately, full 3-D reconstruction via (3.27) could be used

avoiding the slant-range representation. These techniques have a possible application

in simplifying interferometry by avoiding the iterative estimation otherwise used (see

[Banks et al. 2001] for an example of iterative interferometric techniques).

3Again using 1-way propagation with a halved wave-speed.
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3.5 Second order effects

It is impractical to include the effects of all phenomena in the system model when

describing complex physical phenomena. Approximations and assumptions that apply

for some sonar systems do not hold for others—a good example is the phase-centre

approximation made in the previous section. This section describes some of the phys-

ical effects that have not been modelled above. These second order effects become

important and must be accurately modelled where improvements in the mapping rates

and resolution of sonar systems are sought.

3.5.1 Stop-and-hop approximation

In the derivation of the models above, it was assumed that the sonar transmits at a par-

ticular position and waits for all of the echoes to return before moving instantaneously

to the next transmit position; the so-called stop-and-hop model. A real sonar moves

continuously along the aperture during data collection. The time and along-track po-

sition parameters that are treated as decoupled by the stop-and-hop approximation

are loosely coupled. This section considers modelling the continuous sonar movement

between pulses and the related coupling of the along-track position parameter.

The along-track coupling causes two major effects: a temporal Doppler shifting of

the echo pulse signal (due to movement during the sonar ping) and a difference between

receive and transmit positions. The Doppler shifting is modelled in Section 3.5.1 and

has only a minor influence on most SAS images (if Doppler tolerant waveforms are

employed [Hawkins 1996]).

Temporal Doppler

Temporal Doppler, the scaling of the echo spectra for targets forward and aft of the

beam caused by sonar motion, is also neglected using the stop-and-hop assumption.

The spectrum of returns received forward of the sonar are scaled in frequency (scaling

factor α > 1). Similarly for targets aft of the sonar (α < 1).

Doppler shifting/spectral scaling of the echo returns in the fashion described, causes

a small phase error in reconstructed imagery if the effect is not taken into account. This

effect is not a problem for slow moving sonars with a narrow beam-width [Hawkins 1996;

Hayes 1989]. However, as higher and higher resolutions are demanded, beam-widths

become wider and the Doppler shifting becomes more pronounced. This becomes par-

ticularly apparent for the faster moving SAS systems likely to be used in the near

future. The resulting imagery suffers a slight geometrical error and some minor blur-

ring if the effect is not modelled. Temporal Doppler shifting is modelled starting with
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the expression for acoustic Doppler shifts4 [Hayes 1989]

kr = k

(
c+ vs

c− vs

)
, (3.35)

where kr is the received frequency, k is the transmitted frequency, c is the wave-speed

in the medium, and vs is the velocity of the sonar. Equation (3.35) applies for a target

directly in front of the sonar; generalising for target angle gives

kr = k

(
c+ vs sin θσ

c− vs sin θu

)
, (3.36)

where θσ is the angle to the target at signal reception and θu the angle at transmission.

Since

ku ≡ k sin θu, (3.37)

kσ ≡ kr sin θσ, (3.38)

kr may be solved for using the quadratic equation. For notational simplicity let,

kr = q(k, kσ , ku), (3.39)

Equation (3.39) is useful for including within-pulse Doppler in the wavenumber

domain representation of the system model. Thus the new bistatic system model (cf.

(3.6)) is

E(ω, kσ , ku) = P (ω)
f(kx, ky)√

k2
r − k2

σ

√
k2

r − (ku − kσ)2
, (3.40)

where the Fourier variables are related via [Callow et al. 2001a]

kx =
√
k2

r − k2
σ +

√
k2

r − (ku − kσ)2, (3.41)

ky = ku. (3.42)

Thus the Doppler inclusive system model is almost identical to that normal bistatic

model with the predictable Doppler shifting encapsulated within kr.

Image Skew

Airborne SAR systems do not normally consider the position shift between transmission

and reception. When the medium propagation speed is the speed of light, the imaging

platform does not move very far between transmission and reception causing very little

error. Even with current SAS systems, where tow velocity can be of the order of 1% of

4This assumes a fixed medium, a moving sonar, and stationary targets. Relativistic effects have
also been neglected.
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the medium wave-speed and wide swath widths are used [Keeter 2001], the monostatic

model starts to break down because of the position shift.

Image skew is due to range dependent position shift. Bonifant [1999] notes this

problem in his thesis where a phase correction is suggested during reconstruction to

account for the approximation error. Soumekh [1991] undertakes a detailed analysis and

derives a model for a system receiving the signal at a different position to transmission.

Both of these derivations neglect temporal Doppler during the pulse transmission5 and

treat only the along-track shift between transmission and reception. In addition, both

models are derived for a fixed range. However, the fixed range derivation (centre of

patch approximation) is not likely to be a hindrance to correction. The error is small

compared to a resolution cell (for most SAS systems) and narrow-band correction may

be applied to each range independently.

The effect of image skew may be modelled starting with the monostatic system

model (3.23) and including the time varying position, u′,

emoving(t, u) ≈
∫∫ f(x, y)p

(
t− 2

c

√
x2 + (u′ − y)2

)

2
√
x2 + (u′ − y)2

dxdy, (3.43)

where under a phase-centre approximation

u′ = u+
vst

2
(3.44)

for a given sonar velocity vs. Using Fourier skew properties (see Appendix G) the

wavenumber domain representation of (3.43) is given by

Emoving(k, ku) = Ehop

(
k − vs

2c
ku, ku

)
, (3.45)

Emoving(ω, ku) = Ehop(ω − vs/2 ku, ku), (3.46)

which is a straightforward Doppler shifting of the received echo signal.

Image skew removal is straightforward with minor alterations to the reconstruction

algorithms (e.g., in the wavenumber algorithm a preliminary interpolation in along-

track). The principle behind skew removal is identical to that used for yaw compensa-

tion (see Chapter 6).

Avoiding stop-and-hop modelling

It is possible to calculate the overall continuous movement model and include both

effects discussed in the previous sections. The instantaneous time-delay of the trans-

mitted signal for the round-trip propagation may be derived considering the movement

5Temporal Doppler has only a minor influence [Hawkins 1996]. Despite this, it is possible to correct
during reconstruction (see Section 3.5.1).
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during the sonar pulse [Hayes 1989]. This allows a better system model than the earlier

models. The model for the received signal from a continuously moving SAS is given by

emoving(t, u) ≈
∫∫ f(x, y)p

(
t− 2

(1−a2)c

√
x2 + (vst+ u− y)2 − 2a

c(1−a2)(vst+ u− y)
)

2
√
x2 + (vst+ u− y)2

dxdy, (3.47)

where a = vs/c. Using Fourier scaling and shifting properties, the wavenumber domain

echo signal for a continuously moving sonar can be calculated from (3.47) as

Emoving(ω, ku) = P (ω)
f(kx, ky)

kx
, (3.48)

where (kx, ky) are given by

kx =

√(
2(k − aku)

(1 − a2)

)2

−
(
ku +

2a(k − aku)

−(1 − a2)

)2

, (3.49)

ky = ku. (3.50)

When the continuous sonar movement between pulses is ignored—by setting the

inter-pulse sonar velocity vs to zero—(3.49) collapses to (3.25), that used in the familiar

stop-and-hop approximation model of (3.24).

Modelling a continuously moving sonar using (3.48) allows reconstruction algo-

rithms to compensate these effects. Whilst the compensation is not particularly im-

portant for the imagery itself, autofocus techniques derive benefit due to their reliance

on accurate phase information.

3.5.2 Motion effects

Platform motion, both measured and unmeasured, can cause severe degradation in

the resulting SAS imagery [Cutrona 1975; Johnson et al. 1995]. The positions of the

transmitter and hydrophones must be known to better than λ/16 to prevent this6.

Accuracy in positioning of that order, when the wavelength is typically 10-20 mm,

is extremely difficult (to the point of being practically impossible for free-towed or

autonomous systems). The topic is dealt with in detail in later chapters.

3.5.3 Medium coherence

The coherence of the medium, both temporal and spatial, is an important parameter

in SAS operation. If the medium is not homogeneous and causes variations in the

6It is even tighter than this for rapidly varying position variations, see Section 7.3.
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wave-speed, models derived using the free-space Green’s functions fail to be accurate

[Jensen et al. 1993]. When the wave-speed variations cause phase fluctuation of the

order of π/4, distortion begins to occur in SAS imagery.

Medium turbulence was initially thought to make SAS unworkable. Several studies

in the early stages of SAS research investigated the temporal phase coherence of the

medium and found it to be better than expected, with Williams [1976] suggesting that

the phase coherence was sufficient for synthetic aperture processing.

Studies by Christoff et al. [1982] and Hayes and Gough [Gough and Hayes 1989a, b;

Hayes 1989], showed temporal phase stability to within the π/4 limit over the period of

a minute. Although these results were presented for short range coherence tests (50 m

and 130 m respectively), they show that Synthetic Aperture processing was possible

underwater. Since those early times, many SAS images have been produced at short

range and a smaller number at long range [Châtillon et al. 1999, 1992; Marx et al.

2000].

Imaging platform stability represents the limit on short range SAS imagery with

long range imagery limited by medium coherence. The long range limit is attributable

to the dual effects of the longer integration times required for targets at long range,

and the medium’s spatial coherence properties that limit the integration length [Chang

and Tinkle 2001]. Sufficiently advanced autofocus techniques are able to ameliorate

both medium phase variation and platform movement (see Chapter 7).

3.6 Summary

Accurate modelling of the SAS process is required for accurate reconstruction using the

algorithms discussed in Chapters 4 and 5. System models for both multiple-receiver

and single-receiver SAS systems in a ground-plane geometry have been presented.

These models have amplitude modelling improvements over the standard models due to

the use of Weyl’s identity (see Appendix B). The relationship between multiple-receiver

and single-receiver SAS under the phase-centre approximation has been explored and

a new wavenumber domain interpretation of the phase-centre approximation has been

presented. An extension of the single-receiver SAS model to 3-D space was discussed

to aid in interferometric reconstruction; this was shown to be equivalent to the ground-

plane model in the case of ground-plane geometry. Common modelling approximations

and errors were discussed and improved models that account for the errors have been

derived. A wavenumber-domain model representing the full effect of both the stop-

and-hop approximation and image skew has been presented and does not suffer the

swath-width limitations of previous derivations.





Chapter 4

Image reconstruction techniques

The reconstruction techniques presented in this chapter attempt to estimate the sea-

floor scatterer distribution from the data measured by an active sonar. The recon-

struction process gives the resolution improvement that synthetic aperture systems are

capable of. The goal is to invert the sonar system model (discussed in Chapter 3) and

to produce an image to the desired accuracy as efficiently as possible.

Originally, SAS systems used the time-delay and sum technique, known as time-

domain correlation (Section 4.2) or exact matched-filtering [Gough and Hawkins 1997],

common in standard sonar beam-forming [Gough and Hawkins 1997; Hawkins 1996;

Hayes 1989; Nielsen 1991; Urick 1975]. The technique allows reconstruction of general,

arbitrary geometry imaging problems and is widely used. The major disadvantage of

time domain correlation is a large computational load [Gough and Hawkins 1997].

Spatial-frequency domain methods such as fast correlation (Section 4.4), range-

Doppler (Section 4.5), and the wavenumber algorithm (Chapter 5), provide algorithmic

efficiency and reduce the computational load compared with time-domain correlations.

These methods make more stringent assumptions about the collection geometry but

have the large computational savings of the FFT algorithm. Chapter 6 covers mo-

tion compensation methods for extending the scenarios where frequency/wavenumber

domain methods are applicable.

This chapter discusses monostatic (single-receiver) SAS reconstruction algorithms.

Spatial domain algorithms (such as time-domain correlation) allow straightforward

reconstruction of multiple-receiver sonar data. Algorithms requiring an along-track

Fourier transform (such as range-Doppler and wavenumber), need modification for

reconstruction of multiple-receiver SAS data (bistatic collection geometry); these mod-

ifications are discussed in Section 5.2.2).
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4.1 System model

The algorithms summarised in this chapter use a simplified system model. The model

is derived starting with the 3-D system model (see (3.27))

E(ω, u, h) ≈
∫∫∫

f(x, y, z)P (ω)

(4π)2 |x2 + (u− y)2 + (h− z)2|
exp

(
−j2k

√
x2 + (u− y)2 + (h− z)2

)
dz dxdy. (4.1)

The system model used is derived by taking the ground plane of the 3-D system model

at h = z = 0 (common in the SAS community). Under these conditions the model

becomes

E(ω, u) ≈
∫∫

f(x, y)P (ω)

(4π)2 |x2 + (u− y)2| exp
(
−j2k

√
x2 + (u− y)2

)
dxdy, (4.2)

and the image is equivalent to the ground plane image—i.e., xs = x, f(x, y) = fs(xs, y).

In other sections of this thesis the 4π constant scale factor is neglected for simplicity.

4.1.1 Fourier algorithm system model

The Fourier domain algorithms (block algorithms) described later in this chapter and in

Chapter 5 are derived using a different system model to that given above in (4.2). This

is done so that the Fourier algorithms bear resemblance to those published previously

in [Hawkins 1996] and in [Soumekh 1994]. The model used is the exploding sources

model discussed in Section 3.3 and is summarised below

E(ω, u) ≈ P (ω)

∫∫ −f(x, y)√
j16πk

√
x2 + (u− y)2

exp
(
−j2k

√
x2 + (u− y)2

)
dxdy. (4.3)

The amplitude terms of (4.3) are different from those of (4.2), these differences and the

TVG terms necessary to allow amplitude compensation for Fourier domain reconstruc-

tion as detailed in Appendix C.

4.1.2 Amplitude compensation / Time varying gain (TVG)

In the discussion of the following algorithms, amplitude correction terms accounting

for the spreading loss of the system have been derived. For these to be appropriate,

a range varying gain (RVG) needs to be applied to the imagery before processing to

account for the range spreading loss.

Imagery without amplitude correction shows a 1/r2 decrease in signal amplitude
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with range1. Spreading losses are typically corrected in the raw data with time or range

varying gain (TVG/RVG) being applied either in post-collection processing or in the

preamplifier hardware.

In typical side-scan sonar systems RVG is applied to the raw echo image

etvg(t, u) = e(t, u)r2, (4.4)

where

r =
√
x2 + (u− y)2 ≈ c t

2
, (4.5)

the approximation holding for short-duration transmitted pulses.For historical reasons

(and due to the approximate equivalence of range and time-delay (4.5)) the RVG is

often termed Time Varying Gain (TVG) instead2.

For the operation of SAS reconstruction algorithms an applied TVG of

stvg(t, u) = s(t, u)2πr, (4.6)

is assumed, where s(t, u) is the pulse-compressed echo signal. After the application of

TVG, the system model described by (4.2) is

Stvg(ω, u) ≈
∫∫

f(x, y) |P (ω)|2

8π
√
x2 + (u− y)2

exp
(
−j2k

√
x2 + (u− y)2

)
dxdy. (4.7)

which is the signal used in the time-domain algorithms described in the remainder of

the chapter3. The reconstruction itself provides some additional gain, removing the

rest of the r2 amplitude dependence.

Using TVG also allows improved amplitude accuracy in Fourier-based reconstruc-

tion algorithms (following the method of Appendix C). The TVG operation is optional

and depends on the degree of inverse filtering desired. The obvious disadvantage of im-

plementing TVG is the noise-power in the final image estimate becomes range variant.

4.2 Time-domain correlation

Time-domain correlation is a reconstruction algorithm that has been in use since the

early SAS experiments and is the same algorithm used in towed array beam-former

systems [Nielsen 1991]. The algorithm performs a matched-filtering for the SAS system

1True in deep water. In shallow water the spreading loss is approximately 1/r due to the waveguide
properties of the medium. The initial return from a target decreases as 1/r2 but subsequent multi-path
echoes contain additional energy. The clutter background appears to decline as 1/r.

2Traditionally TVG was implemented in the receiver analogue electronics—a true time varying
gain. Time varying gains also alter the Frequency distribution of linear FM chirp signals so should be
employed after pulse-compression (pulse-compression is needed by the short-time pulse assumption).

3TVG for Fourier-based algorithms is the same but additional post-reconstruction steps need to be
taken, this is discussed in Appendix C.
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model (3.21) [Bonifant 1999; Pat 2000]. The inverse temporal Fourier transform of the

raw echo data gives the time domain representation of the echo signal as

e(t, u) ≈
∫∫

f(x, y)

8π
√
x2 + (u− y)2

p

(
t− 2

c

√
x2 + (u− y)2

)
dxdy, (4.8)

where p(t) is the transmitted signal, and e(t, u) the echo signal, neglecting the diffrac-

tion limiting effects of beam-patterning. The image estimate, f̂(x, y), reconstructed

using the matched-filter for the echo signal, e(t, u), is then given by [Cook et al. 2001]

f̂(x, y) =

∫∫
e(t, u)

8π
√
x2 + (u− y)2

p∗
(
t− 2

c

√
x2 + (u− y)2

)
dudt, (4.9)

which may also be written as

f̂(x, y) =

∫∫
E(ω, u)

8π
√
x2 + (u− y)2

P ∗(ω) exp
(
j2k
√
x2 + (u− y)2

)
dudω, (4.10)

using simple Fourier transform properties. Often the amplitude term,

1

8π
√
x2 + (u− y)2

, (4.11)

is neglected, leading to a phase-only correlation. An inverse filter results if the ampli-

tude term

8π
√
x2 + (u− y)2, (4.12)

is used instead of (4.11). The remainder of the algorithms discussed in this chapter are

presented as inverse filters for range effects. (However, the effect of beam-patterning is

neglected.)

The reconstruction described by (4.9) can be computationally very intensive; full

integrals over all time samples and sonar pulses4 need to be computed to get a single

output image pixel. Thus the algorithm has a computational efficiency of O
(
P 2N2

)

(O
(
H2P 2N2

)
for multiple-receiver systems). The benefit of using time-domain corre-

lation is that it is flexible and is easily adapted to account for platform motion and

Doppler effects by using an appropriate system model.

Previous SAS systems, such as SAMI [Adams et al. 1993, 1996], the original Ki-

wiSAS [Hayes 1989; Hayes and Gough 1992], and the sonar used by Douglas and Lee

[Douglas and Lee 1992, 1993a, b; Silkaitis et al. 1994], have been research instruments

where computational effort was not a major concern. Thus the flexibility of time-

domain correlation makes it a good algorithm choice for research groups. Commercial

SAS systems5 require a reconstruction with low computational burden, strongly sug-

4 The integral over u is limited by the number of pulses that see the particular output pixel.
5Autofocus or other processing using iterative algorithms provide another strong motivation for

Fourier-based reconstruction algorithms.
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gesting the use of the faster, Fourier-based, algorithms.

4.3 Back projection

Back projection is a reconstruction technique used extensively in the medical imag-

ing fields [Cho et al. 1993; Liang and Lauterbur 2000] for the similar reconstruction

problems encountered in computed tomography. Back projection algorithms take the

received signal for a given pulse and back-project that signal over a spherical arc to

all the possible contributing image points. Once back projection is performed on the

remainder of the pulses and accumulated, an estimate of the image is obtained. A

minor modification to the algorithm, called Filtered back projection (sometimes known

as modified back projection [Enright 1992]), is often employed to produce images more

suitable for human interpretation [Liang and Lauterbur 2000]. Several differing filters

may be employed but are not in common use in the SAS community.

In the SAS scenario, a back projection reconstruction may be summarised by

f̂(x, y) =

∫
8π
√
x2 + (u− y)2 s

(
2

c

√
x2 + (u− y)2, u

)
du, (4.13)

where

s(t, u) = e(t, u) ⊙t p
∗(−t) ≡ e(t, u) ⋆t p(t), (4.14)

is the pulse-compressed image data. The comments of Section 4.2 regarding the am-

plitude term 8π
√
x2 + (u− y)2 apply.

It is clear that since t is a discrete variable, obtaining s
(
2/c

√
x2 + (u− y)2, u

)

from s(t, u) requires interpolation. If Fourier-based interpolation is used (4.13) is the

same as the time-domain correlation inversion of (4.10). Rewriting (4.13) using Fourier-

based interpolation gives

f̂(x, y) =

∫
8π
√
x2 + (u− y)2

(
s

(
2

c

√
x2 + (u− y)2, u

))
du, (4.15)

=

∫
8π
√
x2 + (u− y)2

(∫
S(ω, u) exp

(
j2k
√
x2 + (u− y)2

)
dω

)
du, (4.16)

=

∫
8π
√
x2 + (u− y)2

(∫
E(ω, u)P ∗(ω) exp

(
j2k
√
x2 + (u− y)2

)
dω

)
du,

(4.17)

which is identical to (4.10). Back projection using Fourier interpolation has no pro-

cessing efficiency gain over time-domain correlation and the algorithms are equivalent.

Other, less computationally-intensive interpolation methods can be used with a

resulting loss of accuracy. Soumekh [1999, pp 214–215] notes that inaccuracies in

the interpolation lead to a loss of high resolution information over the entire image.
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This contrasts with spatial-frequency interpolation algorithms, such as the wavenumber

algorithm, where information loss due to interpolation inaccuracies occurs at the edges

of the reconstructed image.

Motion compensation and multiple-receiver geometries are easily incorporated into

the back projection algorithm in the same way as in the equivalent time-domain corre-

lation algorithm. A straightforward alteration of the range term in (4.13) can account

for any spatial variation encountered.

Fourier back projection [Lockwood et al. 2001] is closely related to the fast corre-

lation algorithm described later in this chapter. The details of the algorithm are not

described in this thesis.

Back projection provides a reconstruction technique with very similar properties

to those of time-domain correlation. Computational savings over a traditional time-

domain correlation are possible depending on the accuracy of the interpolation used—in

general it is not necessary to use a full Fourier interpolation (e.g., the interpolation de-

scribed by Shippey et al. [2001], or the spatial-frequency beamformer described by

Groen et al. [2001]). The computational complexity of the back projection algorithm

is O
(
P 2N

)
although this depends on the type of interpolator used (O

(
H2P 2N

)
for a

multiple-hydrophone system) [Ulander et al. 2001]. Back projection allows the flexi-

bility of time-domain-correlation and, with suitable interpolation, provides significant

computational savings.

4.3.1 Fast factorised back projection (FFBP)

Recent modifications have been made to the back projection based algorithms to en-

able reconstruction approaching speeds of the Fourier based schemes described later

in the chapter. The most recent algorithm (known as fast factorised back projection),

partitions both echo data and image space recursively and allows redundancy in the

image reconstruction processing to be exploited [Ulander et al. 2001]. The benefit of

the partitioning is an algorithm with tunable performance, with a best performance of

the order6 O(P logPN), where P is the number of pulses and N the number of time

samples (as opposed to the O
(
P 2N

)
performance of direct back projection) [Ulander

et al. 2000, 2001; Xiao et al. 2000].

Any processing gain over traditional back projection is obtained by the use of

depth-of-focus approximations in the recursive partitioning of the reconstruction prob-

lem. Because of this, a so-called exact reconstruction has the same O
(
P 2N

)
per-

formance [Banks and Griffiths 2002]. Clear performance gains over traditional back

projection have been obtained on SAS reconstruction tasks where performance gains

6The order is between O
�
H2P log PN ✁ and O(HP log(HP )N) for multiple-receiver systems de-

pending on the phase centre interpolation scheme used.
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of approximately two orders of magnitude have been reported for realistic SAS scenes

[Banks and Griffiths 2002; Shippey et al. 2001].

Multiple-receiver data reconstruction is straightforward but sacrifices some com-

putational efficiency. To give computational savings, the multiple-receiver correction

is only applied at the first recursive stage; thereafter, the system is treated using the

phase centre approximation (see Section 3.2.2) [Banks and Griffiths 2002]. The approx-

imation results in phase centre correction for only the centre of the scene and causes

minor blurring in the other parts of the image.

Fast factorised back projection is a promising algorithm for SAS image reconstruc-

tion. Potentially, the algorithm offers the flexibility of traditional back projection/time-

domain correlation with the benefits of improved computational efficiency. It remains

to be seen how the computational efficiency compares with that of Fourier-based recon-

struction for real-world imaging situations. The recursive partitioning used in FFBP

can be applied to any of the SAS reconstruction techniques including Fourier-based

algorithms such as the wavenumber algorithm. The recursive partitioning is some-

what similar to the depth-of-focus partitioning used with fast correlation (see following

section).

4.4 Fast correlation

Fast correlation is a method of implementing the correlation of an equivalent time-

domain correlation reconstruction (see Section 4.2) in the wavenumber (spatial-frequen-

cy) domain. The algorithm uses Fourier domain matched-filtering to implement the

convolution described by (4.9) [Gough and Hawkins 1997]. Convolution beamforming

[Groen and Sabel 2002; Groen et al. 2001], and range-stacking [Soumekh 1999, pp

206–212], are other names used for implementations of the algorithm.

The algorithm is straightforward to derive using Weyl’s identity (see Appendix B)

to take an along-track Fourier transform of the system model and calculate the corre-

lation of (4.10) in the wavenumber domain. Taking an along-track Fourier transform

of (4.10) gives the fast correlation implementation (neglecting some of the amplitude

effects) as

f̂(x, y) =

∫∫ √
4k2 − k2

u S(ω, ku) exp
(
j |x0|

√
4k2 − k2

u + jkuy
)

dku dω. (4.18)

Fourier Domain filtering is only locally correct around the centre range of the scene,

x0 because of the space-variant nature of the SAS imaging problem [Hayes 1989; Hayes

and Gough 1992]. This leads to depth-of-focus issues, where the reconstruction is only

valid for small sub-regions of the reconstructed image [Groen and Sabel 2002; Hawkins

1996; Hayes 1989; Hayes and Gough 1992]. Images in such cases are partitioned into



50 Chapter 4 Image reconstruction techniques

regions smaller than the depth-of-focus; these images are processed separately then

used in a mosaic.

The processing cost for the algorithm is O(P logPN logN) if the entire image is

inside the depth-of-focus [Groen and Sabel 2002]. As most of the scene is outside the

depth-of-focus, the efficiency is somewhere between O
(
P 2N logN

)
and

O(P logPN logN) depending on what the depth-of-focus is for the particular system.

The reconstruction may be summarised as

f̂(x, y) = F−1
ω, ku

{√
4k2 − k2

u S(ω, ku) exp
(
j |x0|

√
4k2 − k2

u

)}
, (4.19)

where S(ω, ku) is the 2-D Fourier transform of the pulse compressed echo image s(t, u),

S(ω, ku) ≡ E(ω, ku)P ∗(ω), (4.20)

x0 is the focus depth, and

ky ≡ ku. (4.21)

The reconstruction algorithms described in subsequent sections (such as the range-

Doppler and wavenumber algorithms) implement forms of fast correlation with differing

methods for extending the depth-of-focus.

4.5 Range-Doppler algorithm

The range-Doppler algorithm is a popular reconstruction algorithm in the satellite

imaging field [Bamler 1992; Carrera et al. 1995; Curlander and McDonough 1996], and

has been used extensively since its invention in 1982. The range-Doppler algorithm

performs fast correlation in the along-track direction (Doppler matched-filtering) and

utilises time-domain interpolation to extend the depth-of-focus.

The range-Doppler algorithm starts by taking a 1-D Fourier transform of the pulse-

compressed echo signal, s(t, u), in the along-track dimension u to give the along-track

wavenumber ku. This gives the range-Doppler domain representation of the pulse-

compressed echo signal. Performing the Fourier transform on the modelled echo signal

(3.21) gives the range-Doppler representation of the pulse-compressed echo signal (ig-

noring diffraction limiting effects) [Bamler 1992; Hawkins 1996; Raney 1992]

s(t, ku)|x0 ≈ f(x0, ku)√
4k2

0 − k2
u

δ

(
t− 2

c
∆Rs(x0, ku)

)
exp

(
j |x0|

√
4k2

0 − k2
u

)
, (4.22)

where ku ≡ ky (see Chapter 3), k0 is the sonar centre frequency, the range-migration

for a target at x is given by

∆Rs(x0, ku) = x0Cs(ku), (4.23)
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and the curvature factor , Cs(ku), is

Cs(ku) =
1√

1 − ( ku
2k0

)2
− 1. (4.24)

The first step of the range-Doppler algorithm is to perform a coordinate transfor-

mation decoupling the range and across track variables:

srmc(x, ky)|x0 = T {s(t, ku)|x0}, (4.25)

where the coordinate transform T {} is given by,

x ≡ c

2
(x0 − ∆Rs(x0, ku)), (4.26)

ky ≡ ku. (4.27)

This has the effect of straightening the range-migration of (4.23) and is implemented

as a range-Doppler domain interpolation.

Once the range-migration-correcting coordinate-transform has been applied for all

received ranges and for all ku, the resulting image is matched-filtered with a narrow-

band propagation filter

f̂(x, ky) = srmc(x, ky)q(x, ky), (4.28)

where

q(x, ky) =
√

4k2
0 − k2

y exp
(
j |x|

√
4k2

0 − k2
y

)
. (4.29)

After phase filtering the image estimate is obtained by inverse Fourier transformation.

the range-Doppler reconstruction may be summarised by

f̂(x, y) = F−1
ky

{q(x, ky)T {s(t, ku)}}. (4.30)

The range-Doppler algorithm is the standard reconstruction for a large number of

SAR systems [Carrera et al. 1995]. Although in common use, it is computationally

more expensive than the chirp-scaling (see Section 4.6) for similar performance and

requires SRC to match the accuracy of the wavenumber algorithm (which is also less

computationally expensive). In SAS imaging either chirp-scaling or the wavenumber

algorithm provide better solutions to the reconstruction problem.

4.5.1 Secondary range compression (SRC)

The use of the range-Doppler algorithm produces image degradation in wide-beam

systems. This results from a narrow band assumption (k ≈ k0) made in the derivation of

the algorithm. The degradation is particularly noticeable in systems that employ large
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Figure 4.1 Chirp-scaling algorithm operation.

beam-widths or have low Q-factors (most SAS systems). Secondary range compression

(SRC) was developed to account for these issues [Curlander and McDonough 1996].

The narrow-band approximation neglects spreading in the range direction of the

range-migration corrected data. This spreading is noticeable for non-zero ku values.

SRC provides a ku dependent compression in the range direction to give improved

imagery.

SRC is likely to be needed on any range-Doppler based image reconstruction for

SAS systems since most systems under development have spatial bandwidths larger

than those of the 1996 KiwiSAS (which required SRC [Hawkins 1996]).

4.6 Chirp-scaling algorithm

The chirp-scaling algorithm is a Fourier domain algorithm similar in derivation to the

range-Doppler algorithm. In 1992 two groups independently presented the algorithm as

an attempt to remove the computationally intensive interpolation of the range-Doppler

algorithm [Cumming et al. 1992; Runge and Bamler 1992]. The chirp-scaling algorithm

avoids the interpolation of the range Doppler algorithm by using only the first three7

terms in the Taylor expansion of the Stolt transformation [Raney et al. 1994] (used

in wavenumber reconstruction see Chapter 5). With only the first three terms used,

7Gimeno and Lopez-Sanchez [2001] outlines a method for allowing higher order Taylor series terms
to be used.



4.6 Chirp-scaling algorithm 53

the time-shifting and scaling properties of linear-FM chirps are exploited to replace

the interpolation. An in-depth analysis of the chirp-scaling algorithm is presented

in Hawkins [1996] and Hawkins and Gough [1997a]—the following description is a

summary of those works in the notation of this thesis.

The chirp-scaling algorithm starts by taking an along-track Fourier transform of

the raw echo data—i.e., the data is not pulse compressed unlike the range-Doppler

algorithm. Note that the transmitted signal must be a linear-FM chirp of the form

p(t) = exp
(
jπKt2

)
. (4.31)

After the along-track Fourier transform, the data may be modelled as

e(t, ku)|x ≈ f(x, ku)√
4k2

0 − k2
u

rect

(
t− 2

c∆Rs(x, ku)

τc

)

exp

(
jKs

(
t− 2

c
∆Rs(x, ku)

)2
)

exp

(
j |x|

√
4k2

0 − k2
u

)
, (4.32)

where

Ks(ku)|x =
1

1/K −Ksrc(ku)
(4.33)

is the received chirp rate and

Ksrc(ku)|x =
8πx

c

k2
u(

4k2
0 − ku2

)3/2
(4.34)

the chirp rate due to imaging geometry. ∆Rs(x, ku) and Cs(ku) are as for the range-

Doppler algorithm.

The chirp-scaling phase multiply is applied to the range Doppler data via

m(t, ku)|x = e(t, ku)ϕ1(t, ku)|x, (4.35)

where the phase multiply is given by

ϕ1(t, ku)|x = exp
(
jπKs(ku)Cs(ku)(t− t0(ku))2

)
(4.36)

and the time shift to the reference locus

t0(ku) =
2

c
x0(1 + Cs(ku)). (4.37)

This step removes the range dependence of the phase of the range-Doppler signal (but

not the range dependence of the signal envelope). Afterwards, targets at all ranges

have the same phase signal as a target at the reference range x0.

A range Fourier transform of the range-Doppler image is taken to allow bulk cur-
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vature compensation (matched-filtering for the reference range).

M(ω, ku) = Ft{m(t, ku)}. (4.38)

Pulse-compression, SRC, and bulk curvature compensation are all applied with another

phase multiply via8

N(ω, ku) =
√

4k2 − k2
uM(ω, ku)ϕ2(ω, ku), (4.39)

where

ϕ2(ω, ku) = exp

(
j

(
c2k2

4πKs(ku)(1 + Cs(ku))

))
exp (j2kx0Cs(ku)). (4.40)

After this multiply, the signal azimuth and range coordinates have been decoupled and

N(kx, ky) ≡ C{N(ω, ku)}, (4.41)

where the coordinate transform C{} is given by the trivial mapping

kx = 2k, (4.42)

ky = ku. (4.43)

An inverse Fourier transform is applied to obtain the decoupled range Doppler (im-

age Doppler instead of signal Doppler) image. Once in this domain, the azimuth com-

pression used in the range-Doppler algorithm is applied along with additional phase-

compensation to obtain the focused range-Doppler image. This is performed via

f̂(x, ky) = N(x, ky)ϕ3(x, ky), (4.44)

where the final phase multiply is given by

ϕ3(x, ky) = q(x, ky) exp

(
−j 4π

c2
Ks(ky)Cs(ky)(1 + Cs(ky))(x− x0)

2

)
, (4.45)

where q(x, ky) is as for the range-Doppler algorithm, (4.29).

The final image estimate is now obtained with an azimuth inverse Fourier transform

of f̂(x, ky).

Chirp-scaling, whilst mathematically complicated, is simple to implement—only

phase multiplies and Fourier transforms are required. The intentional lack of an inter-

polator that allows this simplicity also improves reconstruction efficiency. In typical

imaging scenarios, chirp-scaling has been found to be about 2 times faster than the

8Note the altered frequency dependent amplitude term used here (
√

4k2 − k2
u). This is a result of

the improved modelling of Chapter 3
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wavenumber algorithm for equivalent results [Gimeno and Lopez-Sanchez 2001]. How-

ever, Bonifant [1999, page 153] raises concerns about the phase performance of the

algorithm implying care must be taken with regard to autofocus scenarios. In light

of these concerns, the wavenumber algorithm (see Chapter 5) has been chosen over

chirp-scaling for the reconstructions used in this thesis.

4.6.1 Accelerated chirp-scaling

Accelerated chirp-scaling is an extension of chirp-scaling that allows computational

savings to be made when reconstructing a patch of small extent compared to the chirp

duration [Hawkins 1996; Hawkins and Gough 1997b]. By noting that the extent of

the linear-FM chirp signal only needs to be as long as the maximum range-migration,

∆Rs, the amount of data needed for the chirp-scaling may be reduced [Hawkins 1996,

pp 92–93].

The data reduction is obtained by reducing the length of the linear-FM chirp in

a preliminary pulse-compression-like operation. Once the chirp is reduced in length to

that required for the chirp-scaling step, the reconstruction proceeds normally.

An additional benefit of the technique is that pulse-compressed data may be re-

chirped (i.e., remodulated to make it appear as if a linear FM signal had been used) and

subsequently processed using chirp scaling [Hawkins 1996, page 92];[Gimeno and Lopez-

Sanchez 2001]. This allows the extension of the chirp-scaling to arbitrary waveforms.

If the waveform is pulse-compressed normally then re-chirped with a linear-FM chirp,

it is usable in a chirp-scaling reconstruction processor.

4.7 Post-processing

Reconstructed sonar images are often difficult for human observers to interpret and

post-processing is sometimes employed. This section covers some of the commonly-

used post-processing techniques used on SAS images.

4.7.1 Speckle-reduction / multi-look imagery

SAS intensity images generally have a grainy appearance caused by speckle-noise. The

multiplicative nature of speckle-noise makes interpretation difficult9 for both automated

and human observers.

A SAS speckle-image (or for that matter any other coherent image of a surface that

is rough compared with the imaging wavelength) has a negative-exponential intensity

distribution [Goodman 1976]. The highly probably outcome is that the image intensity

9Speckle-noise appears as a particularly strong multiplicative noise where the variance of a point is
identical to its mean.
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is zero for any given pixel10. To reduce the variance, several overlapping images are

sometimes summed on an intensity basis to lower the noise and make the statistics more

Gaussian (which improves the ease of image interpretation). The approach trades image

resolution for increased accuracy in image amplitude. This is usually termed multi-look

processing or speckle-reduction processing [Moreira 1991].

Multi-look processing is performed by taking separate sub-bands of the image and

summing them on an intensity basis [Carrera et al. 1995; Hawkins 1996; Jakowatz et al.

1996]. In spotlight SAR imagery the multi-look images are often obtained by processing

different portions of the along track aperture (called sub-aperture processing). Due to

the equivalence of aperture position and spatial frequency (explored later in the thesis—

see Chapter 8) sub-aperture processing and sub-band processing are identical. With

SAS systems, range sub-bands can be used instead [Chanussot et al. 2002; Hawkins

1996; Hayes and Gough 1992]—it is usually preferable to sacrifice range resolution in

SAS systems rather than azimuth resolution. This is unusual compared to airborne

SAR systems—they have much higher azimuth resolution than range resolution and so

tend to use multi-look in azimuth.

Trahey and Smith [1988] studied the spatial resolution vs. speckle reduction trade-

off and concluded that for detecting lesions in ultrasound images (similar to detecting

the shadow behind proud targets) full resolution imaging was preferable. Non-linear

speckle-reduction techniques [Moreira 1991] hint at the possibility of retaining reso-

lution while reducing the effects of speckle. At this stage the benefits in applying

speckle-reduction techniques with SAS data remain unclear. The field-collected data

shown elsewhere in this thesis has had no speckle-reduction applied.

4.7.2 Non-coherent processing

Non-coherent processing, a variant of multi-look processing, is sometimes used to reduce

the sensitivity of the synthetic aperture processing to motion errors and turbulence.

The processing is equivalent to the extreme case of the multi-look reconstructions

employed in SAR [de Heering 1982; Hayes 1989; Jakowatz and Wahl 1993].

Non-coherent processing reconstructs a series of images from sub-sections of the

available aperture, takes intensities (discarding the phase information), and sums those

images. Depending on the length of sub-aperture used, either full non-coherent pro-

cessing is possible [Douglas 1993] or various orders of multi-look images [Hawkins 1996;

Jakowatz and Wahl 1993].

Multi-look processing still requires normal synthetic aperture reconstruction algo-

rithms to be used. It is regarded as an auxiliary post-processing technique. Time-

domain correlation is well suited to reconstruction if a full non-coherent image is re-

quired. Hayes [1989] covers the topic in more detail.

10Due to the variance of any given image pixel equalling the intensity of the underlying scene.
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4.8 Summary

Image reconstruction is required to realise the resolution improvement SAS systems

offer. This chapter has presented summaries of all of the common reconstruction algo-

rithms (except wavenumber reconstruction which is described separately in Chapter 5)

within a common framework and with consistent notation. In addition, the reconstruc-

tion algorithms have been amended to include the improved modelling in Chapter 3.

This allows images to be reconstructed free from amplitude term approximations.

Fourier domain reconstruction offers large computational savings over most time-

domain methods. This improvement comes at the expense of less flexibility—Fourier

domain methods require separate motion compensation schemes (discussed in Chapter 6).

Of the Fourier domain methods, accelerated chirp-scaling with SRC or the wavenumber

algorithm should be used as they provide improved reconstruction with a lower compu-

tational cost than the other algorithms. Some concern over the phase performance of

chirp-scaling make the wavenumber algorithm a better choice where autofocus or inter-

ferometry are required. Second order effects with accurate wavenumber domain models

(such as those discussed in Section 3.5) are easily compensated during reconstruction

using Fourier-based methods.

Of the time-domain methods, fast factorised back projection (FFBP) should be

used as it offers improved efficiency and implements traditional back projection as

a special case. FFBP promises flexible processing at speed rivalling Fourier based

algorithms (the recursive partitioning used is reminiscent of the recursive techniques

used in FFT type algorithms). Further research is required to determine how promising

FFBP is in relation to combined Fourier reconstruction and motion compensation,

particularly with regard to the highly optimised Fourier transform routines found on

common computing hardware.





Chapter 5

Wavenumber domain processing

Wavenumber reconstruction entered synthetic aperture imaging from the seismic imag-

ing field [Stolt 1978] with the technique first being used in the open SAR literature in

the early 1990s [Cafforio et al. 1991a, b; Milman 1993]. The wavenumber algorithm

relies on inverting the effect of the imaging system by the use of a coordinate transfor-

mation in the spatial-frequency domain (wavenumber domain) [Soumekh 1994]. The

technique is often termed wavenumber interpolation because the coordinate transform

is implemented using wavenumber domain interpolation.

Reconstruction via Fourier space interpolation is also common practice in other

imaging fields and is an accepted inversion technique [Poularikas 1996]. Some usage ex-

amples include: radio astronomy, magnetic resonance imaging (MRI), computer aided

tomography (CAT) (although the Fourier data collection is markedly different) [Liang

and Lauterbur 2000; Poularikas 1996; Stark and Woods 1994], spotlight SAR (polar

reformat algorithm) [Jakowatz et al. 1996], and seismic imaging [Soumekh 1994]. Once

the positions of the recorded samples in Fourier space are known, the algorithms inter-

polate those samples onto a regular grid and inverse Fourier transform to reconstruct

the image.

The major benefit of using Fourier interpolation methods, aside from computa-

tional efficiency, is that second order effects (see Section 3.5) can be compensated with

an almost insignificant increase in computation. Accurate compensation of second order

effects only requires better wavenumber domain modelling. The majority of wavenum-

ber algorithm computation is in Fourier transforms/interpolation, and only a small

amount in calculating the wavenumber domain system model. Jakowatz et al. [1996]

use a similar approach where many effects (such as yaw and slant-range collection)

are compensated in the polar reformat algorithm (a wavenumber domain interpolation

algorithm). This is in direct contrast with algorithms such as time-domain correlation

where the kernel calculation weighs heavily on the computation—any extra burden in

the kernel causes a large increase in computational cost.
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5.1 Wavenumber algorithm for single-receiver systems

The wavenumber algorithm itself has been developed independently by more than one

group and has several names including: the seismic migration algorithm [Cafforio et al.

1991a, b], the Stolt mapping algorithm, the range-migration algorithm (RMA) [Cur-

lander and McDonough 1996], and the (ω, ku) algorithm [Milman 1993].

The traditional wavenumber algorithm operates by 2-D Fourier transforming the

pulse-compressed image, s(t, u), into the wavenumber domain (along-track wavenum-

ber/temporal frequency-domain, S(ω, ku)). This is followed by matched-filtering for a

target at the reference range, x0 (to ease the Fourier interpolation requirements) and

a nonlinear coordinate transformation (Stolt mapping) to give

f̂(kx, ky) = S−1
{√

4k2 − k2
u S(ω, ku) exp

(
j |x0|

√
4k2 − k2

u

)}
. (5.1)

The coordinate transform that the Stolt mapping, S−1{}, describes is given by [Hawkins

1996]

kx =
√

4k2 − k2
u, (5.2)

ky = ku, (5.3)

and the inverse Stolt mapping, S{},

ku = ky, (5.4)

ω =
c

2

√
k2

x + k2
y . (5.5)

The Stolt coordinate transform is implemented by interpolating input samples, located

on spheres (arcs in 2-D) of constant temporal-frequency (ω, ku) centred around the

wavenumber origin, onto a regular grid, (kx, ky). Figure 5.1 illustrates the baseband

version of the coordinate mapping (discussed in the next section—the major difference

in implementation is to shift the wavenumber origin to DC prior to Fourier domain

interpolation). A 2-D Inverse Fourier transform from the interpolated wavenumber

domain data f̂(kx, ky) is all that is required to get an estimate of the slant-range image

f̂(x, y).

5.1.1 Implementation details

As in all algorithms, the mathematics belies some of the difficulties in actually imple-

menting reconstruction. This section details the major implementation issues.
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Figure 5.1 Wavenumber interpolation detail. The wavenumber algorithm takes the input samples
samples (black dots), measured on circles of constant temporal-frequency, and interpolates to get a
regular grid of samples for output. The interpolation shown is the baseband Stolt mapping described
by (5.8). A rectangular region is normally extracted to ensure a consistent point spread function in
the reconstructed image [Hawkins 1996].

Baseband mapping

The nonlinear Stolt coordinate transformation of (5.2) and (5.3) requires an accurate

interpolation to ensure errors are not injected into the image. The algorithm uses

baseband data both for input and output and to remove the rapidly varying phase

functions. In addition, the algorithm is formulated for operating on data about a range

offset r0 and returning data offset about x0 (see Section 3.2.1—the output image is a

function of x′ where x′ = x−x0). With the modulations and offsets taken into account,

the reconstruction becomes

f̂(kxb, ky) = S−1
b

{√
4(kb + k0)2 − k2

u exp (j(kxb + kx0)x0 − j2(kb + k0)r0)S(ωb, ku)
}
,

(5.6)

with the baseband Stolt mapping, S−1
b {}, given by

kxb =
√

4(kb + k0)2 − k2
u − kx0,

ky = ku,
(5.7)

where kb is the baseband temporal-frequency around a carrier k0, kxb is the baseband

across-track spatial-frequency around a carrier kx0, r0 is the distance to the input image

centre, and x0 is the distance to the output image centre. In normal operation x0 ≡ r0,
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and kx0 ≡ 2k0, thus the baseband mapping (5.6) simplifies to

f̂(kxb, ky) = S−1
b

{√
4(kb + k0)2 − k2

u exp (j(kxb − 2kb)x0)S(ωb, ku)
}
. (5.8)

To produce a non-baseband image (as the algorithms covered in Chapter 4 produce),

the reconstruction is modified to be

f̂(x, y) =

F−1
kxb, ky

{
S−1

b

{√
4(kb + k0)2 − k2

u exp (j(kxb − 2kb)x0))S(ωb, ku)
}}

exp (jkx0x). (5.9)

This step has no impact if only the magnitude of the image,
∣∣∣f̂(x, y)

∣∣∣, is required1.

For notational simplicity, the implementation details described by (5.6) and (5.8)

are neglected for the remainder of the thesis.

Reconstruction accuracy versus efficiency

Wavenumber reconstruction with ideal interpolators would provide error-free imagery.

Given the constraints of operational hardware and a desire to perform the reconstruc-

tion as fast as possible, low-order interpolators are often chosen. The order of the

interpolator must be traded against the accuracy desired in the final image.

Whatever the order of interpolator chosen, a reconstruction using the wavenumber

algorithm is always valid at the reference range, x0. Both wavenumber reconstruction

techniques (via (5.1)) and fast correlation (via (4.19)) use a matched-filter for the

reference range. The interpolation in the wavenumber algorithm extends the focus depth

of fast correlation. Without interpolation, the wavenumber algorithm is identical to

the fast correlation algorithm (see Section 4.4) [Li 1992]. Thus the image is always well

focused at the reference range (even for large spatial bandwidths) and image distortion

from inaccurate interpolation only appears at the edges of the image.

Reconstructing the image in sub-swaths by reducing the distance from edge of scene

to the centre lessens interpolation constraints. Computational efficiency is gained by

splitting a wide swath-width image before reconstruction. Near-range imaging is a

harder problem than far-range imaging (non-linear and space-variance) and so requires

higher-order interpolation. By splitting the image, high order interpolators only need

be applied to the close-range swath (at heavy computational expense) and low-order

interpolators can be used for the remainder of the image2.

Efficient derivatives of the wavenumber algorithm exist if the swath width is small

1It is preferred if the images are reconstructed as baseband images and the results of the previous
chapter’s algorithms are often base-banded by multiplying by exp (−jkx0x) [Soumekh 1999].

2The disadvantage of splitting the image into range sub-swaths as discussed is that the efficiency
gained from the use of the FFT to calculate S(ω, ku) is reduced—O{N log N} versus O ✂ N2 ✄ for
splitting into N sub-swaths.
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compared to the average range and the system is narrow-band (i.e., if wavenumber

domain coordinate mapping shifts the samples only a small amount). For these deriva-

tive algorithms, the interpolation process in the wavenumber domain is replaced by

phase multiplication in the range-Doppler domain in a similar manner to chirp-scaling

[Lanari 1994, 1995; Li 1992]. This technique avoids interpolation at the expense of two

additional 1-D Fourier transforms per along-track spatial-frequency sample.

A useful technique for determining the required interpolation accuracy is to run

the wavenumber algorithm backward3 on a reconstructed image. The slight differences

between the initial pulse-compressed image and the reconstructed image after being

run through the backward wavenumber algorithm show the effect of finite precision

interpolation. Alternately, reconstruction of simulated data sets with investigation

of peak to grating lobe ratios and phase distortion can provide further interpolation

accuracy checks.

Quick-look imagery

In recent times there has been a desire to provide low-resolution images4 with only

a minimum of processing. This is one of the proposed benefits of FFBP [Banks and

Griffiths 2002] (see Section 4.3.1).

Processing of low-resolution images via the wavenumber algorithm is straightfor-

ward. In all synthetic aperture imaging systems, the final image resolution in azimuth

is constrained by the physical element size (see Section 2.6.4). Simply summing ele-

ments together prior to reconstruction (effectively low-pass filtering and decimating the

input image) provides a low-resolution output with significantly reduced computation.

An identical procedure in the range direction also provides a reduced cross-track reso-

lution at lower computational effort. This processing method for obtaining quick-look

low-resolution imagery is possible using any of the reconstruction algorithms outlined

in Chapter 4.

Low-resolution images can also be obtained at various stages in wavenumber algo-

rithm processing by performing the wavenumber domain interpolation in sub-bands. As

output along-track spatial frequencies become available, a 2-D inverse Fourier transform

will give images progressively increasing in resolution. The obvious cost of requiring

progressive low-resolution images is a 2-D inverse Fourier transform for each image

required. The requirement is computationally demanding although the Stolt interpo-

lation is often the most computationally expensive part of the wavenumber algorithm.

The application of quick-look imagery as described is limited, with operator display

3Running the wavenumber algorithm backward is equivalent to simulating the echo given a scene
and is straightforward to derive and implement.

4The intention is that low-resolution images may be processed quickly for determining areas of
interest to later reconstruct at full resolution. Application also exists for some interferometric processing
steps.
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being the current primary use. For this purpose fixed focus at x0 or even unfocused

imagery may suffice. The long-term prospect is much more interesting with possible

real-time, multi-scale, autofocus techniques or region-of-interest processing likely to be

attempted on SAS data. Any of the common reconstruction techniques can be modified

to perform quick-look imagery.

5.2 Wavenumber reconstruction for multiple-receiver

systems

To overcome the along-track sampling constraints that SAS imposes, most current SAS

systems employ multiple-receiver hydrophone arrays (vernier-arrays). Reconstruction

of data collected with these systems is more challenging than data from a highly sam-

pled single-receiver equivalent. For most time-domain methods, little additional com-

plication is introduced. This is not the case for Fourier-based methods. The following

sections cover the two most prominent methods of reconstructing multiple-receiver SAS

imagery using the wavenumber algorithm. Other Fourier-based imaging algorithms also

require the use of the methods.

Many SAS systems employ a single transmitter and multiple-receiver configura-

tion. This type of system is by definition multistatic, containing many bistatic trans-

mit/receive pairs. Reconstruction of vernier-array data is often performed by massaging

it into a form approximating the monostatic case (the phase-centre approximation) and

using the standard wavenumber algorithm [Gough et al. 2000b; Hayes and Gough 1999]

(see Section 5.2.1). Generalised reconstruction then follows from the simple monostatic

(single-receiver) wavenumber reconstruction outlined in Section 5.2.2.

5.2.1 Phase-centre approximation inversion

The simplest way of reconstructing multiple-receiver sonar data is to treat the data

as if it were collected using a monostatic sonar system. Usually, the return at each

of the separate hydrophones is treated as if coming from a co-located transmit/receive

transducer midway between the actual transmitter and receiver (via the phase-centre

approximation). In this manner, each hydrophone provides a sample of an equivalent

monostatic sonar.

Treating the data collection as monostatic allows the use of monostatic recon-

struction algorithms if the along-track phase-centre samples are collected at the same

positions as a monostatic sonar would collect them [Pat 2000]. However, the equiva-

lent monostatic samples are usually taken with non-uniform spacing because it is very

difficult to keep the imaging platform within the narrow velocity range where ideal

sampling occurs [Pat 2000].
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The first suggestion in the open literature of using the wavenumber algorithm

for multiple-receiver reconstruction was made soon after the algorithm’s use in SAR

reconstruction [Sheriff 1992]. The same paper describes the use of an along-track

interpolation prior to reconstruction so that the monostatic equivalent samples are

uniformly spaced. Both Hayes and Gough [1999] and Wilkinson [2001] describe an

interpolation based on the DFT that calculates the monostatic wavenumber spectrum

directly. Other possibilities include FFT algorithms designed for using non-uniformly

spaced data [Lui et al. 1998]. An additional phase correction is also needed if the scene is

not in the far field of the physical hydrophone array [Banks and Griffiths 2002; Bonifant

1999; Sheriff 1992; Wilkinson 2001]. In making the phase-centre approximation, the

near-field phase terms are neglected (see Section 3.2.2 equation (3.18)). The suggested

corrections are only valid for a given range and broadside to the sonar.

Full time-shift compensation is valid only for the centre of the image with the

phase-centre correction valid only for a given range. Phase modulation5 of the pulse-

compressed data set can provide approximate compensation for ranges other than the

centre of the image. The angular-dependent error is much more difficult to correct

and causes an additional lobe to appear in the reconstructed image (apparent in the

conventionally compensated images in [Bonifant 1999, page 42]). Currently, the extra

lobe is not considered a problem; as ultra-wide-beam sonars start to appear this may

not remain the case indefinitely. A method for mitigating the error is presented in the

next section.

Phase-centre compensation

This correction only applies for multiple receive-hydrophone sonars when using the

reconstruction method described in Section 5.2.1. The purpose of the correction is

to remove any distortion inducing phase errors caused by making the phase-centre

approximation.

The approximation error for a target at (x, y) is given by (3.18) and its 2-term

Taylor series expansion is given by [Bonifant 1999]

ǫ ≈ σ2

4x
+

(
3yσ2

8 + 3yuσ2

4 − 3y2σ2

8 − 3u2σ2

8 − 3uσ3

8 − 7σ4

64

)

x3
, (5.10)

where u and σ are the transmitter and hydrophone along-track positions respectively.

The terms that vary in y and u are difficult to compensate, so dealing with only the

terms involving x for the centre of the swath, x0, then

ǫ ≈ 1

4

σ2

x0
− 7

64

σ4

x3
0

(5.11)

5A narrow-band approximation to time shifting data. The approximation error is minor if the shifts
are small compared to the range-resolution.
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is the broadside approximation error. Correcting the bulk error by compensating (5.11)

using time-shifts allows the error for other ranges in the image to also be corrected using

phase-only compensation6.

Similar compensations are described in the literature concerning other multiple-

receiver SAS system reconstruction techniques [Sheriff 1992; Wilkinson 2001; Yam-

aguchi 1999; Yamaguchi and Kato 1998].

Along-track interpolation

Once multiple-receiver, pulse-compressed sonar data is obtained, it needs to be coerced

into a form suitable for single receiver reconstruction techniques. Starting with the

multiple-receiver pulse-compressed data set s(ω, σ, u) the wavenumber representation

of the monostatic equivalent sonar is given by [Hayes and Gough 1999]

Sm(ω, km) =

∫∫
s(ω, σ, u) exp (−jkmm) dudσ, (5.12)

where m, the position of the co-located transducer, is given by

m = u+ σ/2. (5.13)

Expanding and separating (5.12) gives

Sm(ω, km) =

∫ (∫
s(ω, σ, u) exp (−jkmu) du

)
exp

(
−j 1

2kmσ
)
dσ, (5.14)

=

∫
S(ω, σ, km) exp

(
−j 1

2kmσ
)
dσ, (5.15)

= S(ω, 2km, km), (5.16)

which is a change of variables from S(ω, kσ , ku) to S(ω, 2km, km) where

kσ = 2km, (5.17)

ku = km. (5.18)

The DFT-based interpolation schemes simply calculate the Fourier integral (5.15) di-

rectly (see [Hayes and Gough 1999] and Wilkinson [2001] for more detail on the discrete

implementations).

The major disadvantage of the technique is that an FFT over HP samples be-

comes an FFT over P pulses and a DFT over H hydrophones [Hayes and Gough

1999]. This reduces the algorithmic efficiency of the wavenumber algorithm from

O{HP log(HP )N logN} to O
{
H2P logPN logN

}
(where N is the number of time

6The actual errors are likely to be small compared with a resolution cell once the bulk error has
been compensated. This allows for accurate phase compensation of the remainder.
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samples in the image). While for the low numbers of hydrophones in the current

kiwi-SAS implementations the loss of efficiency is negligible [Hayes and Gough 1999],

systems employing a large number of hydrophones will see a significant loss in efficiency.

Improved phase-centre compensation

Assuming that the interpolation to S(ω, km) is implemented via the DFT (5.15) im-

provements to the phase-centre correction are possible. With both hydrophone position,

σ, and angle from the co-located transducer to target, θm, available in the DFT inter-

polation, the angular error caused by the phase-centres approximation (3.19) can be

removed7.

The corrected monostatic equivalent signal, Scorr(ω, km), is given by

Scorr(ω, km) =

∫
S(ω, σ, km) exp

(
−j 1

2kmσ
)
exp (−jφcorr) dσ, (5.19)

where φcorr is calculated based on the the phase-centre approximation error ǫ (from

(3.18))

φcorr =
ω

c
ǫ, (5.20)

=
ω

c

(√
x2 + (u− y)2 +

√
x2 + (u+ σ − y)2 − 2

√
x2 + (u+ σ/2 − y)2

)
, (5.21)

≈ ω

c

(√
x2

0 + (x0 tan θm − σ/2)2 +

√
x2

0 + (x0 tan θm + σ/2)2 − 2x0

cos θm

)
, (5.22)

where the approximation is exact for the centre range of the image (x = x0), and θm

is calculated via

θm = cos−1

√
4k2 − k2

m

2k
. (5.23)

The penalty of the improved correction is additional computation; this penalty

is minor if the correction is performed during reconstruction because the
√

4k2 − k2
m

term is calculated anyway. It should be acknowledged that the improved phase-centre

correction offers little benefit to current generation SAS systems as the narrow-beam

approximation error is small. Future ultra-wide-beam SAS systems (those with a 3 dB

beam-width greater than 40◦) will suffer blurring if the improved correction is not

implemented.

Imaging example

Figure 5.2 shows an imaging example with and without phase centre correction on a

simulated dataset from a hypothetical SAS. The hypothetical sonar has 32 receive el-

ements spaced equally in along-track making up a 2 m array and travels 1 m between

7Wide-beam compensation of across-track array distortions is also possible although is of little
benefit due to their small magnitude.
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Figure 5.2 Comparison of along-track main-lobe responses for point target at 25.0 m range. (a) Stan-
dard wavenumber reconstruction technique, without phase-centre correction. (b) Standard wavenumber
reconstruction with narrow-beam phase-centre correction applied for 25.0 m.

transmit pulses (corresponding to an (inadequately) D/2 sampled aperture [Hawkins

and Gough 1997a]). The transmitted signal has a 20 kHz bandwidth at a centre fre-

quency of 100 kHz. This configuration approximately matches the specification of the

US Navy SAS under construction [Keeter 2001].

5.2.2 Bistatic inversion

The alternative to invoking the phase-centre approximation and treating a vernier-array

as a number of monostatic samples, is to use a bistatic derivation of the wavenumber

algorithm. Such a derivation considers the true bistatic path from transmitter to object

and back to an individual receiver element.

Starting with the shallow water sonar response (3.4), taking the spatial Fourier

transform, and using Weyl’s identity (see Appendix B, [Chew 1995; Morse and Feshbach

1953]), gives the wavenumber-domain spatial-impulse response,

H(k, kσ , ku) =
exp

(
−j(

√
k2 − k2

σ +
√
k2 − (ku − kσ)2) |x|

)

√
k2 − k2

σ

√
k2 − (ku − kσ)2

. (5.24)

Rewriting the received field using (5.24) gives,

E(ω, kσ , ku) =
1√

k2 − k2
σ

√
k2 − (ku − kσ)2

×
∫∫

f(x, y) exp
(
−j
√
k2 − k2

σ |x| − j
√
k2 − (ku − kσ)2 |x| − jkσy − jkuy

)
dxdy.

(5.25)
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Recognising the last term of (5.25) as a 2-D Fourier transform gives,

E(ω, kσ , ku) =
f
((√

k2 − k2
σ +

√
k2 − (ku − kσ)2

)
, ku

)

√
k2 − k2

σ

√
k2 − (ku − kσ)2

, (5.26)

where the Fourier domain change of variables is given by,

kx =
√
k2 − k2

σ +
√
k2 − (ku − kσ)2, (5.27)

ky = ku. (5.28)

The basis of the wavenumber algorithm is to convert the measured data into the

wavenumber domain and perform a coordinate transform8. An inverse Fourier trans-

form now provides an estimate of the sea-floor scatterers. This may be summarised as,

f̂(kx, ky) = S−1

{
E(ω, kσ , ku)

×
√
k2 − k2

σ

√
k2 − (ku − kσ)2

× exp
(
j
(√

k2 − k2
σ +

√
k2 − (ku − kσ)2

)
x0

)}
,

(5.29)

where S−1{} is the Stolt coordinate transform of (5.27) and (5.28) and is performed

via a frequency-domain interpolation. The image estimate, f̂(x, y), is then obtained by

inverse Fourier transforming f̂(kx, ky).

Interpretation

A helpful notation in aiding interpretation is to measure both along-track variables

relative to y = 0 (instead of σ relative to transmit position). In this notation, with

the projector position given by ytx, and the hydrophone position by yrx, the Stolt

coordinate transform is now given by

f̂(kx, ky) = S−1

{√
k2 − k2

rx

√
k2 − k2

tx E(ω, krx, ktx + krx)

exp

(
j

(√
k2 − k2

rx +
√
k2 − k2

tx

)
x0

)}
, (5.30)

where [Soumekh 1994]

kx =
√
k2 − k2

tx +
√
k2 − k2

rx, (5.31)

ky = ktx + krx, (5.32)

8This coordinate transformation is usually implemented via a frequency-domain interpolation.
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Figure 5.5 Notation from medical ultrasound for the scattering wavenumbers [Lerner and Waag
1988]. k̄tx is the incident wavenumber (ki), k̄rx is the scattering wavenumber (ks) and k̄ is the imaging
wavenumber. ktx and krx are the individual components in the y direction of their respective vector
equivalents k̄tx and k̄rx.
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and ktx = k sin θtx and krx = k sin θrx relate to the angles to target seen at the respective

transducers. Comparing with the previous derivation it is possible to show ktx = ku−kσ

and that krx = kσ . Having a monostatic arrangement means that ktx = krx, i.e., the

angle from transmitter to target is the same as from receiver to target.

An alternative way of representing the reconstruction described by (5.29) is also

useful for interpretation. Using a few geometrical properties (5.29) may be written [Li

et al. 1993; Soumekh 1991]

f̂(kx, ky) = S−1

{√
k2 − k2

rx

√
k2 − k2

tx E(ω, krx, ktx + krx)

exp
(
j
(√

4k2 cos2 β − k2
m

)
x0

)}
, (5.33)

where 2β is the bistatic angle given by

β = sin−1

(
krx − ktx

2k

)
= sin−1

(
2kσ − ku

2k

)
,

≈ θrx − θtx
2

,

(5.34)

with the approximation holding for β ≪ 1 and

km = ktx + krx = ku = ky. (5.35)

This particular representation is sometimes seen in bistatic SAR literature [Jakowatz

et al. 1996]. Equation (5.33) demonstrates that the bistatic collection geometry scales

the imaging wavenumber by cos β. When β = 0 the monostatic inversion and the

bistatic inversion are identical.

Imaging sonars have a small bistatic angle, 2β, thus ku ≈ 2kσ . The small bistatic

angle is also why the phase-centre approximation (ku ≡ 2kσ , see Section 3.2.2) is usually

valid. The additional processing performed by the bistatic formulation is to correct the

error caused by the phase-centre approximation (for the entire image at once).

The only trick in implementing an improved bistatic wavenumber algorithm is in

knowing the actual positions of the samples in 2-D wavenumber space. This should

be faster than the phase-centre based algorithm above because it does not need to do

the O
{
H2
}

fractional interpolation (this is replaced with a standard FFT). The along-

track frequency sample locations are geometry dependent and difficult to calculate.

The bistatic wavenumber algorithm implementation presented in [Callow et al. 2002b]

avoids the calculation but requires extra interpolations to account for this (H times

more). The algorithm operates by interpolating onto a monostatic grid and averaging

over all possible bistatic angles. This requires more computation than the optimum

solution as the sonar samples only a limited set of bistatic angles.
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Figure 5.6 Comparison of along-track main-lobe responses for point target at 25.0 m range recon-
structed with centre of the swath at 150 m range. (a) Standard wavenumber reconstruction technique,
applying phase-centre correction for 150 m. (b) Bistatic wavenumber reconstruction technique.

Imaging example

Figure 5.6 demonstrates the benefit obtained in using the new bistatic wavenumber

reconstruction technique presented in [Callow et al. 2002b] on a simulated data set

from the same sonar modelled previously. There is an obvious improvement in the

main-lobe response; the side-lobes (not shown) have increased to levels slightly higher

than expected, probably due to the effects of inadequate sampling (D/2 sampling).

5.2.3 Bathymetric wavenumber reconstruction

Many of the problems currently faced in interferometric SAS systems are caused by ge-

ometrical considerations [Banks and Griffiths 2002]. This is evident where images from

vertically displaced receivers are reconstructed separately and the phases compared for

the purpose of interferometry. If the terrain varies considerably and the path length

is significantly different between the images (image-warping/footprint-shift), the image

cross-correlation is severely reduced [Banks et al. 2001]9 Using images from the ver-

tically displaced receivers and performing focusing in elevation as well as in azimuth,

can alleviate some of these difficulties, particularly as the footprint-shift is removed.

Reconstruction in elevation with a number of vertical hydrophones also allows layover

effects [Gatelli et al. 1994] to be removed.

The algorithm presented is a generalisation of the monostatic wavenumber algo-

rithm to 3-D space. Similar derivations for a 2-D synthetic aperture (used for creating

3-D SAR images [Busse 1992; Lopez-Sanchez and Fortuny-Guasch 2000]) are based

9A different effect causes the well known baseline de-correlation effect (which can be partly removed
with appropriate pre-filtering [Gatelli et al. 1994]). In typical single-pass SAS interferometry this has
little effect and foot-print shift is much more prevalent.
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on the same techniques. The extension to vernier-array systems is a straightforward

application of the techniques outlined earlier in the chapter.

Starting with the 3-D monostatic system model, (3.27), (summarised below)

E(ω, ku, kh) =

P (ω)

∫∫∫
f̂(x, y, z)

exp
(
−j
√

4k2 − k2
u − k2

h |x| − jkuy − jkhz
)

√
4k2 − k2

u − k2
h

dxdy dz, (5.36)

where v and its Fourier pair kh measure the vertical position of the monostatic hy-

drophone (position of the equivalent co-located transducer under the phase-centre ap-

proximation). The reconstruction is a Fourier domain change of variables,

kx =
√

4k2 − k2
u − k2

h, (5.37)

ky = ku, (5.38)

kz = kh. (5.39)

Thus summarising the reconstruction

f̂(kx, ky, kz) = S−1

{
E(ω, ku, kh)

×
√

4k2 − k2
u − k2

h

× exp

(
j
√

4k2 − k2
u − k2

h |x0|
)}

,

(5.40)

where S−1{} performs the coordinate transform of equations (5.37), (5.38) and (5.39).

The result of the reconstruction is a 3-D volume map, f̂(x, y, z). With all of the

propagation effects corrected inside the reconstruction algorithm, phase-based inter-

ferometry is able to be applied by phase differencing slices at varying heights without

additional footprint-shift correction or iteration. In addition, discrete effects in the 3-D

inversion do not cause significant problems. The inversion amounts to a vertical beam-

former and traditional array theory can be used to predict results. Vertical resolution

is poor with a short vertical array but interferometric accuracy is unaffected. Even

in the worst case—a single element—the inversion (5.40) becomes the same as a 2-D

reconstruction, i.e., height is unresolvable.
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5.3 Correction of second order effects in wavenumber

processing

This section briefly outlines correction of some of the second order effects when using

wavenumber or similar frequency-domain reconstruction methods. Most of the effects

are discussed in Section 3.5.

5.3.1 Moving sonar compensation (avoiding the stop-and-hop approxima-

tion)

When imaging wide swaths, the receiving elements move some distance in along-track

between transmission and reception (see Section 3.5.1). This is not generally a problem

for monostatic sonars—the along-track velocity must be small in order to obey the

sampling constraints and the distance moved is small. The effect can be substantial for

multiple-receiver SAS systems that travel a significant distance while the sonar ping is

in the water. The basic result is a skew in the reconstructed image (see Section 3.5).

In addition to the image skew, temporal Doppler-shifting has a minor effect on SAS

images and is often neglected in systems using tolerant waveforms [Hawkins 1996]. The

overall outcome is a slight loss in along-track resolution. Two effects contribute to the

resolution loss: a shift in the along-track wavenumber, i.e., targets forward of the beam

reconstruct at a different range to those backward of the beam when using linear-

FM chirps, and a signal de-correlation caused by the Doppler shift moving the echo

spectrum before pulse compression.

The within-pulse effects described are predictable in SAS systems (see Section 3.5.1)

and can be compensated in straightforward fashion. For example, when using the time-

domain correlation reconstruction method, both the position of the target and the angle

from sonar to target are known at all times and the matched filter easily incorporates

the effect10.

Due to the ease of modelling temporal Doppler and image skewing effects in the

wavenumber domain, the wavenumber algorithm is particularly suited to compensation

processing. From (3.48), and (3.49), the wavenumber algorithm may be re-written to

include moving sonar compensation. Thus

f̂(kx, ky) = S−1
Doppler{E(ω, ku)P (ω)kx exp (jkx |x0|)}, (5.41)

10The obvious downside to this reconstruction technique is large computational cost.
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where the modified Stolt transform11 for Doppler compensation, S−1
Doppler{}, is given by

kx =

√(
2(k − aku)

(1 − a2)

)2

−
(
ku +

2a(k − aku)

(1 − a2)

)2

, (5.42)

ky = ku. (5.43)

The modified Stolt transform may also be written

kx =

√
k2

r − (ku + akr)
2, (5.44)

ky = ku, (5.45)

where

kr =
2(k − aku)

(1 − a2)
, (5.46)

and a = vs/c, describe the effect of the sonar movement on illumination wavenumbers

used.

It is worth noting that if the movement within the pulse is neglected, a = 0 and

(5.46) and (5.44) become the same as used in the traditional monostatic wavenumber

algorithm. Reconstruction using the modified wavenumber algorithm can thus condi-

tionally provide within-pulse compensation, reverting to the traditional wavenumber

algorithm when desired.

Compensation in the modified Stolt mapping (5.42), (5.43) is achieved by calcu-

lating the true illumination wavenumber, kr (based on the measured wavenumbers

k, ku). Once the true illumination wavenumber is calculated, calculation of the ap-

propriate image frequency-components in a mapping identical to the standard Stolt

mapping is possible. The interpolation step of the wavenumber algorithm performs

both the frequency-shift and scaling of kx normally required in Doppler compensa-

tion. This remapping of the frequency spectra in the modified Stolt mapping causes

only a marginally increased computational load—a significant savings compared with

traditional Doppler compensation techniques.

Within-pulse movement and Doppler effects are accurately modelled (and com-

pensated for) using the wavenumber algorithm modifications outlined above. Similar

derivations for multiple-receiver reconstruction are achieved in straight-forward manner

(phase-centre based wavenumber reconstruction follows directly from the modifications

above). The modifications to the wavenumber algorithm presented here should be used

in any wavenumber reconstruction suite—particularly as the traditional wavenumber

algorithm is a special case of the modified version.

11The across-track spatial frequency kx used for demodulation prior to the Stolt mapping is also
given by (5.42).
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5.4 Summary

This chapter has presented an investigation of the commonly-used wavenumber algo-

rithm. Enhancements have been presented in light of the modelling improvements of

Chapter 3 to obtain more accurate reconstructions with regard to image amplitude. A

number of wavenumber algorithm implementation issues were discussed. The baseband

wavenumber algorithm is recommended and high-order interpolators preferred over im-

age subdivision. Interestingly, the interpolation used in the chirp-scaling algorithm was

found to be possible to use for wavenumber interpolation suggesting some similarity in

the algorithms.

Current methods for reconstructing multiple-receiver SAS data using the phase-

centre approximation and along-track interpolation were described. Phase-centre ap-

proximation compensation was discussed and improvements for extending the size of

the swath and using wide-beam modelling were suggested. The swath width improve-

ment is useful for any sonar system where the imaged ranges are in the near field of the

array. However, the wide-beam improvements only offer phase-centre reconstruction

improvements for SAS’s with beam-widths of over 45◦.

A novel approach to multiple-receiver reconstruction using bistatic system mod-

elling was suggested. The method aids understanding of the SAS imaging problem and

provides a wavenumber domain interpretation of the phase-centre approximation. The

new method hints at the possibility of improving reconstruction efficiency by avoiding

the along-track interpolation used in traditional multiple-receiver reconstruction. More

research is required to realise the potential of the algorithm.

A new derivation of the wavenumber algorithm for imaging in an unbounded 3-

D medium including appropriate amplitude terms has been presented following sim-

ilar derivations in the SAR field. This algorithm is suitable for bathymetric recon-

struction and should assist interferometric processing. Other straightforward modifica-

tions allow improved compensation of the within-pulse second-order effects discussed in

Section 3.5. Wavenumber domain algorithms allow compensation of such effects with

only a minor increase in processing cost.



Chapter 6

Motion compensation for known path errors

Uncompensated motion errors have a severe effect on synthetic aperture sonar (SAS)

imagery. Time-domain correlation reconstruction is able to compensate arbitrary track-

errors but the more efficient frequency-domain reconstruction algorithms, such as the

range-Doppler, chirp-scaling, and wavenumber algorithms do not inherently allow for

straightforward compensation (especially for systems with wide beam-widths). Data

processed via these block algorithms is usually compensated prior to reconstruction

in a computationally inexpensive preprocessing step [Bonifant 1999; Hawkins 1996;

Wilkinson 2001]. This compensation assumes a narrow-beam geometry, leading to

blurring in wide-beam sonar images.

This chapter discuses techniques for compensation of known motion errors in wide-

beam SAS data. The most promising technique relies on the multiple-receive element

configuration typical in high-resolution SAS systems. The correction requires little

extra processing over standard, narrow-beam correction. Admittedly, the benefit for

systems with beam-widths of less than 10◦ is limited although becomes substantial for

short-range imaging. The technique requires an extra FFT and inverse FFT along the

receiver dimension compared with conventional motion compensation and so has an

increased computational load.

6.1 Overview

Compensation for image distortion is possible given accurate estimates of the imag-

ing platform’s deviation from the nominal path. This type of compensation is useful

given precise micronavigation (see Chapter 9, [Wang et al. 2001]) or precise inertial

navigation system (INS). Compensation for known motion in a time-domain beam-

former is straightforward; however the algorithm itself is computationally expensive

[Banks and Griffiths 2002; Gough and Hawkins 1997; Hawkins 1996]. To improve com-

putational efficiency it is better to use more efficient block reconstruction algorithms,

[Bamler 1992]). Block algorithms for SAS motion compensation currently treat the

error caused by motion as a timing-error [Hawkins 1996; Wilkinson 2001]. The timing-

error approximation breaks down for wide-beam sonars. Section Section 6.2 gives a
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more detailed analysis of this problem.

The image blurring caused by the timing-error assumption also causes difficulties in

SAR systems. Typically, SAR systems form images using the efficient range-Doppler,

wavenumber, or chirp-scaling based reconstruction algorithms and so wide-beam radar

images [Madsen 2001; Soumekh 1999] also suffer some blurring under conventional

motion compensation schemes. Moreover, SAR systems are often used for repeat-pass

interferometry [Reigber 2001] and the loss of phase signature is extremely destructive in

this application. Research is being undertaken in the radar community to mitigate these

negative effects of conventional motion-compensation and retain the benefits of efficient

reconstruction techniques [Madsen 2001; Potsis et al. 2001; Reigber 2001; Soumekh

1999; Ulander et al. 2000, 2001]. Post-reconstruction algorithms for compensation are

based on space-variant filtering [Soumekh 1999] and short-term Fourier transformation

[Potsis et al. 2001]. Another algorithm attempts the space-variant filtering by using

techniques reminiscent of chirp-scaling [Madsen 2001]. Other research groups have been

improving the back-propagation reconstruction technique, well suited to arbitrary-path

reconstruction [Ulander et al. 2000, 2001]. This type of compensation is an active area

of research in the SAR community and further developments are expected in the near

future.

6.2 Motion compensation geometry

For a sonar with the 2-D multiple-receiver collection geometry shown in Figure 3.3,

the recorded sonar echo as a function of time, t, along-track transmitter position, u,

and along-track receiver offset, σ, may be expressed as (see Chapter 3, [Callow et al.

2002b]),

e(t, u, σ) ≈
∫∫ f(x, y) p

(
t− 1

c

(√
x2 + (y − u)2 +

√
x2 + (y − u− σ)2

))

(4π)2
√
x2 + (u− y)2

√
x2 + (u+ σ − y)2

dxdy,

(6.1)

where f(x, y) is the illuminated scene and p(t) is the transmitted signal1. To make the

following analysis more tractable, the phase centres approximation (see Section 3.2.2,

[Callow et al. 2001a, 2002b; Wang et al. 2001]) can be used to give a revised system

model

e(t, u, σ) ≈
∫∫ f(x, y) p

(
t− 2

c

√
x2 + (u+ σ/2 − y)2

)

(4π)2(x2 + (u+ σ/2 − y)2)
dxdy. (6.2)

This approximation treats a transmitter-receiver pair as virtual transmit and receive

transducers co-located mid-way between the actual transducers. After introducing a

platform position error given by X(u) into the system model (6.2)) the (distorted) echo

1Beam-patterning and the vertical dimension are ignored in this representation.
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signal may be represented by2

ẽ(t, u, σ) =

∫∫ f(x, y) p
(
t− 2

c

√
(x−X(u))2 + (u+ σ/2 − y)2

)

(4π)2((x−X(u))2 + (u+ σ/2 − y)2)
dxdy. (6.3)

Simplifying the distorted echo signal (6.3) by using the ideal signal (6.2), assuming that

the amplitude variation is negligible, that X(u) ≪ x, and that xX(u) ≪ r2, gives

ẽ(t, u, σ) ≈ e

(
t− 2

c
X(u) cos θ, u, σ

)
. (6.4)

The consequence of modelling wide-beam motion errors is that the amount of

motion-caused distortion is dependent on the angle to the target. Wide-beam motion

compensation techniques must therefore account for this in their processing.

6.2.1 Narrowbeam approximation

Provided that the system is narrow-beam and |u+ σ| ≪ |x|, then the distorted echo

model (6.3) may be approximated,

ẽ(t, u, σ) ≈ e

(
t− 2

c
X(u), u, σ

)
. (6.5)

Comparing narrow-beam compensation using (6.5) with wide-beam using (6.4), it be-

comes evident that as the beam-width becomes narrower, the wide-beam compensation

approaches the narrow-beam (timing-error) compensation. This is a consequence of

approximating cos θ ≈ 1 for small θ in the wide-beam system model (6.4). Figure 6.1

demonstrates the motion-compensation geometry of a wide-beam system and shows

the difference in wide and narrow-beam compensation.

6.3 Timing-error based sway compensation

When reconstructing SAS/SAR imagery using block (Fourier based) algorithms, known

motion-errors are normally treated as timing-errors. This assumes that a sideways

displacement from the straight flight-path can be treated as an equivalent timing-error

in the raw data (via (6.5)). These pseudo timing-errors are then removed, prior to

reconstruction, by time-shifting the received signal on a pulse-by-pulse basis. The time-

shift is often applied using a linear phase-shift in the temporal-frequency domain to

avoid having to perform sub-sample interpolation; Shippey et al. [1998a] demonstrates

another method of implementation using phase-modulation and interpolation of the

baseband envelope. The timing-error approach neglects the cos θ dependence.

2Amplitude effects caused by the shift in position are negligible as |x| ≫ |X(u)| for most of the
image.
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Figure 6.1 Wide-beam motion compensation geometry showing how data is incorrectly compensated
using the normal motion compensation steps. The correction normally used, ∆r, is applied as if the
entire signal has been collected at broadside. The correction that should be applied, ∆rtgt, is a function
of the angle to the target θ [Madsen 2001].

Narrow-beam motion compensation does not apply for the high-resolution, wide-

beam systems coming into use. This is evident in the error of the approximation

ǫ = 2X(1 − cos θ). (6.6)

For one of the high resolution SAS systems currently under development [Keeter 2001],

a one metre sway from nominal corrected using timing-error based compensation causes

a 2λ phase error for target information at the edge of the beam. The error is even worse

(≈ 6λ) for some wide-beam, sonar systems [Cook et al. 2001]. This causes blurring

and destroys the phase information in the image.

6.4 Improved wide-beam sway compensation

Compensation of the entire scene via (6.4) (including angles other than broadside)

requires an estimate of the angle to all points in the scene for each ping. This section

discusses wide-beam motion compensation for single and multiple-receiver SAS systems.

6.4.1 Single-receiver wide-beam motion compensation

In a single-receiver system, as is typical for SAR systems, an estimate of the angle to

target at each pulse is generated using short-term Fourier transformation of a limited

number of pulses [Potsis et al. 2001]. 2-D space-variant spatial-filtering [Soumekh 1999]

achieves the same result. With the angle estimate (generated using the combined space,

spatial-frequency representation of the algorithms) wide-beam motion compensation is
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possible. Madsen [2001] follows a similar approach by performing space-variant filtering

on local image patches and using chirp-scaling techniques to extend the patch size.

6.4.2 Multiple-receiver wide-beam motion compensation

Wide-beam motion compensation complexity is reduced for multiple-receiver systems

because many samples are collected for each sonar pulse. In multiple-receiver SAS

systems, the direction to target (for all targets) can be estimated for each ping—

avoiding combined space, spatial-frequency representations. In a swaying multiple-

receiver system all of the receivers suffer the same sway error for a given ping. By

Fourier transforming the multiple-receiver data (along the receivers) to get a beam-

space representation of the data, wide-beam motion correction can be applied. The

direct application of wide-beam techniques provides motion compensation for targets

independent of their angle from bore-sight.

The algorithm for improved motion compensation is implemented as follows. Start-

ing with the received echo signal, take a 2-D Fourier transform along the receiver array

and the time-series data. Recognising the discrete nature of the pulse (u ≡ up for the

pth ping) gives

e(ω, kσ , up) = Ft→ω, σ→kσ{e(t, σ, up)}. (6.7)

This Fourier transform provides information about the angle of arrival because

kσ = k sin θσ, (6.8)

where θσ is the angle of arrival of the signal at the receivers.

Based on the argument outlined above and using (6.8) the wide-beam correction

for the displacement, Xp, at pulse p, is given by

e(ω, kσ , up) = ẽ(ω, kσ , up) exp
(
j2Xp

√
k2 − k2

σ

)
, (6.9)

where ẽ(ω, kσ, up) is the (distorted) recorded echo signal. The wide-beam compensation

(6.9) can also be derived by using the bistatic modelling from Chapter 3 and making

the phase centres approximation [Callow et al. 2002b]. Thus

E(ω, kσ , ku) = Ẽ(ω, kσ , ku) exp

(
j2Xp

√
k2 − 1

4k
2
y

)
. (6.10)

Recalling that ky ≈ 2kσ ≈ ku, 2kσ allows correction of the pulse-to-pulse3 sway Xp to

be derived from (6.10) giving the same result as (6.9).

3Again the result is approximate. kσ provides the coarse spatial-frequency information and ku the
fine information. In a pulse-by-pulse motion compensation scheme ky is replaced with kσ and an inverse
Fourier transform over ku is taken.
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The wide-beam compensation operation specified in (6.9) is efficient. Compared

to standard narrow-beam correction, given by

e(ω, σ, up) = ẽ(ω, σ, up) exp (j2kXp), (6.11)

for a narrow-beam system, k ≫ kσ and so the wide-beam correction (6.9) approaches

the narrow-beam (timing-error) correction shown in (6.11). Wide-beam compensation

has only a small increase in computation due to the Fourier transform from σ to kσ for

each ping.

For systems with few receivers, corrections are approximate (but better than cor-

rection to broadside) because there are few independent angle estimates (only as many

resolvable spatial-frequencies as receivers in the Fourier transform from σ to kσ). Fur-

ther improved compensation can be performed using a hybrid of the new algorithm

and the single-receiver motion compensation algorithms. First stage correction is per-

formed using multiple-receiver motion compensation and later refined using single-

receiver techniques. In the limiting case of a single-receiver system, the spatial-filtering

algorithms used by the SAR community are necessary (see previous section).

The multiple-receiver motion compensation algorithm is equivalent to the single-

receiver motion compensation methods described earlier. The transform over receivers

in (6.7) is the same as the Fourier transform over multiple pulses in the algorithm

described by Potsis et al. [2001]. The advantage of the multiple-receiver algorithm is

that a Fourier transform is needed only at each pulse (rather than at every along-track

sample). This is possible because all of the receivers at a given pulse are in a straight

line. In a single-receiver system each along-track sample has a different sway preventing

this saving.

The algorithm presented here provides a way of performing wide-beam motion

compensation without the computational expense of time-domain correlation. The al-

gorithm is also efficient, consisting only of Fourier transformation and phase multiplica-

tion. A single-receiver system is a special case and the algorithm offers no improvement

over traditional compensation—the single-receiver algorithms outlined in the previous

section should be used. Improvement over traditional narrow-beam compensation is

gained for any system with a multiple-receiver geometry. Improvement is greater the

more receiver elements in the system4.

6.4.3 Multiple pulse motion compensation

For platform motion where many pulses have a similar sway, an extension to the method

described in Section 6.4.2 provides motion-compensation (MOCOMP) improvement.

4In this algorithm the improvement is limited by the limited number of receivers in a straight line;
this is due to the finite, fixed extent of the receiver array limiting angular resolution.
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Like the motion compensation algorithm described in the previous section, the algo-

rithm requires consecutive along-track samples to have the same sway.

Instead of using the angular measurements from a single pulse for motion com-

pensation (as in the previous motion compensation algorithm), several consecutive

pulses are used, enhancing the angular accuracy. Compensation of the sway common

to the consecutive pulses is enhanced. For differing sways in the consecutive pulses,

angular resolution degrades and the algorithm fails to provide improvement5. If all

consecutive pulses have the same sway, i.e., a constant across-track offset, alteration

of x0, the range offset parameter used in the wavenumber/chirp-scaling/range-Doppler

algorithms, provides the necessary compensation. Note that the algorithm can be

implemented iteratively, with different along-track straight sections used at each stage.

Motion compensation is a combined space/spatial-frequency problem—the correc-

tion of motion at a particular position requires differing amounts of correction for echoes

coming from various angles (spatial-frequencies). For ideal motion-compensation, back

propagation of the echoes is needed, this is implemented as a space-varying, spatial-

frequency phase filter [Soumekh 1999]. Methods such as described in this section make

use of additional prior information about geometry (multiple pulses in a straight line)

to allow beams to be formed from a number of positions and approximate the angle-

variant correction required.

The approximate motion compensation discussed shows many similarities to FFBP

(see Section 4.3.1). The reason is that the motion compensation problem can be im-

plemented as a back/forward projection (FFBP is motion compensation for a large

offset sway of x0). One benefit of performing motion compensation iteratively using

the described method and reconstructing using the wavenumber algorithm—only a sin-

gle stage (single ping) motion compensation is usually required, reducing complexity,

and computational effort compared with FFBP.

6.4.4 Individual element motion compensation

Compensation for the movement of individual elements in a receiver array should be

performed using the standard narrow-beam method. It is very unlikely that an individ-

ual element is displaced far enough that correction for broadside is inadequate. In the

rare cases where broadside correction is not sufficient, a 2-D spatial filtering operation is

needed (the alternative—better alignment of the receivers—is preferable). Depending

on the wavenumber algorithm interpolation used, the phase-centre correction technique

described in Section 5.2.1 can be used for this purpose.

5These should be compensated beforehand using the algorithm described in the previous section.
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6.4.5 Across-track motion during the ping

For the purpose of this discussion only a single receiver, narrow beam sonar is considered

so that the timing error approximation [Hawkins 1996] applies. It is possible to extend

the analysis to multiple-receiver, wide-beam sonars in a straightforward manner. The

standard motion compensation correction applied for a sonar of this type is

e(ω, u) = ẽ(ω, u) exp (j2kX(u)), (6.12)

where ẽ is the distorted echo, k is the wavenumber, and X(u) is the across-track

displacement for a given along-track position u.

A problem in attempting wide swath reconstruction (when significant motion is

present) is the timing difference between close and far range. When the required

timing difference is time variant, the MOCOMP should also be time-variant: all ranges

suffer the transmit timing-error but close-range echoes are received earlier than far-

range echoes and so have a different receive timing-error. For echoes coming from the

extreme far range, the receive error is the same as the transmit of the following ping6.

One way of improving the motion compensation, other than dividing the problem

into multiple range swaths, is to assume the echo signal undergoes a more complicated

distortion than previously considered. The assumption that the across-track displace-

ment, X(u), varies linearly during the time the sonar pulse is in the water, allows the

motion to be modelled as a phase and frequency shift [Madsen 2001]. This leads to the

motion distorted signal being represented as7,

ẽ(ω, u) ≈ e(ω − a(u), u) exp (−j2kb(u)), (6.13)

where a(u) and b(u) are derived constants for a given along-track position (that depend

on the displacement at the start and finish of the ping).

Using the narrow-beam equivalence of time and space in the across-track direction

(t = 2r/c ≈ 2x/c) [Hawkins 1996], a constant linear across-track crabbing will cause a

shift in the temporal-frequency domain (the basic principle behind Doppler shifting).

Correction of motion is a matter of frequency shifting and later phase shifting the echo

data. This is equivalent to performing time shifting to correct the bulk error and using

phase compensation to fix the time variant shifts.

A more complicated compensation based on chirp-scaling principle is also possible.

If enough across-track movement takes place, the swath width of the pulse-compressed

image, is altered. The improved compensation then rescales the time-domain (by chirp-

ing, scaling and then performing phase compensation).

6Assuming only one pulse is in the water at a time.
7Also making an assumption that the system is narrow band.
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6.4.6 Bulk yaw compensation

Sometimes there is a need to rotate the entire synthetic aperture around the centre of

the image patch [Cook et al. 2001]. Steering the entire synthetic aperture is akin to

performing yaw compensation.

Recognising the yaw as a rotation leads to the observation that the wavenumber

spectrum of the final image is also rotated [Owen and Makedon 1996]. Rotation of the

wavenumber spectrum provides a way of compensating arbitrary yaw errors. Because

of the wavenumber algorithm’s properties, the rotation may be applied by remapping

the wavenumber spectrum of the echo data (and allowing the wavenumber interpolation

to complete the rotation).

The current compensation technique (time shifting each receiver independently)

is the same as shifting the wavenumber spectrum [Owen and Makedon 1996]. In-

stead of performing a shift, which is a narrow-beam, narrow-band approximation, the

wavenumber spectrum requires a shift and frequency scaling to remove yaw without

approximation. This may be easily implemented as a frequency domain interpolation

requiring only a simple, low order interpolator.

For the purposes of this discussion, a single receiver sonar with a rotated synthetic

aperture (i.e., the data is collected on a rotated geometry) is considered. Recall that

(from Chapter 3, equations (3.25),(3.26))

kx =
√

4k2 − k2
u,

ky = ku,
(6.14)

the k, ku pair can instead by parametrised as a radius and angle,

k, ku ⇒ k,Φ, (6.15)

where

ku = 2k sin Φ,

ky = 2k sin Φ,

kx = 2k cos Φ,

(6.16)

and Φ = sin−1 (ku/2k). If ku > 2k then Φ has imaginary components and describes

evanescent waves8. By parameterising the reconstruction in terms of angle, it becomes

obvious that the wavenumber-domain rotation caused by yaw may be compensated

using modifications to the wavenumber algorithm.

When the aperture is steered by 10◦ the resulting Fourier image is also rotated

8Evanescent waves are not important in SAS imaging as they do not propagate [Morse and Feshbach
1953]. The ku wavenumber of an imaging system is limited to < 2k.
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Figure 6.2 Effect of rotation on the offset Fourier data collection. (a) shows data collected with
normal geometry. (b) shows the data collected if the sonar has been yawed during imaging—the red
dashed box indicates the original data location.

by 10◦. This wavenumber-domain rotation should be considered when reconstructing

and interpolating to get kx, ky from k, ku. When performing the standard wavenum-

ber reconstruction the output kx, ky are rotated if the collection geometry is rotated.

Figure 6.2 demonstrates the effect of a yaw on the support region of the Fourier space.

Instead of using the rotated kx, ky, the appropriate values for kx, ky can be re-

trieved at the interpolation step of the wavenumber algorithm (see Chapter 5). A

yaw-corrected version of the wavenumber algorithm can then be performed using

Φ = sin−1

(
ku

2k

)
, (6.17)

as

kyyc = 2k sin(Φ + Φyaw),

kxyc = 2k cos(Φ + Φyaw) =
√

4k2 − k2
yyc
,

(6.18)

Exploiting the double angle formula, sin (α± β) = sin(α) cos(β) ± cos(α) sin(β), in

(6.18) gives,

kyyc = 2k sin(Φ) cos(Φyaw) + 2k cos(Φ) sin(Φyaw),

= ku cos(Φyaw) +
√

4k2 − k2
u sin(Φyaw),

(6.19)

with the corresponding kxyc as,

kxyc =
√

4k2 − k2
yyc
. (6.20)
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Another way of solving the problem that does not exploit the wavenumber algo-

rithm is to rotate either the final output image, or the Fourier domain version of the

output image. Owen and Makedon [1996] give a method suited to SAS imagery.

Standard yaw correction

When the sonar platform is subject to large lateral currents, platform crabbing occurs.

Imagery is formed along the line the platform travels but the transducers point in a

direction other than broadside. This crabbing appears as a shear rather than a true

rotational yaw of the aperture. Pat, in his thesis [Pat 2000], describes some of the

effects this has on final synthetic aperture imagery.

Now if a yaw in the recorded data, e(t, u), is described by a simple shear instead of

rotation (small yaw angle approximation or crabbing data) and we treat the problem as

a timing-error (narrow beam approximation, sin Φ̃shear ≈ Φ̃shear) we get the following

expression for the collected data,

eyaw(t, u) = e(t− 2Φ̃shearu/c, u), (6.21)

where Φ̃shear u is the shear distance. The 2-D Fourier Transform of eyaw(t, u) is then

given by [Owen and Makedon 1996]

Eyaw(ω, ku) = E(ω, ku + 2Φ̃sheark). (6.22)

We can derive the equivalent wavenumber reconstruction in straightforward fashion as

kyyc = ku + 2Φ̃sheark,

kxyc =
√

4k2 − k2
yyc
.

(6.23)

Applying the approximations made in the derivation of (6.23) to (6.19) it is possible

to show equivalence of the techniques. Assuming Φ̃shear is small in (6.19)

cos(Φ̃shear) = 1, (6.24)

sin(Φ̃shear) = Φ̃shear, (6.25)

gives

kyyc ≈ ku +
√

4k2 − k2
uΦ̃shear. (6.26)

Now for ku ≪ k, a narrow-beam system, (6.26) becomes

kyyc ≈ ku + 2kΦ̃shear, (6.27)
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with the reconstruction following and being identical to (6.23)9.

The error in narrow-beam correction (noted previously in Section 6.3) affects tradi-

tional single-receiver yaw compensation and the wide-angle nature of the scene should

ideally be taken into account. Accounting for the error is necessary when correcting

large (>0.1 rad) yaw errors. The error using standard yaw compensation in wide-

aspect imagery is noted in [Cook et al. 2001], although it was related in a different

context.

6.4.7 Multiple-receiver yaw correction

Yaw that changes from pulse-to-pulse is also a problem for a multiple-receiver SAS

system. Yawing the receiver array by only a small angle around the centre of rota-

tion amounts to a large displacement for the receivers at the ends of the array. This

displacement, like other receiver displacements, leads to blurring in the SAS image.

The data recorded by a receiver array suffering a yaw at a particular position of

the sonar platform, Φσ(u), may be represented as (under the same approximations as

(6.4))

ẽ(t, u, σ) ≈
∫∫ f(x, y) p

(
t− 2

c

√
(x− σ/2 sinΦσ(u))2 + (u+ σ/2 cos Φσ(u) − y)2

)

(x2 + (u+ σ/2 − y)2)
dxdy, (6.28)

which can be seen to be a rotation of the receiver array around u = 0 by Φσ(u). In the

past, yaw has been corrected in a similar fashion to sway errors: the echo from each

receiver is individually time shifted to correct for the position error, [Wilkinson 2001].

The errors in conventional pulse-to-pulse yaw correction are negligible in current SAS

systems. This is due to a small10 equivalent sway at each receiver, the case even for

moderately large towfish yaws of ≈ 0.1 rad.

Following the analysis presented in the previous section, the yawed data set may

be corrected via,

kσyc(u) = kσ(u) cos(Φσ(u)) +

√
k2 − kσ(u)2 sin(Φσ(u)), (6.29)

where u refers to the sonar pulse in question. The global (non ping-to-ping) yaw on

a multiple-receiver system is more complicated. Assuming all ping-to-ping yaws have

been corrected, the compensation is the same as in Section 6.4.6,

kuyc = cos(Φu) +
√
k2 − k2

u sin(Φu), (6.30)

9The small yaw approximation also means that Φyaw ≈ ❘Φshear in this discussion.
10This is due to the relatively short receiver arrays used in SAS systems.
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and

kyyc = kuyc ,

kxyc =
√
k2 − k2

u +
√
k2 − (kuyc − kσyc)

2,
(6.31)

where ku is the Fourier transform down the u direction.

Given that the pulse-to-pulse yaw differences are small they can often be corrected

with narrow-beam correction techniques—the motion-compensation improvement does

not warrant the increased computation required.

6.5 Results from simulated system

To test the proposed motion compensation algorithm, the low frequency system oper-

ated by the Coastal Systems Station (CSS, a Florida-based US-Navy research group)

[Cook et al. 2001] was simulated using a standard ray-tracing based simulation. A scene

consisting of discrete prominent points was used to help illustrate compensation per-

formance. Reconstruction of the echo data was via a modified wavenumber algorithm

[Wilkinson 2001]. For reference purposes a simulation was run with no path distortion

added. The resulting image is shown in Figure 6.3(a).

To test motion compensation an across-track sway of Figure 6.3(b) was inserted

during the simulation. When reconstructed using standard timing-error based com-

pensation, some distortion of the point reflectors is apparent (Figure 6.3(c)). A sig-

nificantly improved result is achieved when wide-beam motion compensation is used

before reconstruction (Figure 6.3(d)).

6.5.1 Summary

As is clear from the results obtained from simulation of the CSS sonar multiple-receiver

SAS system, the algorithm described offers significant motion compensation improve-

ment when used with existing block reconstruction algorithms. The motion compen-

sation improvement is enhanced when the SAS has many receivers. The algorithm

requires only a trivial increase in computational cost if used in conjunction with Fourier-

based reconstruction algorithms.

6.6 Summary

Motion compensation is required to allow efficient Fourier domain methods to recon-

struct images taken with a non uniform geometry. The wide-beam motion model and

motion compensation improvements discussed in this chapter allow improved recon-

struction accuracy.



90 Chapter 6 Motion compensation for known path errors

Range (m)

A
lo

n
g

tr
a

c
k
 d

is
ta

n
c
e

 (
m

)

Ideal image

24 24.5 25 25.5 26 26.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−15 −10 −5 0 5 10 15

−0.6

−0.4

−0.2

0

0.2

0.4

Alongtrack distance (m)

P
a

th
 d

is
p

la
c
e

m
e

n
t 

(m
)

Simulated Path distortion

(b)

Range (m)

A
lo

n
g

tr
a

c
k
 d

is
ta

n
c
e

 (
m

)

Narrowbeam corrected image

24 24.5 25 25.5 26 26.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

Range (m)

A
lo

n
g

tr
a

c
k
 d

is
ta

n
c
e

 (
m

)

Widebeam corrected image

24 24.5 25 25.5 26 26.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

Figure 6.3 Demonstration of proposed motion compensation scheme. (a) Ideal reconstructed image
with no distortion added. (b) Uncorrelated path distortion (sway) X(u) as a function of along-track
distance. (c) Reconstructed image with across-track path distortion shown in (b) and narrow-beam
sway compensation via (6.11). (d) Reconstructed image with across-track path distortion shown in (b)
and wide-beam sway compensation via (6.9).

A novel wide-beam motion compensation technique for multiple-receiver systems

was suggested with the motion compensation improvement dependent on the number

of receiver elements. These improvements have been demonstrated with simulated

data from a wide-beam system. Single receiver improvements (following related SAR

techniques) and extensions of the multiple-receiver method based on them were also

presented. Using these techniques, full motion compensation is possible.

In addition, improved yaw compensation techniques for both pulse-to-pulse array

yaw in multiple-receiver systems and bulk aperture yaw have been discussed. These

techniques allow the wide-beam compensation of large (> 0.1 rad) yaws. Specialised

extensions of the wavenumber algorithm for systems suffering yaw have been presented

with traditional yaw compensation techniques derived as a special case of the wide-

beam algorithms.



Chapter 7

Autofocus fundamentals

In SAS imagery, turbulence in the medium or unknown path movements corrupt the

phase of the echo signals leading to image blurring. Phase-distortions represent a major

obstacle preventing the widespread use of SAS imaging. The lengthy aperture-creation

times SAS requires mean that the platform often deviates a large number of wavelengths

from the ideal straight path over the aperture. This deviation must be estimated to

sub-wavelength accuracy to prevent image blurring.

The removal of blur-causing phase-distortions often requires data-driven phase-

retrieval or autofocus techniques. These techniques are widely used in narrow-beam,

narrow-bandwidth, spotlight mode SAR to improve the system performance. This

chapter provides an introduction to the problem posed by phase-distortions and gives

an overview of common phase estimation kernels used in autofocus algorithms.

7.1 Motivation for autofocus

Synthetic aperture creation requires a number of sonar pulses taken at well known lo-

cations. Unknown path-deviations of only fractions of a wavelength (< λ/16) cause the

resulting synthetic aperture imagery to blur. Both SAS and SAR imagery suffer from

this blurring, although the problem is less significant with the high pulse-repetition-

frequency and short integration times of SAR systems [Hawkins 1996]. Moreover, the

accuracy of a typical GPS-locked inertial navigation system (INS) is sufficient to allow

close to diffraction-limited SAR imagery [Potsis et al. 2001]. In contrast, the accuracy

of even the best current INS is not enough to allow diffraction-limited imagery of SAS

images [Bellettini and Pinto 2002; Pinto et al. 2002; Wang et al. 2001].

Instead, autofocus algorithms must be used to estimate the phase-distortions caused

by path errors. Autofocus algorithms estimate the platform trajectory and remove

residual image blurring using the collected data. Another name for this type of algo-

rithm is micronavigation, where the path estimates are usually smoothed using Kalman

filtering and INS measurements [Pinto et al. 2002].
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7.2 The autofocus problem

Synthetic aperture autofocus was originally developed in the SAR community for esti-

mating the Doppler-rate error and Doppler-centroid of the echoes. Estimation of the

Doppler-centroid was originally known as clutterlock and estimation of the Doppler-rate

known as autofocus1 [Berizzi et al. 1997; Carrera et al. 1995; Curlander and McDonough

1996; Madsen 1989; Prati and Rocca 1992]. The Doppler-rate error is due to errors in

estimating the SAR platform speed (caused by orbital effects). The imagery from a sys-

tem suffering a Doppler-rate error has a quadratic defocus (which map-drift and similar

algorithms were designed to estimate [Carrera et al. 1995]). Doppler-centroid errors

occur when the beam pointing direction moves during aperture creation. Doppler-

centroid errors cause along-track blurring effects similar to those caused by low-order

sway errors in stripmap systems.

As the resolution of SAR systems improved, atmosphere turbulence and high-

frequency near-sinusoidal path errors started to become increasingly important. The

term autofocus was extended to algorithms estimating any order of phase error, such

as multi-aperture map-drift [Curlander and McDonough 1996] and PGA [Curlander

and McDonough 1996; Jakowatz et al. 1996]. Currently, the term autofocus is used to

describe the estimation and correction of any number of unknown parameters, including

the entire unknown path.

The goal for an autofocus algorithm is to estimate a number of unknown parame-

ters, usually the platform’s path-deviation at each pulse. Autofocus is often achieved

in an iterative framework, using only the recorded echo data. The related problem of

micronavigation is usually aided by an on-board INS and is not generally iterative (see

Section 7.4). SAS autofocus involves estimating and correcting the blurring caused by

platform path error and medium fluctuation.

Phase errors must be estimated to better than λ/8 over the length of the aperture

[Hayes and Gough 1992]. The constraints for motion are derived using the two-way

propagation path—echos still sum coherently if position errors of less than λ/16 exist.

When unknown motion/medium fluctuations cause phase-distortion greater than λ/8,

echos do not sum coherently and the SAS image suffers degradation. The constraints on

high frequency sinusoidal path errors are even tighter and are < λ/60 over the length of

the aperture [Carrera et al. 1995, Chapter 5][Wang and Huang 1997]. Note that slowly

varying phase errors across the aperture cause main-lobe broadening whereas rapidly

varying phase errors result in raising of the side-lobes [Wang and Huang 1997].

1An incorrectly estimated Doppler rate results in a simple defocus in the imagery caused by a
quadratic phase error. This defocus is very similar to that experienced in photographic systems. It is
from this similarity Doppler-rate estimation/correction was given the name autofocus.
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7.2.1 Motion errors

Cutrona [1975] showed that INS were more than an order of magnitude shy of the ac-

curacy required to meet the strict SAS motion measurement requirements. Autofocus

and micronavigation algorithms attempt to estimate unknown motion-errors and pro-

vide the accuracy unable to be obtained using an INS. Accurate motion estimation is

important because unknown motion errors cause the primary limitation of short range

(< 100 m) SAS imaging. Compensation to remove image-blurring caused by known

motion errors is discussed in Chapter 6.

An alternative to using autofocus is to employ beacon positioning systems [Pihl

et al. 2000; Pilbrow et al. 2002a, b; Shippey et al. 2001] where active or passive beacons

are fixed to the seafloor; positioning using these beacons presents the same problem as

autofocus using prominent scatterers [Shippey et al. 1998a]. Recent results indicate that

general autofocus performed at least as well as beacon positioning [Shippey et al. 2001].

Positioning based on transponder echoes in beacon systems is identical to prominent

point autofocus; albeit based on the assumption a beacon represents a high SNR point-

scattering object.

Autofocus algorithms exploit redundancy in the data collection and scene to es-

timate motion—the phase distortion caused by path deviations is apparent in many

parts of the scene while the phase due to the scene itself is random. The autofocus

problem is like a typical system estimation problem: estimate the unknown system

using a random noise input. The system in this case is the unknown distortion filter

caused by the path-deviation and the random noise is the supposedly random scene.

Autofocus algorithms therefore exploit the redundancy of the phase distortion across

the scene to estimate motion errors.

7.2.2 Medium fluctuation (acoustic variability)

SAS imaging assumes that the imaging medium is homogeneous and that no variations

occur in the speed of sound. However, the speed of sound in water varies with both time

and position. This leads to the sonar pulses travelling along bent and/or twisted paths

and to significant random phase delays [Urick 1975]. Moreover, these random speed of

sound variations are space-varying, and image degradation results. Medium induced

phase-distortions are the limiting factor in long-range SAS performance [Chang and

Tinkle 2001].

The autofocus problem caused by fluctuations in the water column is subtly differ-

ent from that caused by path errors. Where the motion induced phase distortions are

common to all targets in the sonar beam at a given pulse, this is not so for fluctuation-

caused distortions. Medium fluctuation affects separate parts of the image differently—

i.e., both fast and slow water can be in the imaging beam. Moreover, the sonar beam
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at a particular pulse “sees” many separate image sections, each with a different phase-

distortion. Autofocus of medium fluctuation has constraints similar to those seen in the

astronomical imaging problem. In particular, the spatial coherence length of the distor-

tion is limited, limiting the length of aperture with common phase errors [Chang and

Tinkle 2001; Knox and Thompson 1974]. Short coherence length, caused by medium

fluctuation, thus limits the maximum size of the autofocused sea-floor patch [Chang

and Tinkle 2001].

7.3 Revisiting the motion constraints

The amount of blurring SAS images suffer is dependant on both the magnitude and

how rapidly varying the sway motions are. For this reason, the terminology used

by Jakowatz et al. [1996] is chosen. The corrupting sway is described in terms of a

polynomial function. Low-order sways represent deviations that vary slowly along the

aperture and high-order sways more rapid variations. The limiting case of high-order

sway is when the sway is uncorrelated i.e., is a white noise signal. Note that the relative

sway order “seen” by a target is range-dependant since long range targets are in the

imaging beam for a longer time period.

The commonly accepted motion constraint for blur-free synthetic aperture imagery

is that the sway motions must be < λ/16 for the extent of the aperture. Whilst that

constraint is viable for low-order sways, it is much tighter (λ/60) for high-order sways

[Carrera et al. 1995, Chapter 5]. Moreover, the aperture length varies considerably in

a typical wide-swath SAS, making the constraint difficult to grasp intuitively. A new

motion constraint (giving the required pulse-to-pulse accuracy) is derived.

To calculate the motion constraints the blurring relation for a linear sway of [Callow

et al. 2002a]

X(u) = γu (7.1)

is used. Under this model, the distorted image may be described by

f̃(x, y) ≈ f(x− γy, y + γx), (7.2)

where f(x, y) is the undistorted image and γ is a linear sway across the aperture.

Extending the argument to successively smaller sub-apertures, the smallest possible

sub-aperture (pulse-to-pulse differences) fits the same model.

Acceptable imagery is assumed when 95% of the image energy is contained within

half the along-track resolution δy/2. Note that this is quite different to the usual

assumption that the aperture phase of the target must vary by less than π/4 along the

aperture.
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Applying the above constraint, γ is described by

γ <
δy
2x
, (7.3)

assuming without loss of generality that γ is a zero-mean random variable2. For 95%

confidence, the linear sway standard-deviation σγ must be

σγ <
δy
4x

(7.4)

This represents a constraint on the sway per metre of aperture and is a system yaw

limit on multiple-receiver sonars. To obtain acceptable imagery, ping-to-ping differences

must also satisfy (7.3). Thus the standard-deviation of the ping-to-ping sway is given

by

σsway <
δy
4x

∆u, (7.5)

where ∆u is the along-track sample spacing. For a diffraction-limited image from a

D/4 sampled sonar this can be expressed as

σsway <
D2

32x
, (7.6)

which gives σsway ≈ 70µm ping-to-ping for the KiwiSAS-II sonar with an element size

of D = 0.325 m, δy = 0.16 m, and maximum range of 50 m. These parameters give a

linear sway standard-deviation of σγ of ≈ 0.8 mm m−1 which is equivalent to a yaw

standard-deviation of 0.05◦ for a multiple-receiver equivalent of the KiwiSAS-II. The

standard-deviation for the sway over the aperture can be calculated using the central

limit theorem as

σswayL
=
√
Npσsway, (7.7)

where Np is the number of pulses covering the aperture

Np =
xλ

D∆u
. (7.8)

For the KiwiSAS-II the sway standard deviation over the length of the aperture σswayL

≈ 8 mm (λ/6). These constraints can be compared with the Cramér-Rao lower bounds

(CRLBs) for the time-delay/phase-gradient sway estimators discussed in Section 7.6.1.

The advantage of (7.3) is that it expresses blurring constraints in terms of the

design parameters of the sonar. If the system resolution is substituted into (7.3) the

result is expressed in terms of the sonar’s physical hardware and is independent of

2Not true in practice, but having a mean causes image shift not blurring.
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frequency. Alternately (7.3) can be rewritten in terms of the SAS gain—the more gain

in using SAS processing the stricter the motion requirements.

Constraints of this precision make autofocus challenging. Note however that the

constraints given neglect beam-patterning and other effects; thus slackening the con-

straints by factors of 2–5 can often still result in acceptable imagery. The accuracy

required always depends on the application.

7.4 Micronavigation/autofocus

Both micronavigation and autofocus are generic terms describing a number of algo-

rithms that estimate path-deviations or medium fluctuation. Both families of algo-

rithms have many similarities and only subtle distinctions.

Micronavigation is a term that arose to describe the integration of the redundant

phase centres (RPC) algorithm (see Section 9.1) with INS and other aiding sensors on-

board the imaging sonar [Bellettini and Pinto 2002]. The term micronavigation refers

to any autofocus algorithm that operates to provide a real-time estimate of the path

of the imaging platform. Micronavigation algorithms, such as RPC and shear average,

typically exploit redundancy in the echo collection. In contrast, autofocus algorithms

usually require certain statistical properties in the scene of interest. This distinction

is easily blurred as echo redundancy and prior path-information can be used in typical

autofocus algorithms and minor modifications to RPC allow for autofocus assumptions.

The use of micronavigation algorithms is likely to increase with the anticipated

prevalence of Autonomous Underwater Vehicle (AUV) based SAS systems [Hagen et al.

2001; Sutton et al. 2002]. These systems require extremely high accuracy in positioning

to operate effectively. Whilst an INS may not provide the accuracy needed for SAS,

micronavigation algorithms designed to meet SAS measurement tolerances provide a

boon to AUV operation. Using the information obtained using micronavigation for

navigating an AUV is an interesting prospect.

7.5 Spotlight vs stripmap autofocus

The imagery obtained from a stripmap SAR or SAS is more difficult to autofocus

than from spotlight systems. This extra difficulty is due to the blurring of stripmap

images being space-variant [Gough et al. 2000b] whereas spotlight images have space-

invariant blurring [Hawkins 1996; Wahl et al. 1994b]. Space-variant blurring means

that standard, well researched, spotlight autofocus methods such as map-drift [Cur-

lander and McDonough 1996], contrast optimisation [Blacknell et al. 1992], and PGA

[Eichel and Jakowatz 1989; Jakowatz et al. 1996; Wahl et al. 1994a] are unable to be

applied to stripmap data without modification. In the case of PGA, an extension to



7.6 Autofocus techniques 97

the stripmap case does exist [Wahl et al. 1994b] and is referred to as phase curvature

autofocus (PCA) [Pat 2000; Sutton et al. 2000]. The assumption of space invariance

in the spotlight algorithms often makes the extension to stripmap systems challenging.

The reason why space-invariant algorithms perform poorly in space-variant problems

is straightforward. A space-invariant autofocus algorithm ensemble averages over all

scatterers to estimate the path. However, in a space-invariant problem, all scatters have

the same blurring. In a space-variant problem, each scatterer has a different blurring.

Averaging many different path estimates results in a poor overall path estimate.

To overcome the problem caused by space-variant blurring, data from stripmap

systems is often autofocused by segmenting the image into smaller along-track sections

[Bonifant et al. 2000; Sutton et al. 2000; Thompson et al. 1999]. These sections have

nearly space-invariant blurring and the application of normal spotlight autofocus algo-

rithms yields some improvement. Usually a preprocessing step is required [Curlander

and McDonough 1996; Pihl et al. 2000; Thompson et al. 1999] to massage the data into

a form that SAR autofocusing algorithms can use. Each section of the data is then

autofocused independently and the individual estimates combined to remove the dis-

tortion from the entire image [Bonifant 1999; Bonifant et al. 2000]. However, splitting

the image in azimuth and autofocusing each sub-image independently is undesirable

as useful information is discarded. In particular, path estimation from information at

the edges of the sub-patch is inaccurate. Approaches that account for the spatial vari-

ance and retain information (such as the stripmap phase gradient autofocus (SPGA)

algorithm—see Chapter 10) have better performance. To summarise, spotlight auto-

focus is a special case of stripmap autofocus where the space-variance of the problem

is low. Spotlight algorithms often neglect the effect of space variant blurring (which

must be considered for stripmap autofocus).

7.6 Autofocus techniques

This section describes the main techniques used in autofocus algorithms. Most algo-

rithms (both micronavigation and autofocus) use some form of correlation or phase

estimation. This section summarises these techniques from an autofocus perspective

and in a common notation. Salient features of the algorithms are noted and related to

the SAS autofocus problem.

7.6.1 Correlation of complex baseband signals

Many of the autofocus and micronavigation algorithms discussed later in the thesis

have estimation techniques based on correlation of time-sequences or 2-D complex im-

ages. Most of the phase estimation kernels discussed later in the chapter perform some

form of phase-only correlation for different along-track frequency bins. For example,
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the Maximum Likelihood (ML) phase estimator described later in this chapter corre-

lates adjacent frequency bins—i.e., it estimates the time-delay difference at different

spatial frequencies. In addition, the correlation techniques discussed here demonstrate

a method of avoiding phase unwrapping requirements in phase estimation kernels.

This section presents a summary of the application of correlation to complex time-

sequences. The problem is treated as a correlation of a band-pass time signal, p0(t),

and its delayed echo signal, p1(t). The extension to multi-dimensional space follows

along similar lines [Bracewell 1986].

Given the two complex baseband time sequences, p0(t) and p1(t), their cross cor-

relation in time is given by

pp01(t) = p0(t) ⋆t p1(t),

=

∫

t′
p0(t

′)p∗1(t
′ − t) dt′,

(7.9)

where ⋆t refers to the correlation operation. If p0(t) has a Fourier transform given by

P0(ω) then (7.9) may be written [Bracewell 1986; Haykin 1994]

pp01(t) = F−1
ω {P0(ω)P ∗

1 (ω)}. (7.10)

In practice, the correlation obtained using (7.10) with FFT based processing gives a

different result to that of (7.9) due to circular convolution3.

This type of correlation is usually used for estimating the time-delay between a

transmitted signal and the received echo signal. In this application p1(t) = p0(t− t0)+

n(t). From linearity, it follows that the spectra of the two signals are related,

P1(ω) = P0(ω) exp (−j(ω + ω0)t0) +N(ω). (7.11)

Rewriting the correlation (7.10) gives

pp01(t) = F−1
ω {P0(ω)(P ∗

0 (ω) exp (j(ω + ω0)t0) +N∗(ω))}. (7.12)

Taking an inverse Fourier transform, (7.12) becomes

pp01(t) = F−1
ω

{
|P0(ω)|2 exp (j(ω + ω0)t0)

}
+ n∗p(t),

= pp0(t− t0) exp (jω0t0) + n∗p(t),
(7.13)

where pp0(t) is the autocorrelation of p0(t), and n∗p(t) is the noise filtered by p0(t).

Time-delay estimators select the time where pp01(t) is maximum to give an estimate

of delay, t̂0. The Cramér-Rao lower bound (CRLB) of the estimation may be derived

3Circular convolution problems may be mitigated by employing guard bands at the edge of the time
series to be correlated [Bracewell 1986]. This is more commonly called zero padding.
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[Bellettini and Pinto 2002; Pinto et al. 2002] as4

CRLB =
1√
Bcτrep

1√
1 + B2

c

12ω2
0

1

ω0

√
1

SNR
+

1

2 SNR2 , (7.14)

where SNR is the average signal to noise ratio in the time sequences p0 and p1,
√
Bcτrep

(where Bc is the equivalent rectangular signal bandwidth in rad s−1 and τrep is the time

between pulses) is the number of independent time samples, and ω0 is the signal carrier

frequency.

Amplitude-only envelope correlation

When correlating baseband signals and ignoring the phase of the correlation result, the

correlation may be written

pp01env(t) =

∣∣∣∣
∫

t′
p0(t

′)p∗1(t
′ − t) dt′

∣∣∣∣ , (7.15)

Writing p0(t) in the form of an amplitude and phase function

p0(t) ≡ a(t) exp (jφ(t)), (7.16)

where the time-delayed echo signal is given by

p1(t− t0) ≡ a(t− t0) exp (jφ(t − t0) − jω0t0), (7.17)

then the amplitude correlation given by (7.15) may be written

pp01env(t) =

∣∣∣∣exp (jω0t0)

∫

t′
a(t′) exp

(
−jφ(t′)

)
a(t′ − t+ t0) exp

(
−jφ(t′ − t+ t0)

)
dt′
∣∣∣∣ .

(7.18)

The information inherent in correlation phase is lost since only the amplitude of the

correlation is used (i.e., the carrier phase shift, exp (jω0t0), is not used). The CRLB is

derived by setting the carrier frequency ω0 zero in (7.14), giving

CRLB =
1√
Bcτrep

2
√

3

Bc

√
1

SNR
+

1

2 SNR2 . (7.19)

Envelope correlation provides a simple method for estimating the bulk time shift of

a signal. However, the envelope correlation method is not as accurate as full complex

correlation as it discards the information contained in the carrier phase shift.

4Making the substitution for the discrete number of independent samples,
√

N ≡ ❙ Bcτrep, in (7.14)
links the time estimation CRLBs with the autofocus phase CRLBs presented later in this chapter.



100 Chapter 7 Autofocus fundamentals

Narrow-band correlation

The time signals used in sonar imaging typically have a high carrier frequency compared

with their bandwidth (i.e., have a Q ≫ 1.0). In this situation, correlation of the phase

results in more accurate time-delay estimates than envelope correlation. As can be seen

in the Fourier representation of the time-delay correlation (7.13), the correlation result

is the auto-correlation of the transmitted signal, pp0(t), multiplied by a carrier phase

shift exp (jω0t0). The phase shift gives a direct estimate of the time-delay, t0 (since

the auto-correlation pp0(t) is a real-only signal if the baseband signals are symmetric

about zero frequency [Haykin 1994; Shippey et al. 1998b]).

If the signals p0(t) and p1(t) have baseband spectra that are symmetric about zero

frequency then the narrow-band or phase-only correlation of the signals is given by

pp01phase
≈ exp (jω0t0) + n∗p(t). (7.20)

Thus a correlation time-delay can be measured as a carrier phase and estimated via

t̂0 =
1

ω0
Arg

{∫
p0(t)p

∗

1(t) dt

}
,

=
1

ω0
Arg

{∫
P0(ω)P ∗

1 (ω) dω

}
,

(7.21)

which is equivalent to the phase at zero correlation lag.

Narrow-band correlation suffers an ambiguity problem if large time-delays are to

be estimated. Small time-delays are able to be measured but have a 2π ambiguity

problem. This is discussed in more detail in following sections.

Narrow-band correlation, like envelope correlation, also has less accuracy than a

full complex envelope correlation (or correlation of the modulated real signal). However

the loss in accuracy from using narrow-band correlation is minor; particularly for high-

Q systems. Narrow-band correlation has major computational savings over traditional

correlation and these far outweigh the minor loss of accuracy if small time-delays are

to be estimated.

Shear product

If p0(t) and p1(t) are sampled to give p0[n] ≡ p0(n∆t) and p1[n] ≡ p1(n∆t), the time-

delay, t0, may be estimated by

t̂0 =
1

ω0
Arg

{
1

N

N−1∑

n=0

p0[n]p∗1[n]

}
, (7.22)
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which is the average of the sheared product, or shear average 5. This is the discrete

implementation of the phase only correlation described in the previous section.

Delay estimation via (7.22) is variously known as the shear average or sheared-

product and has been used in autofocus for both SAS and SAR [Fienup 1989; Johnson

et al. 1995] and also in astronomical imaging6.

Quasi-narrowband framework

Phase only correlations, while giving locally accurate results, suffer from phase un-

wrapping problems. This results in ambiguity in the results7. Sub-cycle time-delays

are estimated well but an estimate can have an integer number of 2π radians error.

Full correlation does not suffer this problem.

One approach is to consider that discrete complex correlation is described by

[Shippey et al. 2001]

pp01[m] =
1

N

N−1∑

n=0

p0[n]p∗1[n−m], (7.23)

where pp01[m] is the discrete version of pp01(t). The time delay estimate, t̂0, can be

estimated from either the peak of the cross-correlation pp01[m] or the phase at zero

correlation lag pp01[0]. The phase of the correlation gives an high-resolution, ambigu-

ous indication of the shift and the amplitude peak gives a low-resolution, unambiguous

shift estimate. If the bandwidth and SNR are such that the envelope correlation (7.23)

gives sufficient accuracy to avoid the cycle ambiguity in phase estimation, the coarse

delay may be estimated using envelope correlation and the fine delays estimated using

phase correlation [Pinto et al. 2002]. This is sometimes known as quasi-narrow-band

processing [Shippey et al. 1998b]. Bathymetric imaging with vertically separated re-

ceiver arrays uses a similar technique to avoid phase ambiguity [Bellettini and Pinto

2002].

The CRLB for an unambiguous narrow-band correlation is derived by setting the

bandwidth Bc to zero in (7.14) (this does not apply to the
√
Bcτrep term however) and

is given by

CRLB =
1√
Bcτrep

1

ω0

√
1

SNR
+

1

2 SNR2 . (7.24)

Because the full correlation bound (7.14) and the narrow-band bound (7.24) are

very similar, the quasi-narrow-band technique is often used [Callow et al. 2001c; Shippey

et al. 1998a; Wang et al. 2001].

5It is also the ML phase estimator discussed in Section 7.6.2.
6In astronomical imaging it is equivalent to the well-known Knox-Thompson method [Knox and

Thompson 1974].
7Caused by the basic problem of phases being measured modulo 2π.
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7.6.2 Phase estimation kernels

Phase estimation kernels have many similarities with phase only correlation techniques.

For example, the phase difference between pulses may be treated as a narrow-band

estimate of the relative time-delay between those pulses [Wahl et al. 1991]. Phase esti-

mation kernels provide methods for narrow-band (phase-only) time-delay estimation.

Autofocus algorithms often need to estimate the phase error across the aperture

φ(ky) or between sonar pulses—effectively determining the time shift in the image.

Many different phase estimation kernels have been used for this purpose. Some of the

more widely used phase estimation kernels are outlined in this section.

The performance of autofocus algorithms relies heavily on the phase estimation

technique chosen. There are a number of PGA variants (such as WPGA [Ye et al. 1999],

and FLOS-PGA [Tsakalides and Nikias 2001]) offering performance improvements in

select conditions. The variants often only change the PGA phase estimation kernel.

Phase kernels that better match the known (or estimated) statistical properties of the

image can yield significant performance gains.

To aid in the readability of this section a modified, discrete notation is used, similar

to that of Jakowatz and Wahl [1993]. In this notation, n is the across-track index, so

that x ≡ n∆x, and l is the along-track spatial-frequency index, so that ky ≡ l∆ky where

∆x and ∆ky are the sample spacings in cross-track and along-track spatial-frequency

respectively. p is the along-track position index so that u ≡ p∆u. In this notation the

discrete range-Doppler domain version of the blurred image may be written

f(x, ky) = f(x∆x, l∆ky), (7.25)

= g[n, l] (7.26)

where the change of letter from f(x, ky) to g[n, l] signals the discrete conversion.

Differentiation kernel

The original phase gradient estimation kernel for SAR autofocus was published for use

with PGA [Eichel et al. 1989]. The kernel in discrete notation is given by

φ̇[l] =

N−1∑
n=0

Im {ġ[n, l]g∗[n, l]}
N−1∑
n=0

|g[n, l]|2
, (7.27)

where φ̇[l] is the average phase gradient, ġ[n, l] is calculated using Fourier differentiation

as

ġ[n, l] = Fp→l

{
j2πp F−1

l→p{g[n, l]}/P
}
, (7.28)
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and P is the number of along-track samples. The phase is then estimated by integrating

the phase gradient via

ϕ[l] =

∫
φ̇[l] dl, (7.29)

using numerical integration techniques.

The performance of this kernel was demonstrated to be inferior to that of the Max-

imum Likelihood (ML) kernel (see next two sections). The reason for poor performance

is a bias at low signal to noise ratios [Jakowatz and Wahl 1993]. This bias is the result

of a high signal to clutter ratio assumption in the derivation of the estimation kernel

[Eichel and Jakowatz 1989; Jakowatz and Wahl 1993]. PGA often operates on imagery

where the signal-to-clutter ratio is poor (-10 dB to 0 dB) and so it is better to use the

(unbiased) ML estimator instead.

Eigenvector kernel

The eigenvector phase estimation kernel first appeared for PGA in [Jakowatz and Wahl

1993] as an improvement to the differentiation-based PGA kernel (see previous section).

Similar techniques have appeared in ultrasonic imaging [Rachlin 1990] and adaptive

beam-forming for sonar [Nielsen 1991, page 261]. Jakowatz and Wahl [1993] show that

the eigenvector-based estimator is Maximum Likelihood (ML) and demonstrate the

performance increase over the differentiation-based kernel. The ML phase estimation

kernel used in shear average and the Knox-Thompson techniques is a special case of

the eigenvector estimator.

The eigenvector phase estimator is based on taking the phase of the eigenvector

corresponding to the largest eigenvalue of the (along-track) covariance matrix8. Under

the PGA system model this is directly equivalent to the distortion phase that causes

blurring.

The performance of the eigenvector kernel is improved by utilising higher-order

measurements (i.e., by calculating larger covariance matrices). The CRLB for phase

estimators9 based on using the Mth order covariance matrix is [Jakowatz and Wahl

1993]

CRLB =

√
1 +Mβ

MNβ2
, (7.30)

=
1√
N

√
1

Mβ2
+

1

β
, (7.31)

8The covariance matrix is defined for fixed n as E ❚ gng
H

n ❯ where E{} is the statistical expectation

operator and gn ≡ [g[n, 0], g[n, 1], . . . , g[n, L]]T . Singular Value Decomposition (SVD) is a particularly
good numerical technique for finding the eigenvector corresponding to the largest eigenvalue [Nielsen
1991, page 268].

9Time/position estimation CRLBs may be obtained by dividing those presented here by the appro-
priate wavenumber (ω or 2k).
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where β is the SNR for the phase estimation (often the signal-to-clutter ratio rather

than the signal-to-noise ratio) andN is the number of independent time samples (equiv-

alent to Bcτrep). Calculating a M th order covariance matrix requires
( 2
M

)
phase-only

correlations and has the benefit of a CRLB proportional to 1/
√
β2M for small β.

The ML phase estimator used in the Knox-Thomson and shear average methods

corresponds to the eigenvector method when only a second order covariance matrix

is used—i.e., only adjacent frequency bins are used. Substituting for covariance order

M = 2 for the ML estimator (7.30) becomes

CRLB =
1√
N

√
1

β
+

1

2β2
, (7.32)

which is identical to the CRLB for phase only time-delay estimation (7.14).

In the SAR situations where PGA is typically used, the increased estimation accu-

racy of high-order phase estimation cannot be justified on the basis of computational

cost [Jakowatz and Wahl 1993]. Even with a poorer low-order phase estimator, the

low computational cost of iterating PGA means that an estimator based on only adja-

cent frequency bins is computationally cheaper (even though it takes more iterations).

However, high-order phase estimation gives benefits when β is very small, such as for

clutter-dominated scenes. This is usually the case in scenes for which PGA fails to give

acceptable autofocus. Use of high-order phase estimation improves PGA’s robustness.

Moreover, SAS autofocus necessitates a much larger iteration cost [Hawkins 1996] and

so higher-order phase estimation is preferable.

A simplification of the eigenvector estimation kernel can be derived for M=3 as

(see Appendix E)

[
∆φ1[l]

∆φ2[l]

]
=

[
2
3

1
3 −1

3

1
3

2
3

1
3

]




−Arg

{(
1
N

N−1∑
n=0

g[n, l]g∗[n, l + 1]

)}

−Arg

{(
1
N

N−1∑
n=0

g[n, l + 1]g∗[n, l + 2]

)}

−Arg

{(
1
N

N−1∑
n=0

g[n, l]g∗[n, l + 2]

)}



, (7.33)

where the phase, ϕ[l], is obtained from the phase differences, ∆φ1[l], ∆φ2[l], as

ϕ[l] = (ϕ[l − 1] + ∆φ1[l]) + (ϕ[l − 2] + ∆φ2[l]). (7.34)

This form of the eigenvector kernel is reminiscent of the ML estimator and those esti-

mators based on the image bispectrum.

It is possible to show (see Appendix E) that eigenvector-based phase estimators (of

order ≥ 3) implement phase-closure (a particularly powerful phase-retrieval technique

used in astronomical imaging [Roddier 1986]). Eigenvector-based phase estimators are



7.6 Autofocus techniques 105

also equivalent to bispectral or trispectral (cumulent or triple and quadruple correla-

tion) phase estimators (see Appendix F). Interestingly, eigenvector decompositions are

closely related to the Karhunen-Loéve (KL) [Van Trees 1968] technique used in image

processing to generate a maximum entropy image; how closely this relates eigenvector-

based phase estimation to entropy-based iterative autofocus [Morrison and Munson

2002; Xi et al. 1999] remains to be seen.

Eigenvector-based techniques provide efficient, accurate, phase estimation for aut-

ofocus. SAS autofocus should use higher order eigenvector estimators to improve per-

formance particularly as high order estimators improve phase estimation performance

in the heavy clutter scenes expected in SAS imagery [Billon and Pinto 1995]. How-

ever, the WPGA estimator (see later section) should be used in preference to a high

order eigenvector kernel since it is equivalent to an ∞-order eigenvector estimator with

reduced computational load.

Maximum likelihood (ML) estimation kernel [Jakowatz and Wahl 1993]

The ML estimator is identical to those used in spotlight shear average [Fienup 1989],

spatial correlation autofocus [Attia and Steinberg 1989], and Knox-Thompson speckle-

interferometry [Knox and Thompson 1974], and is similar to that used in phase differ-

ence autofocus (PDA—see Section 8.5). This estimator operates by correlating adja-

cent frequency bins (or adjacent blocks of frequency bins in PDA) and can be inter-

preted as estimating the difference in time-delay between the adjacent frequency bins

(see Section 7.6.1).

The Maximum Likelihood (ML) phase estimator calculates the phase-error across

the aperture by comparing adjacent spatial-frequency bins,

∆φ1[l] = Arg

{
1

N

N−1∑

n=0

(g[n, l]g∗[n, l + 1])

}
. (7.35)

The error across the aperture, ϕ[l], is then calculated by integrating the phase differ-

ences,

ϕ[l] = (ϕ[l − 1] + ∆φ1[l]). (7.36)

Fractional low order statistics (FLOS) estimator

The phase estimator from FLOS-PGA [Tsakalides and Nikias 2001] is a good exam-

ple of a weighted phase estimation approach. The estimator is designed for scenarios

where the clutter amplitudes are not able to be modelled using Gaussian statistics (in

particular those with heavy-tailed statistics). The estimator works by mapping signal

amplitudes through a non-linear function to alter the PGA weightings and is given by
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[Tsakalides and Nikias 2001]

∆φ1[l] = Arg

{
1

N

N−1∑

n=0

(
g<p>[n, l]g∗<p>[n, l + 1]

)
}
, (7.37)

where10

g<p>[n, l] = |g[n, l]|p−1.0 g[n, l]. (7.38)

For p = 1.0, the altered phase estimation kernel (7.37) is the same as the ML kernel.

The technique may be viewed as pre-whitening the signal so that the clutter may be

treated as Gaussian noise. Another possible interpretation, when p < 2, is that the

effect of strong-scattering targets is reduced somewhat. Improvements resulting from

the technique have been shown in field collected SAR data [Tsakalides and Nikias 2001].

Weighted PGA (WPGA) estimator

WPGA uses the calculated target-to-clutter ratio in weighting the contributions from

each individual PGA phase estimate [Ye et al. 1999]. PGA assumes that the clutter is a

Gaussian process with constant variance and thus weights using the target amplitude.

Note that this assumption is often violated in SAS. Using the estimated clutter variance

for weighting allows a broader range of scenes to be used and improves performance on

clutter-like scenes [Ye et al. 1998, 1999]. WPGA is also the Minimum error Variance

(MV) phase estimator for PGA with any noise process. By estimating the clutter

variance and noise power, WPGA avoids needing to model the clutter process. This

improves performance where the traditional models break-down. Thus the WPGA

estimator is superior to both FLOS-PGA and traditional PGA.

WPGA has the additional benefit of lowering the weighting of strong-scattering

extended targets. By estimating the noise power, the noise contributed due to the

extended nature of targets is considered and their relative weighting lowered. This

makes the WPGA estimator robust to model variations caused by extended targets.

This is particularly important in SAS imaging to improve performance when strong-

scattering extended targets exist.

WPGA also benefits by avoiding the estimation of phase differences. Phase-

difference (and phase gradient) estimation is an inherently noisy process, lowering the

accuracy of the phase estimator [Chan and Yeo 1998]. The WPGA estimation process

is performed by averaging unwrapped phases from each range-bin11 instead of aver-

aging phase gradients (which were originally used to avoid phase wrapping problems).

10The mapping in [Tsakalides and Nikias 2001] is the complex conjugate of the mapping presented
here.

11Chevillon et al. [1998] describe a similar phase estimator where unwrapped phases for each fre-
quency are averaged.
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These phases are generated by unwrapping to the phase of the range-bin with the high-

est SNR, a local phase unwrapping [Ye et al. 1999]. Local phase unwrapping avoids

unnecessary noise injection of differentiation and provides more accurate estimation.

The CRLB for the WPGA estimator is

CRLB =
1√
Nβ

, (7.39)

which is better than the ML or eigenvector phase estimation kernels for low SNRs (it

is equivalent to an ∞-order eigenvector kernel).

WPGA currently provides the best way of performing phase estimation in a PGA

framework and has improved results when compared with traditional PGA [Ye et al.

1999]. Both of the improvements WPGA offers, noise power estimation and averaging

unwrapped phases, are effective and enhance PGA performance at low signal-to-clutter

ratios. The noise power estimation also avoids some of the biasing effects that strong-

scattering extended targets can cause. These benefits make it the estimator of choice

for SAS autofocus. However, the stripmap nature of SAS autofocus prevents operation

of WPGA as published—the space-variance stripmap autofocus removes some of the

redundancy that local phase unwrapping relies on. More research is required to extend

the use of this promising phase estimator to SAS autofocus.

Knox-Thompson

The Knox-Thompson12 method is a popular phase estimation technique used in astro-

nomical imaging to estimate the object phase both in 1-D and 2-D [Knox and Thompson

1974]. Where autofocus for SAR/SAS takes an ensemble of range-samples to get the

common path-deviation, astronomical phase estimation uses an ensemble of random

speckle images13 and generates an estimate of the common phase of the underlying

scene.

Mathematically this method is identical to the ML phase estimator. The method

begins by taking the along-track Fourier transform of the image and then multiplies

different frequencies to get an idea of the corrupting phase over the aperture.

Knox-Thompson estimates the phase-gradient across the aperture by,

∆φa[l] = Arg

{
1

N

N−1∑

n=0

(g[n, l]g∗[n, l + a])

}
, (7.40)

for a given integer spacing14, a. The error across the aperture, ϕ[l], is calculated

by cumulatively summing the phase differences, taking into account the frequency

12Also described as shearing interferometer in some literature.
13Each speckle image is an image of the scene corrupted by some random phase-error.
14For a = 1 this method is the same as the ML phase estimator.
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separation a. Usually in the case of Knox-Thompson, the data is integrated out from

the reliable low-frequency data toward the less reliable high-frequency data

ϕ[l] = (ϕ[l − a] + ∆φa[l]). (7.41)

The Knox-Thompson method was very successful in astronomical imaging of both 1-D

and 2-D data. Knox-Thompson does however rely on a recursive phase estimation,

estimating high frequency phase information from low frequency phase information

(the cumulative summation of (7.41)). This recursion causes errors to accumulate as

the integration proceeds and high frequency phase information becomes unreliable.

The problem also affects the ML phase estimation discussed earlier. The bispectrum

method (see next section) can alleviate this problem using a least squares frequency

estimation approach.

Bispectrum method

The bispectrum method, again from the astronomical imaging community, is an exten-

sion of the Knox-Thompson presented in the previous section. The method estimates

the Knox-Thompson phases over all possible separations (i.e., it varies a in (7.40)).

This allows many possible estimates of the corrupting phase at a particular spatial fre-

quency or along-track position. Mathematically, the average bispectrum is expressed

as follows [Lohmann et al. 1983],

ΦBS [l, a] =
1

N

N−1∑

n=0

(g∗[n, l + a]g[n, a]g[n, l]). (7.42)

The phase across the aperture is either obtained using recursive techniques (similar to

the simple integration used in KT and shear average) or a slower least squared error

based solution (that requires phase unwrapping).

The recursive phase estimation algorithm often used in the bispectrum method

estimates the aperture phase via [Bartelt et al. 1984]

ϕ[l] = ϕ[j] + ϕ[l − j] − Arg

{
1

N

N−1∑

n=0

(g∗[n, l]g[n,−j]g[n, l + j])

}
, (7.43)

which gives j different estimates for a particular ϕ[l] allowing averaging. For the j th

estimate, the starting phase, ϕ[j] is chosen to be [Lohmann et al. 1983]

Arg

{
1

N

N−1∑

n=0

(g[n,−j])
}
. (7.44)

There are many possibilities for different averaging schemes using the bispectrum data.

Freeman et al. [1988] discusses some of the popular choices.
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In a coherent system, it is best to average the (separately obtained) phases for

each across-track index (i.e., the aperture phases calculated via (7.43) rather than the

complex vectors). The reason is that the phase at any given range bin for a fixed

separation, a, is the same as Knox-Thompson phase for that separation multiplied by a

constant phase factor g[n, a]. This gives a constant phase offset to the aperture phase

that varies with each range bin. If this is left uncorrected the averaging of (wrapped)

phases fails.

Some additional modifications have appeared to allow bispectrum to work on the

complex-valued imagery obtained in spotlight SAR. The most notable of these is the

work done by Berizzi et al. [1996] on cumulant-based autofocus and the method used

by Nikias described in the next section.

Note that the bispectrum method uses the same information as the eigenvector

kernels (see Appendix F). Eigenvector kernels are preferred to the bispectrum method

however the WPGA estimator outperforms both techniques.

Nikias method (HOSPA)

The phase estimation method used by Nikias et al. [2000] appears to be another ex-

tension of bispectrum to deal with complex data. The algorithm starts by calculating

a slice through the complex trispectrum [Nikias and Petropulu 1993]

ΦTS[l, a] =
1

N

N−1∑

n=0

(g∗[n, l + a]g∗[n, 0]g[n, l]g[n, a]). (7.45)

In the patent [Nikias et al. 2000], the frequency separation, a, is fixed at 1 which

makes the method the same as a weighted version of shear average (Section 8.2). The

phase estimates are obtained in a recursive fashion using a modified version of the

Bartelt-Lohmann-Wirntzer algorithm (7.43) given below

ϕ[l] = ϕ[j] + ϕ[l − j] − Arg

{
1

N

N−1∑

n=0

(g∗[n, 0]g∗[n, l]g[n,−j]g[n, l + j])

}
, (7.46)

where ϕ[j] is chosen15 for each separate estimate of ϕ[l] to be

Arg

{
1

N

N−1∑

n=0

(g∗[n, 0]g[n,−j])
}
. (7.47)

The comment in the previous section regarding averaging of the bispectrum data

still applies here. The bispectrum should not be directly averaged because the phase

15Originally in Nikias et al. [2000] it was incorrectly chosen to be Arg ❱ 1
N

N−1❲
n=0

(g[n,−j]) ❳ which

gives an extra range-variant phase term of g∗[n, 0]. cf.with (7.43).
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term in (7.47) varies with range (unknown linear shifts and unwrapping phases).

This method appears to be a modified bispectrum method and similar performance

is expected. Again, as with the bispectrum method, eigenvector kernels are preferred

(and WPGA over eigenvector kernels).

7.6.3 Gradient versus curvature phase kernels

The majority of the phase kernels discussed in this thesis are phase-gradient based—

i.e., they are based on calculating phase gradients via differentiation or by some form

of discrete differencing. However, some stripmap algorithms require phase curvature

(phase double-difference) estimates to operate when random linear-phase trends are

present. This section briefly summarises the similarities and differences between phase

gradient and phase curvature estimation kernels.

Phase curvature estimators give the rate-of-change of the phase gradient. Phase

curvature calculation is often a matter of running a gradient estimator on a previous

phase gradient estimate. Only one kernel has been regularly used for phase curva-

ture estimation in SAS, the ML kernel from Pat’s thesis [Pat 2000]. Thus, the phase

curvature, ∆2φ1[l], for the ML estimator is given by

∆2φ1[l] = Arg

{
1

N

N−1∑

n=0

(
g[n, l − 1](g∗[n, l])2g[n, l + 1]

)
}
. (7.48)

Given the phase curvature estimates the phase can be estimated via

ϕ[l] = (ϕ[l − 1] + ∆φ1[l]), (7.49)

where

∆φ1 = (∆φ1[l − 1] + ∆2φ1[l]). (7.50)

The ML kernel (7.48) was derived by taking the shear average of the shear-product

(ML phase gradient of the complex phase difference signal). Although only the ML

kernel has been used regularly, most of the phase gradient techniques discussed in the

previous section can be adapted to estimate phase curvature in similar fashion.

Phase (and thus sway) estimation from phase curvature requires a double inte-

gration. This integration results in an extra unknown integration constant relative to

phase gradient techniques. Viewed from a sway estimation perspective, this results in

reduced reliability of low-order phase (sway) errors16. The double integration needed

by phase curvature estimators reduces accuracy and should be avoided.

16The low-order degradation is most easily seen by considering the combined differentia-
tion/integration operation as a filter that increases low-order noise. Repeating the operation as phase
curvature estimation requires makes low-order phase results poorer.
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7.7 Overview of current SAS autofocus algorithms

This section gives an overview of the techniques currently used for SAS autofocus. Each

of the major SAS autofocus divisions17 (echo-correlation based, global optimisation,

and phase-gradient based) are discussed and related to similar techniques in other

fields.

7.7.1 Echo-correlation based autofocus

Echo-correlation based autofocus techniques rely on redundancy in the collected data

to provide reliable motion estimates. SAS data must be oversampled in along-track

for the algorithms to operate. Extensions relying on typical scene-based autofocus

information can remove this requirement at the expense of accuracy and algorithmic

simplicity.

The simplest of the echo-correlation techniques, shear-averaging, is a successful

autofocusing technique for single receiver stripmap SAS [Johnson et al. 1995]. Shear

average has been used in SAR autofocus [Fienup 1989, 2001], speckle-interferometry

[Ghiglia and Mastin 1989], and real-array radar [Attia and Steinberg 1989]. Variations

of the shear-average method have been employed in the field of medical ultrasound,

where a very similar autofocus problem (aberration detection) exists [Behar 2002; Kr-

ishnan et al. 1997; Ng et al. 1997], and also in the SAS receiver calibration problem

[Banks and Griffiths 2002; Douglas et al. 1992].

Shear average requires that the echo signals recorded from adjacent pulses con-

tain redundancy. The redundancy is exploited to obtain navigation information. The

requirement for echo redundancy means that the SAS must take along-track samples

closer than D/2 [Johnson et al. 1995]. The other assumption shear average requires is

that the sea floor may be treated as many uncorrelated point sources of similar ampli-

tude, i.e., the pulse-compressed signal is delta-correlated [Fienup 1989]. In low-contrast

images, the assumption of a delta-correlated signal is valid and reasonable autofocus

occurs both in simulation and in practice [Callow et al. 2000, 2001b, c; Shippey et al.

1998a]. Shear average makes a useful algorithm for quickly estimating the bulk motion

errors present in an image before using other algorithms to finish the autofocus [For-

tune et al. 2001b]. Also, because of its low computational cost, shear average makes

the basis of a good micronavigation algorithm. In the presence of a strong scattering

target, the assumption of delta-correlation breaks down and the autofocus is biased.

This degradation is also a problem in spotlight SAR autofocus where Doppler-centroid

(clutter-lock) estimates are required [Berizzi et al. 1997]. The degradation may be

reduced by using very bland sea-floor sections [Shippey et al. 1998a] or by reducing

the influence of strong scattering targets [Callow et al. 2001c]. Another limitation of

17Sub-aperture correlation is discussed as a sub-division of echo-correlation.
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the shear average method as originally proposed is the limit on the amount of phase-

distortion measurable. Methods of overcoming the phase distortion limit for wide-band

systems have been presented [Callow et al. 2001c; Shippey et al. 1998a].

The redundant phase centres algorithm (RPC), also known as the displaced phase

centres (DPC) algorithm, and the displaced phase centre antenna (DPCA) algorithm,

[Bellettini and Pinto 2002; Billon and Pinto 1995; Groen and Sabel 2002; Pinto et al.

2002; Raven 1981; Sheriff 1992; Tonard and Brussieux 1997] is similar to shear av-

erage in operation and is used for multiple-receiver SAS systems. This algorithm is

used in most multiple-receiver SAS systems. The only major disadvantage of the al-

gorithm is that the multiple-receiver array must travel slower than the sampling soft

limit dictates (since RPC, like all echo-correlation based methods, relies on collecting

redundant echo data spaced closer than Darray/2). Algorithm accuracy improves as

the sonar travels even more slowly although undesirable platform motion is thought

to increase at low sonar speeds18 [Johnson et al. 1995]. The RPC algorithm exploits

echo-correlation from ping-to-ping and anything that unduly disrupts echo-correlation,

such as signal multi-path effects and temporal phase de-correlation, has a detrimental

impact on performance. A variation of RPC exists that exploits correlation of beams

(i.e., beam-formed images) formed using the redundant elements [Tonard and Brussieux

1997]. This affords some accuracy improvements when the echo signals have a strong

directional component.

The RPC algorithm has other variations that allow operation with non-overlapping

arrays (non redundant data collection—the echoes need not be correlated) such as the

cascade algorithm [Douglas and Lee 1993a; Silkaitis et al. 1994] and the sub-aperture

image correlation techniques [Calloway et al. 1991; Groen and Sabel 2002; Nahum

1998; Shippey et al. 2001]. These techniques no longer rely on echo-correlation but

upon the typical assumptions of autofocus techniques (although operation improves if

echo-correlation exists). They can also suffer the same type of autofocus biasing with

strongly scattering extended targets. The techniques are the stripmap equivalent of

SAR’s sub-aperture correlation autofocus techniques (see Chapter 8).

Echo-correlation based autofocus and micronavigation techniques provide success-

ful methods for quickly estimating bulk sonar motion errors. Path estimation based

on ping-to-ping estimation tends to leave low-order errors that cause residual blurring

in the images. More complex algorithms, like the cascade algorithm which estimate

motion based on more than adjacent pulses, can reduce this problem. However these

techniques use the same scene-based prior information as other autofocus techniques for

obtaining path information (and require more computation). Phase gradient and global

optimisation are better for autofocus than complex image correlation based autofocus

methods.

18The optimum sonar sampling rate for RPC operation is Darray/4. Sampling more often requires
improved ping-to-ping accuracy since the errors are cumulative [Bellettini and Pinto 2002].
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7.7.2 Global optimisation based autofocus

Global optimisation techniques, such as the iterative estimation techniques which at-

tempt to maximise an image-likelihood functional, have little history of use in SAS

imaging. After a relatively successful introduction in spotlight SAR (where contrast

optimisation has be shown to be optimal for images with compact support [Rachlin

1990]) [Blacknell et al. 1992; Gough and Lane 1998; Isernia et al. 1996a, b; Xi et al.

1999], a relatively straightforward application to stripmap data was anticipated. The

space-variant nature of stripmap data has made the application of optimisation tech-

niques difficult [Fortune et al. 2001a, b; Gough and Lane 1998].

The problems facing this type of autofocus algorithm are choosing a suitable func-

tional to optimise (image-likelihood measure) and avoiding the problem of local solu-

tions (solutions other than the true optimum) in efficient fashion. A suitable image-

likelihood metric has been elusive, with image contrast-based [Fortune et al. 2001a, b]

and local Fourier magnitude uniformity (wavefront sensing based) [Callow et al. 2002a]

proving inadequate. The use of alternate autofocus methods prior to global optimisa-

tion reduces the impact of local solutions in the optimisation and thus allow a reduction

in computational load.

Global optimisation provides a promising framework in which to perform SAS

autofocus. Ideally, any useful information about the SAS system can improve autofocus

performance. Currently, the computational burden of optimisation type techniques

make researching them difficult. Advances in computer technology coupled with the

flexible nature of global optimisation will make it a key future autofocus technique.

These techniques are not discussed further in this thesis and the interested reader

is referred to [Callow et al. 2002a; Fortune et al. 2001b; Gough and Lane 1998; Isernia

et al. 1996a; Morrison 2002] for more information.

7.7.3 Phase gradient/curvature based autofocus

Phase gradient autofocus (PGA) is an extremely successful autofocus technique used

in spotlight SAR [Eichel et al. 1989; Eichel and Jakowatz 1989; Jakowatz et al. 1996;

Wahl et al. 1994a]. However it is unable to be used with the wide-beam, wide-band,

stripmap imagery prevalent in the SAS field without extensive modification.

One possible approach toward allowing stripmap PGA operation is to subdivide

the image into small patches were the blurring is space-invariant and use traditional

PGA on each of the image patches. The main task external to PGA is calculating the

overall path estimate from each of the image patches. Mosaic PGA (mPGA) is one

such algorithm that performs subdivision and has been successfully demonstrated on

stripmap SAS imagery [Bonifant 1999; Bonifant et al. 2000]. As similar approach is

described by Thompson et al. [1999].
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Another extension of PGA for stripmap autofocus is phase curvature autofocus

(PCA). The technique was first proposed by Wahl et al. [1994b] to extend PGA to

narrow-band, narrow-beam stripmap systems. As demonstrated in Hawkins [1996],

PCA as originally published is suitable for systems with no range curvature; this same

work describes modifications required to ameliorate the range curvature problem. In

practice, PCA has been found difficult to use [Pat 2000; Sutton et al. 2000] and is not

in wide-spread use. The reason for this is likely to be the double integration of phase

curvature to get a measure of the phase error. A similar problem was found in an

implementation of rank one phase estimation (ROPE) [Snarski 1996] an autofocusing

technique with a similar kernel to PGA (and hence PCA). Some research has been con-

ducted into methods of alleviating this difficulty by fitting a limited order polynomial

basis in the processing of PCA [Pat 2000].

The phase matching autofocus (PMA) algorithm [Gough et al. 2000a] gives a

PGA/PCA hybrid algorithm aimed at alleviating the difficulties caused by the dou-

ble integration of PCA. The algorithm exploits some additional information about the

Doppler spectrum of the signal to remove one of the integrations of PCA; this results

in a phase gradient type algorithm.

All of the phase-gradient based algorithms assume that the average target Fourier

phase in the scene is zero. This is equivalent to having a delta-correlated scene. Note

that this does not necessarily require that the scene consist only of point targets19.

Other autofocus techniques assume constant target position with varying imaging di-

rection. This implies the scene looks identical from different imaging angles and is

equivalent to having zero average target Fourier phase. This makes phase gradient

based algorithms equivalent20 to their image correlation counterparts.

The main benefit of phase gradient based algorithms is that extremely fast opera-

tion is possible. The reason for this is that (at least in typical SAR scenes) only 5% of

the scene contains > 90% of the energy [Carrera et al. 1995, Chapter 6]. Using only that

5% of the scene for autofocus, computational load is reduced significantly with only

minor performance degradation. Another significant benefit of phase gradient based

algorithms is their inherent flexibility. It is difficult to use the weighting estimation

techniques such as WPGA and FLOS-PGA in correlation-based methods.

7.8 Summary

Autofocus and micronavigation techniques to estimate platform path and medium fluc-

tuation are an essential aspect of SAS imaging. The motion and fluctuation constraints

that must be met for successful SAS imaging have been summarised. Most importantly

19Stoyle [1998] describes the electromagnetic scattering phenomena leading to point-scattering and
the implications of the point scatterer assumption for SAR and ISAR autofocus.

20Equivalent in their overall autofocus technique if not in implementation.
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for short range SAS imaging, unmeasured platform motion must be less than λ/8 (for

low-order sway motions).

Correlation of complex signals has been explored and expressions for the expected

accuracy of time-delay estimates have been provided. Additional expressions for the

accuracy of phase-only and amplitude only correlation are derived. The link between

phase-only correlation and the ML phase estimation kernel was investigated and the

techniques were found to be equivalent (and have the same accuracy). The benefit of

phase-only correlation is simple weighting of different sections of the time series.

Phase estimation techniques from a number of fields were explored in a common

notation and their respective accuracies summarised. In addition, the relationships be-

tween, and the operation of, the techniques was discussed. The phase estimation kernels

used in Knox-Thompson and bispectrum-based astronomical imaging, as well as those

used in shear average autofocus and receiver self-calibration, are equivalent to eigenvec-

tor based phase estimation. Weighted phase estimation kernels provide large benefits

for autofocus use by rejecting contributions from extended targets. For spotlight aut-

ofocus the WPGA phase estimation kernel was found to be best although requires

modification for stripmap operation. Further research should enable its use. Stripmap

phase estimation should currently use eigenvector phase estimation with M=2–6 (M=2

is the commonly used ML estimator).

The minor differences between micronavigation and autofocus have been sum-

marised. In this thesis the term micronavigation is used to describe algorithms pri-

marily relying on echo-redundancy whilst the term autofocus for those relying on im-

age redundancy. The distinctions between spotlight and stripmap autofocus have been

analysed with reference to the difference in blurring models. Explanations for the

stripmap autofocus strategies employed to date are given based on this analysis. An

overview of the major autofocus groups in common use in the SAS community has been

presented summarising the algorithms that embody those groups.





Chapter 8

Spotlight autofocus

The majority of stripmap autofocus algorithms are based on spotlight SAR algorithms.

For this reason it is worthwhile summarising some of the most popular spotlight al-

gorithms. The wavenumber transform for spotlight imaging is derived and close sim-

ilarities between phase difference autofocus (PDA) and the phase gradient autofocus

(PGA) family of algorithms are demonstrated.

8.1 Spotlight autofocus blurring model

Blurring models are essential for understanding the similarities and differences be-

tween spotlight and stripmap autofocus. Path-errors have different effects on the re-

constructed synthetic aperture images for the two imaging modes. Blurring models

help to describe those differences and provide insight into the autofocus problem.

The distorted pulse compressed image, s̃(t, u), is modelled by applying unknown

path perturbations X(u) to the ideal collected data s(t, u). Thus

s̃(t, u) = s(t, u) exp (j2k0X(u)), (8.1)

where the path errors are modelled as phase errors (a narrow-band approximation—

see below). The co-ordinate mapping1 that relates along-track spatial frequency ky to

aperture position u (the wavenumber transform, see Appendix D),

u = y − ky(x− x0)

kx
, (8.2)

is used where the mapping is valid for small path perturbations for the image point x, y.

It is assumed the spotlight imaging system is a narrow-band, narrow-beam system and

the position errors are modelled by phase errors in the data collection process [Hawkins

1996; Jakowatz et al. 1996]. This assumes that the envelope shift in the recorded data

is negligible—a valid assumption in narrow-band SAR. Employing tomographic system

approximations—treating the system as narrow-beam, (ky ≪ kx, kx ≈ 2k), narrow-

1To obtain the notation used elsewhere in this thesis xn should be substituted for (x − x0).
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band, (k ≈ k0), and having a small swath-extent compared to the standoff range,

(y, x≪ x0)—the co-ordinate mapping between ky and u (8.2) becomes2

u ≈ kyx0

2k0
. (8.3)

The spotlight wavenumber transform (8.3) shows that u is related to ky via a

fixed scaling which is space-invariant, i.e., does not change with scene position. One

consequence of the space-invariant coordinate transformation is that the range-Doppler

domain of the final image is closely related to the pulse-compressed echo data [Hawkins

1996, page 159]. Thus for a spotlight synthetic aperture system

s(t, u)|
u=

kyx0
2k0

≡ f(x, ky), (8.4)

where x ≈ ct/2. This implies a tomographic SAR system can be considered as directly

collecting Fourier domain data. This also means that aperture position is equivalent to

spatial frequency. Often this duality of collection causes confusion in the discussions

of autofocus algorithms.

Using the equivalence of domains described by (8.4), the blurring caused by a path

error in s(t, u) can be modelled as

s̃(t, u) = s(t, u) exp (j2k0X(u)),

f̃(x, ky) = f(x, ky) exp

(
j2k0X

(
kyx0

2k0

))
,

(8.5)

where s̃(t, u) is the distorted pulse compressed signal and X(u) and X(kyx0/(2k0))

are equivalent via the spotlight wavenumber transform (8.3). If the phase errors are

rapidly varying, there are large position errors, or the tomographic approximations fail,

the two image domains are not related and the image blurring becomes space variant.

Using the spotlight SAR mapping (8.3), the image blurring is seen to be the con-

volution of the original image with a fixed blurring function. The distorted image is

given by

f̃(x, y) = f(x, y) ⊙y h(y), (8.6)

where ⊙y is a convolution in the y dimension only. The blurring function for tomo-

graphic systems, h(y), is directly related to X(u) and can be written

h(y) = F−1
ky→y

{
exp

(
j2k0X

(
kyx0

2k0

))}∣∣∣∣
u≡

kyx0
2k0

, (8.7)

2Even though the mapping itself is only valid for the image point x, y, the small size of spotlight
patches compared with the offset range allows the mapping approximation shown here to extend over
the entire scene.
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which is space-invariant. The convolution (8.6) is the result of point-spread-invariant

blurring—all points in the image are corrupted by exactly the same function. The

assumption of point-spread-invariant blurring is valid only for the plane-wave approx-

imation of spotlight SAR.

Given that the above approximations are usual for spotlight mode systems and

the convolution (8.6) holds, we wish to estimate f(x, y) and perhaps X(u) from the

distorted raw data f̃(x, y) using autofocus techniques.

8.2 Shear average for spotlight systems

The shear average method was first published in the open literature by Fienup in

his 1989 paper [Fienup 1989] as an adaptation of the shearing interferometer used in

optics. A similar method was shown by Wahl et al. [1991] in a comparison of correlation

and autofocus techniques. The method uses the along-track Fourier transform of the

spotlight image,

f(x, ky) = Fy{f(x, y)}. (8.8)

In plane-wave spotlight mode, this is equivalent to the measured pulse compressed

data. Shear average estimates the phase differences across the aperture via

∆̂φ(ky) = Arg

{∫
f(x, ky)f

∗(x, ky + ∆ky) dx

}
, (8.9)

where the corrupting phase is calculated by summation of the differences via

ϕ̂(ky) = ϕ̂(ky − ∆ky) + ∆̂φ(ky), (8.10)

where ∆ky is usually set to use adjacent along-track frequency bins.

A number of similar algorithms exist where alternate phase estimators are used in

the same fashion, replacing the ML estimator of shear average. Examples of this type of

algorithm are: HOSPA [Nikias et al. 2000], ROPE Snarski [1996], bispectral estimation,

and cumulant methods [Berizzi et al. 1996]. The phase estimators for these algorithms

are summarised in Section 7.6.2. Often these algorithms provide an increased accuracy

at the expense of increased computation.

Shear average for spotlight systems is equivalent to PGA with the windowing and

circular shifting steps neglected. Leaving out those steps causes a decrease in the

signal-to-clutter ratio, lowering algorithm performance [Wahl et al. 1991]. The bene-

fit is efficient operation; by missing the circular shifting and windowing steps, image

formation is not required and a number of Fourier transforms may be avoided. The

algorithm alone is not likely to provide diffraction-limited imagery in typical systems

[Fienup 2001] but provides a useful first-cut autofocus solution.
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8.3 Map-drift autofocus (MD)

Map-drift (MD) is a parametric autofocus technique for estimating quadratic phase

errors. The algorithm operates by correlating sub-aperture images—the intensity (or

amplitude) image from the first half of the spatial Doppler spectrum is correlated with

the equivalent image from the second half3. When a quadratic phase-error exists, the

images will be shifted relative to each other. By measuring the correlation peak-shift

the amount of quadratic phase error can be determined.

The distorted range-Doppler image is given by

f̃(x, ky) = f(x, ky) exp
(
jαk2

y

)
, (8.11)

where f(x, ky) is the undistorted range-Doppler domain image. Note that the collection-

domain representation

s̃(t, u) = s(t, u) exp
(
4jαu2k2

0/x
2
0

)
, (8.12)

is equivalent to (8.11) in a spotlight system (see Section 8.1). The blurred sub-aperture

images are given by

f̃0(x, y) = F−1
ky

{
f(x, ky − kymax/2) exp

(
jαk2

y + αkymax/4
)}
, (8.13)

f̃1(x, y) = F−1
ky

{
f(x, ky + kymax/2) exp

(
jαk2

y + αkymax/4
)}
. (8.14)

The quadratic phase-error α may be estimated by measuring the relative shift in the

images. This is performed by searching for the peak in the cross-correlation of the

images

f01(x, y) =
∣∣∣f̃0(x, y)

∣∣∣ ⋆y

∣∣∣f̃1(x, y)
∣∣∣ , (8.15)

= F−1
ky

{
Fy

{∣∣∣f̃0(x, y)
∣∣∣
}
Conj

{
Fy

{∣∣∣f̃1(x, y)
∣∣∣
}}}

, (8.16)

where Conj {} refers to the conjugation operation.

Once α is estimated, the quadratic error is removed and the algorithm iterated.

For spotlight imagery, the correlation must be of the intensity or magnitude images—a

full complex correlation is not possible because each sub-aperture image occupies a

different part of the Doppler spectrum (and is thus uncorrelated).

The need for iteration in the MD algorithm is because the sub-aperture images,

(f0, f1), are blurred as well as shifted. The accuracy of the shift estimation is directly

related to scene contrast—the higher the scene contrast the better the estimation.

3MD is thus very similar to the image correlation stripmap autofocus methods. In a stripmap setting
the sub-aperture images have different spatial extent but as long as some overlap is present MD can
operate.
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Where there is sub-aperture image blurring, the initial phase-error estimates are poor

because the image contrast is lower. With improving image accuracy, the shift estima-

tion is enhanced. The MD algorithm typically converges in 2–3 iterations using 5% of

the range bins containing the most scene energy [Carrera et al. 1995].

8.4 Multi-aperture MD

Multi-aperture MD (MAMD) is an extension of MD allowing estimation of third and

higher orders of phase-errors. Multi-aperture MD adds the ability to estimate higher-

order phase errors at the expense of increased computation and loss of estimation

accuracy.

The technique begins, as MD, by subdividing the aperture; instead of dividing into

two sub-apertures, multi-aperture MD divides the aperture according to the order of

phase error to be estimated. Intensity images from each of the sub-apertures are formed

and cross-correlated. The peak shifts in the correlation images are then used to estimate

the corrupting phase error. Carrera et al. [1995] outlines a method for improving phase-

estimation performance by also calculating correlations of non-adjacent sub-apertures.

Interestingly, estimation of phase from image shifts is the same problem as esti-

mating the phase from phase derivatives. The peak shift in the correlation image is

proportional to the overall phase gradient (linear phase shift). Thus multi-aperture

MD estimates the average phase gradient over each sub-aperture4. Calloway et al.

[1991] provides a more detailed description of the similarities between MD and phase-

gradient based algorithms and concludes that PGA is better than multi-aperture MD

in the presence of high-order phase errors.

Whilst multi-aperture MD can improve algorithm performance by allowing the

estimation of higher order phase errors, the technique is still parametric. At the outset

of the autofocus, the maximum order of phase error need to be estimated and fixes

the number of sub-apertures used. Moreover, the robustness of the phase estimates is

inversely proportional to the number of sub-apertures. As the number of sub-apertures

increases, the signal-to-noise decreases in each image lowering the correlation peak

and affecting the accuracy of the peak determination. Carrera et al. [1995, page 254]

and Jakowatz et al. [1996, page 250] recommend a maximum of approximately 5 sub-

apertures.

8.5 Phase difference autofocus (PDA)

The phase difference autofocus (PDA) algorithm is a parametric algorithm in the same

vein as MD [Carrera et al. 1995]. The algorithm can be extended to higher order phase-

4The information that MAMD uses is the same as that phase-gradient based algorithms use.
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error estimation in the same way as multi-aperture MD5. The major benefit of PDA is

that it provides similar performance to MD without requiring iteration.

PDA finds the peak in a modified cross-correlation image, f01(x, y), which is cal-

culated as (including the quadratic phase-error (8.11))

f01(x, y) = F−1
ky

{
f̃1(x, ky)f̃

∗

0 (x, ky)
}
, (8.17)

= F−1
ky

{f(x, ky + kymax/2)f
∗(x, ky − kymax/2) exp (j2αkymaxky)}, (8.18)

where f̃0(x, ky) and f̃1(x, ky), the blurred sub-aperture images, are given by (8.13) and

(8.14) respectively6. When a quadratic phase-error exists, the linear phase shift in the

Doppler domain results in an along-track shift in the peak of f01(x, y). The peak-shift

is related to the quadratic error coefficient α by

∆y = 2αkymax . (8.19)

PDA exploits complex correlation of blur-free images. The conjugation of f0(x, ky)

acts to cancel out any phase errors common to both f̃0(x, ky) and f̃1(x, ky). negating

the need to iterate the algorithm. PDA’s complex correlation of demodulated images

can also be used with stripmap image correlation techniques and should improve per-

formance over intensity image correlation.

PDA provides robust autofocus in situations where polynomial, space-invariant

phase errors exist. The PDA algorithm is able to replace MD in all situations and

provides similar levels of performance without the need for iteration.

8.6 Phase gradient autofocus (PGA)

Phase gradient autofocus (PGA) is a technique that first appeared in the open literature

in 1989 with the paper by Eichel et al. [1989]. It is a technique for autofocusing

spotlight SAR imagery that may be described using the plane wave formulation7 (see

Section 8.1). The phase gradient algorithm (PGA) is a particularly successful method

for obtaining a blur-free image estimate from corrupted raw data—it has become the

standard for spotlight mode autofocus. The algorithm is summarised as follows:

5Interestingly, the multi-aperture PDA phase kernel is identical to the ML phase estimator (see
Section 7.6.2) when the number of sub-apertures is equal to the number of along-track spatial-frequency
bins. (In that situation, the correlation of PDA is unnecessary; the phase of the (1 pixel) result gives
the correlation peak shift in the same way as narrow-band correlation estimates time-delay.)

6It is important to note that the sub-aperture range-Doppler domain images ❨f1(x, ky) and ❨f2(x, ky)
are multiplied directly. These images, by definition, are centred on zero Doppler. This ensures the
complex correlation of sub-band images used in PDA is not of sub-aperture images but of demodulated

sub-aperture images. Direct along-track correlation of sub-aperture images fails unless the sub-aperture
regions overlap.

7In this mode the SAR autofocus problem is very similar to the problems encountered in speckle
astronomy [Eichel and Jakowatz 1989; Fienup 1989].
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1. In imitation of the method of shift and add [Bates and Cady 1980], the brightest

points of the image estimate are circularly shifted to the centre of the image.

This removes any unknown linear shifts that may otherwise affect the phase

estimation8. For every value of cross-track x, the most prominent point for all

y in f̃(x, y) is selected (the mth target) and the image shifted in y to the centre

row of a new image,

gm(x, y) = f̃(x, y − ym(x)). (8.20)

2. Along-track windowing is performed to improve the phase-estimation later in the

algorithm. This removes clutter and weak targets which acts as noise in the phase

estimation. The windowed image is given by

g(x, y) = w(y) gm(x, y). (8.21)

where the window function w(y) limits the extent of each prominent point to

a region only a few pixels wide. The windowing step is important in overall

operation of PGA and is discussed in more detail in Section 8.6.2. At this stage,

the shift and add method estimates the point-spread function by summing the

data in the cross-track direction.

3. The along-track Fourier Transform of the windowed image is taken. The range-

Doppler domain of this shifted, windowed image is described by

g(x, ky) = Fy{g(x, y)}. (8.22)

Assuming the cross-track range bins are statistically independent9 and the path-

deviation can be modelled as a constant phase shift for each range bin, the system

may be modelled as [Jakowatz and Wahl 1993],

g(x, ky) = a(x, ky) + N (x, ky),

g(x, ky + ∆ky) = a(x, ky + ∆ky) exp (j∆φ1(ky)) + N (x, ky + ∆ky),

...

g(x, ky + ∆Lky) = a(x, ky + ∆Lky) exp (j∆φL(ky)) + N (x, ky + ∆Lky),

(8.23)

for a given along-track spatial frequency ky, where a(x, ky) are amplitudes and

phases representing the targets, ∆φL(ky) is the phase difference between g(x, ky)

and g(x, ky + ∆Lky), and N (x, ky) are the unknown noise signals. The phases

8Random linear phases (removed by centre shifting) would cause the averaging step of PGA to fail.
These multiplicative phase errors prevent the coherent addition of phase gradients. The problem is
explained using the same argument as for why phases do not coherently average when unknown phase
offsets exist.

9This assumption is important and is borrowed from the speckle imaging assumption that individual
speckles are independent.
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contributed by the targets (the phases of a(x, ky)) are assumed constant with

along-track spatial frequency, ky. Any phase differences are caused by the (phase)

signature target in question (useful for target classification purposes [Jakowatz

et al. 1996]) and additive noise. For PGA to operate, this changing phase in-

formation must be zero mean—any bias or common phase information will be

interpreted as a phase error requiring removal. Note the constant phase offset

contained in the a(x, ky) terms prevent simple averaging of the aperture phases

[Chan and Yeo 1998]. This multiplicative phase constant varies randomly with

range and prevents coherent phase averaging.

4. Phase gradients with respect to ky are calculated and averaged to avoid the

problem noted above. The phase-gradient is calculated via

∆̂φ(x, ky) = Arg {g(x, ky)g
∗(x, ky + ∆ky)}, (8.24)

and the Maximum Likelihood (ML) phase gradient is calculated using10

∆̂φ(ky) = Arg

{∫

x
g(x, ky)g

∗(x, ky + ∆ky) dx

}
. (8.25)

5. The phase gradient estimate is integrated to calculate the distorting phase error

φ̂(ky) =

∫

k′

y

∆̂φ(k′y) dk′y; φ̂(0) ≡ 0. (8.26)

This step is usually calculated as a discrete summation

φ̂[Q] =

Q−1∑

q′=1

∆̂φ[q′]; φ̂[0] ≡ 0, (8.27)

where q is the discrete equivalent of ky.

6. To prevent image shifting and skewing, the linear phase and constant offset phase

(that PGA is unable to estimate) are removed. The phase estimate is also in-

terpolated (upsampled) to provide the same number samples as the image. (The

original has fewer samples due to the initial Fourier transform often operating on

a truncated dataset).

7. The equivalent path error is calculated from the phase error using

X̂(ky) =
φ̂(ky)

2k0
, (8.28)

10A weighted least squares average is possible and is discussed in Section 8.6.3.
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which is then removed from the distorted range-Doppler image via

f̃new(x, ky) = f̃(x, ky) exp
(
−j2k0X̂(ky)

)
. (8.29)

PGA then takes the new image f̃new(x, y) and iterates starting back at the step 1.

The window size is reduced with subsequent iterations depending on the type of scene

used. A summary of window selection strategies is discussed by Wahl et al. [1994a].

Typically PGA converges within 4–5 iterations and provides estimation of high-order

phase errors unable to be estimated using the parametric MD and PDA algorithms.

8.6.1 Centre shifting

PGA’s centre shifting step is an important part of the overall algorithm and perfor-

mance decreases if it is neglected [Wahl et al. 1994a]. Centre shifting consists of taking

the strongest scatterer in a given range-bin and barrel-shifting11 it (in along-track) to

the centre of the image. The resulting image then has all of the strong targets aligned

at y = 0.

Centre shifting in PGA is an imitation of the shift-and-add algorithm [Bates and

Cady 1980] and if considered naively, is performed for the same purpose (that of directly

estimating the point-spread-function via an along-track summation). Instead, the most

important consequences of the centre shifting are in the estimation of the window

width and the removal of random linear phase trends. Selection of the window width

using the shifted image is a straightforward non-coherent summation along the range-

bins and picking the -10 dB point (discussed in the following section). QPGA [Chan

and Yeo 1998] shows modifications to remove centre shifting from the window width

estimation of PGA—although it does employ centre shifting later in the algorithm for

computational savings. Removal of the random linear phase trend (constant phase

gradient term) from each target signature improves phase estimation. Averaging of the

(random) constant phase gradients decreases performance (for the same reason that

phase averaging fails when constant random phases are averaged). Jakowatz et al.

[1996] suggests that this linear phase removal is desirable. Better phase estimation

is possible if the constant phase gradient error is estimated and removed (as in done

in PMA). Phase estimation using the phase-only eigenvector kernel also benefits from

removal of linear phase trends as this prevents unwrapping difficulties later in the

algorithm. If neither the centre shifting or windowing operations are performed, PGA

is identical to the spotlight shear average algorithm.

To summarise, the centre shifting operation of PGA provides a way of simplifying

the window width selection and also giving a convenient visual indication of autofocus

11Performed for computational efficiency and to help alleviate circular convolution effects.
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progress. Circular shifting aids accuracy by improving the averaging of phase gradients.

8.6.2 Windowing

Scene clutter acts as noise in PGA and the accuracy of the PGA algorithm is dependent

on the signal-to-clutter ratio of the image scene [Jakowatz and Wahl 1993]

β =
σ2

a

σ2
n

, (8.30)

where σ2
a and σ2

n are the signal and clutter variances respectively. The windowing

operation of PGA attempts to improve accuracy by maximising β for each prominent

scatterer. This is performed by placing a window around the blurred prominent scat-

terer such that clutter in the same range bin is rejected. Windowing masks the image

with an amplitude function placed around the prominent scatterer. The window usu-

ally chosen for PGA uniformly weights the image inside the window and rejects the

image outside—i.e., a rectangular window.

Windowing has many effects, the most important of which is limiting the order12

of phase error estimated [Warner et al. 2000]. This makes the width of the window

a critical parameter in PGA. In particular, if the width of the window does not fully

encompass the blurring of the scene, PGA will not converge to the correct solution (see

PGA focused images in [Barbarossa and Scaglione 1998]). Conversely, if the width of

the window is too large, unnecessary noise is injected into the estimation also degrading

performance [Jakowatz et al. 1996, page 254]. Warner et al. [2000] presents an in-depth

discussion on the effects of window width on PGA performance. An interesting side-

effect of stripmap autofocus (see Chapter 10) is that the sway-order implications of the

window size are lifted. This however comes at the expense of requiring a complicated

wavenumber transform.

A common method for selecting the window width is to use a non-coherent average

in across-track of the centre shifted image. This average attempts to estimate the

extent of the blurring from the prominent scatterers in the scene. The width of the

non-coherent average is approximately the width of the point-spread-function. The

window width is then calculated based on the -10 dB point of the average [Jakowatz

et al. 1996]. Iteration reduces the amount of blurring, and the window width has a

corresponding reduction. This metric for window width determination is not suitable

for clutter-like images13 (most SAS images) and instead the window width set at the

outset and made progressively smaller (usually by a factor of between 0.5–0.9 each

iteration).

12Note that this is actually caused by a limiting the along-track spatial frequencies of the phase error.
13In clutter images the blurring extent is not evident as the blurring affects only the contrast of the

scene.
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In SAS autofocus scenarios, window width should be chosen based on prior infor-

mation about the amount of phase error present in the image. When PGA follows a

micronavigation algorithm, information about the amount of residual phase distortion

is available from the algorithm (straightforward extensions can retrieve this informa-

tion) [Bellettini and Pinto 2002].

Window width selection is a critical PGA implementation issue that has a large

effect on end performance. This performance impact is more prevalent when using less

accurate phase estimation methods. For SAS usage, the initial window size should be

selected based on prior information about the magnitude of phase errors and progres-

sively reduced with successive iterations—a progressive window [Warner et al. 2000].

8.6.3 Phase estimation

Phase estimation is perhaps the most important part of the PGA algorithm. More

effective phase estimators can ameliorate some of the effects of poor window selection.

The importance of the phase estimation is probably underscored by the large number

of PGA variations and similar autofocus techniques varying only the phase estimator.

Due to its importance in many autofocus algorithms phase estimation is described

separately in Section 7.6.2.

8.7 PGA variants

PGA has a number of variations used to improve accuracy in specific situations or

offering efficiency improvements. A number of PGA’s variations are detailed in this

section.

8.7.1 2-D PGA

Warner et al. [2000] notes that there is nothing preventing the PGA procedure from

being used in situations where non-separable 2-D phase errors occur. All of PGA’s

operations, except the integration of 2-D phase differences to get the 2-D phase error,

are able to be applied. The difficulties in the operation of 2-D PGA are concentrated

in a 2-D phase unwrapping required to replace PGA’s integration. This problem is

identical to 2-D phase unwrapping for interferometry where residues cause unwrapping

difficulties.

8.7.2 FLOS-PGA

Fractional lower order statistics (FLOS)-PGA is a variation of PGA that substitutes a

different phase estimation kernel (the FLOS kernel described in Section 7.6.2, [Tsakalides
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and Nikias 2001]). Performance is improved in environments where the clutter process

is non Gaussian for only a minor increase in computation.

8.7.3 Weighted PGA (WPGA)

WPGA is another variation of PGA that alters the phase estimation kernel [Ye et al.

1999]. In this case the kernel described in Section 62 is used. The phase kernel performs

optimally for any clutter process by estimating the clutter-noise variance. Additionally,

the phase kernel is able to lower the contribution from strong-scattering targets that

would otherwise bias the autofocus result. This method represents the optimum PGA

method for SAR applications.

WPGA relies on a number of spotlight SAR assumptions and the phase estimator

is not currently usable for SAS autofocus. More research is required to extend WPGA

to SAS.

8.7.4 Quality PGA (QPGA)

QPGA is an attempt to perform PGA without iteration [Chan and Yeo 1998]. To

do so it selects a large number of quality targets rather than the strongest target per

range-bin. The quality estimate is based on a technique similar to the noise-power

estimation in WPGA. As in WPGA, the use of a quality of target metric can prevent

biasing caused by strong-scattering extended targets.

The algorithm operates as a single iteration of PGA, except multiple targets per

range-bin are selected, and circular shifting is avoided. The use of a higher-order eigen-

vector phase-estimator combined with using only targets that meet a certain quality

threshold results in autofocus improvement. Both improvements, as in the similar

WPGA, help autofocus performance when the signal-to-clutter ratio is low. Altered

windowing strategies are employed because of the non-iterative nature of QPGA; usu-

ally the window width is chosen based on a prior estimate of the amount of blurring.

QPGA offers a PGA-based autofocus technique suitable for real-time implemen-

tation. Iterative QPGA offers benefits over traditional PGA that approach those of

WPGA. QPGA relies on a number of spotlight SAR assumptions in the calculation of

the target quality and requires modification for stripmap SAS use.

8.7.5 Mosaic PGA (mPGA)

Mosaic PGA (mPGA) [Bonifant 1999; Bonifant et al. 2000] is a PGA variation for

stripmap autofocus. The algorithm takes stripmap imagery and slices it in along-track

to get overlapping image sections that are autofocused individually. The individually

autofocused sub-images are then combined into a fully autofocused image. mPGA

thus avoids the problem caused by space-variance in stripmap imagery by operating
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on space-invariant sub-swathes. Interestingly, mPGA is based on narrow-band and

narrow-beam (traditional spotlight assumptions) but incorporates the along-track tar-

get position. Modifications are required to allow wide-beam, wide-band SAS operation.

8.8 Summary

Spotlight SAR autofocus algorithms often provide inspiration for similar stripmap al-

gorithms and the relationship between the two modes has been explored. The sway

induced blurring in spotlight systems was derived from the stripmap wavenumber trans-

form and under common spotlight approximations shown to be space-invariant—i.e., all

scatterers suffer the same distortion. This is identical to the commonly used spotlight

autofocus blurring model.

MD, MAMD, and PDA, have been described in a common notation and the similar-

ity between the sub-aperture correlation based PDA and the phase gradient based PGA

explored. PDA operates by estimating the phase gradient over an entire sub-aperture

(using correlation) whereas PGA estimates the phase gradient for each along-track

spatial frequency. PDA should always be used in preference to MD as it offers similar

performance with less computation.

A detailed summary of the PGA algorithm has been presented with a discussion

of each of the major components of the algorithm. PGA variants have also been

summarised and their differences highlighted. WPGA should be used in preference to

the other PGA variant algorithms.





Chapter 9

Micronavigation using reverberation based

autofocus

The algorithms described in this chapter estimate the platform path using the recorded

echo data (usually without image reconstruction taking place). The algorithms dis-

cussed require some data redundancy in azimuth, i.e., the SAS must travel somewhat

slower than sampling considerations alone would allow1. With sufficient data redun-

dancy (and combined with a sonar’s on-board inertial navigation system) the navigation

accuracies on a pulse-to-pulse basis are in the sub-millimetre order [Bellettini and Pinto

2002].

This chapter primarily covers three bulk-motion estimation algorithms: the redun-

dant phase centre (RPC) algorithm (the mainstay of multiple-receiver bulk autofocus),

image correlation (an extension of RPC), and shear average (equivalent to RPC for

monostatic SAS systems). A discussion on the relationships between the algorithms

and extensions to the shear average algorithm are presented. Results of the shear aver-

age extensions operating on both simulated and field-collected data are also presented.

The algorithms described in this chapter are best applied to SAS data before other

autofocus techniques as a way of quickly removing the bulk of the image distortion.

9.1 Redundant phase centre (RPC) algorithm (DPC, DPCA)

The redundant phase centre (RPC) algorithm [Sheriff 1992] is used for estimating the

across track sonar sway from the recorded echo data. It is also known as the displaced

phase centre (DPC) algorithm [Groen and Sabel 2002; Raven 1981] and displaced phase

centre antenna (DPCA) [Bellettini and Pinto 2002].

RPC operates by exploiting redundancy in the data obtained by ensuring vernier-

array SAS data is oversampled in azimuth. With the accuracy of RPC being directly

related to the amount of redundancy in the data (oversampling factor), the efficacy

of the algorithm is dependent on the platform speed. RPC provides the mainstay of

vernier-array autofocus for the SAS community with almost all multiple-receiver SAS

1This is the case when considering D/2 sampling. A SAS operating using the D/4 sampling con-
straint discussed in Section 2.6.5 automatically provides enough redundancy for autofocus purposes.
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implementations using an implementation of the algorithm in some form. An in-depth

analysis of RPC and a comparison of the theoretical accuracy versus that required for

SAS imagery is presented by Bellettini and Pinto [2002].

9.1.1 RPC operation

The operation of RPC is as follows:

1. Using the phase centre approximation (see Section 3.2.2) the positions of the

receivers that collect redundant data between pings are calculated. This step

depends on the along-track velocity of the sonar. If suitably aligned hydrophones

do not exist, the data is interpolated in along track to provide aligned pseudo-

hydrophones. Typical hydrophone alignment and phase centre redundancy can

be seen in Figure 9.1.

2. The time-delay differences between the redundant hydrophones (these hydro-

phones are sometimes called the redundant sub-arrays) are calculated by cross-

correlating the hydrophone signals. Unambiguous time-delay estimates are de-

rived using the methods shown in Section 7.6.1.

3. The sonar’s sway and yaw are determined from the time-delay estimates: sway

is estimated using the pulse-to-pulse time-delay common to all redundant pairs,

and yaw is estimated using the gradient of the time-delays.

For typical SAS systems, the yaw estimation accuracy is poor leading to degrada-

tion in the accuracy of sway estimation [Bellettini and Pinto 2002]. This lack of yaw

estimation accuracy is due to the extremely small time-delays yaw causes. To make

sway estimation as accurate as possible, yaw is often better estimated using an on-

board INS where possible [Wang et al. 2001]. Platform surge inaccuracies also cause

sway and yaw estimation difficulties. However, these effects can be avoided by estimat-

ing the surge using a similar cross-correlation technique in the along-track direction

[Shippey et al. 2001]. Simple interpolation schemes are then used to allow RPC by

forming pseudo-redundant-pairs. A typical multiple-receiver system estimates surge

and sway using RPC and uses an INS for estimating yaw.

Array calibration is extremely important when accurate RPC is desired. Any dis-

tortions in the receiver array cause significant estimation error in the algorithm. Array

distortion is straightforward to estimate. Many calibration algorithms exist with the

most promising appearing similar to spotlight SAR autofocus algorithms. For exam-

ple, the algorithm presented in [Douglas et al. 1992] has many similarities to shear

average—it operates by cross-correlating the individual element signals with a refer-

ence element, instead of cross-correlating adjacent elements2. Array calibration is the

2Banks and Griffiths [2002] presents a variation of this algorithm.
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Figure 9.1 Redundant phase centres algorithm geometry. (a) The physical arrangement of an over-
sampled multiple-receiver SAS. (b) The inter-pulse redundant phase centres of a multiple-receiver SAS.
(c) The redundant phase centres allow platform surge, sway, and yaw to be estimated [Bellettini and
Pinto 2002; Shippey et al. 2001].

same problem as single receiver autofocus. With calibration errors, all targets suffer the

same blurring, i.e., the blurring is space invariant. When the blurring is space invari-

ant, spotlight SAR algorithms, such as PGA and spotlight shear average (Chapter 8),

provide accurate sway estimation—the same information required for array distortion

calibration. By using straightforward autofocus algorithms for calibration, slow time

variation in the array characteristics and receiver locations can be estimated. This is

particularly important for arrays subjected to large physical stresses as those caused by

pressure or wave-motion which can alter the shape of the array. Once the receiver array

is calibrated and the data compensated, image blurring is reduced and RPC operates

close to predicted accuracy [Banks and Griffiths 2002].

9.1.2 Directivity

RPC determines sway and yaw estimates based on the assumption of broadside scat-

tering since strongly scattering targets at angles other than broadside cause estimation

bias. The bias is due to a position shift of X(u) appearing as a timing shift in the echo

data of X(u) cos θ, where θ is the angle to target (see Chapter 6). A related problem

occurs even in uniform clutter—because energy comes from all angles not just broad-

side. The sway underestimation error ǫ caused by assuming a narrow-beam geometry
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Figure 9.2 Beam-width problem for RPC. Energy comes from all angles in the beam resulting in a❩ θ3dB/2

−θ3dB/2
a(θ) cos θ dθ−X(u) underestimation of sway. The bias is able to be removed if the beam-width

is estimated. In general, the integration is further biased by strong scattering targets—beam-to-beam
correlation is required to remove this type of bias [Tonard and Brussieux 1997].

is given by

ǫ =

∫ θ3dB/2

−θ3dB/2
a(θ)X(u) cos θ dθ −X(u), (9.1)

where a(θ) is the energy received at a particular angle. Figure 9.2 demonstrates one of

the bias-causing situations. Ideally, RPC would be able to estimate the angle to each

scatterer independently and be able to remove the estimation bias.

When several redundant phase centres exist, the angle to each part of the scene can

be independently determined. The method of correlating beams described by Tonard

and Brussieux [1997] implements a technique based on this principle. The beam corre-

lation method forms a set of beams from the pulse-to-pulse redundant sub-arrays and

correlates these beams instead of the raw echo signals. Estimation accuracy improves

with increasing number of elements in the sub-arrays (a consequence of reducing error

in angle estimation). Beam correlation RPC has similarities3 to the image correla-

tion techniques discussed in the next section but still requires echo-correlation. Range

correlations of the beams provide the sway estimation and beam-to-beam correlations

provide yaw information.

9.2 Image correlation

Other extensions of the RPC algorithm are embodied in image correlation techniques

[Banks and Griffiths 2002; Gough and Miller 2002; Groen and Sabel 2002; Shippey

3This is because a pulse-to-pulse polar image is reconstructed from the redundant section of the
array.
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et al. 2001]. These methods make low resolution images on a pulse-by-pulse basis

(i.e., a multiple-receiver system is still required4) and correlate those images instead

of the raw echo data. Importantly, phase information is usually discarded in these

correlations for the same reasons as in map-drift (see Section 8.3). Similar correlation

methods are used for aberration correction in the ultrasonic imaging field [Karaman

et al. 1995; Trahey and Nock 1992]. The additional benefit of using image correlation

is that no redundancy in data collection is required, i.e., no overlapping phase centres

are required—although if overlapping phase centres exist the algorithm performance

improves.

Redundancy in data collection aids the operation of image correlation algorithms

and avoids some of the problems discussed later in the section. Redundancy must exist

in the image itself if there is no echo redundancy. This image redundancy is evident as

image structure; if the image consists solely of sea-floor clutter, image correlation algo-

rithms fail [Billon and Pinto 1995]. Failure on clutter-only images is also evident in the

sub-aperture correlation autofocus techniques such as map-drift and phase difference

autofocus (see Section 8.3, [Huxtable and Geyer 1993]). Redundancy is essential if

autofocus is to be used, whether in the echo data itself (a reliable source of redundancy

if the receiver arrays overlap), or in the statistical nature of the scene.

A reliance on image redundancy gives the conceptually straightforward image cor-

relation and sub-aperture correlation techniques significant drawbacks. In particular,

when there is no array overlap, image correlation techniques suffer similar drawbacks

to other autofocus techniques. The main drawbacks are5:

Speckle-noise — Speckle-noise is independent in each image so the speckle patterns

do not correlate, raising the correlation noise level. The lack of speckle correlation

makes motion parameter determination more difficult and lowers overall accuracy.

The effects can be reduced by using multi-look images.

Scene contrast — Image correlation techniques rely on intensity variation in the

scene (other than image variation caused by speckle noise). A lack of variation

(low scene contrast) lowers the correlation energy and increases the influence of

noise on parameter estimation. This was also noted by Billon and Pinto [1995]

who suggest an INS may always be needed if navigation is to operate in bland

scenes.

Non-Lambertian scattering — Image correlation requires that the underlying scene

looks the same from different imaging angles. Complicated scatterers can have

wildly varying target strength with varying angle (non-Lambertian scattering).

4The image correlation techniques may be generalised for use with single receiver SAS systems in
a straightforward fashion. This is performed in a similar manner to the operation of sub-aperture
processing in SAR autofocus—images from a series of adjacent pulses are formed and correlated.

5See [Moreira et al. 1997] for a discussion of general sub-aperture correlation autofocus drawbacks.
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In addition, the target peak may shift with angle. Either of these effects cause

false motion estimates.

Shadowing — A strong scattering target partially in shadow of another target appears

for some angles and not others. Image shadowing thus causes difficulties for the

same reasons as non-Lambertian scattering.

Image correlation techniques share other similarities with sub-aperture correla-

tion/aperture division autofocus techniques. Like sub-aperture correlation, image cor-

relation requires magnitude or intensity images to be correlated to ensure high corre-

lation coefficients. Direct correlation of the complex images is prevented by an along-

track wavenumber shift (similar to that seen in SAR interferometry [Gatelli et al. 1994]).

However, the faster phase-based spotlight sub-aperture correlation algorithms (such as

phase difference autofocus (PDA) [Curlander and McDonough 1996]) do allow complex

correlation. Thus it is likely that image correlation could employ similar techniques to

enhance accuracy. Image correlation effectively provides a stripmap equivalent of spot-

light sub-aperture correlation algorithms such as map-drift6. This equivalence allows

image correlation algorithms to be compared with traditional spotlight SAR algorithms

and useful parallels to be drawn.

9.2.1 Cascade algorithm

The cascade autofocus algorithm [Douglas 1993; Douglas and Lee 1993a; Silkaitis et al.

1994] is another image correlation/RPC based autofocus algorithm used for SAS imag-

ing. Originally, the algorithm only estimated sway [Douglas and Lee 1993a], whilst

Silkaitis et al. [1994] demonstrates surge, sway and yaw estimation. The later paper

also notes that large yaw errors can severely affect the rest of the algorithm (RPC also

suffers this problem).

As published, the cascade algorithm is suited to narrow-band systems—the algo-

rithm employs phase-only correlations for estimating sonar parameters. This restric-

tion may be lifted when using the correlation techniques discussed in Section 7.6.1. The

cascade algorithm is identical to the other image correlation algorithms when general

correlation techniques are employed.

9.3 Shear average

Shear average appeared in the SAS literature in 1992 as a technique for estimating sway

in monostatic SAS systems [Johnson 1992] and in a later paper in 1995 [Johnson et al.

6The techniques used in map-drift are not restricted to spotlight autofocus—the correlation can
use the overlapping parts of the image in the same way as image correlation. Map-drift is different
from image correlation only in the method used to map the image shifts to a distorting phase—it uses
spotlight assumptions.
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1995]. The technique was developed independently of the work of Fienup in the SAR

autofocus field [Fienup 1989] but in essence is a stripmap version of the shear averaging

algorithm that he presents. (In a spotlight system the algorithms are equivalent due to

the duality of the image range-Doppler and data collection domains.) The algorithm

is also the single-receiver equivalent of RPC.

Shear average generates path distortion estimates by correlating time-signals from

adjacent pulses. Originally, the correlation used was a phase-only correlation (suffi-

cient for most systems because the pulse-to-pulse sway differences are usually smaller

than λ/2). Phase unwrapping (if the phase is not wildly varying) or the use of non-

coherent shear average extends the method to cases when the distortion is severe (see

Section 9.3.4, [Callow et al. 2001c]). If the scene is statistically homogeneous and the

system is oversampled in along-track, sway motions can readily be estimated using the

correlation estimates [Johnson et al. 1995].

Similar techniques have been used in ultrasonic imaging when estimating near-field

distortions. Other techniques rely on correlating element signal to a reference element

signal instead of correlating adjacent element signals [Douglas et al. 1992]. Reference-

based correlation has been shown to reduce low-order estimation errors [Behar 2002; Kr-

ishnan et al. 1997] but has poor high-order estimation7. However, reference-correlation

combined with element-to-element based estimates provides accuracy for both high-

order and low-order information [Behar 2002]. This type of technique is equivalent to

the phase-closure phase kernels discussed in Section 7.6.2. The techniques tried in the

ultrasonics field require modification to operate with wide-beam SAS systems although

do provide insight into alternate autofocus techniques.

Shear average assumes certain echo statistics to obtain autofocus measures. The

assumption required is that the sea-floor is delta-correlated [Fienup 1989] (i.e., that the

scene is statistically homogeneous) and that the scene contrast is low (so the echoes

themselves are spatially delta-correlated). On clutter images this assumption appears

valid and reasonable autofocus occurs both in simulation and in practice [Pihl et al.

2000; Shippey et al. 1998a]. In the presence of a strong-scattering target, the delta

correlation assumption breaks down8 and the autofocus quality degrades. This degra-

dation is similar to a known problem in spotlight SAR autofocus with the quality

of some parameter estimates decreasing with increasing image contrast [Berizzi et al.

1997; Madsen 1989]. One way of mitigating this problem is to alter the weighting of the

phase estimates to reduce the contribution of the strong targets [Callow et al. 2001b, c];

this is discussed in further detail in Section 9.3.1.

Shear average is the single-receiver equivalent of RPC. If the echo data is sampled

7These techniques are only viable if there is sufficient cross-correlation energy. This is not the case
in a D/2 sampled image of a statistically homogeneous scene.

8Even though the image containing strong-scattering targets is still delta-correlated, the pulse-
compressed image may not be. Shear average requires that the pulse-compressed image show delta-
correlation properties.
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Figure 9.3 Subdividing a single receive element into portions. (a) The physical hardware of the single
receiver SAS. (b) In this framework a single receiver can be shown to be the summation of individual
elements in a multiple-receiver array. The phase centre idea can be used to show redundancy in the
data collection (i.e., from the overlapping receiver section). Shear average correlates the response of
the entire array—both the overlapping and non-overlapping sections—to estimate the across-track shift
between pulses.

more often than D/2 then there is enough redundancy9 for the algorithm to operate.

This echo redundancy is a function of the amount of receiver overlap.

A multiple-receiver sonar with an omni-directional transmitter is equivalent to

a monostatic sonar if all the receiver elements are summed10. A monostatic sonar

may thus be treated as a multiple-receiver sonar that only has access to the sum of

the element signals. This equivalence is illustrated in Figure 9.3. Using the same

phase centres approach used in RPC (see Section 9.1), it is possible to show that when

sampling more often than D/2 some of the equivalent phase centres overlap. In a

single-receiver system the true echo signal is the sum of the equivalent overlapping and

non-overlapping phase centres. The overlapping phase centres provide redundancy for

the algorithm’s operation while the non-overlapping phase centres raise the noise-floor.

As for RPC, the redundant part of the signal allows for navigation. Shear average only

has access to the entire array’s echo signal and is not able to remove the contribution

of the non-overlapping receivers. Shear average is thus unable to estimate sonar yaw,

or use advanced extensions of RPC such as beam or image correlation that employ the

signals from individual elements. This results in some major drawbacks:

Sway underestimation — shear average is a narrow-beam formulation, increasing

9Redundancy exists even in data normally considered under-sampled—however there is not much.
This is solely due to the unusual sampling constraints on SAS systems (see Section 2.6.5).

10The effect of the transmit beam-pattern is neglected but as the transmit beam-pattern of a mono-
static sonar is identical to the receive beam-pattern the effect is straightforward to model.
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beam-widths cause sway to be underestimated. This problem is the same as the

equivalent bias in RPC. In homogeneous clutter, the amount of underestimation

is quantifiable and can be corrected.

Beam directivity — If the majority of the energy in the signal comes from an angle,

θ, then the sway is underestimated (caused by the cos θ factor biasing the sway

estimate (cf. with Chapter 6 and Section 9.1.2)). A bias in the direction of en-

ergy also causes the sway-underestimation-correction described above to fail (the

directivity bias cannot be detected by forming beams as is possible with RPC).

Non-overlapping collection/strong scatterer biasing — shear average is unable

to determine which parts of the signal come from the overlapping receiver sec-

tion and so must correlate the entire signal. In homogeneous clutter, the non-

overlapping receiver section does not correlate and acts to increase the noise

floor. When significant scene variation exists—such as caused by a strong scat-

tering target—the non-overlapping receiver sections have significant correlation.

The along-track displacement in the non-overlapping sections of the array com-

bined with hyperbolic range-migration causes an echo time-shift from each array

section. The effect appears as a sway motion. This time-shift is only weakly

related to platform sway and is largely a function of along-track displacement

between pulses. Motion estimates are biased by strong scattering targets and

scene intensity variation. The biasing may be reduced by reducing the contribu-

tion strong scattering targets have on the result using weighted correlation (see

Section 9.3.1).

System yaw — shear average cannot determine the difference between a system yaw

and a sway. A constant yaw leads to the estimation of a linear sway. When the

yaw varies in more complicated fashion, incorrect sways are estimated (the sway

estimated is the integral of the yaw). This effect causes the major limitation

in autofocusing field-collected data using shear average. Few systems collect

data without any system yaw and even though it causes little image blurring; it

prevents accurate sway estimation.

Aside from the drawbacks mentioned above, the shear average technique, like RPC,

is able to focus both propagation errors and tow-fish position estimation based errors.

The algorithm works efficiently (especially the phase only version) and is particularly

suited for use as a bulk motion estimator of use before other, often processing-intensive,

autofocus is employed [Fortune et al. 2001b]. Additionally, because only adjacent pulses

are stored and correlated, the algorithm is suited to real-time operation.
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9.3.1 Amplitude weighting

Shear average estimates are biased when the target scene contains strong-scattering

reflectors. The cause of the biasing is two-fold: beam-directivity causes sway underesti-

mation, and the non-overlapping receiver section causes quadratic bias. The first source

of biasing results since shear average assumes the majority of the signal energy comes

from broadside. A cosine θ relation between sway and signal timing shift causes bias

when targets are not at broadside. The second bias is from non-overlapping receivers

contributing to the estimate if strong-scattering targets cause scene correlation. Scene-

correlation is mistakenly detected in shear average algorithms as a path-deviation; its

effect is to straighten the range curvature of a strong-scattering target leading to hy-

perbolic biasing in the region of that target. The biasing has a detrimental effect on

autofocus performance, causing residual blurring.

Choosing a region of sea-floor without targets of interest (no strong-scattering

targets) is one method of reducing the bias problem in autofocus situations [Shippey

et al. 1998a]. A more sophisticated method is to weight differing sections of sea-floor

to reduce the contribution from strong scattering targets. One possibility is to ignore

the strong-targets altogether; this is normally done using an additional weighting in

the summation described by (7.23). When this weighting is included, the shear average

estimator is given by

t̂0 =
1

ω0
Arg





N−1∑
n=0

β[n] p0[n]p∗1[n]

N−1∑
n=0

β[n]




, (9.2)

where β[n] is a weighting function to reduce the effect of noise and strong-scattering

targets.

Originally the weighting, β[n], was chosen to be 1, to give the maximum likelihood

(ML) estimator [Johnson et al. 1995]. This has the effect of putting increased weighting

on strong-scattering targets—those targets that suffer the least from additive noise but

cause biasing. Giving a large weighting to the targets which cause bias is undesirable.

Using the prior information that strong-scattering targets skew the estimation and

weak targets suffer from additive noise, a weighting of

β[n] =
1

α+ |p0[n]p∗1[n]| , (9.3)

is chosen where the α parameter is selected so that the peak weighting is well above

the noise floor. The idea behind a weighting of this form is that the contributions from

strong-scattering targets are reduced and that noise affected targets are suppressed.

This can be looked at as weighting the estimator so that there is a high probability
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Figure 9.4 Various amplitude weightings chosen for shear average phase estimation. Graph shows
weighting placed on a target of cross-correlation intensity |p[n]|2—this is equivalent to β[n] |p[n]|2. (a)
Maximum Likelihood (ML) estimator [Johnson et al. 1995]. (b) Suppresses noise (low intensity data)
via (9.3). (c) Remove the effect of large targets via (9.4). (d) Weight all targets evenly via (9.5)

the clutter used for the estimation is delta-correlated. The weighting chosen is but

one of many possible and methods using the local image statistics for a bias-reduction

weighting may prove more worthwhile. Examples of other weightings tried are:

β[n] =
1

α+ |p0[n]p∗1[n]|2
, (9.4)

[Callow et al. 2001c] which attempts to remove the effect of strong-scattering targets

altogether, and

β[n] =
1

|p0[n]p∗1[n]| , (9.5)

which weights the contribution of all targets equally. The weighting (9.4) was found to

give the best results on field-collected data.

Ideally, the weightings would be used in the reconstructed image domain with

data mapped through an inverse reconstruction technique11 before using autofocus.

The benefit in the approach would be to further localise the blurring-causing strong-

11It is possible to derive versions of the common image reconstruction algorithms that have the
ability to generate raw data from a given reconstructed image.
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scatterers but at the cost of increased processing and the loss of the ability to use simple

phase estimation. Shear average is often used for bulk motion compensation (prior

to other autofocus) and the added accuracy is not worth the computational burden.

However, using a weighting in shear average when operating on pulse-compressed data

provides a significant performance improvement with negligible computational cost.

9.3.2 Shear average Results

This section provides results from the operation of the modified shear averagealgorithm

on simulated and field collected imagery.

Simulated imagery

Simulated sonar data was generated with background clutter modelled as many point

targets. Strong targets and a regular extended target were then added to the clutter

background giving a simulation image similar to some of the real data obtained with

the KiwiSAS-II sonar. KiwiSAS-II sonar parameters were used in the simulation (see

Appendix A). Additive white Gaussian noise was added to the simulated echo data

at 30 dB lower than the average clutter signal. Path distortion was included as a

timing-error, with the distortion used shown in Figure 9.5(b). The path distortion

was generated using filtered white Gaussian noise with the amplitude and bandwidth

chosen to match the path distortions observed in field-collected data.

Figures 9.5(a) and 9.5(c) show the ideal pulse-compressed and reconstructed im-

ages and the path distortion used for testing is shown in Figure 9.5(b). Figure 9.5(d)

shows the reconstructed imagery with uncompensated path-deviations. Severe image

distortion is apparent in the images as smearing in the along-track direction.

Smearing is also apparent in the range direction, this is due to the low Q of the

system in question (Q ≈ 1.5). The range smearing is caused by motion errors altering

the along-track Doppler spectrum. The Doppler information is used to determine the

range shift necessary to focus a target in the reconstruction. When distorted incorrect

range shifts are used causing range smearing. Further description of the cause of the

range smearing is provided in [Hawkins 1996] and in [Sutton et al. 2002].

After autofocusing using the original shear average, the resulting image,

Figure 9.5(e), is also distorted. Although reduced with respect to Figure 9.5(d), the

distortion obliterates scene detail. The poor autofocus is due to the biasing effect

of large targets. Once the new amplitude weighting (9.4) is included in the shear

average, autofocus performs better. Figure 9.5(f) shows the improvement in autofocus

performance after the biasing by large targets is reduced. Residual blurring is evident

and some of the targets locations are displaced. Poor autofocus performance is expected

near the edges of the scene.
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Figure 9.5 Operation of shear average on simulated data. (a) Raw pulse-compressed data with no
distortion added. (b) Sway distortion added to the raw sonar data (a) as a timing error. (c) Ideal
reconstructed image. (d) Reconstructed image with across-track path distortion shown in (b) (no
autofocus). (e) Reconstructed image after autofocus using Johnson95 shear average [Johnson et al.
1995]. (f) Reconstructed image after autofocus using shear average with amplitude weighting of (9.4).
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Field-collected data

Field-collected data was obtained in Sydney Harbour during July 2001 using the

KiwiSAS-II sonar. The data presented is wide-band, low-Q data (bandwidth = 20 kHz

and f0 = 30 kHz) with a receive aperture of D = 0.33 m giving a null-to-null beam-

width of about 20◦. Along-track sampling is at approximately D/3 corresponding to

an along-track velocity of 1.4 ms−1.

Figure 9.6 shows the imaged scene without any autofocus applied. Two cross-talk

bands are apparent in the image, the first at x= 0.5 m from acoustic cross-talk and

another at x ≈ 0 m from electronic cross-talk. The image is a low-grazing angle image

with the sonar flying approximately 1.5 m above a compacted sand sea-floor (apparent

from the first-bottom bounce). Note the strong-scattering, extended sonar calibration

rail used in the experiment evident at y = 10 m. The rail consists of a number of small

hydrophones spaced at 1m intervals [Ferguson and Cleary 1999] these should appear as

small reflectors spaced 1 m apart. The other targets in the scene are unknown. Also of

note in the image is a pulse-compression artefact (from circular convolution in range)

apparent at 51 m12.

Figure 9.7 demonstrates the improvement in the final image once shear average aut-

ofocus has been applied. The scene contains strong-scattering targets and the weighting

from (9.4) has been used. The autofocused image is much sharper over the region y

= 5–15 m and has a resolution 3–4 times better than before autofocus. Less dramatic

sharpening is seen over the lower half of the image y < -5 m and slight degradation

occurs at approximately y = 0m. Timing-error compensation (without slant-range cor-

rection) has been used and this is apparent in the movement of the cross-talk bands.

The uneven performance (and better performance over the strong-scattering targets)

is attributed to system yaw. The shear average method interprets yaw (incorrectly) as

sway. The removal of this incorrect sway causes residual biasing.

Results when using the Johnson95 shear average weighting are similar to those in

Figure 9.5(e) and are significantly worse than those illustrated here. This is due to the

biasing caused by the strong-scattering reflectors apparent in the image.

The data presented in this section was collected with the assistance of the Aus-

tralian Defence Science Technology Organisation (DSTO).

9.3.3 Multi-band estimation

Multi-band shear averaging is a way of reducing the problem of phase unwrapping and

ambiguity in shear average autofocus. With the current incarnation of the KiwiSAS

12This artefact is visible because side-lobes of the chirp-signal correlation (autocorrelation side-
lobes) have been circularly wrapped during Fourier domain correlation. The artefact is also elevated in
strength because of TVG applied to the image. Its appearance could be avoided by using guard bands
during Fourier correlation or the using time-domain correlation.
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Figure 9.6 Reconstructed Sydney Harbour data before autofocus.

simultaneous high-frequency and low-frequency scene imagery is available. The advan-

tage this gives is the ability to initially phase unwrap using low-frequency data. This

reduces the problem with 2π ambiguities as the carrier phase is much lower. Following

the first step, high-frequency data is used for shear average path-deviation estimates.

There are a number of advantages of using the high-frequency-band data for auto-

focus. Once ambiguities have been removed using the low-frequency data, shear average

autofocus can attain more accurate results due to the shorter carrier wavelength. The

Cramér-Rao lower bound on the estimator variance is given in (7.24),

CRLB =
1

ω0

1√
Bcτc

√
1

SNR
+

1

2SNR2 , (9.6)

where SNR is the clutter to noise ratio13. So in ideal conditions, higher frequencies

give better autofocus. The improvement for the KiwiSAS-III is a factor of three. In the

high-frequency-band the raw echo data also better fits the delta-correlated model. This

is because the sonar beam is narrower so the biasing effect of the targets is reduced.

13For the KiwiSAS-II, blur-free imagery requires a clutter-to-noise ratio of >40 dB. Ratios of this
order for effective clutter -to-noise levels are very challenging.
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Figure 9.7 Sydney Harbour data after shear average autofocus using weighting of (9.4)
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Figure 9.8 Operation of multi-band shear average on simulated data of Figure 9.5. (a) Estimated
sonar sway using 30 kHz and 100 kHz shear average separately. Note the large error in the 100 kHz result
caused by incorrect phase unwrapping in the ambiguous phase-only estimate. (b) Estimated wobble
with 30 kHz shear average and the combined 30k/100 kHz estimate. The 100 kHz imagery allows much
more precise sway estimates when the bulk sway is estimated using lower frequency data.
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CNR SA-J95 SA-W SA-NW Non-coherent

No noise 1.3 0.50 0.17 0.019
30 dB 1.3 0.20 0.16 0.019
15 dB 0.58 0.39 0.17 0.019
0 dB 0.70 2.7 1.6 0.031

Table 9.1 The RMS error (in metres) in bulk sway estimation of autofocus methods at various clutter
to noise ratios (CNR). The simulated scene consisted entirely of uniform clutter and additive white
Gaussian noise. Note the usual phase unwrapping step in the phase estimators has been removed.
SA-J95, Johnson95 shear average algorithm with original weighting. SA-W, shear average algorithm
with the weighting of (9.4). SA-NW, shear average algorithm with no weighting applied. Non-coherent,
algorithm proposed in Section 9.3.4.

9.3.4 Non-coherent estimation

In the absence of INS data, it is possible to have gross un-corrected path-deviations

in the sonar image. Severe blurring occurs when gross uncorrected path-deviation

exists; in some cases completely obscuring scene detail. As a result, a fast algorithm

for the removal of gross distortion is required. In addition, many other autofocus

algorithms, such as statistical autofocus [Fortune et al. 2001a] and phase matching

autofocus (PMA) [Gough et al. 2000a], require less computation when starting close to

the final solution. Non-coherent autofocus provides a sound starting estimate for the

gross path-deviations at little computational cost.

Non-coherent autofocus operates by correlating adjacent pulse-compressed sonar

pulses. Non-coherent autofocus then picks the sub-pixel shift in the correlation-peak

without using the phase information. Large path-deviations can now be considered

without phase-unwrapping (see Section 7.6.1). This makes noncoherent autofocus ideal

for removing bulk-motion errors from data as a first processing step.

One added benefit of using noncoherent autofocusing is that the correlation length

is extended. This allows path-deviation estimation to work when cross-correlating

sonar pulses spaced at more than D/2 apart (where D is the extent of the receive

aperture). This provides means of autofocusing under-sampled synthetic apertures.

Surprisingly, it is precisely the biasing effect of strong targets, covered in Section 9.3.1,

that allows this advantage. These targets are visible for many pulses and they provide

information on gross path-deviations. Multiple noncoherent estimates for differing

separations can increase performance (using the same principles as phase closure to

improve performance—see Section 7.6.2).

Table 9.1 shows the performance of the noncoherent autofocus against that of other

shear average based algorithms. For this simulation additive white gaussian noise was

added to a uniform clutter scene. The noise was added at clutter-to-noise ratios of

0 dB, 15 dB, and 30 dB. The values recorded in the table are the root mean squared

(RMS) errors of the estimates versus the injected path-deviation (in metres).
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The results indicate that non-coherent autofocus outperforms phase-based shear

average algorithms in estimating gross path-deviation. The poor performance of the

phase methods is due to the lack of phase unwrapping and the resultant estimator

ambiguity. The phase techniques provide much better accuracy when used in conjunc-

tion with non-coherent techniques or if phase unwrapping is applied. Phase techniques

with appropriate unwrapping are better than non-coherent techniques by the system

Q-factor—e.g., phase autofocus of the KiwiSAS-III 100 kHz imagery is 6-10 times more

accurate than non-coherent autofocus. For comparison purposes the phase method

CRLB at a CNR of 30 dB is 0.0013 and at 0 dB is 0.0078; amplitude CRLBs are 0.0072

and 0.041 for the same CNRs. It can thus be seen that in the presence of gross path

deviation the non-coherent estimation runs close to its CRLB whereas the ambiguity in

position caused by a lack of successful phase unwrapping severely degrades traditional,

phase-based, autofocus performance.

9.4 Summary

Inertial navigation systems are not accurate enough to allow SAS imaging alone, and

micronavigation techniques are a method of supplementing INS accuracy using the

received data. Typically these techniques rely on exploiting redundancy in the echo

data (often using echo-correlation).

The commonly used RPC echo-correlation algorithm has been summarised and

linked to related image correlation and shear average techniques. Beam correlation

and image correlation provide extensions of RPC with improved ability to operate

on directive data. Image correlation also allows operation without requiring receiver

overlap and so can operate with D/2 sampled data. The autofocus implications of

non-redundant collection on image correlation have been explored and were found to

be equivalent to those affecting traditional autofocus algorithms. Image correlation

algorithms provide a common ground between autofocus relying on echo-correlation

and those relying on scene redundancy.

Single receiver shear average was discussed and modifications allowing operation

on field-collected data in the presence of large path motions presented. Other shear

average extensions take advantage of the simultaneous dual frequency capability of the

KiwiSAS-III and it large bandwidth to remove phase wrapping ambiguities. Both of

these techniques enhance the accuracy of shear average. Experimental results from

using the modified shear average algorithm on both simulated and field-collected data

have been included. From these results it is apparent that shear average alone is not

enough to provide diffraction-limited imagery in the presence of motion errors. Similar

results were reported for spotlight SAR operation [Fienup 2001; Wahl et al. 1991]. This

and its computational efficiency mean the shear average algorithm is best suited to a

“first-cut” or bulk autofocus solution prior to other means of autofocus.
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Stripmap autofocus

This chapter outlines procedures for implementing phase gradient based stripmap auto-

focus. Initially, the stripmap blurring model and the failure of spotlight algorithms are

discussed. The wavenumber transform used in the stripmap blurring model is consid-

ered and the approximations inherent in its operation discussed. Summaries of tradi-

tional stripmap autofocus techniques are presented and comments made regarding their

use in SAS autofocus. A new algorithm, stripmap phase gradient autofocus (SPGA),

is presented and traditional algorithms are shown to be special cases of SPGA. The

salient operations of SPGA are discussed in detail from a SAS autofocus perspective.

Analysis is provided for improving the use of the wavenumber transform and investi-

gating autofocus difficulties such as aperture undersampling and range offsets. Finally,

results of using SPGA and various traditional autofocus techniques on simulated and

field-collected data are presented.

10.1 Stripmap blurring model

The model derived in this section describes the blurring of a localised section of a

stripmap image. Modelling image blurring in stripmap systems is more difficult than in

similar spotlight systems. The convolutional nature of spotlight imagery no longer holds

and expressions for blurring become complicated. Range-variance and the along-track

position of targets must both be considered when modelling stripmap SAS blurring.

The along-track sonar position, u, and the 2-D spatial-frequency variables for image

point at position (xn, yn) are related by the stripmap wavenumber transform (see

Appendix D)

u = yn − kyxn

kx
, (10.1)

ω =
c

2

√
k2

x + k2
y, (10.2)

These equations relate a given point in the reconstructed image to the pulse compressed
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raw data for that point via

Sn(ω, u) = fn(kx, ky)|kx=
√

4k2
−k2

y,ky=
kx(yn−u)

xn

, (10.3)

which has an inverse mapping of

fn(kx, ky) = Sn(ω, u)|
ω= c

2

√
k2

x+k2
y,u=yn−

kyxn
kx

, (10.4)

where fn(x, y) is the image at point xn, yn and Sn(ω, u) is the Fourier transform of the

pulse compressed data corresponding to that point.

The relationships above are equivalent to the coordinate transforms used by the

wavenumber algorithm (see Chapter 5) and hold within the approximations used for

that algorithm so long as the target patch is a single point. The analysis can be

extended to a small patch around the point in question by assuming that the position

offsets are large compared to the patch size and that the receiver is in the far field

of the patch. Note that these assumptions resemble those used in spotlight autofocus

but apply equally well to the small region around a single point in a stripmap image

as long as the patch is small. The technique is very similar to digital spotlighting

reconstruction methods.

The mapping between the small image patch and pulse compressed data is used

to derive the effect of sway on individual pieces of the reconstructed image. The wide-

beam, stripmap model of sway X(u) for the image point at an angle θ to broadside

(see Chapter 6) is given by

S̃(ω, u) ≈ S(ω, u) exp (j2kX(u) cos θ). (10.5)

The geometrical properties of the stripmap wavenumber transform (called the wavenum-

ber transform for the remainder of the thesis) are invoked to describe the blurring of

individual sections of the reconstructed image via (10.5). Mapping the blurred pulse-

compressed data for a small image section S̃n(ω, u) through the wavenumber transform

and substituting

kx = 2k cos θ, (10.6)

allows the blurring to be expressed as

f̃n(kx, ky) ≈ fn(kx, ky) exp

(
jkxX

(
yn − kyxn

kx

))
. (10.7)

Note that the wavenumber transform, and thus the blurring model, is approximate

when sway exists. This is because the stationary phase point of the signal is altered by

the sway. Section 10.1.1 discusses this phenomenon in more detail.

The implication of the blurring model (10.7) is that for an image patch at a given
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location, (xn, yn) it is possible to calculate target blurring given a path distortion X(u).

Conversely, given the blurring, it is then possible to estimate a path that caused that

blurring.

10.1.1 Wavenumber transform and the small sway approximation

The true blurring model for phase distortions is more complicated than (10.7) implies.

The derivation of the blurring model assumes that the phase gradient caused by the

distortion is small—so that the stationary phase model1 can be used to derive the

wavenumber transform. Failure of the above blurring model is particularly evident in

stripmap systems. This can be seen, for example, when the sway consists of a linear

crabbing (i.e., a linearly increasing sway): the measured along-track spectrum is shifted

by a constant amount (see Chapter 6) and the image skews.

The blurring model limitations are uncovered by considering the interaction of

sway and the measured along-track spatial frequency. The measured along-track spatial

frequency, k′y, is a function of both the true along-track spatial frequency, ky, and the

sway, X(u). Shifts of the measured along-track spatial Doppler spectrum are caused

by sway-induced phase gradients. When significant sway exists, these spectral shifts

cause a failure in the approximations used in deriving (10.7). The accuracy of the blur

modelling is degraded in such conditions.

The error caused by frequency shifting can be corrected with better modelling. The

sway-induced difference between Sn(ω, u) and S̃n(ω, u) is a phase modulation term

exp (jkxX(u)).

In this case, the instantaneous frequency shift ∆ky in the blurred pulse-compressed

image, S̃n(ω, u), is given by

∆ku = ∆ky =
d

du
Arg {exp (jkxX(u))} (10.8)

=
d

du
(kxX(u)), (10.9)

where d/( du)(kxX(u)) is the sway-induced phase-derivative measured as a function of

u. The measured instantaneous along-track spatial frequencies can now be expressed

as the sum of the original instantaneous spatial frequencies and those caused by sway

ky
′ = ky + ∆ky. (10.10)

This expression combined with the traditional wavenumber transform accurately pre-

dicts the shifting of targets under a linear sway. Thus it can be shown that a linear

1Note that the approximation also affects geometry based derivations.
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sway of X(u) = γu results in an along-track position shift of

∆y =
∆kyxn

kx
(10.11)

= γxn. (10.12)

This is the same expression for position-shift derived using different methods [Callow

et al. 2002a]. Higher order phase variations cause parts of the target to appear at

different along-track positions—the familiar image blurring to be removed via autofocus

processing.

For autofocus the inverse model is more interesting:

ky = k′y − ∆ky. (10.13)

For small ∆ky this can be used to estimate the true spectrum from the distorted

measurements. This is described further in Section 10.3.6.

The failure of the stationary phase approximation with large phase gradients leads

to some of the major difficulties of stripmap autofocus. In particular, targets imaged

with a system undergoing a linear sway appear at incorrect along-track positions. Bet-

ter modelling of the blurring process allows more accurate phase-error removal by using

an improved wavenumber transform (i.e., phase-gradient estimates are translated into

sway distortions more accurately).

10.1.2 Wide-band vs narrow-band blurring

Much of the SAS and SAR autofocus literature considers the narrow-band blurring

appropriate for high-Q systems. This treatment makes the assumption that the image

blurring is contained in 1-D, i.e., blurring only occurs in the along-track direction.

Blurring in wide-band (low-Q) systems is 2-D, causing some of the traditional

autofocus assumptions to break down. Despite this, the 2-D blurring encountered in

wide-band systems is not a limiting factor in autofocus design. Bandwidth subdivision

can be applied to simplify the problem to multiple narrow-band 1-D autofocus problems

[Chevillon et al. 1998].

A better method of avoiding problems caused by 2-D blurring is simply to con-

sider the effect during algorithm development. The unified stripmap PGA (SPGA)

framework discussed later in the chapter outlines methods for accounting for the 2-D

blurring. Importantly, the last iterations of autofocus algorithms only need to remove

small distortions2. When the distorting sway is small compared to the across-track

resolution, wide-band blurring can be treated as narrow-band using the quasi narrow-

band formulation. This condition is always true for near-focused imagery since blur-free

2Assuming algorithm convergence.
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imagery requires X(u) < λ/16, whereas λ < δx and thus the sway is much less than

the resolution (X(u) ≪ δx). Therefore, the important final iterations of autofocus

algorithms only need account for narrow-band, 1-D blurring.

To summarise, the impact of neglecting the wide-band nature of the autofocus

problem is not severe. However, autofocus performance is degraded in the initial iter-

ations. This slows algorithm convergence. The slower convergence does not affect the

final autofocus result except to increase computation.

10.1.3 Wide-beam vs narrow-beam blurring

Wide-beam systems use longer apertures than narrow-beam systems, making the SAS

navigation constraints more stringent. Additionally, wide-beam systems are more likely

to suffer from the narrow-beam timing-error approximations often made in autofocus

algorithms. These differences are enough to alter autofocus performance and should

be considered in autofocus algorithm design.

The narrow-beam approximation is used in most previous autofocus algorithms,

such as those outlined by Hawkins [1996], Chevillon et al. [1998], and Pat [2000].

It is a good approximation when considering past SAS systems with beam-widths

narrower than 10◦. The approximation is valid for both the KiwiSAS-II and KiwiSAS-

III sonars, and also the rail-based SAS described by Chevillon et al. [1998]. However,

the approximation is inappropriate for newer SAS systems, such as those proposed by

Keeter [2001] and Hagen et al. [2001]. Wide-beam autofocus techniques are needed for

wide-beam sonars.

Designing autofocus algorithms for wide-beam systems requires replacement of the

timing-error approximation. The timing-error approximation is covered in detail in

Section 6.3. Summarising the ideas of that section, the differences in blurring model

can be described by making the narrow-beam approximations cos θ ≈ 1, and kx ≈ 2k

in (10.5). Thus the narrow-beam blurring model is given by

S̃(ω, u) ≈ S(ω, u) exp (j2kX(u)). (10.14)

Note that medium fluctuations should not be modelled as position errors via (10.14)

or via (10.5).

Wide-beam blurring has two effects on autofocus: algorithms must account for

the altered phase response when calculating the path motion, and secondly motion

compensation must account for the extra beam-width. The former is straightforward if

the wide-beam blurring model (10.5) is used instead of (10.14). Motion compensation

appropriate for wide-beam systems is discussed in Chapter 6.

Attempting narrow-beam autofocus on wide-beam data results in a performance

degradation. Algorithms using narrow-beam modelling require more autofocus itera-
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tions to converge. Wide-beam modelling in contrast is more accurate and requires little

extra computation; it should always be used when autofocusing wide-beam data.

10.1.4 The failure of the spotlight blurring model for stripmap systems (PGA

failure)

The spotlight blurring model (as used by the algorithms in the previous chapter and dis-

cussed in Section 8.1) is unable to describe the blurring observed in stripmap systems.

The model failure prevents the unaltered use of spotlight autofocus algorithms. This

section demonstrates the model failure and the inability of spotlight PGA to resolve

stripmap path errors.

The spotlight wavenumber transform is obtained from the stripmap wavenumber

transform (10.1) using the approximations yn ≈ 0, kx ≈ 2k0 (see Section 8.1), this is

summarised as

u = yn − kyxn

kx
, (10.15)

≈ −kyx0

2k0
. (10.16)

The most important of these approximations is that yn ≈ 0 [Bonifant 1999]. The

neglected along-track target offsets yn change the scale and shift between aperture

position u and spatial frequency ky into a simple scaling. In stripmap systems, the

neglected term is responsible for the different blurring at different along-track positions

since each target sees a shifted sway (the sway relative to its along-track position yn).

The other major spotlight approximation (range-invariant blurring) neglects the varied

scaling between along-track spatial frequency and aperture position—i.e., it fails to

account for targets at longer range having larger aperture coverage (slower azimuth-

chirp rates [Thompson et al. 1999]). These approximations are important if large swath

widths are to be autofocused. Traditional PCA is designed to operate under both of

the approximations mentioned. Further narrow-band and narrow-beam approximations

are also made but have a relatively minor effect (the effects of these are discussed in

Sections 10.1.2 and 10.1.3).

The effect of stripmap blurring is demonstrated in Figures 10.1(a) and 10.1(b).

Figure 10.1(a) shows a reconstructed stripmap image suffering motion blurring. Note

that the blurring of each target is different—i.e., the blurring is space-variant. In

particular, the blurring at longer range is more severe. This is caused by the varying

scale between aperture position and spatial frequency—targets at further range “see”

a longer aperture so the blurring order is higher for those targets than targets at

short range (a longer aperture has more cycles of sway than a shorter aperture). To

demonstrate the failure of spotlight autofocus algorithms, Figure 10.1(b) overlays the

PGA derived sway against spatial frequency for each of the targets in the image. Note
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that each target shows a different sway estimate. The range redundancy required

for PGA operation disappears since the mapping between spatial frequency and the

injected sway is no longer a simple scaling. PGA thus fails to provide reasonable sway

estimates for stripmap systems.

10.1.5 Phase curvature autofocus (PCA) blurring model

The stripmap PCA blurring model [Hawkins 1996, pp 165–168] is equivalent to using the

spotlight wavenumber transform and accounting for the yn term and the range variance

in blurring. Substituting narrow-band, narrow-beam approximations into (10.1) leads

to the blurring model

u = yn − kyxn

kx
, (10.17)

≈ yn − kyxn

2k0
. (10.18)

The PCA model, like the spotlight model, assumes that path distortions can be detected

as phase terms in the spatial frequency domain. Instead of using the wavenumber trans-

form directly, PCA chirps the image in azimuth (using the chirp rate xn/(2k0)); this

spreads spatial frequency information to the extent of the original aperture coverage.

The azimuth-chirping operation is described by

fc(x, y) = f(x, y) ⊙y exp
(
−j2k0

(√
x2 + y2 − x

))
, (10.19)

and can be seen to be a narrow-band approximation to inverse reconstruction (see

Section 10.2.2). The PCA blurring model then assumes that sway motions are apparent

as time shifts to the azimuth-chirped image (10.19), i.e., [Hawkins 1996, page 166]

f̃c(x, y)narrow-band = fc(x, y) exp (j2k0X(y)). (10.20)

The wide-band version of (10.20) is given by [Hawkins 1996, page 171]

f̃c(x, y)wide-band = fc(x, y) ⊙x δ(x −X(y)). (10.21)

This implies sway errors can be detected as a time shift in the azimuth-chirped image.

Failure of the PCA blurring model

The wide-band PCA blurring model of (10.21) has flaws when used for autofocus. Most

importantly, the narrow-beam approximations are severe, causing the model to fail.

The assumption that the azimuth-chirped image is time shifted by sway is invalid

for most SAS systems. Instead, the pulse-compressed data is time shifted by the sway

(under the timing-error approximation). Moreover, since the azimuth-chirped image is
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Figure 10.1 Spotlight blurring model breakdown for stripmap autofocus. (a) Blurred stripmap
image. Note how the blurring is different for targets at different along-track and range positions.
Spotlight autofocus is designed to treat space-invariant blurring rather than the space-variant blurring
seen here. (b) Overlay of point response sways. The phase error versus spatial frequency is different
for each target. The mapping between aperture position u and spatial frequency is no-longer a simple
scaling and range redundancy disappears. Without redundancy in range (as occurs with stripmap
data) spotlight autofocus procedures fail.
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generated from the pulse-compressed image via the interpolation of the range-Doppler

algorithm3 the blurring models are quite different. The PCA blurring model neglects

the effect of the interpolation. In addition, sway causes frequency shifting in the pulse-

compressed data affecting the interpolation4. This shifting is also neglected in the PCA

blurring model. The wide-beam, wide-band model discussed in Section 10.1 avoids the

approximations of the PCA blurring model and provides a better description of the

blurring process.

The problems with the PCA blurring model are highlighted by simulated imagery

from a system corresponding to the KiwiSAS-II sonar. A series of point scatter-

ing objects was simulated and corrupted with the sway depicted in Figure 10.2(a).

Figure 10.2(b) is the azimuth-chirped reconstructed image without sway injected.

Figure 10.2(c) has had sway injected via the wide-band PCA model of (10.21) and

Figure 10.2(d) has had sway injected as a timing-error in the pulse compressed data.

Note the significant difference between Figures 10.2(c) and 10.2(d). These would be

identical if the model were accurate for this system. Thus the KiwiSAS-II system has

a wide enough beam-width that the PCA blurring model fails5. The wide-band, wide-

beam wavenumber transform used throughout the remainder of the chapter provides

for the effect of sway on the reconstructed image better than the PCA model.

10.2 Traditional stripmap autofocus algorithms

This section summarises some of the traditional SAS autofocus algorithms in use. The

algorithms are presented in a consistent notation with the aim of demonstrating sim-

ilarities to the SPGA algorithm to be described in Section 10.3. The algorithms have

been derived and developed from traditional spotlight SAR techniques of PPP and

PGA. The SAS versions are often extensions of PPP/PGA to account for wide-band,

wide-beam, stripmap imagery.

10.2.1 Prominent point positioning (inverse filter)

Prominent point positioning (PPP) is an autofocus technique used in both SAR and

SAS imagery [Muff et al. 1995; Shippey et al. 2001; Soumekh 1999] and is sometimes

called inverse filtering [Jakowatz et al. 1996]. A variation of PPP that calculates the

distortion in the wavenumber domain (for use in wide-band SAS systems) was presented

by Chevillon et al. [1998].

3 The last step of the range-Doppler algorithm is to remove the azimuth-chirp used in (10.21)(see
Section 4.5, [Hawkins 1996, page 166],[Gough and Hawkins 1997]).

4This is one description for the cause of 2-D smearing of blurred wide-band imagery—see [Sutton
et al. 2002] and Section 10.1.1.

5Note that the (narrow beam) timing-error approximation still holds for the KiwiSAS-II system.
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Figure 10.2 Failure of the PCA blurring model. (a) Sway distortion used in the simulation. (b)
Azimuth-chirped ideal image (image without sway injected). (c) PCA blurring model—sway injected
into the azimuth-chirped ideal image. (d) Narrow-beam blurring model—sway injected as timing-error
into the pulse compressed data before reconstruction. Note the differences between (c) and (d). In
particular, note that the targets have a larger extent in (d). This is due to the sway induced phase
causing a change in the measured spatial frequencies and affects the azimuth-chirp (and reconstruction).

PPP assumes that the brightest target in the image is a point scatterer6. The

technique tracks the aperture phase of the target and estimates the platform path such

that there is no phase deviation from that of an point scatterer. In spotlight mode SAR,

where images have space-invariant blurring, PPP provides successful path estimation

and blur removal for the entire image. With the selection of multiple points7, PPP is

able to estimate sway, surge, and heave motions [Carrera et al. 1995].

Single scatterer PPP is loosely equivalent to spotlight PGA when using only the

strongest range bin and an altered phase estimator. PPP does not average target sig-

natures removing the need to calculate phase gradients [Carrera et al. 1995]. This

allows the use of phase averaging and thus increases the accuracy of the phase esti-

mates by avoiding the inherently noisy phase gradient calculation. However, accuracy

is sacrificed by not averaging estimates from a number of targets and by neglecting

6Stoyle [1998] describes the implications of this assumption in SAR imaging.
7In spotlight SAR systems.
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windowing. The result is that PPP has lower accuracy than PGA for most scenes—

particularly those predominantly containing clutter. PPP is a special case of PGA

using only a single scatterer and has an associated loss of accuracy.

Targets imaged using stripmap systems only provide information over a small sec-

tion of the aperture. Thus PPP for stripmap systems requires at least one prominent

point for each independent synthetic aperture created—i.e., at least one prominent

point should be visible for the entire imaging duration. Moreover, combination of mo-

tion estimates from a number of prominent points is difficult so PPP is rarely used for a

full aperture motion estimate (an example of PPP use in stripmap SAS is presented by

Shippey et al. [2001]). The use of the SPGA framework described in Section 10.3 sim-

plifies the problem. Furthermore, the SPGA framework can help solve other problems

related to estimate weighting and reliability.

PPP represents a simple, computationally-inexpensive technique for SAR/SAS aut-

ofocus that is closely related to both image correlation (see Section 9.2 and [Wilkinson

2001]) and the phase-gradient based autofocus techniques discussed later in the chap-

ter. PPP suffers the same fundamental limitations due to scene-content as the other

autofocus methods but lacks the benefit of averaging sway estimates from multiple

scatterers.

10.2.2 Phase curvature autofocus (PCA)

Phase curvature autofocus (PCA) is an extension of phase gradient autofocus (PGA)

[Eichel and Jakowatz 1989; Jakowatz et al. 1996; Wahl et al. 1994a] for stripmap ge-

ometries. The technique was first proposed by Wahl et al. [1994b] to extend PGA

to narrow-band stripmap SAR systems. As demonstrated in Hawkins [1996], PCA

as originally published is suitable for narrow-band systems with no range curvature;

this same work describes modifications required to extend the method to systems with

significant range curvature. Hawkins [1996, pages 165–173] reported promising results

for this PCA extension on simulation data where the blurring was contained in 1-D.

A discussion of PCA’s shortcomings with wide-band systems was also presented but

simulation results were not.

PCA is intended for use in narrow-band systems where the sway error can be

treated as a phase only function. This is demonstrated by the assumption that the

image blurring is contained in 1-D [Wahl et al. 1994b]. PCA uses phase curvature range

redundancy of the corrupted, azimuth-chirped image to estimate sway. It averages

random phase curvature components from the scene to get the common phase curvature

error caused by sway. The common phase curvature error is then double integrated to

estimate the sway.

The PCA algorithm is described using the following steps:



160 Chapter 10 Stripmap autofocus

1. PCA starts by finding the largest point-like-target at each across-track position x.

The mth target position is described by (xm, ym). The targets are then windowed

to exclude weaker targets at the same range

g(x, y) =
∑

m

w(y − ym)f̃(x, y), (10.22)

where w(y) is the window function chosen. Unlike PGA, the windowed targets

are not circular shifted.

2. The windowed image, g(x, y), is convolved with azimuth chirps appropriate for

each across-track position; that is,

c0(x, y) = g(x, y) ⊙y exp
(
−j2k0

(√
x2 + y2 − x

))
, (10.23)

≈ F−1
ky

{
g(x, ky) · exp

(
−jx

√
4k2

0 − k2
y

)}
. (10.24)

At this point, the windowed and azimuth-chirped data, c0(x, y), can be regarded

as the result of the range-Doppler algorithm without the final phase multipli-

cation8. Phase information previously contained in blurred points in the image

f̃(x, y) has been spread out (to the width of the beam) in the along-track direction

in the azimuth-chirped image c0(x, y).

3. The next step in the PCA algorithm is to multiply the windowed and azimuth-

chirped data with the conjugate of the spatial chirp used for the convolution.

c1(x, y) = c0(x, y) exp
(
j2k0

(√
x2 + y2 − x

))
. (10.25)

Equation (10.25) removes the hyperbolic phase variation of each point target by

phase matching for a target at along-track position ym = 0. The process leaves a

linear phase trend across each target that is dependent on its along-track position

ym [Pat 2000].

4. The phase curvature (second derivative in along-track direction) of the phase is

calculated using [Pat 2000]

∆̂2η(x, y) = c1(x, y − ∆y)c∗1(x, y)
2c1(x, y + ∆y), (10.26)

where ∆y is usually chosen to be one sample. The phase curvature calculation

is necessary to remove both the unknown offset and linear phase trends to allow

across-track averaging.

8This is again an approximation requiring a slowly varying error phase function for the reasons
outlined in Section 10.3. Sutton et al. [2002] discusses the same effect in PGA based autofocus. Note
the narrow-band approximation k ≈ k0 in the model.
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5. The phase curvature for each across-track is averaged in a weighted ML fashion

[Pat 2000]

∆̂2φ(y) = Arg

{∫

x
∆̂2η(x, y) dx

}
. (10.27)

6. The average phase curvature is then integrated twice to give the phase error

estimate,

φ̂(y) =

∫
∆̂φ(y′) dy′; φ̂(0) ≡ 0, (10.28)

with

∆̂φ(y) =

∫
∆̂2φ(y′) dy′; ∆̂φ(0) ≡ 0, (10.29)

where the integration is usually calculated as a double summation (since the

phase curvature was calculated using differences)

φ̂[Q] =

Q−1∑

q′=1

∆̂φ[q′]; φ̂[0] ≡ 0, (10.30)

with

∆̂φ[Q] =

Q−1∑

q′=1

∆̂2φ[q′]; ∆̂φ[0] ≡ 0. (10.31)

7. The estimated error, φ̂(y), is converted into a sway estimate

X̂(u) ≡ 1

2k0
φ̂(y)

∣∣∣∣
y=u

. (10.32)

and removed from the original pulse-compressed image via

ŝ(t, u) = s̃

(
t+

2

c
X̂(u), u

)
, (10.33)

or in the frequency domain using

Ŝ(ω, u) = S(ω, u) exp
(
j2kX̂(u)

)
. (10.34)

8. The motion compensated raw data is reconstructed and the autofocus algorithm

iterates from step 1. At each iteration, the width of the applied window w(y)

is decreased as for PGA [Wahl et al. 1994a]. The algorithm continues to iterate

until the estimated position error X̂(u) converges.

The principles behind PCA are identical to those of PGA. PCA operates by com-

paring points in the scene with point scatterers. The along-track “unfolding” of the
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blurring using chirp convolution is a stripmap equivalent of the Fourier transform em-

ployed by PGA. The chirp convolution and later phase demodulation implements a

coordinate transform from y to u (see the PCA blurring model above). This is simi-

lar to the chirp-Z method of performing the Fourier transform [Poularikas 1996]. Thus

both PGA and PCA effectively estimate path errors in the along-track spatial frequency

domain.

The operation of PCA can be improved by recognising that the along-track spread-

ing of the target response is an approximation of the imaging process (i.e., the inverse

of the reconstruction). The along-track spreading converts the blurred image into an

approximation of the blurred pulse compressed data. Hawkins [1996, page 166] makes

the assertion that the azimuth-chirped PCA image is the same as the range-migration

corrected data (the range-migration corrected data is the same as obtained by perform-

ing the coordinate transform T {} of the range-Doppler algorithm on pulse compressed

data but not performing the phase-multiply by q(x, ky)). The assertion is based on the

“unfolding” outlined above. However, the assertion fails if gross sway distortion occurs.

Sway motion affects the phasing of the signal in the along-track direction; this in turn

causes a shift in along track spatial frequency ky. Reconstruction (which requires a

well known ky value) causes envelope shifting if sway is present [Sutton et al. 2002]

and leads to the modelling errors discussed in Section 10.1.5 and [Hawkins 1996, pages

171–172]. Full inversion mitigates this problem and allows direct comparison of blurred

and ideal targets in the pulse-compressed data domain.

The reference target comparison implicit in both PCA and PGA is best performed

in the domain where the distortion occurs—the pulse-compressed data. The approx-

imate wavenumber transform in PGA and the approximate inversion of PCA act to

compare prominent scatterers with ideal scatterers in that domain. PCA performance

can be improved by performing a full inversion of an “ideal” prominent scatterer image

and comparing that with the raw pulse-compressed image. The performance improve-

ment is from some of the approximations of traditional PCA being lifted (at the cost

of increased computation). (PMA can be implemented in a similar method.)

PCA’s other modifications are designed to ameliorate problems caused by the un-

known along-track target position in stripmap imaging. The unknown along-track

positions cause an unknown linear phase trend to modulate the phase signature of each

target. This modulation prevents simple phase gradient averaging. PCA negates the ef-

fects of this linear phase trend by estimating and averaging phase curvatures. However,

this results in poorer phase estimates due to the double differentiation of phase to get

phase curvature leading to a reduction in overall performance. The major differences

between PCA and PGA are to account for the stripmap nature of the problem.

PCA has seen little use so far in the SAS imaging field and claims have been made

that it is difficult to use [Pat 2000; Sutton et al. 2000]. The double integration of
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phase curvature in PCA leads to lowered phase estimate accuracy—possibly causing

the observations of difficulty. Image regions with sparse target cover can cause major

phase errors and are another possible cause for poor results. Better target selection for

PCA, similar to that used in QPGA, or selecting more targets improves performance

and reduces the problems with phase estimation accuracy and poor target coverage.

The SPGA algorithm described later in this chapter can be used with a phase curvature

based estimator and requires fewer approximations in its derivation.

2-D PCA

Hayes et al. [2002] describes a wide-band, wide-beam generalisation of PCA. The algo-

rithm requires fewer approximations and has a similar computational burden to PCA.

These modifications lift the requirement for the image blurring to be contained in 1-D.

The algorithm appears similar to an unpublished, proprietary algorithm mentioned in

the SAS tutorial at OCEANS 2001 [Dynamic Technology Incorporated 2001]. Again

this algorithm can be described within the SPGA framework of Section 10.3.

10.2.3 Phase matching autofocus (PMA)

Phase matching autofocus is a modification of PGA/PCA to allow the use of additional

prior knowledge [Gough et al. 2000a].

PMA is based upon a comparison between prominent image scatterers and point

scatterers at the corrected positions of the prominent scatterers in the image. To

this end, PMA is equivalent to PCA but with an additional step and phase gradient

estimation.

PMA is described as follows:

1. Initially the prominent scatterers for each range in the image are found and

windowed

g(x, y) =
∑

m

w(y − ym)f̃(x, y). (10.35)

2. The windowed image is chirped in the same fashion as PCA,

gt(x, y) = g(x, y) ⊙y t(x, y), (10.36)

where t(x, y) is the chirping function given by

t(x, y) = exp
(
−j2k0

(√
x2 + y2 − x

))
. (10.37)

3. A prominent point image, p(x, y), is generated. This image is generated by placing
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points in the corrected positions of prominent points in the image,

p(x, y) = f(x, y)δ(x, y − ŷm), (10.38)

where δ(x, y) is a 2-D delta function, the image f(x, y) is used to scale the ideal

points to be the same amplitude as the actual image points, and ŷm is an estimate

of the corrected along-track position of the mth target.

To find the correct position of a prominent point in the image, the linear phase

across the target needs to be estimated9. This is because a linear phase-slope over

the (local) aperture will shift the position of the reconstructed image. A simple

linear sway error will shift but not distort10 the target image. This effect is also

well known in other fields of imaging ([van Dam and Lane 2002a]). A way of com-

pensating for this effect, is to estimate the linear shift for each prominent target

(like tip/tilt sensors in optics). Linear phase shifts in the spatial domain cause

a frequency shift in the spatial Doppler domain. It is possible to estimate this

linear phase by looking for the centroid of the along-track spatial frequency dis-

tribution. This technique is well known in the SAR literature as Doppler centroid

estimation [Berizzi et al. 1997; Curlander and McDonough 1996; Madsen 1989].

Section 10.3.3 has a more detailed discussion of the techniques. In the original

method, the peak amplitude of the azimuth-chirped image was used [Gough et al.

2000a]. Measuring this parameter is equivalent to measuring frequency shift due

to the sinc-like beam-pattern response (albeit more susceptible to noise effects).

4. The prominent point image, p(x, y), is now chirped with the same function used

on the windowed image, g(x, y),

pt(x, y) = p(x, y) ⊙y t(x, y). (10.39)

The phase history (the phase behaviour in the along-track direction) between the

chirped images gt(x, y) and pt(x, y) can now be matched.

5. Phase gradients with respect to y are calculated, matched and averaged. The

complex gradient with respect to y for each cross-track position x is calculated

via

∆̂ηg(x, y) = gt(x, y)g
∗

t (x, y + ∆y), (10.40)

∆̂ηp(x, y) = pt(x, y)p
∗

t (x, y + ∆y). (10.41)

9It is assumed that all the effects of yaw have been previously removed.
10Distortion occurs if echoes alias, creating unwanted side-lobes to appear [Berizzi et al. 1997; Pat

2000].
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6. The phase gradient is calculated using

∆̂φ(y) = Arg

{∫

x
∆̂ηp(x, y)∆̂η

∗

g(x, y) dx

}
. (10.42)

7. The phase gradient estimate is integrated to calculate the distorting phase error

φ̂(y) =

∫

y′

∆̂φ(y′) dy′; φ̂(0) ≡ 0. (10.43)

although (as for PGA/PCA) it is usually implemented as a summation

φ̂[Q] =

Q−1∑

q′=1

∆̂φ[q′]; φ̂[0] ≡ 0. (10.44)

8. The path estimate, X̂(u), is used to modify the original pulse-compressed image

s̃(t, u) via

X̂(u) ≡ 1

2k0
φ̂(y = u), (10.45)

and

ŝ(t, u) = s̃

(
t+

2

c
X̂(u), u

)
. (10.46)

9. The motion compensated raw data is reconstructed and the autofocus algorithm

iterates from step 1. At each iteration the width of the applied window w(y) is

decreased as for PCA [Gough et al. 2000a]. The algorithm continues to iterate

until the estimated position error, X̂(u), converges.

PMA is equivalent to PCA with a phase gradient estimation kernel. Estimation

of the linear slope associated with a target allows phase gradients instead of phase

curvatures to be averaged. This increases accuracy at the additional computational

expense of calculating the local linear phase of a target11. The method has an analogue

in the local phase unwrapping of the WPGA phase estimator which estimates the local

phase offsets to allow phase averaging rather than phase gradient averaging. PMA

performs better than PCA (with accurate linear phase estimates) because it discards

less information.

10.3 Stripmap phase gradient autofocus (SPGA)

The algorithm described here unifies the discussion of stripmap autofocus. Instead

of deriving an algorithm based on narrow-band/narrow-beam approximations a model

11This operation assumes that minimal effects of yaw are present in the collected data—possibly an
unsustainable assumption in SAS imagery.
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with as few approximations as possible has been used. This allows the algorithm to

be used for most single-receiver SAS autofocus tasks. Traditional autofocus algorithms

may be derived from this algorithm by applying appropriate approximations. Thus, all

of the algorithms previously discussed in the chapter can be described in the framework

of the algorithm presented here.

The stripmap phase gradient autofocus (SPGA) algorithm consists of a number of

subproblems that are described in separate sections later in the chapter. The SPGA

algorithm operates as follows:

1. Starting with the blurred image f̃(x, y) a number of prominent targets in the im-

age are selected and the coordinates (xm, ym) recorded. Typically a fixed number

of bright scatterers are selected. Selection is discussed further in Section 10.3.1.

2. 2-D window functions are generated via

wm(x, y) = rect

(
x− xm

Wx

)
rect

(
y − ym

Wy

)
, (10.47)

whereWx and Wy are the across-track and along-track widths respectively. These

widths are chosen to be as small as possible whilst still encompassing the image

blurring—see Section 10.3.2.

3. Region of interest images are formed by masking the blurred image with the

window

f̃m(x, y) = f̃(x, y)wm(x, y). (10.48)

4. A 2-D Fourier transform is applied to each region of interest

f̃m(kx, ky) = Fx,y

{
f̃m(x, y)

}
. (10.49)

5. The true target position, (x̂m, ŷm) of the individual targets is estimated using the

techniques discussed in Section 10.3.3. The current choice to estimate the spatial

Doppler shift is via centroiding.

∆ky =

∫∫
ky

∣∣∣f̃m(kx, ky)
∣∣∣
2

dky dkx

∫∫ ∣∣∣f̃m(kx, ky)
∣∣∣
2

dky dkx

, (10.50)

The spatial Doppler shift estimate, ∆̂ky, is mapped into an estimate of (ŷm−ym)

using the wavenumber transform (x̂m is assumed to equal xm)12.

12Estimation of ❬xm may allow the averaging of phases instead of phase gradients, improving estima-
tion kernel performance.
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6. The region of interest images are phase modulated to correct for the shift in target

position

f̃ ′m(kx, ky) = f̃m(kx, ky) exp (−jkx(x̂m − xm) − jky(ŷm − ym)). (10.51)

7. A coordinate transform is applied using the wavenumber transform

χm(kx, u) = SC
{
f̃ ′m(kx, ky)

}
, (10.52)

where the modified wavenumber transform coordinate mapping SC{} is given by

kx = kx, (10.53)

ky = kx

(
ŷm − u

x̂m

)
. (10.54)

8. Phase gradients of χm(kx, u) in the along-track direction are calculated and av-

eraged for all m. See Section 10.3.5 for a more thorough discussion on the phase-

estimation problem. Currently the ML phase gradient estimator is employed

∆̂φ(u) = Arg

{∫

kx

∆̂η(kx, u) dkx

}
, (10.55)

where

∆̂η(kx, u) =
∑

m

χm(kx, u)χ
∗

m(kx, u+ ∆u), (10.56)

is used to calculate the individual phase gradients.

9. A final phase estimate, φ̂(u), is generated from the phase gradients via cumulative

summation or various other methods depending on the phase estimation kernel

selected. When the ML phase gradient estimator is used, this is summarised by

φ̂[u] =

u−1∑

q=1

∆̂φ[q]; φ̂[0] ≡ 0. (10.57)

10. The final phase-estimate φ̂(u) is converted into a sway estimate via

X̂(u) =
φ̂(u)

2k0
. (10.58)

11. The new sway estimate is used to motion compensate the image (see Chapter 6)

and the algorithm iterates from step 1 until the sway estimate is less than some

threshold.
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Figure 10.3 SPGA algorithm (stripmap autofocus framework). The key improvements SPGA offers
are: phase gradient based estimation instead of phase curvature based estimation, and wide-beam,
wide-band modelling allowing autofocus of 2-D blurring. This is possible due to the estimation of
the true target position and improved blur modelling. The result is more accurate phase estimation
performance.
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10.3.1 Target region selection

Target region selection (selecting the point about which the region is centred) is the

most straightforward aspect of SPGA: the coordinates of the target regions do not have

to be estimated to sub-pixel accuracy and if poor candidate targets are selected their

influence is reduced by the better phase-estimation kernels (such as WPGA’s kernel).

However, enough points are required to achieve the desired autofocus accuracy.

SPGA currently selects a predetermined number of target regions in order of de-

scending energy. Regions are selected from any range bin and only need be separated

by the current resolution at a particular iteration (estimated from the level of residual

blurring expected13). Full aperture coverage is essential, so enough points must be

selected to ensure coverage of each section of the aperture. Alternately, the selection

strategy suggested for mPGA could be used, see Bonifant [1999]. Typically 100–1000

points would be selected for a 50 m by 50 m SAS image. This number should provide

aperture coverage and allow accurate autofocus performance. Note that the selection

of alias lobes from undersampled imagery should be avoided to prevent autofocus bias,

see Section 10.5 for more detail.

Autofocus accuracy improves as more points are selected, thus having the aperture

covered with multiple targets is desirable. However, a trade-off between accuracy and

processing cost results, although the trade-off is not as straightforward as it appears.

QPGA for example, selects 4-8 times more targets than traditional PGA but is accurate

enough to autofocus without iteration [Chan and Yeo 1998]. Thus selecting more

targets can reduce computational burden—particularly with the large iteration cost

involved in stripmap reconstruction. This observation is often overlooked—autofocus

accuracy improves even when using points with low signal-to-clutter ratios.

Another strategy for improving accuracy is to select widely separated points [Za-

vattero 1999]. This is performed to ensure that the points selected are independent

i.e., are not different parts of the same object. Phase-estimation improves since the

averaging of random target phase is not biased by a few strong-scattering extended

targets. To some extent, the 2-D windowing used in SPGA alleviates this problem by

ensuring sufficient along-track and across-track separation.

The last mechanisms for SPGA target selection improvement discussed here are

those used by the QPGA algorithm:

• Select many targets discarding those with signal-to-clutter ratios lower than a

given threshold.

• Using image wrapping14 for region extraction.

13Weighted phase estimation allows an estimate of the residual blurring from the previous iteration
and can be used for estimating the resolution. See the following section.

14QPGA’s image wrapping circularly repeats the image so that regions at the edge of the image also
select data from the opposite edge of the image.
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The first QPGA method trades processing cost against accuracy and ensures that

the points with the highest signal-to-clutter ratio are used. Weighted phase kernels

(such as the WPGA kernel) perform this calculation inherently and so do not require

this method—however, the QPGA method still reduces computation by reducing the

number of candidate targets and associated processing. QPGA’s image wrapping for

region extraction mimics PGA’s circular shifting operation in an efficient fashion. This

aids operation when information from targets at the edges of the scene is smeared

to the extent that it circularly wraps to the other edge of the scene (a property of

Fourier-based reconstruction techniques). By allowing the extracted region to contain

energy from both edges of the scene, the blurring is still fully encompassed, improving

autofocus performance. QPGA’s second improvement is used in SPGA.

10.3.2 Windowing and window width selection

SPGA windows individual targets to ensure that the phase signature of only one scat-

terer at a time is used. If a number of targets exist within the window, the path

estimation gives poor results. As the algorithm iterates, the along-track window size

decreases, reducing the likelihood of multiple targets within a single window. Selecting

many targets at different locations improves sway estimation.

Window width selection is an important task for any PGA-based algorithm. The

window acts to improve the signal-to-clutter ratio of the phase estimation and has a

large impact on algorithm performance. In PGA, the window width also limits the

order of the estimated sway. Therefore, the window width requires careful selection

to avoid discarding useful autofocus information (see Section 8.6.2). This is apparent

if the window does not fully encompass the target blurring; the algorithm is unable

to estimate high order aperture phase components leading to residual blurring (see

[Warner et al. 2000]). SPGA, like PGA, starts with a wide window that decreases

over time. This window must encompass all blurring, allowing estimation of errors

contained in both low-order and high-order blurring components. Usually, the initial

window width is selected to exceed the expected blurring.

SPGA has slightly different windowing requirements to those of traditional

PGA/PCA style algorithms due to the along-track position estimation. SPGA requires

that the window width is selected to allow accurate Doppler centroid estimation. This

means that a small number of along-track side-lobes of the target peak must be encom-

passed. Windows are typically 2-3 times bigger for SPGA than for PGA/PCA with

equivalent blurring15. Curvature-based phase estimation removes the requirement for

using larger along-track window width than PGA/PCA. Interestingly, SPGA’s linear

phase estimation and correction might not be required in the final iterations so the re-

15This matters more at convergence as blurred imagery contains overlapping side-lobes and main-
lobe.
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quirement for larger window widths at convergence is not certain. Further investigation

is necessary. Another slight difference between SPGA windowing and PGA windowing

is that with SPGA the window width should be range-variant since a fixed sway causes

increasing blurring extent with range.

Target windowing is further complicated by along-track undersampling during col-

lection. Even with D/2 sampling, alias grating lobes contain a significant amount of

target energy (although the energy is smeared out). When a grating lobe is selected

as an autofocus target, SPGA estimates a sway that removes the smearing16. This can

cause incorrect overall sway estimates and thus grating lobes should be rejected from

autofocus estimation windows (the problem is discussed further in Section 10.5). The

predictable positioning of grating lobe targets, combined with grating lobe reduction

techniques should allow grating lobe rejection. Further research is required to explore

these possibilities.

The main difference between SPGA windowing and traditional PGA windowing

is that SPGA uses 2-D windowing. This is due to the wide-band, wide-beam nature

of SPGA’s formulation. Despite that difference, window width determination is still

the same: select a window width such that the (2-D) blurring is encompassed but self-

clutter from other targets is reduced [Warner et al. 2000]. 2-D windowing thus requires

the window width in both along-track and across-track to be determined17. When the

residual sways are small, or the stripmap system is narrow-band, blurring is contained

in 1-D. 1-D blurring allows the across-track window to be a single bin wide and SPGA

windowing becomes equivalent to PGA windowing.

Traditional PGA window width selection techniques are not suitable for SAS aut-

ofocus. These typically measure the -10 dB point of the centre shifted image. These

techniques work well when a number of prominent scatterers occur in the image [Wahl

et al. 1994a] but fail in scenes consisting mostly of clutter. With clutter images the

window width is decreased by a fixed fraction each iteration. This is needed since

blurring only causes contrast loss in clutter scenes—no peak blurring is evident. SAS

images have few prominent scatterers [Billon and Pinto 1995] and need to use successive

window width reduction.

Typically, window widths are initially selected to encompass the maximum ex-

pected blurring and are decreased by 20%–50% each iteration. Window width selection

based on the estimation of residual blurring from the previous iteration may be possible

with the WPGA estimator18 and is an area where additional research is required.

16SPGA combines weighted estimates which alleviates the problem to some extent.
17The problem is simpler than implied since along-track and across-track blurring are coupled; an

estimate of only the along-track blurring can determine the expected across-track window width.
18It should be possible with any estimator in conjunction with the CRLB calculations of Chapter 7.

WPGA is preferred as complicated reflector structure is considered noise.
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Figure 10.4 The effect of a linear phase shift on the Doppler spectrum of a target. Note that the
spectrum depicted is oversampled with respect to the SAS sampling constraints (≈ D/8 sampling).
(a) No linear sway. (b) Linear sway of γx. More complex sway motions change both the position and
shape of the Doppler spectrum.

10.3.3 Along-track position estimation

The biggest difference between SPGA and other PGA/PCA based algorithms is the

estimation of the along-track position of the targets before phase-estimation. This

allows phase gradient averaging instead of phase curvature averaging and improves

phase-estimation. Target position estimation is necessary because phase gradient esti-

mation is unable to estimate the linear phase trend caused by target shifting [Jakowatz

et al. 1996; Rachlin 1990; Wahl et al. 1994b]. Unknown linear phase trends prevent

averaging of phase gradients and must be removed. In contrast, spotlight imagery has

an unknown linear phase trend common to all targets so phase gradient averaging is

possible.

The along-track target position is estimated using prior knowledge of the beam-

pattern and spatial-frequency coverage of stripmap systems. As shown earlier in this

chapter, linear phase shifts cause frequency shifting. Thus the linear phase trend across

the target may be estimated by measuring the shifting of the target’s along-track spatial

Doppler spectrum.

Figure 10.4 shows the effect a linear sway has on the along-track spatial Doppler

spectrum. Note that the shifting is predictable and causes spatial Doppler aliasing.

Where severe linear trends exist the aliasing causes ambiguity.

Three methods for determining the Doppler spectrum shift have been employed

with SPGA to date. These are:

Doppler centroiding — Doppler centroiding operates by estimating the centroid of
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the power spectrum averaged over range (or kx). This may be described by

∆ky =

∫∫
ky

∣∣∣f̃m(kx, ky)
∣∣∣
2

dky dkx

∫∫ ∣∣∣f̃m(kx, ky)
∣∣∣
2

dky dkx

, (10.59)

where f̃m(kx, ky) is the wavenumber-domain data of the target patch. The cen-

troid of the power spectrum is preferred to the centroid of the amplitude spectrum

since linear trends cause energy-shifting and the amplitude can be adversely af-

fected by higher order sway. Note that the centroid estimate also causes an

underestimation of the shift due to the circular repetition of the Doppler spec-

trum caused by Doppler aliasing. (Spatial frequencies are aliased in a circular

fashion, as can be seen in Figure 10.4.) This aliasing can be resolved using a

circular centroid estimator of the form

∆ky =
kymax

π
Arg

{∫∫ ∣∣∣f̃m(kx, ky)
∣∣∣
2

dkx exp

(
j

2πky

kymax
− kymin

)
dky

}
. (10.60)

Modified Doppler centroiding – Using the observation that the centre of the tar-

get scene is not necessarily the centre of energy19 and that Doppler centroid

estimation aims to estimate the linear trend via energy-shifting, a modified cen-

troid estimation can also be used. This uses the centroid of the image scene

and correcting the normal Doppler centroid result. Centroiding of the target

scene improves the estimation when multiple targets are selected in a region of

interest—the limiting condition on autofocus performance. Similar observations

might also aid the correlation estimator discussed next.

Doppler correlation — Doppler correlation is another method of estimating the

Doppler shift and does not suffer underestimation due to Doppler aliasing. Doppler

correlation operates by correlating the (averaged) spectrum of the target patch

with the expected spectrum. This operation is described by

∆ky = maxky

{∫
f̃m(kx, ky) dkx ⋆ky A(ky)

}
, (10.61)

where

A(ky) =

(
Dt sinc

(
kyDt

2π

)
Dr sinc

(
kyDr

2π

))
, (10.62)

is the expected amplitude spectrum.

Of the methods, modified Doppler centroid estimation is preferred because of its

improved accuracy and reduced computational requirements.

19Often the case where multiple targets are selected inside a given window.
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It is worth noting that the noise performance (accuracy) of position estimation is

different to that of the phase estimation kernels described earlier. Clutter suffers the

same linear shift as the selected target so has the same spatial Doppler spectrum. The

result is that the performance of the estimator is determined by the signal-to-noise ratio

(SNR) not the signal-to-clutter ratio (β). The difference can be as much as 20-40 dB.

A strong warning regarding tow-fish yaw must be raised at this point. Tow-fish

yaw also shifts the along-track Doppler spectrum20 although does not cause a shift of

target position in the image (see Chapter 6). The phenomenon is noted in some SAR

Doppler centroid estimation research [Prati and Rocca 1992]. Thus the spectrum shifts

associated with tow-fish yaw must be demodulated and corrected so that only sway-

induced spectrum shifts are present. While the KiwiSAS-II and KiwiSAS-III platforms

have been designed to keep yaw to a minimum [Hayes and Gough 1992; Johnson et al.

1995], yaw effects are still apparent in KiwiSAS-II imagery (see Section 9.3.2). This is

generally apparent as position dependent grating lobe structure and Doppler centroid

offsets. Yaw should be estimated (using the methods described in this chapter) and

removed via the techniques outlined in Chapter 6. This is important for constant yaw

in particular.

In the presence of large (or rapid) unmeasured tow-fish yaw the SPGA algorithm

should calculate and average phase curvatures instead of phase gradients (cf. with

Section 10.2.2). Alternately, the local linear phase trend across each target can be

estimated from the phase curvature based motion estimate (once the global linear

trend is estimated using the techniques described above).

Estimating the true position of the targets allows the use of phase gradient estima-

tion. This is possible when platform yaw is negligible or accurately measured21. When

unknown yaw is present, workarounds allow the use of phase gradient estimation. In

addition, phase curvature based estimation can be used with a decrease in performance.

Finally, phase gradient based estimation is sensitive to the accuracy of the along-track

target position estimates, any technique for improving those estimates will benefit the

SPGA algorithm.

10.3.4 Wavenumber transform coordinate change

The modified wavenumber transform coordinate transform SC{} acts to transform

the phase error estimates from the individual targets into a space-invariant domain

prior to averaging. This is a typical step in space-variant image processing [Sawchuk

1972]. The success of the wavenumber transform in accomplishing this results from its

similarity to the reconstruction process. Both PGA and PCA use approximations of

20This is the case in single receiver SAS. The effect of yaw on multiple-receiver imagery is much more
complex although the same principles apply.

21Yaw estimates provided by an INS tend to have a high degree of accuracy [Bellettini and Pinto
2002].
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the wavenumber transform tailored to the environment they are designed for: PGA, a

Fourier transform; and PCA an along-track chirp spreading22.

The wavenumber transform maps image blurring to the phase error in the pulse

compressed data that caused the blurring23. Once in the pulse compressed data do-

main, the phase errors have redundancy in along-track and may be averaged. Any

error in estimating the along-track position of the target adversely affects the average.

However, the difference between the image target position and the estimated true tar-

get position is small for later iterations and has little effect on the average. The use of

the wavenumber transform allows phase error information from multiple targets to be

combined in sensible fashion.

10.3.5 Phase estimation

Phase estimation is the heart of the SPGA method. Like PGA, small improvements to

the phase estimation kernels can yield large improvements in the end result. The phase

estimation kernel used depends on the accuracy of the along-track position estimation.

When the along-track position estimates are accurate, a phase gradient method should

be used. However, when the along-track position of the targets is unknown or inaccu-

rate, a phase-curvature kernel must be used. Even with unknown along-track positions,

a phase gradient kernel can be used once an estimate of the phase error is obtained

using phase curvatures (see Section 10.3.3).

The kernel currently used for SPGA is the ML phase gradient estimator. Other

possible phase estimators are summarised in Section 7.6.2. WPGA provides a bet-

ter phase estimator than the ML estimator suggested. However, the weightings used

in WPGA’s derivation are calculated based on spotlight SAR assumptions and the

iterative scheme employed cannot currently be used in a stripmap framework.

10.3.6 Improved blur modelling—sidestepping the limitations of the wavenum-

ber transform

When significant or rapidly varying sway motions exist, the wavenumber transform

does not accurately map between wavenumber domain and pulse-compressed data.

This is discussed in Section 10.1.1. The largest effect is that unknown linear sways

cause target shifting. The algorithm convergence rate is adversely affected since the

estimated blurring function does not map accurately into a sway motion. Given the

estimated blurring function, enhanced modelling of the wavenumber transform can

restore that accuracy.

22PCA uses the chirp-scaling principle to perform an equivalent coordinate transformation to the
wavenumber transform.

23A variation of the wavenumber transform is used (not performing the mapping from kx to ω to
allow wide-beam phase averaging).
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It is important to remember that the initial wavenumber transform maps to an

incorrect along-track position usway. The steps to calculating the error are as follows:

1. Given the position gradient Ẋ(usway) (calculated via the phase estimation above)

measured as a function of the distorted along-track position usway, the associated

frequency shift ∆ky may be calculated via

∆ky(usway, kx) = kxẊ(usway), (10.63)

where

Ẋ(usway) =
dX(usway)

dusway
, (10.64)

= ∆usway

(
X(usway) −X(usway − ∆usway)

)
. (10.65)

is the ping-to-ping sway difference. Note that this has been derived by calculating

the instantaneous frequency shift via the instantaneous phase derivative.

The true instantaneous spatial Doppler frequency, ky(usway) (as opposed to the

incorrect estimate using the wavenumber transform) may now be derived via

ky(usway) ≈ kydist
(usway) − ∆ky(usway, kx), (10.66)

≈ kx

xm
(ym − usway) − kxẊ(usway), (10.67)

which represents an extension of the wavenumber transform for larger sways. The

approximations made in the derivation represent a linearisation of the problem

about the point in question—more accurate representations are not necessary in

an iterative autofocus framework. The apparent target shift along the aperture

from the true along-track position u can be now calculated via the wavenumber

transform

û(usway) = ym − ky(usway)xm

kx
, (10.68)

Note that (10.68) can be used to derive the apparent target shift induced by a

linear sway seen earlier (10.13).

2. The true along-track position, u, is derived from the apparent position, usway,

using

û(usway) ≈ usway + Ẋ(usway)xm. (10.69)

3. The data is then re-interpolated from χ(kx, usway) and ∆φ(usway) to obtain X(u)

using the calculation of û(usway) above in a modified wavenumber transform.
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The result in (10.69) corresponds to the (geometrical optics based) derivations seen

in [Callow et al. 2002a] and [van Dam and Lane 2002b]. The procedure outlined

above can be iterated for additional accuracy although this is not required for SAS

autofocus. Note that SPGA as described in Section 10.3 implements first-order (linear

slope) correction of this effect (SPGA, step 6).

10.3.7 SPGA versus traditional algorithms

SPGA provides a framework which can describe a number of traditional autofocus

algorithms.

PGA

SPGA implements PGA if narrow-band and narrow-beam approximations are made

and the along-track position of the targets is assumed to be zero (ym ≈ 0) in the

phase compensation and interpolation (steps 6 & 7) . Under these approximations, the

wavenumber transform becomes the along-track Fourier transform that PGA uses. The

centre shifting step of PGA is implicitly implemented by SPGA’s centring the Fourier

transform around the target region of interest. Further work is required on the phase

estimation techniques of the more sophisticated PGA variants such as WPGA.

mPGA

SPGA is able to emulate mPGA when using mPGA’s target selection strategy and

narrow-band, narrow-beam approximations. mPGA implements phase compensation

and interpolation the same way as PGA although the along-track position estimate,

ym, for each target is chosen differently. mPGA estimates ym by setting it equal to the

along-track coordinates of each sub-aperture. mPGA thus has more approximations

and poorer phase estimation performance than SPGA. The target selection technique

mPGA provides can be used with SPGA if desired.

PCA

PCA is implemented by using narrow-band, narrow-beam approximations and using a

phase curvature based phase estimation.

2-D PCA

Implemented by using phase curvature based estimation.

PPP

PPP is implemented by allowing SPGA only a single point and using a phase-averaging

estimation kernel.
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10.3.8 Future work

In the embodiment described here, SPGA has a number of possible limitations. The

most severe limitations are caused by a requirement for a statistically homogeneous

scene. Further work is required in each of the following areas:

Phase estimators — WPGA’s phase estimator is the most accurate of those inves-

tigated but relies on spotlight SAR assumptions. Further work is required to use

this estimator instead of the ML estimator currently used with SPGA.

Clutter information — The information contained in the sea-floor clutter is useful

for autofocus is the data is oversampled in along-track. SPGA currently discards

this source of information. However, we expect that SPGA is able to operate

on clutter regions with a different patch selection policy. Clutter regions (on

average) satisfy the requirement for a statistically homogeneous scene and so are

able to be used directly. The signal-to-noise for autofocus is poor so many such

scenes are required.

Non-Lambertian scatterers — SPGA assumes that the energy scattered from a

target patch is the same from all incidence angles. SPGA relies on beam symme-

try for the linear slope estimation so targets that have non-Lambertian scattering

profiles can cause incorrect results.

A further assumption that the apparent position of the target should not move

with varying incidence angle. Most current autofocus algorithms require apparent

target position to remain constant with incidence angle. Targets where that is

not the case degrade autofocus performance. For example, the shadowing behind

proud targets moves and could cause such degradation; similar problems are likely

to be caused by specular reflections on cylindrical targets.

Squinted systems — SPGA will not currently operate on systems that image with

a squinted geometry (see above). However, if the squint angle is known, this can

be compensated.

Bulk sway estimation — Approximations made in SPGA’s derivation require that

the sway is small so there is no shift in the stationary phase point in the deriva-

tion of the wavenumber transform. The method outlined in Section 10.3.6 lifts

these resrictions at the expense of additional computation. A micronavigation

technique may prove more efficient for estimating the bulk of the sway.

Platform yaw — A reliance on the spatial Doppler centroid makes the algorithm

vulnerable to platform yaws. A yaw will shift the spatial Doppler centroid leading

to inaccurate linear slope estimation. SPGA assumes that no yaw is present in

the system. Yaw currently represents the major limitation of SGPA. Further

work to remove the reliance on yaw-free data is required.
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Multiple-receiver autofocus — The SPGA method described here does not imme-

diately lend itself to multiple-receiver autofocus. Currently, like the PGA variant

used by Sutton et al. [2002], a single-receiver blurring model is used for autofo-

cus and multiple-receiver information inferred from the results. Multiple-receiver

autofocus using single-receiver assumptions has potential problems. In partic-

ular, collection redundancy can lead to multiple sways for a given along-track

sampling position. A multiple-receiver blurring model derived along the lines

of the wavenumber transform and the derivations of Chapter 3 would improve

autofocus.

Path prior inclusion — Autofocus procedures benefit if statistical properties of the

motion are known [Fortune et al. 2001b]. The inclusion of this prior information

can prevent unlikely motions from being estimated and can prevent the autofo-

cus result from diverging. The improvements come at the expense of increased

computation in the phase estimation.

Path prior inclusion for SPGA can be made by altering the phase estimation step.

Instead of using a weighted phase estimation kernel, a weighted-with-prior kernel

should be used [Franklin et al. 1998]. This should be investigated at the same

time the WPGA phase kernel is implemented for the SPGA algorithm.

3-D geometry — The derivation of SPGA presented does not include the effects of

slant-plane geometry—it is assumed that everything in the image is in the ground

plane of the sonar. These assumptions restrict SPGA’s use slightly as accuracy of

the wavenumber transform decreases in slant-plane situations. Further research

is required to derive the wavenumber transform for slant-plane geometries.

10.4 Range offset

Stripmap imagery is adversely affected by unknown range offsets or unknown sonar

velocities. Either of these effects cause a quadratic defocus in the image. Blurring from

these sources is space-invariant (all of the targets have a similar defocus). Current

space-variant autofocus procedures do not effectively deal with this type of blurring

and ambiguous results occur.

The failure of SPGA and the traditional prominent point/phase gradient methods

stems from a problem with PPP methods. Blurring due to reconstruction errors is

assumed to be the same as that caused by aperture phase errors—quadratic blurring

from reconstruction deficiencies is assumed to come from sway.

The blurring from reconstructing with an incorrect range offset (∆x0) can be mod-

elled as

S̃(ω, ku) = S(ω, ku) exp
(
j∆x0

√
4k2 − k2

u

)∣∣∣
ku=ky

. (10.70)
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Figure 10.5 Illustration of the range offset problem. Targets simulated at x0=50m and recon-
structed with x0=55m (equivalent to having a +5m constant sway error). (a) Image reconstructed
with incorrect x0 factor. Note blurring spreads the along-track response slightly. (b) SPGA sway
estimate generated from the blurred image. The quadratic blurring each target suffers is mistakenly
assumed to be caused by sway. The result is poor autofocus performance. Space-invariant blurring
caused by poor reconstruction must be eliminated prior to space-variant autofocus.

A similar model may be derived for a velocity error using the binomial approximation

and the Fourier scaling theorem

S̃(ω, ku) ≈ S(ω, ku) exp

(
jx0

(α− 1)k2
u

4k2

)∣∣∣∣
ku=ky

. (10.71)

where the reconstruction velocity is vs and the actual velocity vs/α.) Note that the

blurring from both models is invariant of target position.

With space-invariant blurring, targets at different positions have the same blurring.

Where the problem lies is that a PPP-based algorithm will map the blurring for each

target into a sway estimate. This occurs even when there is no sway. A stripmap

algorithm uses many targets and estimates the same (quadratic) sway for each distinct

target. When many incorrect sways are averaged, the overall sway estimate is incorrect.

This occurs because PPP (and phase gradient) algorithms operate by sharpening each

defocused point in the image24.

Figure 10.5(a) shows an image focused with an incorrect x0 parameter (in this

case x0recon = 55 m when x0 = 50 m, so ∆x0 = 5m). There is a slight along-track

blurring of the targets in the image due to the incorrect reconstruction parameters.

Note that reconstructing with an inaccurate velocity estimate has a similar effect.

Figure 10.5(b) illustrates the effect poorly reconstructed imagery has on autofocus per-

formance. Quadratic sways are estimated local to each target; when combined, very

poor sway estimation results.

The problem may be mitigated by using a space-invariant autofocus technique prior

24Broadly speaking this is the case, they compensate for phase fluctuations in the spatial frequency
domain which has the general effect of sharpening.
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to stripmap autofocus—such as any of the spotlight autofocus methods, or an altered

SPGA (neglecting the ym term). Kirk and Maloney [1998] describe a space-invariant

algorithm for this explicit purpose. However, even after using these methods, ambiguity

exists and poor estimates of velocity and focus range can be obtained when sway errors

are present [Fortune et al. 2001b]. It is better to have accurate estimates of important

reconstruction parameters using micronavigation or other techniques.

10.5 Aperture undersampling

Aperture undersampling can degrade autofocus performance. In general, performance

is decreased when alias grating lobes can be seen above clutter. As the undersampling

becomes more severe, autofocus performance degrades. Note that echo-correlation

algorithms (see Chapter 9) do not operate at all with sample spacings > D/2.

The reason that autofocus is affected by along-track undersampling is that aliased

grating lobes (alias targets) are selected as prominent scatterers. Autofocus algorithms

estimate a path to remove the Fourier phase of these scatterers—i.e., to sharpen them.

Alias targets cause incorrect sway estimates to be returned since they are smeared

during reconstruction and autofocus mistakenly attempts to remove the smearing.

Alias targets are always present in SAS imagery due to the unusual sampling

requirements discussed in Chapter 2. The relative level of the alias targets varies with

along-track sample spacing. One measure of this level is known as the along-track

ambiguity to signal ratio (AASR). The AASR is -8 dB for D/2 [Hawkins 1996, page

125], [Gough and Hawkins 1997]. For a D/2 sampled system, each of the two main

grating lobes is -14 dB relative to the main-lobe response—i.e., the energy contained in

each alias target is 14 dB less than the main-lobe25.

Figure 10.6 illustrates the spatial frequency situation when D/2 sampling is used.

Note that the responses shown are the main-lobe response of the combined transmit

receive aperture and its first alias. The AASR is calculated by considering the energy

of the main-lobe and the alias within the processed bandwidth—from −2π/D to 2π/D

in this case.

The difficulty for stripmap autofocus is that alias targets appearing in the image

above the surrounding clutter can be selected as prominent scatterers. To demonstrate

this effect, a hypothetical autofocus problem with a single D/2 sampled target was

simulated26. No sway was injected and any sway estimate other than zero is due to

undersampling-related errors. Figure 10.7(a) shows the reconstructed scene—note the

obvious alias targets at ±10 m. (In a normal autofocus situation the alias targets will

be partly or wholly obscured by clutter.) For comparison with Figure 10.6, the spatial

25The level of the alias target in the image is further reduced due to the alias smearing that occurs
during reconstruction.

26Simulated system corresponds to the KiwiSAS-II with x0=50m.
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Figure 10.6 Aliasing in an undersampled system. Main-lobe and side-lobe response for a D/2
sampled system. The reconstructed bandwidth (without filtering) extends from −2π/D to 2π/D.
Note only one side-lobe is shown. The along-track ambiguity to signal ratio (AASR) for the illustrated
side-lobe is -14 dB.

frequency response of the region around the main-lobe and the alias target at +10m

have been illustrated in Figure 10.7(b). This confirms the AASR at approximately

-14 dB for the alias target at +10 m.

SPGA was used to autofocus the image in Figure 10.7(a). The algorithm selected

the main-lobe and each of the alias targets (in the absence of any other targets).

The ping-to-ping sway differences (sway-gradient) estimated by SPGA are shown in

Figure 10.8(a). Note that SPGA estimates both an incorrect linear sway and curvature

in the presence of alias targets27. For comparison, the sway-curvature (estimated using

the PCA estimator to prevent phase unwrapping artefacts) is shown in Figure 10.8(b).

This shows that an incorrect sway-curvature is also estimated over the region of the

alias targets. Thus alias targets cause errors in the SPGA algorithm. These difficulties

are more significant when using the phase gradient estimator rather than the phase

curvature estimator.

In summary, aperture undersampling causes some degradation in autofocus per-

formance. The overall performance degradation is minor but can lead to unexpected

results in scenes with a large dynamic range or with strong-scattering isolated targets.

Enhanced windowing (windowing both the main-lobe and alias) reduces the the extent

of the problem as does the use of phase curvature estimation kernels. Moreover, alias

27Alias targets have a large apparent linear sway and smaller components of high-order sway caused
by reconstruction smearing.
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Figure 10.7 Simulated system results for D/2 sampling. (a) Undersampled image shown in linear
grey-scale and clipped to 20 dB below peak. Note grating lobes at ±10m and range side-lobes. (b)
Measured spatial frequency coverage of main-lobe and grating lobe at yn=+10m.
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Figure 10.8 Autofocus difficulty with undersampled imagery—worst case scenario. Single simulated
scatterer in centre of scene (0m) with along-track sampling of D/2. (a) SPGA phase gradient estimate
from undersampled target. Note acceptable performance in the middle region of the path, from −5m
to 5m. The performance is degraded in the grating lobes of the target. Both the gradient and curva-
ture are incorrect. Also note that phase unwrapping has not been employed resulting in λ jumps at
± 8m. SPGA performance is severely degraded because both linear slope and higher order sways are
estimated incorrectly. (b) Phase curvature estimate of undersampled target using PCA’s phase curva-
ture estimator within the SPGA framework. Note that undersampling still causes incorrect curvature
estimates in the grating lobe response (although overall sway estimation is not as bad as with SPGA
which also predicts linear sways incorrectly).
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Parameter Value Units

Carrier freq 30 kHz

Bandwidth 20 kHz

Number receivers 1

Receiver length 0.3 m

Transmitter length 0.3 m

Table 10.1 Simulated system parameters approximately corresponding to KiwiSAS-II [Hayes et al.
2001].

targets can be detected via their unusual spatial Doppler spectrum and rejected if nec-

essary. Selecting additional widely separated targets for autofocus operation further

reduces the problem.

10.6 Autofocus results

The following sections detail results of testing the SPGA algorithm on simulated and

field collected data.

10.6.1 Simulated data

This section presents results of the SPGA technique on a simulated data set. The data

sets were simulated based on a system roughly equivalent to the KiwiSAS-II. Param-

eters for the system are summarised in Table 10.1. For most tests, the along-track

sample spacing was chosen to be D/4 and has an AASR of -21 dB (the undersampled

system uses D/2 sampling and has an AASR of -8 dB).

A data set consisting of a number of point scattering targets was simulated (in the

ground-plane) and the sway depicted in Figure 10.9(b) was inserted into the data as a

timing-error resulting in Figure 10.10(a). The data set used is depicted in Figure 10.9(a).

Note that the timing-error assumption is valid for the KiwiSAS-II sonar. The sway was

randomly generated and has a correlation-length of approximately 1m (10-15 sonar

pulses) and a peak-to-peak amplitude of 0.2 m. These values were chosen to approx-

imate the distortions expected from the KiwiSAS-II sonar. Note the 2-D blurring

apparent in the corrupted image shown in Figure 10.10(b). The blurring is different

for each scatterer and in the worst case extends approximately 3 m in along-track and

0.5 m in across-track. Autofocus results for comparative analysis were then generated

using the SPGA algorithm to remove the scene blurring. Quantitative convergence

measures were obtained by measuring errors in estimating the known sway path.

The convergence rates of a number of SPGA variations are illustrated in the fol-

lowing figures. The RMS sway gradient error is plotted for both gradient and curvature
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Figure 10.9 Simulated data set used in SPGA testing. (a) Ideal uncorrupted image. (b) Corrupting
sway.
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Figure 10.10 Simulated data set used in SPGA testing. (a) Pulse compressed data corrupted using
the sway of Figure 10.9(b). (b) Blurred image reconstructed from (a).
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estimation kernels versus iterations28. The RMS gradient error is a more direct mea-

sure of image blurring than the RMS sway error used in Section 7.3. In addition, the

mean gradient error was removed from the measure to make it comparable between

the curvature and gradient estimators. The initial window size was selected as 1m in

across-track and 9m in along-track based on the known blurring extent of the image.

The window was reduced by 40% per iteration (factor = 0.6). Note that allowance

was made for the additional initial box width required for SPGA’s along-track target

position estimate. When using a curvature estimator, the initial along-track window

width was chosen to be 1/2 that of the gradient estimator since along-track position

estimation is not needed. Only 25 regions of the image are taken due to its small

extent—this is approximately two regions for each target. Unless otherwise specified,

the Doppler correlation method has been used for along-track position estimation.

Figures 10.11 and 10.12 illustrate SPGA’s convergence rates using phase gradient

and phase curvature estimators for various window reduction rates. The window size

of the ith iteration is given by Wyi = αWyi−1 for various α between 0.3 and 0.8. Note

that in a scene such as this it is better to base the window width reduction on measured

autofocus performance. (Windowing was chosen this way to mimic that used in clutter-

scene autofocus of SAS scenes.) SPGA with a gradient estimator provides a better

first iteration and generally improved convergence performance when compared with

the curvature estimator. The downside is divergence when using the phase gradient

estimator when α is low (< 0.4). When the window size is rapidly decreased, the

along-track position estimation fails leading to algorithm divergence. The effect may

be avoided by ensuring adequate along-track window size.

The apparent initial divergence when using the curvature estimator is a common

problem in early autofocus iterations. Whilst the accuracy of estimating the sway is

poor, the image is sharpened. The curvature estimator effectively autofocuses the image

as two disjoint scenes in the first iteration. Each scene has an incorrect phase gradient

(local linear sway) and although individual targets are well focused (suffering only from

a linear sway) the disjoint autofocus result causes a large error in the performance

metric chosen. Later iterations are able to use the improved separation of the two

targets in the centre of the image to avoid further divergence29.

For the majority of window reduction rates, the phase gradient estimator offers

faster convergence than the curvature estimator. However, care must be taken to en-

sure the along-track window-width is sufficiently large to prevent autofocus divergence.

The phase gradient estimator should be used in preference to phase curvature based

estimation and should include a method of estimating the necessary window-width (for

28Only the error over the region where target coverage exists is considered—approximately -15m to
+15m along-track.

29The centre targets provide the only source of information for the linear sway over the disjoint
scenes. Any autofocus error (residual blurring) in these targets results in incorrect linear trends across
each scene. This is due to the double integration required when using a phase curvature estimator.
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Figure 10.11 Convergence rate versus window size reduction rate for SPGA. Window size reduced
using Wyi

= αWyi−1
for various α between 0.3 and 0.8. Note divergence for α = 0.3.

preventing divergence).

Figure 10.13 illustrates the differences in SPGA convergence rate when using when

using the Doppler correlation and the two Doppler centroiding methods of along-track

position estimation when combined with the phase gradient estimator. Note that in

this autofocus scenario the Doppler aliasing effects noted in Section 10.3.3 are not

significant (which assists the Doppler centroiding method). The overall convergence

rate of the correlation and centroid estimators is similar, with the centroid estimation

showing better operation in early iterations but slight divergence in later iterations. The

modified centroid estimator shows all-round improvements over the other methods of

along-track position estimation; it is the best estimator for this scene.

The reason for the improved performance of the modified centroid estimator is due

to better estimation of the energy shift occurring in the image. Accuracy in estimating

energy shift corresponds directly to accuracy in linear phase (linear sway) estimation.

Thus the ability of the modified centroid estimator to account for off-centre energy

distribution when multiple targets exist inside the target window improves autofocus

accuracy30.

The relatively poor performance of the Doppler correlation-based methods can

probably also be attributed to off-centred energy in the initial target region. In the

case of two targets within the target window region, the Doppler spectrum has two

30Position estimation using standard Doppler centroiding assumes that the scene energy is centred
in the target region—an assumption that is not valid in general.
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Figure 10.12 Convergence rate versus window size reduction rate for PCA (SPGA with curvature
estimator). Window size reduced using Wyi = αWyi−1 for various α between 0.3 and 0.8. Note large
first iteration error. This is caused by the scene being autofocused in two disjoint sections—each with
an unknown linear sway (sway-gradient). This leads to a large error in the global sway estimate but
accurate estimates for each local section.

distinct peaks (due to superposition)—selecting the maximum point in the correlation

chooses one peak or the other rather than the (more accurate in this situation) average

of the two. This deficiency of model and the effect of noise on a broad correlation peak

make accurate linear phase prediction (and thus accurate target position estimation)

difficult to achieve using Doppler correlation.

Based on the results shown in Figure 10.13 position estimation via modified Doppler

centroiding is recommended. Where Doppler spectrum aliasing caused by large sways

is evident the circular centroiding technique should be employed.

Figure 10.14 shows SPGA convergence properties when operating on D/2 sampled

data. This sampling rate represents a slight undersampling of the data. Again, the

gradient estimator gives improved performance over the curvature estimator which

suffers poor apparent performance in the early iterations (see earlier discussion). Note

that the target extent is altered and so the initial RMS sway error values are altered

in comparison with the other tests presented here.

It is important to note in Figure 10.14 that SPGA still provides autofocus improve-

ment even with D/2 sampled data—micronavigation based autofocus techniques are

unable to provide any improvement in this situation. Note however that autofocus per-

formance is degraded slightly compared with the results obtained early in the section

with D/4 sampled data.
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Figure 10.13 SPGA convergence using gradient based estimator when using the Doppler centroid-
ing and Doppler correlation along-track position estimators discussed in Section 10.3.3. Note faster
convergence in the initial iterations using the centroid based position estimators and overall better
convergence with the modified centroid estimator.
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Figure 10.14 SPGA convergence on D/2 (slightly undersampled) data for gradient and curvature
based estimators.
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Figure 10.15 Image after SPGA autofocus using gradient estimator.

Figure 10.15 illustrates the autofocus result for the scene using the optimum pa-

rameters found in this section. In this case, the result is from nine iterations of SPGA

using the gradient estimator with modified Doppler centroiding (α = 0.6). The auto-

focus quality, like the blurring itself, is space-variant with diffraction limited imagery

at u = +10 m and minor residual blurring at u = 0 m. The minor residual blurring is

due to the self-clutter caused by neighbouring targets (causing self-noise in the phase

estimation). In this case, the adjacent targets around (53,-10) and (50,1) cause small

autofocus errors.

Figure 10.16 demonstrates the small autofocus errors at convergence by depicting

the injected and estimated sways after nine iterations of SPGA using the gradient

estimator. The estimated sway corresponds to that used when reconstructing the image

in Figure 10.15.

A constant sway error exists which causes slight autofocus (and image) errors.

However, as the constant sway offset error has little effect on the reconstructed image

and is difficult to estimate—see Section 10.4—its estimation has been avoided in the

SPGA implementation. Other salient points to note in Figure 10.16 are the generally

good sway estimation, and slightly larger errors at the edges of the scene where there

is no target coverage.

It is possible to see more detail and glean more information from Figure 10.17

which depicts the injected and estimated sway-gradients (obtained by taking first-

order differences of the sways in Figure 10.16). (The results from using the curvature
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Figure 10.16 Sway estimated using SPGA and a phase gradient estimation kernel. The sway offset
has only a minor effect and is not estimated by the algorithm.

estimator with other parameters held is also shown.) As shown in Section 7.3 sway-

gradient errors correspond directly to image blurring; this makes the depiction of sway-

gradients rather than sway better for interpretation purposes.

Small estimation errors are apparent in Figure 10.17 around u=-10 m and u=0 m

(both gradient and sway based estimation). Those errors are caused by nearby targets

at u=-10 m and u=0 m causing self-clutter—they are in effect a source of autofocus

noise. Other sources of errors occur at the edges of the scene where there is no aperture

coverage or target information. Note that the errors visible in Figure 10.17 are not large

enough to visibly blur Figure 10.15.

From the injected and estimated sway-gradients shown in Figure 10.17 it is possible

to see that gradient estimation performs better than curvature estimation. As noted

earlier in this chapter, curvature estimation is unable to estimate the sway-gradient

offset (effectively caused by an unknown integration constant). This results in the

constant offset visible in the curvature estimated sway-gradient in Figure 10.17. In

addition to offset error, the curvature result shows larger errors than the gradient

result around the u=-10 m region.

Summary

The testing presented in this section has been performed in the absence of clutter and

receiver-noise. These noise sources can limit autofocus performance so only conclusions

about an algorithm’s structure and approximations can be reliably be drawn. However,
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Figure 10.17 Sway-gradients estimated using SPGA. Phase gradient estimation kernel (SPGA) and
phase curvature kernel (SPCA) shown.

scene variation (self-clutter and complicated, extended targets in particular) limit aut-

ofocus potential more than those noise sources and is significantly more difficult to test.

More advanced simulation systems may aid in this type of testing and allow meaningful

results to be considered while also accounting for noise effects.

Using a simulated point scatterer target scene in a noise-free situation, SPGA shows

clear image improvement and convergence in 3-4 iterations. The phase-gradient based

estimator gives better performance than the phase-curvature based estimator (bear in

mind there is no yaw in the simulation). The best results for this autofocus scenario

were obtained using a window reduction rate of α = 0.6 combined with a modified

centroid along-track position estimator.

For a scene of point-like scatterers without corrupting noise or clutter SPGA ef-

fectively provides autofocus convergence within 3 iterations. With accurate target

windowing, autofocus improvement is reliable with the other autofocus parameters

affecting the amount of improvement possible. Target window width estimation tech-

niques would improve the robustness of the algorithm.

10.6.2 Field-collected data

The field-collected data for testing the autofocus algorithms was obtained in July 2001

in Sydney Harbour with the KiwiSAS-II. The image used is from a different pass of

the same region as shown in the field-collected data shown in Section 9.3.2. Like the
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Figure 10.18 Pulse-compressed image of Sydney Harbour scene. Note the large sonar calibration
rail at u = 15m. Data is sampled at approximately D/3.

data in Section 9.3.2, the image was collected with an along-track sample spacing of

approximately D/3 and has a shallow grazing angle.

Figures 10.18 and 10.19 correspond to the collected pulse-compressed and recon-

structed images respectively. No micronavigation techniques or INS were used in the

formation of the images. The images are linear grey-scale and are clipped to -20 dB

below the image peak. In addition, the 5m at each of the range extents of the images

have been removed to remove cross-talk and prevent circular convolution artefacts bi-

asing the autofocus results. Salient features of the image include a 20 m long sonar

calibration rail from (17,15) to (37,15) made up of small retro-reflectors, an approxi-

mately 3 m long 0.5 m diameter pipe from (32,-11) to (32,-14) (reflections from both

front and rear wall are visible) and apparent shadowing at (12,-15). Other features are

strong multi-path reflections from the pipe, a range-aliased target from (58,5) appear-

ing at (6,5) and visible alias-lobes from mild aperture undersampling. Note that the

alias-lobe level is higher than expected for D/3 sampling because of spatial Doppler

spectrum expansion caused by sway and a constant yaw offset.

A number of features of the initial reconstructed image Figure 10.19 make it dif-

ficult to autofocus. In particular, the scene has a large dynamic range with a number

of strong-scattering, extended targets. The clutter background is also bland and lacks

scene information or contrast changes. In addition, the centre region of the image

has very few (if any) scatterers that are above the clutter. This makes autofocus over

that region challenging. Furthermore, alias-lobes from the strong-scattering calibra-
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Figure 10.19 Reconstructed image corresponding to the pulse-compressed data in Figure 10.18.
Note visible alias-lobes appearing in the image. The alias-lobes in the image are not symmetric implying
platform yaw. Differences in symmetry throughout the image are caused by yaw varying with along-
track position.

tion rail are visible above the clutter in the region causing the problems discussed in

Section 10.5. There is also alias-lobe asymmetry caused by a constant platform yaw

(beam squint). Interestingly, the relative symmetry in the alias-lobes varies in the im-

age implying a changing platform yaw. The combination of the features noted makes

successful autofocus challenging.

The first of the autofocus methods attempted on Figure 10.19 was SPGA with a

phase curvature estimator (equivalent to 2-D PCA). Three iterations of the algorithm

were run each selecting 200 prominent-scatterers. The initial window size was 0.8 m

by 5 m to match the expected blurring. The across-track window size was extended

to ensure the independence of prominent-scatterers recommended by Zavattero [1999].

The window size was reduced at each iteration to 0.8 of the size at the previous iteration.

Figure 10.20 shows the sway estimate at the end of the third iteration. Note that the

sway estimate corresponds to a very large sway that is very unlikely. Figure 10.21

shows the image estimate once the sway of Figure 10.20 has been removed. The SPGA

phase curvature focused result of Figure 10.21 does not show any improvement over

the original reconstructed image. The autofocused image is significantly worse than

the original degraded image.

The reason for the poor autofocus result from the phase curvature estimator is

the same as for the generally poor performance of PCA: the double integration of
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Figure 10.20 Plot of the estimated sway generated using three iterations of SPGA with the phase
curvature estimator. The estimate corresponds to very large sways that are highly unlikely to occur in
practice.
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Figure 10.21 Autofocus result after applying three iterations of SPGA using the phase curvature
estimator (equivalent to 2-D PCA). Autofocus performance is poor with as much as 6m of sway
estimated (this is a highly unlikely sway for the KiwiSAS-II).
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Figure 10.22 Plot of the estimated sway double differences (sway curvatures) generated using three
iterations of SPGA with the phase curvature estimator. The estimate has a high variance in the regions
of little target cover (such as y = −3m to 13m). Double integration across these regions leads to large
errors in the estimated sway response.

phase curvatures. For the image used in this set of results, there is a region in the

centre of the image where phase curvature estimates are unreliable (due to only bland

clutter in the scene). This can be seen as a region of large curvature variance in the

sway double differences (sway-curvature) in Figure 10.22. When double integrating

across the region(s) of unreliable data, both the sway offset and the sway-gradient

are incorrectly estimated leading to large autofocus errors. The effect was also noted

in the previous section with simulated data where the scene becomes disjoint with

reasonable autofocus over each section of reliable data. This does not always result

in well autofocused sections since the average sway-gradient over each is unknown

and can have very large errors. In this case, the unknown sway-gradients over each

aperture section cause ≈ 8 m sway estimates which are clearly erroneous31. Unknown

sway-gradients, caused by double integration of sway-curvature, cause poor autofocus

results in stripmap systems.

SPGA with the phase gradient estimator was the other method used to autofocus

the field-collected data. Three iterations of the SPGA algorithm were run with the same

settings as used above in combination with a modified-centroid along-track position

estimator. In addition, an amplitude weighting was applied in the phase gradient kernel

to reduce the effect of the strong-scattering, extended targets. This (admittedly ad-

31The error is exacerbated by removing the overall linear trend.
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Figure 10.23 Sway estimate from three iterations of SPGA using the phase gradient estimation
kernel. Note that the linear sway trend is caused by an uncompensated constant platform yaw during
imaging. Accounting for the constant yaw would improve the autofocus result.

hoc) approach to prevent autofocus biasing changes the ML phase gradient estimation

kernel into a FLOS-PGA style phase estimation kernel. In the results shown, the phase

estimator used was

Arg

{∫
g<0.6>(kx, ky)g

∗<0.6>(kx, ky + ∆ky) dkx

}

where

Arg

{∫
g(kx, ky)g

∗(kx, ky + ∆ky) dkx

}

is the original ML kernel. The altered amplitude weighting has only a small effect on

the SPGA result and is not necessary with more advanced phase estimation approaches

such as WPGA. The altered weighting had no noticeable effect when applied to phase

curvature kernel SPCA.

The sway estimate from SPGA is shown in Figure 10.23. Note the linear sway

trend. The linear sway estimate is caused by a constant unaccounted-for yaw during

collection (beam squint). The yaw degrades autofocus performance and ideally should

be estimated, corrected and accounted for within SPGA. Correction via demodula-

tion/reconstruction alone is not enough as SPGA needs the yaw information to map

position and spatial-Doppler frequencies via the wavenumber transform.

The SPGA-autofocused image corresponding to the sway of Figure 10.23 is shown

in Figure 10.24. SPGA with a phase gradient estimator gives significant image im-
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Figure 10.24 Autofocus result after three iterations of SPGA with a phase gradient estimator.
(Sway of Figure 10.23 used for motion compensation.) Note general image improvement, lowering of
alias-lobes and sharper response of the calibration rail target.

provement. In particular, the alias-lobes are reduced in amplitude (due to less aliasing

once sway is compensated) and the calibration rail is in much sharper focus. Resid-

ual image blurring is still evident but overall blurring has been reduced significantly

without biasing caused by strong-scattering extended targets such as the pipe or the

close-range section of the calibration rail. Note that the autofocus performance varies

throughout the image, some image regions will be better than others. In particular,

the bland region in the centre of the image causes poorer autofocus performance due

to alias-lobes and lack of prominent scatterers.

Overall, in a situation with unknown and possibly varying platform yaw, SPGA

with the phase gradient estimator performed better than expected. The phase gradient

estimator is significantly better than the phase curvature estimator even in the presence

of unknown platform yaw. The approach of using an estimate of the along-track target

position and using gradient averaging has benefited algorithm performance. Many

further methods exist for improving SPGA’s performance by improving phase and

along-track target position. These improvements will allow better autofocus results.

10.6.3 SAS autofocus testing difficulties

SAS autofocus techniques are notoriously difficult to evaluate [Callow et al. 2001c].

Ideally, field collected data should be used for all autofocus testing. In practice, the

motion and phase distortions causing blurring are unable to be measured in the field
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preventing quantitative autofocus assessment. Qualitative (and sometimes subjective)

assessment is possible by investigating field-collected imagery before and after autofo-

cus. The best looking result is not necessarily the one with the most accurate autofocus.

Accurate ground-truth data from a conventional high-frequency side-scan sonar could

help but would be of limited benefit since frequency dependent scattering significantly

alters the image (see images in [Marx et al. 2000]). Field-collected data from free-towed

SAS systems cannot currently be used for quantitative autofocus testing.

Quantitative autofocus testing with field-collected data is possible using the spot-

light SAR testing practice of injecting known phase errors into diffraction-limited im-

agery [Jakowatz et al. 1996]. The availability of the (field-collected) Sandia labs test

set [Jakowatz et al. 1996; Morrison 2002; Wahl et al. 1994a] aids in the comparison of

spotlight SAR autofocus algorithms. Currently, no diffraction-limited stripmap SAS

dataset is available to allow similar testing.

The burden of quantitative autofocus algorithm testing falls to simulated data sets.

Simulation allows timely and quantitative autofocus testing and comparison. However,

simulation assumptions and inaccuracies can cause misleading results.

Simulation approximations and autofocus

Autofocus performance must be considered carefully when using simulated data sets.

Seemingly innocuous assumptions and approximations with regard to imagery can have

large impacts on autofocus performance. An example is given by Zavattero [1999] for

PGA testing. This work suggests that PGA performance can be underestimated if

clutter is not included in the simulation model. Generally, clutter degrades overall

autofocus performance but assists early iterations.

Testing with simulated clutter needs to be clearly thought out as the spatial cor-

relation lengths and amplitude probability density functions have effects on autofocus

performance. Moreover, occlusion, shadowing, and non-Lambertian scattering have

significant effects. Very few (if any) open simulation systems can accurately model

frequency and position variant phase effects in shadow zones. A simulation suite is

currently under development to address these issues [Hunter et al. 2003]. With the

interest in applying SAS to mine-detection, and the similarity of mine detection and

autofocus algorithms, detailed autofocus testing in simulated mine detection environ-

ments is necessary.

The simulations used in this thesis do not attempt to solve the problems noted

above. The simulations are based on ray-tracing to point scatterers and are usually

constructed in the ground-plane. Where clutter is simulated, it is generated using

a point scatterer based simulation of many randomly placed targets. These targets

have Rayleigh distributed amplitude to model the expected returns from a coherent

speckle surface. Future work in autofocus testing should make use of more sophisticated
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simulation techniques.

10.7 Summary

Autofocus is often required to improve imagery suffering unknown path or medium

fluctuation errors. A wide-beam, wide-band expression was developed relating sonar

sway to the complicated image blurring in SAS images. This expression employs fewer

approximations and is more accurate than the blurring models used in PCA and PGA.

The model relies on the wavenumber transform which maps spatial-frequency data of

a local patch to the pulse-compressed data of that patch. An extension of the model

was derived for the case of large sways that cause the wavenumber transform and other

blurring models to fail.

Traditional stripmap autofocus techniques were discussed and found to be special

cases of the SPGA algorithm with varying approximations. SPGA uses traditional

techniques such as scene windowing, phase estimation and interpolation. In addition,

the SPGA algorithm employs a novel along-track position estimation that allows phase

gradient averaging improving autofocus performance and robustness at the expense of

requiring a larger window size at convergence.

Implementation details of the major SPGA components are discussed in detail

and it was found that windowing should employ constant factor reduction for SAS

autofocus, target selection should ensure sufficient targets are selected for accuracy

and aperture coverage, and modified Doppler centroiding should be used for along-track

position estimation. Replacement of the ML phase estimation kernel with one similar

to the WPGA kernel will remove the requirement for along-track position estimation

and improve phase estimation accuracy. Other SPGA implementation details, limiting

factors and future improvements were also presented.

Image features causing difficulties for SPGA were discussed with a particular em-

phasis on aperture undersampling and space-invariant blurring. SPGA performance

is slightly degraded on images containing undersampling artefacts. Ambiguous results

are possible where space-invariant blurring occurs and accurate parameter estimates

from micronavigation should be used to estimate and remove the blurring.

The proposed SPGA algorithm was verified on both simulated and field-collected

data. The quantitative simulation-based testing was used to investigate variations

of a number of possible autofocus parameters. In all simulation tests SPGA gave

image improvement except when the along-track window size was reduced too rapidly.

SPGA should be used with phase gradient estimation, modified centroid along-track

position estimation, and window reduction rates of 50%–70%. Autofocus testing on

field-collected data also showed image improvement using SPGA. SPGA using the phase

gradient estimation showed a large performance improvement over phase curvature
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based estimation. The double integration of SPCA causes early autofocus divergence

and a poor overall result. SPGA provides image improvement in 3–4 iteration on both

simulated and field-collected data. Further improvements to the algorithm such as yaw

compensation and enhanced phase estimation will provide better autofocus results.

Verification of autofocus results is difficult with a lack of accurate ground truth for

field-collected data and inadequate modelling of complicated scenes in simulation. A

commonly available test set with ground-truth data would aid quantitative autofocus

testing. Further testing on various field-collected scenes is necessary.
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Conclusions

The first conclusion drawn is that the improved wide-band system models derived in

Chapter 3 should be used when using Fourier-based reconstruction methods. These

models have been derived without resorting to the stationary phase method and are

more accurate as a result. There is no additional computation involved in reconstruc-

tion and the improved modelling results in more accurate imagery. Improved temporal

Doppler modelling should be also used in wide-beam, multiple-receiver systems to re-

move the effects of the stop-and-hop model. The approximation is not normally consid-

ered serious for SAS imagery, causing image and spatial Doppler shifting. However, the

shifts can have adverse effects on autofocus performance. Compensation requires minor

changes to Fourier-based algorithms and adds no additional computational burden for

the wavenumber algorithm.

Of the Fourier-based reconstruction methods, the wavenumber algorithm should be

used owing to its flexibility and accuracy. Phase errors have been reported when using

the (more efficient) chirp-scaling algorithm, suggesting that the wavenumber algorithm

is better when autofocus is required (see Section 4.6). When using the wavenumber

algorithm, high-order interpolation is generally better than sub-swath reconstruction

using low-order interpolation. Efficiency gains may be possible using sub-swath recon-

struction with non-uniform sub-swath sizing since the required interpolator order varies

with slant-range. The wavenumber algorithm provides an efficient reconstruction tech-

nique for data collected from complicated geometries when combined with appropriate

motion-compensation techniques.

Compensation for the effects of multiple-receiver geometry is necessary when imag-

ing targets in the near field of the receiver array. Improved wide-beam compensation is

possible when using DFT-based along-track interpolation benefiting ultra-wide-beam

systems with relatively long receiver arrays. Multiple-receiver reconstruction using the

bistatic wavenumber algorithm holds some promise for avoiding the phase-centre ap-

proximation but the implementation is not currently as efficient as predicted. More

research may reveal methods for improving its efficiency. Bistatic modelling of the

multiple-receiver SAS problem gives a useful framework in which the complicated blur-

causing yaw and sway motions can be described. This may lead to improved blurring
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models for multiple-receiver autofocus algorithms.

The improved wide-beam motion compensation techniques derived in Chapter 6

should be used with any wide-beam multiple-receiver system. Multiple-receiver systems

obtain improved imagery with only a small increase in processing cost over traditional

narrow-beam methods. Single-receiver systems also derive benefit from wide-beam mo-

tion compensation but require more intensive processing. Yaw compensation methods

have been improved particularly benefiting wide-beam systems where large relative

yaws are present. The yaw compensation improvements require slight modifications to

the wavenumber algorithm and require a small increase in computation.

Time-delay estimation techniques used for estimating platform motion should em-

ploy amplitude-only with subsequent phase-only correlations rather than full time-

series correlations. This results in significant computational savings. Analysis of the

Cramér-Rao lower bounds for the estimation show that the accuracy of the estimate

is similar to that possible using full correlation. Phase-only correlation is equivalent

to the phase-estimation problem in astronomical imaging and SAR autofocus; it also

allows more flexibility in selecting target weighting compared with amplitude correla-

tion. The eigenvector phase estimation kernel was found to be equivalent to those used

in ultrasound and astronomical imaging and was shown to implement phase-closure. In

addition, the improved accuracy of high-order eigenvector kernels at low SNR suggest

that an eigenvector phase estimator of order 2–6 would be useful for SAS autofocus.

The weighted phase kernel that the WPGA algorithm uses has better low SNR accu-

racy than the eigenvector kernel but requires modification to allow stripmap operation.

Using WPGA for stripmap SAS requires further research. The weighted phase-kernel

(and also the QPGA modifications to the eigenvector kernel) also offer the benefit of

lessening the autofocus bias caused by strong-scattering, extended targets.

Unknown platform motion should initially be estimated using RPC for multiple-

receiver systems and shear average for single receiver systems. These methods provide

a good initial estimate of unknown path errors. Where shear average is used it should

always have the improved amplitude weightings discussed in Section 9.3.1 rather than

the ML weighting. Generally, shear average does not provide enough accuracy for

diffraction-limited imagery and subsequent autofocus is needed. The image correlation

extensions of RPC should not be used for autofocusing with non-redundant collection:

they employ the same assumptions as traditional phase-gradient autofocus methods but

without the flexibility, accuracy, or computational efficiency. These problems could

be ameliorated in part if complex correlation can be used. This will require similar

techniques to those employed by PDA (a correlation-based phase-gradient technique).

Spotlight autofocus algorithms such as PDA and PGA often provide the basis for

similar stripmap algorithms. The space-invariant blurring model typical of spotlight

algorithms is a special case of the blurring model derived from the stripmap wavenum-
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ber transform. Parametric PDA should be chosen instead of map-drift variants since

it offers similar performance without requiring iteration. PDA achieves this using the

same information as PGA in determining path-estimates although PGA should be

employed in preference to PDA or map-drift. In particular, the PGA-like WPGA algo-

rithm should be used since its extensions to PGA provide improved phase estimation

accuracy, giving better autofocus performance.

The SPGA algorithm for stripmap autofocus has been proposed and tested on

field-collected and simulated data sets. The algorithm is based on traditional autofocus

methods but has fewer approximations owing to improved blur modelling. Typically

the SPGA algorithm converges in 3-4 iterations although divergence is sometimes seen

with additional iterations when the window size becomes too small for reliable along-

track position estimation. The likelihood of divergence is scene dependent. Both phase

gradient and phase curvature based phase-estimation methods are possible with the

use of along-track position estimation but phase gradient estimation gives improved

autofocus results on both simulated and field-collected data. The SPGA algorithm

is also able to operate on data that has ≥ D/2 along-track sampling although it has

reduced performance in that case.

SPGA is the algorithm most suited to single receiver stripmap autofocus discussed

in this thesis. SPGA can be used for bulk sway removal but it is more efficient to use

micronavigation or an INS for that purpose. SPGA’s use of phase gradient techniques

allows additional flexibility, improved performance, and reduced computational cost

when compared with other techniques. In addition, the use of phase gradient estimation

allows better accuracy and robustness than phase curvature techniques. Future work

on the algorithm should initially focus on multiple-receiver autofocus and on improving

phase estimation. Other possibilities for improvement are discussed in the following

section.

In summary, this thesis offers a number of methods for improving the imagery

obtained from stripmap SAS systems: improvements to current modelling, reconstruc-

tion, and motion compensation techniques, a comprehensive review of current SAS

and SAR autofocus techniques, and the development and testing of the novel SPGA

algorithm which holds much promise for SAS/SAR autofocus.

11.1 Recommendations for future research

There are a number of areas in which further research could yield improvements in the

imagery obtained from SAS systems. A number of these are listed below:

Bistatic reconstruction improvement — The multiple-receiver wavenumber re-

construction based on the bistatic formulation of the sonar system model holds

promise for systems where the phase centre approximation does not hold. Current
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implementations require more processing than desirable. A better understanding

of the problem may result in efficiency gains.

Autofocus algorithm efficiency — Algorithmic efficiency is sometimes sacrificed

for accuracy. In the early iterations of an autofocus algorithm, where accuracy is

not as important, computational savings are possible if approximations are made

in the autofocus algorithms. Hybrid autofocus schemes do this giving signifi-

cant benefit to global optimisation style algorithms. More research is needed to

determine where approximations can be made without sacrificing performance.

Improved phase estimation — WPGA’s phase estimator is better than the ML

estimator currently used with the SPGA algorithm but relies on a number of

spotlight autofocus assumptions. In addition, the local phase unwrapping tech-

nique of WPGA’s phase estimator has the potential to remove the requirement

for along-track position estimation in SPGA.

Continuous wavelet-transform based autofocus — All of the autofocus methods

described in this thesis employ some form of space/spatial-frequency method for

estimating the path distortion—most based on short-term Fourier transformation.

A wavelet-transform based framework (similar to the Wigner-Ville distribution

methods of Brown and Ghiglia [1988], Berizzi and Pinelli [1997] and bispectral

estimation methods [Nikias et al. 2000]) may provide additional insight into the

autofocus problem.

Additional autofocus priors — All autofocus requires some prior knowledge about

the images to be processed. Currently, most of the priors used for autofocus

are closely related: contrast and entropy priors implement the same constraints

as those based on the average Fourier phase or bispectral phase of an image

patch—the so called point scatterer or image sharpness assumption. Additional

information based on alternate prior knowledge may provide benefits, particularly

if used in an iterative global autofocus framework.

Multiple-receiver autofocus improvement — The stripmap autofocus framework

presented in this thesis does not model multiple-receiver systems. Currently,

multiple-receiver images are autofocused in the same way as single-receiver im-

ages. This neglects some of the complicated interactions possible with multiple-

receiver systems. Multiple-receiver systems allow additional prior information

(for example that the array is fixed) that is not currently used within the SPGA

method.

Target detection investigation — The techniques used in target classification and

detection (such as the higher order spectra technique outlined in [Chandran et al.



11.1 Recommendations for future research 209

2002]) have a close relationship with autofocus techniques. In particular, the high-

order phase estimators used in autofocus are equivalent to higher order spectral

estimation techniques used elsewhere. There is some possibility the techniques

can be combined. Further investigation of the relationships between the two fields

is necessary.

Advanced simulation testing — Adequately testing autofocus algorithms is diffi-

cult. Simulation systems (the most straightforward way of accurately verifying

autofocus performance) need to better model effects such as frequency-dependent

beam patterning and shadowing—seemingly minor effects that have drastic im-

pact on autofocus performance. In addition, further testing on field-collected

data is necessary to show robust performance.





Appendix A

SAS system parameters

This appendix summarises the parameters of some of the SAS systems discussed in this

thesis. Transmitter extents are given in terms of an equivalent rectangular transducer—

this is not necessarily the same as the transducer extent since it is common practice to

defocus a transmitter to mimic a smaller one.

Parameter Value Units

Carrier freq 30 kHz

Bandwidth 20 kHz

Number receivers 1

Receiver length 0.225 m

Transmitter length 0.325 m

Table A.1 KiwiSAS-II parameters [Hawkins 1996; Hayes and Gough 1999].

Parameter Value Units

Carrier freq 30/100 kHz

Bandwidth 20 kHz

Number receivers 1

Receiver length 0.225 m

Transmitter length 0.325 m

Table A.2 KiwiSAS-III (LF/HF) parameters [Hayes et al. 2001].

Parameter Value Units

Carrier freq 30/100 kHz

Bandwidth 20 kHz

Number receivers 12

Receiver length 0.1 m

Transmitter length 0.1 m

Table A.3 KiwiSAS-IV (LF/HF) parameters (under construction).
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Parameter Value Units

Carrier freq 180 kHz

Bandwidth 30 kHz

Number receivers 32

Receiver length 0.0625 m

Transmitter length 0.0625 m

Table A.4 US Navy sonar parameters approximately matching specification given by Keeter [2001].

Parameter Value Units

Carrier freq 20/180 kHz

Bandwidth 10/30 kHz

Number receivers 14/11

Receiver length 0.0381/0.0508 m

Transmitter length 0.762/0.0508 m

Table A.5 CSS sonar (LF/HF) parameters [Cook et al. 2001].



Appendix B

Derivation of Weyl’s Identity

This section outlines the Fourier decomposition that Soumekh [1994, pp 149-152] per-

forms, i.e., it outlines a proof of the 2-D equivalent of Weyl’s identity and gives the

wavenumber domain representation of the received field. 3-D derivations follow in sim-

ilar manner. Chew [1995] gives a similar derivation. This section is intended to replace

the Fourier pair derivation presented in Hawkins [1996, Appendix A].

For convenience Weyl’s identity is stated initially and the proof of the right-hand

side follows. Weyl’s identity in 3-D space is given by

exp (−jkr)
4πr

=
−j
8π2

∫∫ exp
(
−j |x|

√
k2 − k2

y − k2
z + jkyy + jkzz

)

√
k2 − k2

y − k2
z

dky dkz , (B.1)

where r =
√
x2 + (y − u)2 + (z − h)2. The 2-D equivalent is given by

− j
4
H

(2)
0 (kρ) =

−j
4π

∫ exp
(
−j |x|

√
k2 − k2

y + jkyy
)

√
k2 − k2

y

dky, (B.2)

where ρ =
√
x2 + (y − u)2 and H

(2)
0 is a Hankel function of the 2nd kind. The left

hand sides of (B.1) and (B.2) and their derivations were presented in Section 2.4 and

correspond to the system models in 3-D and 2-D respectively; these impulse responses

should replace the simple exponential term used in Hawkins [1996].

The right hand side of (B.2) is derived by starting with the free space homogeneous

medium Green’s equation in 2-D [Morse and Feshbach 1953; Ziomek 1995] (also the

starting point for the derivation in Section 2.4)

G(kx, ky, ω) =
1

k2
x + k2

y − k2
, (B.3)

and extending to the more general forced form below, known as the forced Helmholtz

equation,

H(kx, ky, ω) =
F (kx, ky, ω)

k2
x + k2

y − k2
. (B.4)
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Taking the Inverse Fourier transform of (B.4) gives,

H(x, y, ω) =
1

(2π)2

∫

kx

∫

ky

F (kx, ky, ω)

k2
x + k2

y − k2
exp (j(kxx+ kyy)) dkx dky

H(x, y, ω) =
1

(2π)2

∫

kx

∫

ky

F (kx, ky, ω)

(kx − k1)(kx + k1)
exp (j(kxx+ kyy)) dkx dky,

(B.5)

where

k1(k, ky) ≡
√
k2 − k2

y . (B.6)

To simplify (B.5) the residue theorem [Kreyszig 1979] is invoked. To do this, first the

integral in kx is generalised onto a Laplace domain contour integral using1 sx = α+jkx.

Summarising this for the integration over kx we get:

H(x, y, ω) =
1

(2π)2

∫

ky

∫

kx

F (kx, ky, ω)

(kx − k1)(kx + k1)
exp (j(kxx+ kyy)) dkx dky

=
1

(2π)2

∫

ky

∮

C

F (sx, ky, ω)

(sx − k1)(sx + k1)
exp (sxx+ jkyy) dsx dky,

(B.7)

where the contour C encloses the left-hand Laplace plane. Dividing this contour into

two parts we can perform the integral along the kx axis (what we care about) and an

integral on an infinite radius. If the latter integral goes to zero the entire integral is

equal to the section along the kx axis [Kreyszig 1979]. Now if x < 0 then the term

exp (sxx) → 0 as sx → ∞ and that part of the integral disappears. Evaluating the

residue at the left half pole gives:

R(x) =
F (sx, ky, ω)

sx + k1
exp (sxx+ jkyy)

∣∣∣∣
sx=−k1

. (B.8)

Evaluating the other pole using a contour extending over the right-half Laplace domain

for x > 0 and evaluating the residues leads to the result below,

H(x, y, ω) =





−j
2π

∫
ky

[
F (kx,ky,ω)

kx+k1
exp (j(kxx+ kyy))

]
kx=−k1

dky, if x > 0

j
2π

∫
ky

[
F (kx,ky,ω)

kx−k1
exp (j(kxx+ kyy))

]
kx=k1

dky, if x < 0.
(B.9)

Explicitly expanding the residues, (B.9) becomes:

H(x, y, ω) =
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∫
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y,ky,ω)

2
√
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y
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(
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j
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∫
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(
j(x
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)

dky, if x < 0.

(B.10)

To complete the proof of (B.2) F (
√
k2 − k2

y , ky, ω) is set to 1 for all k, ky , ω to match

1The α term can be regarded as modelling the absorption in the medium.
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the original impulse response and (B.10) may be written as

H(x, y, ω) =
−j
4π

∫ exp
(
−j |x|

√
k2 − k2

y + jkyy
)

√
k2 − k2

y

dky. (B.11)

To derive the wavenumber domain representation of the field we take the positive2

x term of (B.10) to get:

H(x, y, ω) =
−j
4π

∫

ky

F (
√
k2 − k2

y , ky, ω)) exp(−jx
√
k2 − k2

y)
√
k2 − k2

y

exp(jkyy) dky, (B.12)

which is of the form:

H(x, y, ω) =
−j
2
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(ky)
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√
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(
−jx

√
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 . (B.13)

Often (B.13) is written without the explicit frequency dependence as

h(x, y) =
−j
2
F−1

(ky)



f(
√
k2 − k2

y , ky) exp
(
−jx

√
k2 − k2

y

)

√
k2 − k2

y


 . (B.14)

2As we are treating single-sided imaging.





Appendix C

Time varying gain for Fourier-based

reconstruction

In the reconstruction chapters of this thesis TVG was discussed with regard to time-

domain based reconstruction and time-domain methods were derived using the 3-D

Green’s function. The Fourier reconstruction techniques were derived using the 2-D

Green’s function and require slightly different TVG terms to get correct reconstruction.

This section relates the 2-D and 3-D Green’s via a delta-sheet model and derives the

correct TVG and frequency compensation terms for Fourier-based reconstruction.

Starting with the expression for the raw echo frequency data from Section 4.1

E(ω, u, h) ≈
∫∫∫

f(x, y, z)P (ω)

(4π)2 |x2 + (u− y)2 + (h− z)2|
exp

(
−j2k

√
x2 + (u− y)2 + (h− z)2

)
dz dxdy, (C.1)

a delta-sheet scattering approximation (single scattering height for a given (x, y) posi-

tion) is made such that

f(x, y, z) = f(x, y)δ(z − Z), (C.2)

and h is assumed to be zero giving

E(ω, u) ≈
∫∫

f(x, y)P (ω)

(4π)2 |x2 + (u− y)2 + Z2|
exp

(
−j2k

√
x2 + (u− y)2 + Z2

)
dxdy. (C.3)

At this point the effective scatterer height function Z is a constant (but could be written

to vary with scene position if necessary). Rewriting (C.3) in slant range coordinates

xs =
√
x2 − Z2
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(see Chapter 3) gives

E(ω, u) ≈
∫∫

f(xs, y)P (ω)

(4π)2 |x2
s + (u− y)2|

exp
(
−j2k

√
x2

s + (u− y)2
) xs√

x2
s − Z2

dxs dy. (C.4)

Performing an inverse Fourier transform of (C.4) from ω → t gives the echo data as

e(t, u) ≈
∫∫

f(xs, y) p(t− (2/c)
√
x2

s + (u− y)2)

(4π)2 |x2
s + (u− y)2|

xs√
x2

s − Z2
dxs dy, (C.5)

which after pulse-compression becomes

s(t, u) ≈
∫∫

f(xs, y) pp(t− (2/c)
√
x2

s + (u− y)2)

(4π)2 |x2
s + (u− y)2|

xs√
x2

s − Z2
dxs dy, (C.6)

where pp(t) is the autocorrelation of the transmitted signal. Applying a TVG1 term of

4πct/2 ≈ 4π
√
x2

s + (u− y)2

to s(t, u) gives

stvg(t, u) ≈
∫∫

f(xs, y) pp(t− (2/c)
√
x2

s + (u− y)2)

4π
√
x2

s + (u− y)2
xs√

x2
s − Z2

dxs dy, (C.7)

which is

Stvg(ω, u) ≈
∫∫

f(xs, y)PP (ω)

4π
√
x2

s + (u− y)2
exp

(
−j2k

√
x2

s + (u− y)2
) xs√

x2
s − Z2

dxs dy

(C.8)

in the frequency domain. Taking the Fourier transform2 along u, y (and using an

asymptotic expansion of the resulting Hankel function) gives (C.8) as

Stvg(ω, ku) ≈
∫
f(xs, ky)PP (ω)

4π
√
jxskx

exp (−jkxxs)
xs√

x2
s − Z2

dxs, (C.9)

≈ PP (ω)

4π
√
jkx

∫
f(xs, ky) exp (−jkxxs)

√
xs√

x2
s − Z2

dxs, (C.10)

where

kx =
√
k2 − k2

y . (C.11)

The result (and method of TVG application) may be seen using (C.10); absorb-

ing the
√
xs

√
x2

s − Z2 term into a modified reflectivity, famp(xs, y), allows the pulse

1The successful application of this term assumes that the autocorrelation of the transmitted signal
is short. This is necessary for the application of TVG to mimic the desired RVG.

2Using Weyrich’s identity [Chew 1995, page 70].
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compressed data after TVG to be written as

Stvg(ω, ku) ≈ famp(kx, ky)PP (ω)√
jkx

. (C.12)

The method of reconstructing scenes using 2-D Fourier domain techniques with a

3-D Green’s function is as follows:

1. Apply linear TVG to the pulse-compressed time-domain data.

stvg(t, u) = s(t, u)2πct. (C.13)

2. Reconstruct famp(x, y) from stvg using (for example the wavenumber algorithm)

famp(kx, ky) ≈ Stvg(ω, ku)
√
jkx, (C.14)

where kx is given by (C.11). Note that the modification to the frequency com-

pensation term (
√
jkx instead of kx) is the same for any of the Fourier-domain

methods described in Chapter 4.

3. Recover f(x, y) from famp(x, y) by removing the space variant amplitude term

via

f(xs, y) = famp(xs, y)

√
x2

s − Z2

√
x

. (C.15)

The derivations shown in this appendix demonstrate the relationship between 2-D

and 3-D Green’s functions with regard to Fourier-domain reconstruction techniques.

In practice the 3-D Green’s function should always be used to model typical SAS

scenarios (even in shallow water) and the TVG described here applied in preference to

the methods described in Chapters 4 and 5. Those methods require only very minor

adjustment to apply the appropriate TVG terms.
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Derivation of the wavenumber transform

The wavenumber transform is the basis of the stripmap blurring model used in this

thesis and as such is also the basis of the SPGA autofocus method.

D.1 Stationary phase derivation

The stationary phase method is often used to derive the wavenumber algorithm [Boni-

fant 1999; Hawkins 1996]. In this situation it is required that the sway does not shift

the stationary phase point—i.e., the effect of sway is negligible. This approximation is

only valid if the sway is small.

This example of the derivation follows the derivation of the wavenumber algorithm

in [Hawkins 1996, Appendix A]. Starting with a simplified 2-D spatial-frequency re-

sponse (from Chapter 3 neglecting spreading losses)

E(ω, ku) ≈
∫
a(ω, u)

∫∫
f(x, y) exp

(
−j2k

√
x2 + (u− y)2 − jkuu

)
dxdy du, (D.1)

with a given amplitude-only filter a(ω, u). Note that for the point at xn, yn given by

fn(xn, yn) (D.1) is given by

E(ω, ku)n ≈
∫
a(ω, u)fn(xn, yn) exp

(
−j2k

√
x2

n + (u− yn)2 − jkuu
)

du, (D.2)

The phase and phase-derivatives of (D.1) are,

φ(ω, u) = −2k
√
x2

n + (u− yn)2 − kuu (D.3)

φ̇(ω, u) =
2k(u− yn)√
x2

n + (u− yn)2
− ku. (D.4)

Solving for the stationary phase point

u∗ = yn − kuxn√
4k2 − k2

u

, (D.5)
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which after recognising the wavenumber algorithm’s change of variables becomes

u∗ = yn − kyxn

kx
. (D.6)

The expression for the stationary phase point u∗ is substituted back into (D.1) to derive

the echo signal’s wavenumber domain representation

E(ω, ku) ≈ a

(
ω, yn − kuxn√

4k2 − k2
u

)√
πx

jk
fn

(√
4k2 − k2

u, ku

)
, (D.7)

where fn(kx, ky) is the Fourier transform of the small image patch fn(xn, yn).

Equation (D.6) gives an expression relating the spatial-frequencies from a given

position in the reconstructed image to the pulse compressed data that generated the

result at that position. The relation can be used to express the amplitude-only filter

a(k, u) in terms of kx, ky. Sway is mapped in a similar fashion although it causes phase

terms that shift the stationary phase point. The shift in stationary phase-point caused

by large sways invalidates the model given here. The breakdown of the wavenumber

transform for large sways is important for stripmap autofocus and improved modelling

should be used (see Section 10.1.1 and [Madsen 2001]). Small sways such as those

experienced at autofocus convergence have little effect on the wavenumber transform.

D.2 Geometry based derivation

The wavenumber transform can also derived using straightforward geometrical argu-

ments as in Soumekh [1999].

Starting with the angle to target θ

θ = tan−1

(
u− yn

xn

)
(D.8)

and noting that in the far-field of the target patch the spatial frequency coverage is

described by the same angle

θ = tan−1

(
ky

kx

)
. (D.9)

The wavenumber transform relation may now be derived as

u = yn − kyxn

kx
(D.10)

which matches that derived in the previous section. Note that

kx = 2k cos θ, (D.11)

ky = 2k sin θ, (D.12)
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are equivalent to the use of the wavenumber transform—i.e., only a far field approxi-

mation is necessary. The use of the later equations also gives

2k =
√
k2

x + k2
y, (D.13)

which is the second half of the wavenumber transform mapping.
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Eigenvector phase kernel and phase-closure

The eigenvector method estimates the phase by calculating the eigenvector correspond-

ing to the largest eigenvalue of the data sample covariance matrix. This is derived,

maximising the functional below1:

Q1 = vHĈv, (E.1)

where v is the phase only vector
[
1 exp (j∆φ1[l]) . . . exp (j∆φL[l])

]
and Ĉ is the

co-variance matrix of the measured data. For the sake of clarity we define,

αa ≡ g[n, l + a], (E.2)

for integer a. Expanding (E.1) for two adjacent sets of samples (pulses) we get,

Q1 =

1
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1

exp (j∆φ1[l])
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. (E.3)

After ignoring the constant amplitude terms,
N−1∑
n=0

|α0|2,
N−1∑
n=0

|α1|2, . . . (E.3) becomes,

Q2 =
1

N

N−1∑

n=0

{
α0α

∗

1 exp (j∆φ1[l]) + α∗

0α1 exp (−j∆φ1[l])

+ α0α
∗

2 exp (j∆φ2[l]) + α∗

0α2 exp (−j∆φ2[l])

+ α1α
∗

2 exp (−j∆φ1[l]) exp (j∆φ2[l]) + α∗

1α2 exp (j∆φ1[l]) exp (−j∆φ2[l])
}

(E.4)

1A proof exists in [Jakowatz and Wahl 1993].
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as the expression to be maximised. Equation (E.4) can now be written in the form

Q2 = q + q∗, (E.5)

where,

q =
1

N

N−1∑

n=0

[α0α
∗

1 exp (j∆φ1[l])]

+
1

N

N−1∑

n=0

[α0α
∗

2 exp (j∆φ2[l])]

+
1

N

N−1∑

n=0

[α1α
∗

2 exp (−j∆φ1[l]) exp (j∆φ2[l])].

(E.6)

Using the relationship q + q∗ = 2Re {q}, (E.6) becomes,

Q2 =2Re

{
1

N

N−1∑

n=0

(α0α
∗

1 exp (j∆φ1[l]))

}

+ 2Re

{
1

N

N−1∑

n=0

(α0α
∗

2 exp (j∆φ2[l]))

}

+ 2Re

{
1

N

N−1∑

n=0

(α1α
∗

2 exp (−j∆φ1[l]) exp (j∆φ2[l]))

}
.

(E.7)

Converting (E.7) using Re {q} ≡ |q| cos (arg (q)),

Q2 =2

∣∣∣∣∣
1

N

N−1∑

n=0

(α0α
∗

1)

∣∣∣∣∣ cos
(

∆φ1[l] + arg

(
1

N

N−1∑

n=0

α0α
∗

1

))

+ 2

∣∣∣∣∣
1

N

N−1∑

n=0

(α0α
∗

2)

∣∣∣∣∣ cos
(

∆φ2[l] + arg

(
1

N

N−1∑

n=0

α0α
∗

2

))

+ 2

∣∣∣∣∣
1

N

N−1∑

n=0

(α1α
∗

2)

∣∣∣∣∣ cos
(

∆φ2[l] − ∆φ1[l] + arg

(
1

N

N−1∑

n=0

α1α
∗

2

))
.

(E.8)
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By inspection, maximisation of Q2 occurs when each cos term is maximised2. Using

the principal solution3 for Q2 in an over-determined set of equations we have,

∆φ1[l] = − arg

(
1

N

N−1∑

n=0

α0α
∗

1

)
,

∆φ2[l] = − arg

(
1

N

N−1∑

n=0

α0α
∗

2

)
,

∆φ2[l] − ∆φ1[l] = − arg

(
1

N

N−1∑

n=0

α1α
∗

2

)
.

(E.9)

Which can be written in matrix form as:




1 0

−1 1

0 1



[
∆φ1[l]

∆φ2[l]

]
=




− arg

(
1
N

N−1∑
n=0

α0α
∗

1

)

− arg

(
1
N

N−1∑
n=0

α1α
∗

2

)

− arg

(
1
N

N−1∑
n=0

α0α
∗

2

)



. (E.10)

Solving for [∆φ1[l],∆φ2[l]] in a least squares sense [Franklin et al. 1998] we get,

[
∆φ1[l]

∆φ2[l]

]
=

[
2
3

1
3 −1

3

1
3

2
3

1
3

]




− arg

(
1
N

N−1∑
n=0

g[n, l]g∗[n, l + 1]

)

− arg

(
1
N

N−1∑
n=0

g[n, l + 1]g∗[n, l + 2]

)

− arg

(
1
N

N−1∑
n=0

g[n, l]g∗[n, l + 2]

)



. (E.11)

A weighted LMS solution to (E.10) may be obtained by including a weighting in the

equations above.

To estimate the corrupting aperture phase, ϕ[l], the resulting phase estimates are

integrated in a more complicated fashion than other methods:

ϕ[l] = (ϕ[l − 1] + ∆φ1[l]) + (ϕ[l − 2] + ∆φ2[l]). (E.12)

Notice now that there are multiple estimates for ϕ[l] that can be combined to improve

performance4. The combination of multiple phase differences is a typical phase-closure

relation. The multiple phase difference estimates may also be weighted to account

for varying noise properties or other anomalies in the collected data. The original

2Note that this is equivalent to the phase closure relation used in astronomical imaging. [Lohmann
et al. 1983; Roddier 1986]

3The assumption involved here is that the angles ∆φL[l] are small. When the angles are large, phase
unwrapping can allow this method to be used. Also there are recursive methods for phase estimation
not requiring phase unwrapping [Bartelt et al. 1984].

4As long as the noise is independent.
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eigenvector solution also leads to the bispectrum methods used in astronomical imaging

[Ayers et al. 1988] (another phase-closure method [Roddier 1986]). Freeman et al. [1988]

describe a number of different methods of weighting bispectrum phases and conclude

that minimum variance weighting gives reliable results. Satherly [1994, Chapter 4]

provides a summary of phase retrieval techniques in astronomical imaging.



Appendix F

Bispectrum and eigenvector phase estimation

equivalence

This appendix outlines the equivalence of using bispectrum-based phase estimation and

using a 3-term eigenvector phase estimation.

F.1 Bispectrum kernel

Phase estimation for ϕ[l] from bispectrum data for j = −1, 1, . . .

ϕ[l] = ϕ[j] + ϕ[l − j] − arg

(
1

N

N−1∑

n=0

(gG∗[n, l]gG[n,−j]gG[n, l + j])

)
, (F.1)

rewriting each separate estimate,

ϕ[l] =




ϕ[−1] − arg

(
1
N

N−1∑
n=0

gG[n,−1]

)
+ ϕ[l − 1] − arg

(
1
N

N−1∑
n=0

(gG∗[n, l]gG[n, l + 1])

)
,

ϕ[+1] − arg

(
1
N

N−1∑
n=0

gG[n,+1]

)
+ ϕ[l + 1] − arg

(
1
N

N−1∑
n=0

(gG∗[n, l]gG[n, l − 1])

)
.

(F.2)

F.2 Eigenvector kernel

Phase estimation from a 3 term eigen-method estimates uses covariance matrix differ-

ence phases

∆φ1[l] = ϕ[l + 1] − ϕ[l] = − arg

(
1
N

N−1∑
n=0

g[n, l]g∗[n, l + 1]

)
,

∆φ2[l] = ϕ[l + 2] − ϕ[l] = − arg

(
1
N

N−1∑
n=0

g[n, l]g∗[n, l + 2]

)
,

∆φ1[l + 1] = ϕ[l + 2] − ϕ[l + 1] = − arg

(
1
N

N−1∑
n=0

g[n, l + 1]g∗[n, l + 2]

)
,

(F.3)
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rewriting1 for the phase estimate ϕ[l],

ϕ[l] =





ϕ[l − 1] − arg

(
1
N

N−1∑
n=0

gG[n, l − 1]gG∗[n, l]

)
,

ϕ[l + 1] − arg

(
1
N

N−1∑
n=0

gG[n, l + 1]gG∗[n, l]

)
.

(F.4)

Clearly (F.4) is the same as (F.2) except for a constant phase factor,

cp =





ϕ[−1] − arg

(
1
N

N−1∑
n=0

gG[n,−1]

)
,

ϕ[+1] − arg

(
1
N

N−1∑
n=0

gG[n,+1]

)
.

(F.5)

The constant phase factor, cp, shown in (F.5) is trivial to account for. To remove the

difference, the phase retrieval algorithm only has to undergo minor modification. The

trispectrum result is the same but with a constant phase of different form.

1But possibly throwing away information at this point.



Appendix G

Fourier transform properties

This appendix summaries useful properties of Fourier transforms used extensively

throughout this thesis.

Property Description

1. Linearity
af(t) + bg(t) ↔ aF (ω) + bG(ω),
where a, b are constants

2. Time Scaling f(at) ↔ 1

|a|F
(ω
a

)
,

where a is a constant

3. Duality If f(t) ↔ F (ω) then F (t) ↔ f(−ω)

4. Time shifting f(t− t0) ↔ F (ω) exp (−jωt0)

5. Frequency shifting exp (jωct)f(t) ↔ F (ω − ωc)

6. Area under f(t)

∫
∞

−∞

f(t) dt = F (0)

7. Area under F (ω) f(0) =

∫
∞

−∞

F (ω) dω

8. Differentiation in the time-domain
d

dt
f(t) ↔ jωF (ω)

9. Integration in the time-domain

∫ t

−∞

↔ 1

jω
F (ω) +

F (0)

2
δ(ω)

10. Conjugate functions If f(t) ↔ F (ω) then f ∗(t) ↔ F ∗(−ω)

11. Multiplication in the time-domain f(t)g(t) ↔
∫

∞

−∞

F (λ)G(ω − λ) dλ

12. Convolution in the time-domain

∫
∞

−∞

f(τ)g(t− τ) dτ ↔ F (ω)G(ω)

13. Correlation in the time-domain

∫
∞

−∞

f(τ)g∗(τ − t) dτ ↔ F (ω)G∗(ω)
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f(t) F (ω)

δ(t) 1

1 δ(ω)

δ(t− t0) exp (−jωt0)

rect

(
t

T

)
T sinc(ωT )

sinc(2Bt)
1

2B
rect

( ω

2B

)

exp
(
−πt2

)
exp

(
−ω2/4π

)

exp (− |a| t), a > 0
2a

a2 + ω2

f(t) ⊙t f(t) F (ω)F (ω)

f(t) ⋆t f(t) F (ω)F ∗(ω)

Table G.1 Useful 1-D Fourier transform pairs, compiled from [Bracewell 1986; Haykin 1994].

f(x, y) f(kx, ky)

f(x, y − ax) f(kx + aky, ky)

f(x cos θ − y sin θ, x sin θ + y cos θ) f(kx cos θ − ky sin θ, kx sin θ + ky cos θ)

Table G.2 Useful 2-D Fourier transform pairs, compiled from [Bracewell 1986; Haykin 1994].
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Index

acoustic field, 14

across-track motion, see sway

alias targets, 181–182

aliasing, 24, 172–173, 181–185, 200

along track ambiguity to signal ratio (AASR),

23–25, 181–182, 185

along-track

Doppler spectrum, see Doppler spec-

trum

interpolation, 176, 177, 202

position estimation, see position es-

timation

sample spacing, 181, 185, 195

sampling constraints, 23–24, 29, 172

spatial Doppler spectrum, 120

undersampling, see undersampling

along-track resolution, 18–21

amplitude weighting, 137, 140–143, 147,

198

amplitude-only envelope correlation, 99

array calibration, 111, 132–133

array theory, 15–21

astronomical imaging, 94, 101, 104, 107,

108, 227, 228

autofocus

2-D PCA, 163, 177

biasing, 128, 133–134, 138–141, 145,

169, 199

blurring model, see blurring model

cascade, see cascade

contrast optimisation, 96, 113

divergence, 188, 189

effect of undersampling, 181–185

FLOS-PGA, 127–128

global optimisation, 113

image correlation, see image corre-

lation

MAMD, 121

MD, 120–121

mPGA, 128–129, 177

non-coherent, 147–148

non-redundant collection, 138–139

overview, 111–114

PCA, 159–163, 177

PDA, 121–122

performance, 185–193

PGA, 113–114, 122–125, 127–129,

177

PMA, 114, 163–165

PPP, 157–159, 177

QPGA, 128

ROPE, 114, 119

spatial-correlation, 105

SPGA, 165–167

sub-aperture correlation, see sub-aperture

correlation

wavefront sensing, see wavefront sens-

ing

WPGA, 128

azimuth resolution, see along-track res-

olution

back projection, 47–49

fast factorised (FFBP), 48–49

Bartelt-Lohmann-Wirntzer algorithm, 108,

109



252 Index

baseband envelope, 11, 79

baseband mapping, 60–62

bathymetry, 29, 35

beam-pattern, 15–18, 164, 172

beam-steering, 19

beam-width, 18, 20, 134

bispectrum, 105, 108–109

bistatic inversion, 68–71

blurring model

large sway, 151–152

spotlight, 117–119, 154–155

stripmap, 149–157, 221

calibration, see array, calibration

cascade, 136

centre shifting, see circular shifting

centroid estimation, 92, 164, 166, 172–

174, 178

modified, 173

chirp-scaling, 52–55, 63, 81

accelerated, 55

circular shifting, 125–126, 177

clutterlock, see centroid estimation

constant sway offset, see range offset

contrast, 113, 135, 137, 171, 195

contrast optimisation, see autofocus, con-

trast optimisation

Cramér-Rao lower bounds (CRLBs), see

CRLB

CRLB, 98–99, 101, 103, 104, 107

curvature factor, 51

delta-correlated, 111, 114, 137, 141

depth-of-focus, 48–50

displaced phase centre antennta (DPCA),

see redundant phase centres (RPC)

displaced phase centres (DPC), see re-

dundant phase centres (RPC)

Doppler

centroiding, 166, 172–173

correlation, 173

modified centroiding, 173

shifts, 151

Doppler shift, 74

echo-correlation, 111–112, 134, 181

energy-shifting, 173

exploding sources, 34

extended targets, 106, 128, 169, 194,

195, 198, 200

fast correlation, 49–50

fluctuation, 40–41

footprint-shift, 72, 73

Fourier phase, 114, 181

frequency dependent scattering, 201

frequency-domain interpolation, 69

geometry, 21

multiple-receiver, 24

slant-range, see slant-range

grating lobes, 24, 171, 174, 181–184

Green’s function, 15–16, 36, 217–219

heave, 5

image correlation, 112, 114, 120, 122,

134–136, 159

image redundancy, 135

image skew, 38–39, 74, 151

image-likelihood, 113

interferometry, 72, 73

Karhunen-Loéve (KL), 105

Knox-Thompson, see phase estimation

kernels, Knox-Thompson

linear phase, 164

estimation, see target position esti-

mation, 170

shift, 79

trends, 123, 125, 162, 172–177

linear sway, 94–95, 139, 151, 152, 190,

199
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main-lobe response, 17, 72, 181–182

map drift autofocus, see autofocus, MD

matched-filter, 45–46, 54

medium fluctuation, 93–94

modelling

3-D propagation, 35–36

blurring, see blurring model

Doppler, 37–38

multiple-receiver, 29–31

phase-centre approximation, see phase-

centre approximation

single-receiver, 34–35

slant-range, see slant-range

mosaic PGA (mPGA), see autofocus,

mPGA

motion compensation (MOCOMP)

multiple pulse , 82–83

narrow-beam, 79

timing-error, see timing-error approx-

imation

wide-beam, see wide-beam motion

compensation

motion constraints, 94–96

motion during ping, see within-pulse com-

pensation

moving sonar compensation, see within-

pulse compensation

multi-band estimation, 144–145

multi-look processing, 55–56

multistatic, 64

non-Lambertian scattering, 135, 178, 201

Nyquist sampling, 12

overlapping phase centres, 135, 138

oversampling factor, 131

peak to grating lobe peak ratio (PGLR),

23

phase curvature autofocus (PCA), see

autofocus, PCA

phase difference autofocus (PDA), see

autofocus, PDA

phase estimation, 175

phase estimation kernels, 102–110

bispectrum, 108–109

differentiation based, 102–103

eigenvector, 103–105

FLOS, 105–106

gradient vs curvature, 110

HOSPA, 109–110

Knox-Thompson, 107–108

minimum variance (MV), see phase

estimation kernels, WPGA

ML, 105, 175

phase closure, see phase closure

WPGA, 106–107

phase gradient autofocus (PGA), see aut-

ofocus, PGA

phase matching autofocus (PMA), see

autofocus, PMA

phase-centre

approximation, 33–34, 39, 64–65

compensation, 65–67

improved compensation, 67

phase-closure, 104, 137, 225–228

pitch, 5

point scatterers, 114, 161, 163

pominent point positioning (PPP), see

autofocus, PPP

prominent points, see prominent scat-

terers

prominent scatterers, 126, 159, 162–164,

166

pulse repetition frequency (PRF), 22–23

pulse-compression, 12–13

matched-filter, 13

quality PGA (QPGA), see autofocus,

QPGA

quasi-narrowband, 101, 152

quick-look imagery, 63–64
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range ambiguity, 22

range constraints, 22–23

range offset, 83, 179–181, 192

range resolution, 12–13, 22

range varying gain (RVG), see timing

varying gain (TVG)

range-Doppler algorithm, 50–52, 162

range-migration, 50–52, 139, 162

range-migration algorithm (RMA), see

wavenumber algorithm

rank one phase estimation (ROPE), see

autofocus, ROPE

ray-bending, see fluctuation, 27

re-radiating sources, 30

redundant phase centre algorithm (RPC),

131–134

reference-based correlation, 132, 137

region selection, 169–170

resolution

along-track, see along-track resolu-

tion

range, see range resolution

roll, 5

sampling

constraints, 12, 23–24

scene contrast, see contrast

secondary range compression (SRC), 51–

52

seismic imaging, 31, 59–60

self-clutter, 171, 192

shadowing, 136, 178, 201

shear average, 136–148

shear-product, 100

side-looking sonar, 2

side-scan sonar, 2

signal-to-clutter ratio (SCR), 104

signal-to-noise ratio (SNR), 13, 93, 99,

101, 145, 206

slant-range, 27–29, 36

space-invariant blurring, 97, 113, 158,

179, 180

model, see blurring model, spotlight

space-variant blurring, 97, 154

model, see blurring model, stripmap

space-variant filtering, 78, 80, 83

speckle-interferometry, 105, 111

speckle-noise, 55, 135

speckle-reduction, 55–56

spotlight, 4

assumptions, 97, 106, 128, 136, 150

autofocus, 117–129

spotlight blurring model, see blurring

model, spotlight

Stolt mapping, 35, 60–63, 75

stop-and-hop approximation, 30, 37–40

avoiding, 39–40, 74–75

stripmap, 4

stripmap blurring model, see blurring

model, stripmap

stripmap PGA (SPGA), see autofocus,

SPGA

strong-scattering targets, 128, 140–142,

144, 182

sub-aperture correlation, 120–122, 135–

136

sub-aperture images, 120

surge, 5

sway, 5, 84, 89, 90, 132, 143

system model, see modelling

target position estimation, 164, 172–174

time varying gain (TVG), 44–45, 217–

219

time-bandwidth product, 13

time-delay estimation, 97–101, 105, 132

time-domain correlation, 45–47, 82

timing-error approximation, 77, 79–80,

87, 153, 157–158, 185

undersampling, 23, 171, 181–185
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artefacts, see grating lobes

vernier-array, 24, 33

wave propagation, 13–15

wavefront sensing, 113

wavelet-transform, 208

wavenumber algorithm, 60–75, 85–87, 221

wavenumber transform, 149–151, 221–

223

large sway, see blurring model, large

sway

small sway, 151–152

weighted least-squares PGA (WPGA),

see autofocus, WPGA

Weyl’s identity, 16, 35, 49, 213–215

wide-band modelling, 152–153, 155–157,

168

wide-beam motion compensation, 79, 81–

83, 89, 90

window-width, 125–127, 170–171, 188

windowing, 126–127, 170–171, 182

within-pulse movement, 74–75, 84

yaw, 5, 132, 139, 174, 178, 196, 199–200

effect on autofocus, 174

varying, 196

yaw compensation, 84–89, 203

yaw estimation, 132
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