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ABSTRACT

SIGNAL PROCESSING IN WIRELESS
COMMUNICATIONS: DEVICE FINGERPRINTING AND

WIDE-BAND INTERFERENCE REJECTION

SEPTEMBER 2014

ADAM C. POLAK

M.Sc., GDANSK UNIVERSITY OF TECHNOLOGY

Dipl.Ing., KARLSRUHE INSTITUTE OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Dennis L. Goeckel

The rapid progress of wireless communication technologies that has taken place

in recent years has significantly improved the quality of everyday life. However with

this expansion of wireless communication systems come significant security threats

and significant technological challenges, both of which are due to the fact that the

communication medium is shared. The ubiquity of open wireless Internet access net-

works creates a new avenue for cyber-criminals to impersonate and act in an unau-

thorized way. The increasing number of deployed wide-band wireless communication

systems entails technological challenges for effective utilization of the shared medium,

which implies the need for advanced interference rejection methods. Wireless security

and interference rejection in wide-band wireless communications are therefore often

considered as the two main challenges in wireless network’s design and research. Im-

portant aspects of these challenges are illuminated and addressed in this dissertation.
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This dissertation considers signal processing approaches for exploiting or mitigat-

ing the effects of non-ideal components in wireless communication systems. In the

first part of the dissertation, we introduce and study a novel, model-based approach

to wireless device identification that exploits imperfections in the transmitter caused

by manufacturing process nonidealities. Previous approaches to device identification

based on hardware imperfections vary from transient analysis to machine learning but

have not provided verifiable accuracy. Here, we detail a model-based approach, that

uses statistical models of RF transmitter components: digital-to-analog converter,

power amplifier and RF oscillator, which are amenable for analysis. Our proposed

approach examines the key device characteristics that cause anonymity loss, coun-

termeasures that can be applied by the nodes to regain the anonymity, and ways

of thwarting such countermeasures. We develop identification algorithms based on

statistical signal processing methods and address the challenging scenario when the

units that need to be distinguished from one another are of the same model and from

the same manufacturer. Using simulations and measurements of components that are

commonly used in commercial communications systems, we show that our anonymity

breaking techniques are effective.

In the second part of the dissertation, we consider innovative approaches for the

acquisition of frequency-sparse signals with wide-band receivers when a weak signal

of interest is received in the presence of a very strong interference, and the effects of

the nonlinearities in the low-noise amplifier at the receiver must be mitigated. All

samples with amplitude above a given threshold, dictated by the linear input range

of the receiver, are discarded to avoid the distortion caused by saturation of the low

noise amplifier. Such a sampling scheme, while avoiding nonlinear distortion that

cannot be corrected in the digital domain, poses challenges for signal reconstruction

techniques, as the samples are taken non-uniformly, but also non-randomly. The

considered approaches fall into the field of compressive sensing (CS); however, what
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differentiates them from conventional CS is that a structure is forced upon the mea-

surement scheme. Such a structure causes a violation of the core CS assumption of

the measurements’ randomness. We consider two different types of structured acqui-

sition: signal independent and signal dependent structured acquisition. For the first

case, we derive bounds on the number of samples needed for successful CS recovery

when samples are drawn at random in predefined groups. For the second case, we

consider enhancements of CS recovery methods when only small-amplitude samples

of the signal that needs to be recovered are available for the recovery. Finally, we

address a problem of spectral leakage due to the limited processing block size of

block processing, wide-band receivers and propose an adaptive block size adjustment

method, which leads to significant dynamic range improvements.
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CHAPTER 1

INTRODUCTION

The expansion of wireless communication technologies that has taken place in

recent years entails inherent security threats and technological challenges due to the

shared transmission medium. In this dissertation, we consider signal processing meth-

ods that exploit longstanding non-idealities of wireless transmitters, allowing for effec-

tive device identification. We also consider signal processing methods that mitigate

the effects of the longstanding non-idealities of wireless receivers, allowing for an

efficient medium utilization.

In particular, in the first part of this dissertation (Chapters 2, 3, and 4) we study

signal processing methods that allow for the extraction of fingerprints of wireless

devices from slight impurities present in the transmitter’s components, such as the

digital-to-analog converter, power amplifier and RF oscillator. These fingerprints

can then be used as unique identification tags instead of conventional device tags

such as, e.g. the Media Access Control (MAC) address or Electronic Serial Number

(ESN), which can be easily modified by the users. We introduce novel, model-based

identification methods that use statistical models of RF transmitter components and

lead to effective device identification.

In the second part of the dissertation (Chapters 5 and 6), we consider the problem

of interference rejection in wide-band communication systems for the challenging

case when the in-band interferer has power orders of magnitude higher than the

power of the message of interest and is causing saturation and nonlinear operation

of the receiver’s front-end. Motivated by a novel sampling approach of Jackson [5]
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designed to mitigate the effects of this nonlinearity, we study new recovery methods.

In particular, we derive bounds on the number of samples required for successful

compressive sensing (CS) recovery of sparse signals when the samples are taken at

random in pre-defined groups. We also consider methods to enhance the recovery of

frequency-sparse signals from signal-dependent, low-amplitude samples. In addition,

in Chapter 7, we address the problem of spectral leakage due to limited processing

block size in wide-band receivers and propose an adaptive block size adjustment

method that leads to significant dynamic range improvements.

1.1 Model-Based Approach for Mobile Device Identification

1.1.1 Motivation and Related Work

A significant increase in the number of crimes, such as the sexual exploitation of

children [6], software piracy [7], intellectual property and identity theft [8], financial

fraud [9], committed via the Internet, as well as the increase of financial losses caused

by these crimes, have been reported in recent years. The Internet Crime Complaint

Center (IC3): a multi-agency task force consisting of the Federal Bureau of Investiga-

tion, the National White Collar Crime Center, and the Bureau of Justice Assistance,

receives about 300,000 complaints yearly from victims of crimes committed using the

Internet. This is a significant increase when compared to tens of thousands of com-

plaints reported in the early 2000s (Figure 1.1). The total financial loss caused by

the Internet crime reported to IC3 in 2012 was estimated as $525,441,110.00 [2].

The ubiquity of wireless Internet access networks and mobile computing has rev-

olutionized cyber-violations as crimes have become easier and cheaper to commit.

Moreover, the cyber-criminals gain de facto anonymity when exploiting ubiquitous

open wireless access points (APs), be it at airports, in shopping malls, public libraries,

or coffee shops. Fortunately, the use of computers by the offenders typically results

in digital evidence that can be used for the device and eventual user identification.
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Figure 1.1. Number of crimes committed using the Internet reported to the Internet
Crime Complaint Center in recent years [2].

Most of the well established techniques for device identification focus on desktop

systems on the wired Internet. The primary artifact used in the investigations of

crimes involving the wired Internet is the IP address of the suspect’s computer. A

consistent IP address assigned by an Internet service provider tags all outgoing and

incoming traffic. With the introduction of mobile access systems come, however, new

significant challenges for the crime investigators. In particular, in the case of wire-

less networks, IP addresses cannot be fully relied on by the investigators as unique

and consistent tags, as they are often assigned to the users dynamically. Therefore,

the ubiquity of open wireless APs has created a new avenue for persons to act with

anonymity. The MAC address of a network interface card, which is globally unique,

is sometimes used by the investigators to identify a specific piece of equipment. MAC

addresses are, however, unreliable tags in both wireless and wired access networks as

they can be easily reconfigured by the users. Similarly, numbers uniquely identify-

ing mobile phones such as: Electronic Serial Number (ESN), currently mainly used

with CDMA phones; and, International Mobile Station Equipment Identity (IMEI)

number, used with all GSM phones, can be reconfigured by reprogramming erasable

programmable read only memory (EPROM) cells where these numbers are stored [10].

All of these factors imply an urgent need for the development of new techniques

that will focus on an extraction of characteristics of mobile devices that are consistent,
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Figure 1.2. Post-crime device identification scenario.

trackable and hard to alter by the users. These characteristics become unique finger-

prints that can be used to identify wireless transmitters. Identifying the source of

an emitted signal is a long existing research topic, especially in military applications,

where finding the source of a radar signal is of high interest [11], [12]. Recently, rapid

progress of wireless communication technologies, with their inherent security threats

due to the shared medium, has amplified the importance of radiometric identification

of wireless transmitters.

Although the application space of wireless device identification is broad, as dis-

cussed later, here we focus in on its application in criminal investigations. In par-

ticular, unique radiometric fingerprints of wireless transmitters can be used by law

enforcements after a crime to determine the device used in the commission of the

crime, thereby significantly decreasing the anonymity level of mobile cyber-cryminals

and aiding efficient identification of the offenders.

In particular the identification methods that we develop can be applied to test

devices from a pool of suspects in order to decide which one was most likely used

while the crime was committed when high-layer identification mechanisms fail or are

not implemented. The only print from the crime scene is a signal record captured

from the wireless transmitter by an access point. Having this record and records

from a group of devices that have been potentially used to commit the crime, the
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Figure 1.3. Simplified classification of wireless devices fingerprinting methods.

proposed methods can be used to successfully indicate the offender’s device with a

given probability.

Figure 1.2 presents the considered post-crime device identification scenario. A

signal record is captured by a receiver from a criminal’s device at the crime scene.

After the crime is committed, using the same receiver, records are captured from a

group of devices that might have been used to commit the crime. The goal is then to

tie transmissions from the crime scene to other transmissions from that same device.

Being able to indicate a device that, with a given probably, was used to commit

the crime can then allow law enforcement to reduce the size of the original group of

suspect devices and to justify applications for warrants, which can then lead to final

identification decisions and possible arrests based on the digital content of the devices.

The reduction of the size of the original pool of suspect devices can lead to a significant

reduction of investigation cost and time. The considered identification scenario is

analogous to classical ballistics testing used for crimes involving the discharge of a

weapon.

There have been a number of wireless device fingerprinting efforts over the years,

a simplified classification of which is visualized in Figure 1.3. They can roughly
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be divided into two main groups. First there are approaches that exploit channel

information. In a rich multi-path environment, because of rapid path decorrelation,

users can be almost uniquely characterized by their channel conditions. This property

allows for grouping transmissions from stationary wireless users [13–16]. Another

channel-based fingerprinting technique uses received signal strength information to

distinguish transmitters [17,18]. Both of these techniques make a strong assumption

on users’ stationarity, which makes them unapplicable in many practical scenarios.

Moreover all channel-based methods are temporal in nature.

The second class of techniques includes fingerprinting approaches that exploit

hardware imperfections of RF devices. At the physical layer, despite decades of

significant efforts by the microwave circuits community, there still exist longstand-

ing imperfections in the RF portion of the wireless transmitter, which can become

manifest by the use of the appropriate signal processing of the signal received. Fur-

thermore, since these cannot be altered by the user without significant effort, they can

be exploited to group together signals from one radio. There have been a number of

efforts over the years to utilize hardware imperfections for the purpose of distinguish-

ing wireless devices. Much of the work has focused on the detection and analysis of

transients [19–26]. A transient is a brief radio emission produced while the power of

the output of an RF transmitter goes from zero to the level required for data commu-

nication. Transient durations range from a few microseconds to tens of milliseconds.

Their nature is such that they are difficult to detect and to describe in a succinct way.

Moreover, to extract device fingerprints from the transient emissions, they need to be

digitized at extremely high sampling rates. This is necessary to provide the granular-

ity of amplitude information required for the transient feature extraction algorithms.

For example a 5 GSamples/s sampling rate is reported by Serinken et al. [20,22], and,

a 500 MSamples/s sampling rate is used by Hall et al. [21]. Therefore, in addition

to transients analysis, a significant amount of research has been conducted on device

6



identification based on hardware fingerprints extracted from steady-state transmis-

sions (protocol-controlled transmissions after the effects of turn-on transients die off).

Kohno et al. [27] proposed extraction of clock skews as unique parameters charac-

terizing physical devices of Internet users from steady-state transmissions. Tomko et

al. [28] built histograms of features, such as received power and frequency error, over

a set of packets from each network user. Then they extracted user fingerprints as

parameters used to fit the histograms to a Gaussian model and used these param-

eters for device identification. Gerdes et al. [29] showed that the matched filtering

of received steady-state transmissions can be reliably used to build signal profiles

that can be used to discriminate between Ethernet cards of different models. Brik et

al. [30] and later Candore et al. [31] followed the hardware fingerprinting approach

and used machine learning techniques on collected steady-state modulation data to

train data-agnostic classifiers that are then able to distinguish wireless cards, even

when produced by the same vendor [30]. Nguyen et al. [10] followed the approach of

Brik, but in contrast to Brik et al. employed unsupervised learning techniques, which

do not require the training phase. In [32] Kennedy et. al considered similar classifiers

to the ones used by Brik et al., but exploited spectral features of the steady-state

signals received.

Our fingerprinting approach, similarly to [10, 27, 28, 30–32], falls in the field of

methods that exploit differences in transmitters’ hardware extracted from steady-state

transmissions. A simplified block diagram of a wireless transmitter is shown in Figure

1.4. Each of the components of the transmitter chain demonstrates imperfections

caused by nonidealities of the production processes. MOS transistors, which the

components’ circuits are built of, exhibit variations in major device parameters (e.g.

channel length, channel doping concentration, oxide thickness) among production lots.

These variations may occur for many reasons, such as minor changes in the humidity

or temperature in the clean-room, or due to the position of the die relative to the
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Figure 1.4. Basic components of a wireless transmitter, the imperfections of which
can be exploited for user identification. b[n] is the sequence of bits to be transmitted,
u[n] and u(t) are the digital and analog baseband waveforms, respectively, and x(t)
is the transmitted signal up-converted to a carrier frequency fc.

center of the wafer. Changes of the parameters influence transistors switching speed

and thereby components’ characteristics. Similarly, parameters of passive electronic

devices, rather than taking a constant specified value, follow distributions caused by

production inaccuracies. Despite technological advancements, constant market push

for low-price, high-volume products results in variations among individual devices

caused by the production imperfections. These variations, while being small enough

for the devices to meet the specifications of communication standards, are significant

enough to allow for unique characterization of these devices via RF fingerprints.

In this dissertation we consider two attacker models. In Chapter 2 we propose

identification of devices, for which the adversary user is capable of modification of the

higher layer tags such as the IP address, MAC address, ESN, IMEI number. Such an

attack is further referred to as a weak adversary attack. In Chapter 3 we introduce

device identification method that allows for successful identification of devices that

are in use by strong adversaries, who in addition to modification of higher layer tags

are capable of injecting slight digital distortions to physical data symbols, before

the digital signal is exposed to transmitter’s nonlinearities, which while allowing for

reliable data transmission, changes the character of the total distortion observable

at the receiver. In Chapter 4 we study an identification method based on unique

signatures extracted from output of RF oscillators. Because of its data-independent
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character, the method from Chapter 4 can be applied to identify devices of strong

adversaries.

1.1.2 Innovation

In this dissertation, we focus on device identification based on hardware imper-

fections extracted from steady-state transmissions and propose a novel approach to

device modeling, algorithm design and anonymity analysis that is significantly differ-

ent from prior efforts on wireless device identification. In particular, in contrast to

the recent empirical classification results of Brik et al. on commercial 802.11 cards,

our proposed approach focuses on a comprehensive understanding of the phenomena

being exploited for the node identification. Our work can be viewed as advancing the

understanding of how mobile communications exposes the degree to which informa-

tion can be collected or inferred about individuals and can play an important role

in understanding the limits of personal privacy when interacting with digital devices.

We consider individual components of the transmitter chain to gain an understanding

about which of the components can play a dominant role in device identification. In

Chapter 2, for power levels specified by the manufacturers as compliant with spectral

masks of commercial communication standards, we establish that variations among

power amplifiers (PAs) are significant enough for successful device identification at

practical signal-to-noise ratio levels and dominant when compared to the variations

among digital-to-analog converters (DACs). In Chapter 4, we propose an identifi-

cation method based on RF oscillator imperfections. This is motivated by the fact

that, in contrast to the PAs, which for transmit power controlled applications might

be switching power modes over time, characteristics of the RF oscillators are power

level independent and thus can be used as unique device tags in systems with imple-

mented transmit power control mechanisms.
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The identification methods proposed in this dissertation are based on variations

of features of the transmitter chain components that are difficult to modify by the

user, such as the integral nonlinearity of the DACs, the nonlinear gain of the PAs, and

the phase noise of the RF oscillators. This makes the proposed identification meth-

ods more robust against potential attacks of sophisticated users than, for example,

the methods of Brik et al. [30]. In particular, in [33] Danev et al. report thwarting

the identification methods of Brik et al. [30] with a success rate close to 100% with

a simple adjustment of the carrier frequency of the masquerading device and with

digital modifications of constellation symbols. Our proposed identification methods,

which exploit the production variations present in the components of wireless devices,

are based on statistical models amenable for analysis, which allow us to identify the

key device characteristics that cause anonymity loss, develop countermeasures that

can be applied by the nodes to regain the anonymity, and then thwart such coun-

termeasures. In particular the model-based approach introduced in this dissertation

allows for development of spectral identification methods that allow for separation

of the two possible sources of distortion: modification of the digital data symbols by

sophisticated users and inherent transmitter nonlinearities. These methods, which

are described in Chapter 3, allow for successful identification of the devices even if

the digital symbols are actively modified by the strong adversaries in order to fake

the device’s fingerprint, as described by Danev et al. [33].

1.2 Interference Robust Wide-Band Receiver

1.2.1 Motivation and Related Work

The bandwidth of wireless sensing and communication systems is increasing rapidly

to support emerging applications, including cognitive and software radio [34], environ-

mental sensing [35], vehicle surveillance [36], and multi-function radios [37]. Hence,

future receivers will need to process an enormous amount of bandwidth to be effective.
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Wide-band cognitive radio (CR) is a wireless communication concept that aims

for an efficient use of spectral resources through dynamic spectrum management [34].

Unlike conventional wireless transceivers, operating in pre-allocated sub-bands, wide-

band CRs need to support any momentarily unoccupied sub-bands in a wide fre-

quency range of interest. As an example of a practical application of CR, consider

the recently developed IEEE 802.22 standard [38] that was aimed at using CR for

opportunistic transmissions in a 50-700MHz frequency band that became sparsely

allocated [39] after the switchover to digital television in the United States in June

2009. In the conventional approach to receiver design, the RF circuitry downconverts

the signal to baseband, the analog-to-digital converter (ADC) converts it to quantized

samples, and then a digital signal processor (DSP) extracts the desired information.

However, an ideal architecture for an opportunistic cognitive radio receiver would

be a wide-band low-noise-amplifier (LNA) and an analog-to-digital converter directly

following the receiving antenna. A digital processor would then process the output

of the ADC in order to extract information from a dynamically assigned channel

of interest. Such an architecture, while appealing with its flexibility, poses signif-

icant implementation challenges. First, the complexity and power consumption of

analog-to-digital converters increases significantly at large bandwidths (and certainly

at extreme bandwidths), as, in accordance to the Nyquist-Shannon sampling theorem,

the sampling rate needed for signal recovery needs to be at least twice the bandwidth

of the considered band. Secondly, because of the large bandwidths employed, in-band

interference is nearly always present and can severely limit the ability of the receiver

to resolve small signals of interest. In particular, when a small signal of interest is re-

ceived with a large in-band interferer that is orders of magnitude larger, the receiver’s

RF front-end might be forced into a nonlinear range. Nonlinear distortion in the first

stages of the hardware causes large interferers to corrupt lower-level signals before the

interferers can be de-selected, even if the interferers occupy frequencies different than
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the message frequencies. Conventional filtering after the front-end cannot remove

this distortion due to the presence of the nonlinearity. Hence, interference rejection

in wide-band receivers has received a significant interest from both the circuits and

systems communities.

Due to the mentioned hardware complexity and high power consumption at large

bandwidths, a number of innovative approaches for signal acquisition for wide-band

radios have recently emerged, including a class based on compressive sensing (CS)

[40–42]. Of particular interest is a family of ’analog-to-information’ converters [43–

55]. Compressive sensing allows for acquisition of sparse signals at sampling rates

significantly lower than the Nyquist rate required for bandlimited signals. In CS

approaches, the full signal bandwidth is not converted, hence avoiding the costly

hardware; rather, prior knowledge of a concise signal model allows the recovery to

focus only on signal aspects relevant to feature extraction. In particular, if there

exists a basis in which a signal of interest can be represented sparsely (i.e., it can be

fully characterized with a small number of coefficients), then it is possible to obtain

all information needed for successful reconstruction of the signal from a relatively

small number of randomized incoherent measurements [56]. This number is often

much smaller than the number of samples implied by the Nyquist sampling rate for

representation of all bandlimited signals.

Compressive sensing has the potential to transform wide-band receiver design by

significantly simplifying analog-to-digital conversion in the presence of background

noise. However, the reception of weak signals in the presence of in-band interference

has so far been largely ignored. A few recent efforts in the compressive sensing

community have acknowledged the problem and proposed solutions [48, 57–61], but

these projection-based techniques are based on unrealistic linearity and dynamic range

assumptions in the front-end. In particular, when a small signal of interest is received

with a large in-band interferer orders of magnitude larger, and when the receiver’s
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RF front-end is forced into the nonlinear range, the models of [48, 57–61] become

inadequate. Hence, current compressive sensing solutions leave a critical aspect of

robust wide-band receiver design unresolved.

1.2.2 Innovation

In this dissertation, motivated by the observations of Jackson [5] made on circuits

(devices are linear for small amplitudes) and compressive sensing (randomized sub-

sampling is an effective acquisition approach for frequency-sparse signals), we study

recovery methods for wide-band receivers when the acquisition process only selects

samples that preserve the receiver’s linearity. Such selective sampling causes a vi-

olation of the core assumption of CS: the randomness of the sampling times. This

violation implies a need for new recovery guarantees on the number of measurements

needed for successful recovery of sparse signals. Most CS contributions assume inde-

pendent randomness in the measurement projections, and this is exploited to derive

bounds on the number of projections required. In Chapter 5, we study the require-

ments on the number of measurements needed for successful recovery of sparse signals

when, instead of individually random measurements, the measurements are taken uni-

formly at random in pre-defined, non-overlapping groups of equal size. For such a

measurement scheme we derive bounds on the number of measurements needed for

successful recovery, similar to the performance bounds of conventional compressive

sensing [56]. In particular we introduce a metric that upper bounds the multiplicative

penalty on the number of required measurements introduced by grouping with respect

to the conventional CS. While the introduced metric cannot currently be evaluated in

a closed form, we employ a computationally feasible method that provides lower and

upper bounds on its value. We also evaluate via simulations the penalty predicted by

the proposed metric.
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One can relate the random, grouped measurement scheme to the application of

the interference-robust, wide-band receiver by considering an in-band, powerful and

known interferer that saturates the receiver’s front-end and is uncorrelated with the

message of interest that needs to be recovered. In such a scenario undistorted samples

can only be taken at times when the interferer’s amplitude values are small. Therefore

the structure of the sampling scheme used for undistorted recovery of the message of

interest is dictated by the powerful uncorrelated interferer. Depending on the charac-

ter of the interference (modulation technique, periodicity), these interference-driven,

constrained sampling can lead to a grouped sampling scheme, which is explained in

more detail in Chapter 5 (Section 5.1).

Other applications, for which the samples can be drawn in pre-defined groups

include medical imaging and remote sensing applications, where it might be difficult

and costly to move the sensors randomly to different positions. For such applications

it is common for the sensors to follow pre-defined trajectories during the acquisi-

tion process. Using such sampling trajectories clearly introduces structure into the

measurement process and hence violates a key assumption underlying the standard

analysis of CS schemes. Application of grouped sampling for medical imaging and

remote sensing is discussed in more detail in the Problem Statement of Chapter 5

(Section 5.1)

In Chapter 5 of this dissertation, we study the recovery of sparse signals from lim-

ited sample sets, where the constraints on the sampling scheme are independent from

the signal that needs to be recovered (the constraints are dictated either by an uncor-

related powerful interferer or by physical constraints of the acquisition systems). In

contrast, in Chapter 6 we study the compressive sensing recovery of frequency-sparse

signals from irregular, signal dependent samples. In particular, we attempt to recover

the signal using samples with values within a given amplitude range [−τ, τ ]. The mo-

tivation behind such a study, similar to the study of Chapter 5, is enhancement of the
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dynamic range of receivers in a wide-band wireless communications systems. In the

case of the study of Chapter 6, in contrast to Chapter 5, both the powerful interferer

that saturates the receiver and the weak message of interest need to be recovered from

a subset of samples. In Chapter 6 we introduce and characterize through numerical

simulations three approaches for the improvement of the performance of recovery of

frequency-sparse signals from amplitude-limited sample sets.

In addition to the receiver’s nonlinearities, time-truncation of the processed signal

records causes degradation of the dynamic range of wide-band receivers. In particular,

the spectral content of signals processed in discrete blocks of equidistant samples can

be misinterpreted when projected onto a discrete set of equidistant frequencies via

a discrete Fourier transform (DFT) operation. Signal components with frequencies

off the discrete frequency grid cannot be represented with a single DFT component,

which leads to a leakage of the energy of the off-grid signal components among multiple

DFT components (see Section 7.1). The misinterpretation of spectral content of a

powerful interferer can lead to significant contamination of a message of interest

occupying nearby frequency bands and cause degradation of the wide-band receiver’s

performance.

The effects of spectral leakage can be mitigated by increasing the length of the

record block and hence increasing the resolution of the discrete frequency grid. Instead

of increasing the block length, which can lead to high complexity of the receiver, in

Chapter 7 we propose a method that is based on adaptive partial removal of the cyclic

prefix. The cyclic prefix is a copy of the end of the signal block attached in front of the

block in order to avoid inter-block interference (IBI) and to enable frequency domain

equalization (FDE) of the channel. Because of the dynamic character of wireless

channels, in practical designs the length of the CP is usually chosen with a safety

margin. Therefore, in many cases, IBI can be avoided even if the CP is partially

removed at the receiver. As will be shown in Chapter 7, adaptive, non-complete
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Figure 1.5. Probability of device identification error versus signal-to-noise ratio
(controlled with the noise power level), averaged over 100 DAC pairs and over 150 in-
put vectors of sizeM = 2500. Elements of the input vectors were normally distributed
with mean value equal to half of the DAC’s input range and standard deviation equal
to 1

6
of the DAC’s input range (which resulted in 99% of the input values within

the input range, values outside the input range were ignored). Standard deviation of
normally distributed individual DAC sources was set to σS = 0.02. The first eight
eigenfunctions of the Brownian Bridge random process were used for representation
of the DAC’s integrated nonlinearity, exploited for identification. As visualized in
this plot high signal-to-noise ratio levels were needed to achieve a probability of error
of 10−3.

removal of the CP allows for choices of block length that can lead to a significant

reduction of the spectral leakage into the frequencies occupied by a message of interest.

This leads to significant improvement of the dynamic range of the wide-band receivers.

1.3 Proposed Contributions

The following contributions to the existing literature are claimed in this disserta-

tion:
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Figure 1.6. Probability of device identification error for a measured pair of MAXIM
MAX2242 amplifiers versus signal-to-noise ratio (controlled with the noise power
level), averaged over 25000 input vectors of size M = 2500, with standard devia-
tion σx of the normally distributed elements of input vectors equal to 0.055. For
σx = 0.055 the probability that the input signal exceeded the upper level of linear
range of the considered amplifiers [3] was only 1%. Whenever the input signal ex-
ceeded the the linear range, it was clipped to its upper level. As visualized in this
plot, relatively low signal-to-noise ratio levels were needed for a probability of error
of 10−3. Such levels are common in practical WLAN deployments.

• Development of model-based device identification methods that provide in-

sight on how individual components of the transmitter chain (digital to analog

converter (DAC), power amplifier (PA) and RF oscillator) contribute to the

anonymity loss of wireless devices, due to the hardware imperfections caused

by production process non-idealities. Figures 1.5 and 1.6 and Table 1.1 show

the performance of the proposed identification methods when imperfections of,

respectively, DACs, PAs and RF oscillators were exploited for breaking device’s

anonymity.
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PLL 1 2 3 4 5 6 7 8
1 - 0.000 0.000 0.000 0.000 0.000 0.016 0.000

2 0.000 - 0.000 0.164 0.000 0.000 0.000 0.000

3 0.000 0.000 - 0.000 0.216 0.000 0.000 0.000

4 0.000 0.228 0.000 - 0.00 0.00 0.00 0.00

5 0.000 0.000 0.228 0.000 - 0.000 0.000 0.020

6 0.000 0.000 0.000 0.000 0.000 - 0.000 0.008

7 0.008 0.000 0.000 0.000 0.000 0.000 - 0.000

8 0.000 0.000 0.000 0.000 0.028 0.036 0.000 -

Table 1.1. Probability of device identification error averaged over 250 trials for
all possible pairs from the group of 8 measured oscillators for the test (4.20) at
SNR = 15dB (lower left, below the diagonal) and at SNR = 35dB (upper right,
above the diagonal), when all 50 captured records of length 12.5 · 106 samples were
used to extract the fingerprints of the devices from the pool of suspects, and a single
record from the crime scene, randomly chosen from the group of all 50 captured
records, was used for identification. For example the probability that the device 8
is mistaken for the device 5 is 0.02 when SNR = 35dB. Because of the differences
between the identification methods employed to exploit imperfections of RF oscillators
and methods employed to exploit imperfections of the PA’s and DAC’s (compare
Sections 4.3 and 2.3), the processing of much longer vectors is possible here; hence,
the very good signal-to-noise ratio (controlled with the noise power level) performance
reported with this table is possible.

• Design and evaluation of countermeasures that can be applied by strong ad-

versaries to regain the anonymity despite the hardware imperfections and the

development of identification methods that can thwart such countermeasures.

Figure 1.7 shows the performance of a proposed spectral identification test,

when the masquerading users are: i) not faking their RF signatures; ii) fak-

ing their RF signatures by distorting digital data symbols; iii) faking their RF

signatures by distorting digital data symbols, but the proposed identity fake

thwarting identification methods from Chapter 3 are applied. In addition, for

comparison Figure 1.7 shows the performance of the time-domain based meth-

ods from Chapter 2.
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Figure 1.7. Probability of erroneous identification decision (3.14), calculated over
250 randomly generated groups of 3 power amplifiers and input signals, as a function
of SNR (controlled with the noise power level), for standard deviation ση = 0.3 of
the zero-mean, normal random variable η (3.16), for 50 signal records of length 1024
symbols, captured from the device used to commit a crime, and for 500 signal records
of length 1024 undistorted symbols captured from the three suspected devices, for the
three cases i), ii) and iii), described in Section 3.4, together with the performance of
the time domain based methods of Chapter 2. As visualized in this plot, the spectral
identification method of Section 3.3 allows for identification of devices of sophisticated
users with effectiveness similar to the effectiveness of identification of devices of users
that do not apply countermeasures to regain their anonymity.

• Derivation of bounds on the number of compressive measurements needed for

successful recovery of sparse signals when the random projection measurements

are structured into pre-defined groups. We introduce a metric γ (5.4) that

bounds from above the multiplicative penalty on the number of required mea-

surements introduced by grouping, with respect to conventional compressive

sensing acquisition employing independent random measurement selection.
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G1 

G2 

Figure 1.8. γ versus M/M0 for group structures G1 and G2 when Fourier coefficients
of 5% sparse signal s were concentrated within (top): a sub-band built out of two 5%-
wide channels, (middle): a sub-band built out of four 5%-wide channels, (bottom):
the entire band. As visualized in this figure, the introduced penalty parameter γ
can be a good performance indicator for many practical scenarios, which are further
discussed in Section 5.3.

Figure 1.8, visualizes two exemplary group structures for grouped sampling

of a one-dimensional signal. For both structures, groups are represented by

different colors. For the two group structures, for three different classes of signal

supports, Figure 1.8 shows the relationship between the derived penalty factor

γ (5.4) and the ratio of the number of grouped measurements M required for

successful recovery to the number of measurements M0 required for successful

recovery when individual measurements are not taken in groups, but uniformly

at random.
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Figure 1.9. Probability of signal recovery error, defined as the probability that
the normalized recovery error (6.2) is above 3%, for ℓ1-norm minimization (6.1), for
iterative ℓ1-norm minimization (6.6) with five iterations, for constrained ℓ1-norm min-
imization (6.4) as well as probability of recovery error for ℓ1-norm minimization (6.1)
for different types of known injected interferers, as a function of the threshold τ nor-
malized to the maximal amplitude of the signal smax. Only samples with amplitudes
below τ are used for signal recovery. As visualized in this plot, the proposed recon-
struction methods allow for significant reduction of the value of τ , when compared to
conventional compressive sensing, which can then lead to significant reduction of the
nonlinear distortion of the signal received.

• Development of methods for reconstruction of a frequency sparse signal from

small-amplitude samples. Such samples that preserve linearity of the receivers’

front-end are obtained by only sampling when the amplitude is below a given

threshold τ . The potentially nonlinearly distorted samples with amplitude val-

ues that exceed the threshold are discarded. We consider techniques that sub-

stantially improve recovery performance when compared to conventional recov-

ery methods of compressive sensing. Figure 1.9 shows recovery performance

improvement for the proposed methods.
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Figure 1.10. RMSE of the recovered QPSK message symbols before and after the
adjustment of the processing block size N with (7.8) as a function of the SIR for a
fixed guard bandwidth from (7.9) WG=50MHz. As visualized in this plot, dynamic
range improvement of over 10dB can be achieved with adaptive adjustment of the
block processing size proposed and studied in Chapter 7.

• Development of an approach for mitigation of spectral leakage, caused by time-

truncation of processed signal records, via an adaptive choice of processing

window size for block processing, single-carrier CR receivers. The developed

method is based on an adaptive partial removal of cyclic prefix, which is a

copy of the end of the signal block attached in front of the block in order

to avoid inter-block interference. The method can be applied in environments

with maximal channel delay paths shorter than the length of the cyclic prefix. It

does not require any structural changes to the receiver and allows for significant

dynamic range improvements (over 10 dB), which is shown in Figure 1.10.

The mobile device identification study presented in this dissertation, mostly for

the purposes of digital forensics and post cyber-crime investigations, can also help to
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inform the recently emerged debate about the level of personal privacy. The existence

of global digital surveillance practices, origins of which can be traced back to the mid-

dle of 20th century [62], have not been widely acknowledged until the recent unveiling

of active global surveillance programs run by U.S. government with a cooperation

of telecommunication companies and European governments [63]. The uncovering of

these global surveillance programs triggered a vigorous world-wide discussion about

the level of personal privacy. It raised concerns about potential misuse of the surveil-

lance practices and questions about surveillance methods that would allow modern

intelligence agencies to achieve their aims without violating privacy. The study con-

ducted and reported in this dissertation allows for a better understanding of the extent

to which personal privacy can be decreased by interaction with commercial communi-

cation devices. In the post cyber-crime investigation application considered here, the

transmitter for the criminal may be quite sophisticated, as significant physical and

technology resources may be available. However, when considering the potential loss

of privacy of many users with cost-constrained mass-produced consumer products, the

ability of such users to actively thwart the techniques described here is likely quite

limited. Hence, the work presented here can play an important role when trying to

answer questions about the degree to which hardware-based RF fingerprinting can

compromise individuals’ privacy.
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CHAPTER 2

IDENTIFYING WIRELESS USERS VIA TRANSMITTER
IMPERFECTIONS

2.1 Problem Statement

In this chapter, we study model-based methods for identification of wireless de-

vices. In particular we concentrate our attention on two components of the transmit-

ter’s chain from Figure 1.4: the digital-to-analog converter and the power amplifier.

Exploitation of nonidealities of the RF oscillators for device identification is studied

in Chapter 4.

Consider the basic block diagram of a wireless transmitter shown in Figure 1.4

of Chapter 1. A digital (discrete-time, discrete-amplitude) baseband signal u[n] that

carries the information bits is generated by a digital signal processor (DSP) and con-

verted to an analog signal u(t) by a digital-to-analog converter. Then it is translated

to the desired carrier frequency by the mixer and amplified by the power amplifier.

In an ideal system, the transmitted signal would be given by

x(t) = Au(t) cos(2πf0t+Θ), (2.1)

where A is the gain of the power amplifier, u(t) is the ideal analog form of u[n] (i.e. the

sinc(·)-interpolated version of u[n]), f0 is the desired carrier frequency, and Θ is the

(constant) phase of the oscillator. However, digital-to-analog converters suffer from

the finite precision of the digital input and more importantly, particularly for device

identification work, demonstrate nonlinearities, which can vary significantly across
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Access Point 

Nonlinear system 2 

System Parameters h2  
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Input Vector: 

X2
 

AWGN: ν2 

signal records captured from the devices during the post-crime investigation 

signal record captured from a device at a crime scene  

Access Point 

Figure 2.1. The two-system identification scenario: record captured at a crime scene
from a the criminal’s device (upper part); records captured from two devices during
the post-crime investigation (lower part). An additive white Gaussian noise (AWGN)
channel model is assumed.

individual units. Similarly, PAs, which seek to have linear characteristics such that

the response to input u(t) is Au(t), are often quite nonlinear even with significant

compensation. As in case of the DACs, the nonlinearity variations of PAs can be

significant across the devices. Because of these variations, each device in a multiple

device network can be characterized with a group of parameters that uniquely describe

input/output (I/O) characteristics of its transmitter components. These parameters

can then be used by access points for the purpose of device identification.

As described in Chapter 1, the goal of the proposed identification methods is to

tie incident transmissions of an adversary’s device to other, post-incident transmis-

sions of that same device. Under the assumption that the criminal employs his/her

true identity during the post-incident investigation, this allows to identify the of-
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fending party. To simplify the exposition, this chapter considers a setup shown in

Figure 2.1 for the two-device case, but the generalization to the case of n devices is

straightforward (using n-hypothesis testing techniques). Each of the users’ devices

in Figure 2.1 is characterized with a parameter vector hk, k = 1, 2. Because access

points in wireless networks perform inverse operations to all operations performed by

the transmitters of wireless devices (demodulation, A/D conversion, decoding, etc.),

it is reasonable to assume that input samples (which can be reconstructed from the

decoded data) and corresponding noise-corrupted output samples are accessible for

all elements of the transmitter chain, if the rest of the chain is assumed linear. In

particular, for the DACs the input samples are the elements of u[n] from (2.1) and for

the PAs the input samples are samples of u(t) from (2.1). The input vectors of a con-

sidered component of device one and device two are further denoted as X1 and X2,

respectively, and their respective output vectors are Y 1 and Y 2. These correspond to

the case when the users are employing their true device identities, which they assume

at some time when they are not committing a crime. Now, at some point in the past,

one of the devices was used to commit a crime. The binary hypothesis problem is to

identify this device given access to Xk and Y k, k = 1, 2, 3. In other words, it needs

to be found out which of the two transmitters vector X3 passed through, so that it

resulted in Y 3.

2.2 Modeling Transmitter Components

Both transmitter components considered in this chapter display nonlinearities of

their I/O characteristics. In general the I/O characteristic of a given transmitter

component, for user k, can be described with a matrix equation of the form

Y k = Pkhk + νk ; k = 1, 2, (2.2)
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where Pk is a matrix, elements of which are nonlinear functions of elements of the

input vector Xk. These functions are determined by the model adopted for a given

type of transmitter component (i.e. DAC or PA) and are the same for all devices of

that type (i.e. they do not vary across DACs or across PAs), which we describe in the

successive subsections. The hk is a column vector that contains the unique component

parameters of user k and νk is an additive white Gausssian noise (AWGN) vector with

elements ∼ N (0, σ2
ν). In the next two subsections, we introduce mathematical models

that allow for the construction of matrices Pk for both DACs and PAs.

2.2.1 DAC

An N -bit DAC converts an N -bit input word x to one of n = 2N−1 analog output

values. One of the most important parameters of the DAC is the integral nonlinearity

(INL). The INL specifies the deviation of the actual DAC’s output level for a given

input word from the ideal output level and is defined as

INLx =
Iout,x − x · ILSB

ILSB
, (2.3)

where Iout,x is the output level generated by an input word x, and ILSB is the maximal

output level divided by the number of all input words:

ILSB =
Iout,(2N−1)

2N − 1
. (2.4)

The I/O relation of the DAC can thus be expressed as

Iout,x = (INLx + x) · ILSB. (2.5)

The INL is caused by production inaccuracies that cause output levels of individual

analog sources of the DAC to vary around their nominal values. If individual DAC
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analog sources are modeled as independent normally distributed random variables

with standard deviation σS, then the INL of a thermometer-coded DAC, for which

all analog sources have identical nominal values and for which each increase of the

input word by one causes activation of an additional source, can be modeled with a

discrete Brownian Bridge random process BB [64]

INLx = σs

√
n · BB

(x
n

)
, (2.6)

where recall x is an input word and n is the number of all input words. For a high

number of bits N , n = 2N−1 becomes very large and the discrete Brownian Bridge

random process from (2.6) can be approximated with its continuous counterpart. A

continuous Brownian Bridge random process is defined as

BB(t) = W (t)− t ·W (1); t ∈ (0, 1), (2.7)

where W (t) is a Wiener random process [65]. A Wiener random process takes value

equal to zero for t = 0 and its increments are normally distributed random variables

with variance equal to the argument difference. In other words

W (0) = 0

W (t2)−W (t1) ∼ N (0, t2 − t1) . (2.8)

Using the Karhunen-Loeve theorem, a continuous Brownian Bridge random process

can be represented with its eigenfunctions and eigenvalues found as solutions of the

integral equation [65]

{ϕj(t) : j = 1, 2, ...} {λj : j = 1, 2, ...}
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∫ 1

0

RBB(t, τ) · ϕj(τ)dτ = λjϕj(t); t ∈ (0, 1), (2.9)

where RBB is the autocorrelation function of the Brownian Bridge random process.

Solutions of this equation are

ϕj(t) =

√
2

πj
sin(πjt) ; λj = 1

j = 1, . . . ,∞ (2.10)

and the Karhunen-Loeve expansion of the the continuous Brownian Bridge is

BB (t) = lim
J→∞

J∑

j=1

Λj

πj
·
√
2sin (π · j · t) , (2.11)

where Λj are i.i.d. normal random variables ∼ N (0, λj). After replacing the contin-

uous argument t with x/n, the I/O characteristic of the kth DAC can be described

with the matrix equation

Ik,out −Xk · ILSB,k

ILSB,k

= BB (Xk/n) +
νk

ILSB,k

, (2.12)

which, when using the J first eigenfunctions to approximate the process, has form

Ik,out −Xk · ILSB,k

ILSB,k

=
√

2











sin(π · 1 ·Xk(1)/n) sin(π · 2 ·Xk(1)/n) · · · sin(π · J ·Xk(1)/n)
sin(π · 1 ·Xk(2)/n) sin(π · 2 ·Xk(2)/n) · · · sin(π · J ·Xk(2)/n)

...
...

. . .
...

sin(π · 1 ·Xk(M)/n) sin(π · 2 ·Xk(M))/n · · · sin(π · J ·Xk(M)/n)











·











hk(1)
hk(2)

...
hk(J)











+
νk

ILSB,k
,

(2.13)

where M is the length of the input sequence. Eq. (2.13) with

Y k =
Ik,out −Xk · ILSB,k

ILSB,k

(2.14)
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and

Pk =
√
2




sin(π · 1 ·Xk(1)/n) sin(π · 2 ·Xk(1)/n) · · · sin(π · J ·Xk(1)/n)
sin(π · 1 ·Xk(2)/n) sin(π · 2 ·Xk(2)/n) · · · sin(π · J ·Xk(2)/n)

...
...

. . .
...

sin(π · 1 ·Xk(M)/n) sin(π · 2 ·Xk(M))/n · · · sin(π · J ·Xk(M)/n)


 (2.15)

is the I/O equation introduced with (2.2). Elements of the vector hk are realizations

of J random variables
Λj

πj
(eigenvalues of the Brownian Bridge random process) that

uniquely describe the single INL path of user k. Because of the assumption that

the component’s input and output signals Xk and Y k are known and because of

the existence of a fixed model for the I/O relation, the only parameters that the

receiver needs to estimate to build the digital signature of a device k are elements

of the vector hk. Algorithms and numerical results for the adopted models of the

transmitter components are reserved for Sections 2.3 and 2.4, respectively.

2.2.2 Power Amplifier

Imperfections of power amplifiers are attractive features for device identification

purposes in that the PAs are the last elements of the transmitter chain and thus

are the most difficult for a user to modify via software or even baseband control. In

this work, the nonlinear characteristics of power amplifiers are modeled with Volterra

series representations, as well-established in the microwave literature (see Chapter 4

of Wambacq and Sansen [66]). For the sake of exposition, we use a Volterra series

representation with a memory of one and an order of two (a linear quadratic system),

but the extension to higher memory and orders is straightforward. Hence the I/O

relation is
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Y k(n) =
1∑

l1=0

hk,1(l1)Xk(n− l1) +
1∑

l1=0

1∑

l2=0

hk,2(l1, l2)Xk(n− l1)Xk(n− l2) + νk(n)

= hk,1(0)Xk(n) + hk,1(1)Xk(n− 1) + hk,2(0, 0)X
2
k(n)

+ hk,2(1, 1)X
2
k(n− 1) + hk,2(0, 1)Xk(n)Xk(n− 1) + νk(n).

(2.16)

Similarly as in case of the DAC, the I/O relation of the PA can be characterized

with the matrix equation of the form (2.2), with the matrix Pk being built out of the

nonlinear functions of the inputs required in (2.16) for an input vector of length M

(i.e., the kernels of the Volterra representation) and with the vector hk built out of

the Volterra coefficients. Hence the I/O relation has form

Y k =

















Xk(n) Xk(n− 1) · · · Xk(n−M + 1)
Xk(n− 1) Xk(n− 2) · · · Xk(n−M)

X
2

k(n) X
2

k(n− 1)
. . .

...

X
2

k(n− 1) X
2

k(n− 2)
. . .

...
Xk(n)Xk(n− 1) Xk(n− 1)Xk(n− 2) · · · Xk(n−M + 1)Xk(n−M)

















T

·hk+νk. (2.17)

Recall that the model is common to all PAs, and hence is known to the receiver.

Therefore, with assumed knowledge of the inputs Xk(n),Xk(n − 1), ...,Xk(n −M)

at the access point (recall that the access point is decoding the data packets of the

user), the matrix Pk containing known nonlinear combinations of known inputs is

known by the receiver. All that is to be estimated to build the digital signature of

device k are the elements of the vector hk.

2.3 Algorithms

Having modeled the two nonlinear transmitter components considered in this

chapter, next we develop algorithms for solving the hypothesis testing problem stated

in Section 2.1. First, we consider the case when the parameter vectors h1 and h2 of
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devices 1 and 2, respectively, are exactly known in order to find an upper bound on

the identifiability in the noisy channel. This assumption is also practically reasonable

when the devices can be observed over a long period of time that allows for a very

accurate parameter estimation or when the parameters are obtained and saved before

the transmitters are available on the market. Under this assumption, well-defined,

optimal methods are known for solving the hypothesis testing problem. Next, we

consider a scenario when the parameters are unknown and only short observations:

Xk,Y k, k = 1, 2, 3 are available. In this case, the optimal method is not straightfor-

ward and multiple approaches are considered.

2.3.1 Likelihood Ratio Test with Known Parameter Vectors

2.3.1.1 Decision Rule

If the parameter vectors describing the nonlinear aspects of the device’s transmit-

ters are exactly known, then, in the case of uniform costs, the probability of error

of the receiver is minimized by a likelihood ratio test (LRT). Formally, define the

following hypotheses: H1- the device used to commit the crime is device number 1;

H2- the device used during to commit the crime is device number 2. For equally

probable hypotheses, the decision rule for solving the problem presented in Section

2.1 is then

Λ(Y 3) ,
PY

3
|h

1
,X

3

(Y 3|h1,X3)

PY
3
|h

2
,X

3

(Y 3|h2,X3)

H1

≷

H2

1, (2.18)

where PY
3
|hi,X3

(Y 3|hi,X3), i = 1, 2 are the conditional probability density func-

tions. In the AWGN channel

P (Y 3 |hi,X3) =
1

(
√
2πσ2

ν)
M

exp

{
−(Y 3 − P3 · hi)

H (Y 3 − P3 · hi)

2σ2
ν

}

i = 1, 2, (2.19)
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which allows us to simplify the decision rule (2.18) to

||(Y 3 − P3h1)||
H2

≷

H1

||(Y 3 − P3h2)||. (2.20)

2.3.1.2 Algorithm Performance

The probability of error is the probability that the algorithm decides for a different

device than the one that was used to commit a crime. In the case of the two-device

scenario from Figure 2.1, the probability of error can be expressed as

Pe = Pr{H1} · Pr{test results in H2|H1}+ Pr{H2} · Pr{test results in H1|H2},

(2.21)

which, with the assumption of equally probable hypotheses and the symmetry of the

problem reduces to

Pe = Pr{test results in H2|H1}. (2.22)

With (2.20), Pe can be expressed as

Pe = Pr{(Y 3 − P3h1)
H(Y 3 − P3h1) > (Y 3 − P3h2)

H(Y 3 − P3h2)},

which, with

Y 3 = P3h1 + ν3 (2.23)

under H1 simplifies to

Pe = Pr
{
d
HPH

3 P3d− d
H(PH

3 ν3)− (PH
3 ν3)

H
d < 0

}
, (2.24)

where d = h2 − h1.
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2.3.2 Likelihood Ratio Test with Estimated Parameters

2.3.2.1 Decision Rule

In practical applications, when parameters of the components are unknown and

only short input and output vectors Xk and Y k, k = 1, 2, 3 are available, the decision

rule from (2.20) with the true parameter values replaced with their estimates is no

longer optimal. However, it is still reasonable to use such a rule with the estimated

parameters replacing the true values, since the result converges to the optimal rule

when the parameter estimates become more and more accurate. The decision rule is

then

||(Y 3 − P3ĥ1)||
H2

≷

H1

||(Y 3 − P3ĥ2)|| (2.25)

and the probability of error Pe is

Pe = Pr
{
d̂
H
PH
3 P3d̂− d̂

H
(PH

3 ν3)− (PH
3 ν3)

H
d̂ < 0

}
, (2.26)

where d̂ = ĥ2 − ĥ1 and ĥ1 and ĥ2 are estimates of the parameter vectors h1 and h2.

Interestingly, the decision rule from (2.25) can also be derived in a different way,

which further motivates its usage. In particular the receiver can first estimate the

parameters of the transmitters (ĥ1 and ĥ2) and the parameters of the unit used

to commit the crime (ĥ3). Next the receiver can compare the probability density

functions of the estimate ĥ3 under hypothesis H1 (parameter vector of the device

used to commit the crime is ĥ1) and H2 (parameter vector of the device used to

commit the crime is ĥ2) and make a decision based on this comparison. For equally

probable hypotheses, the decision rule can be expressed as

Λ(ĥ3) =
P ˆ
h

3
| ˆh

1

(ĥ3|ĥ1)

P ˆ
h

3
| ˆh

2

(ĥ3|ĥ2)

H1

≷

H2

1. (2.27)
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The estimates ĥk that minimize the squared error

ek = ||Y k − Pk · hk||2 (2.28)

can be found using standard Least Squares (LS)

ĥk = (PH
k Pk)

−1PH
k Y

H
k , k = 1, 2, 3. (2.29)

Further ĥ3 given ĥk is

ĥ3|ĥk = (PH
3 P3)

−1PH
3 (P3ĥk + ν3) = ĥk + (PH

3 P3)
−1PH

3 ν3

k = 1, 2. (2.30)

Because ν3 is a Gaussian random vector, so is ĥ3|ĥk. Also

X ∼ N (m, C) ⇒ AX + b ∼ N (Am+ b, ACAH).

Thus

P ˆ
h

3
| ˆhk

(ĥ3|ĥk) =
1√

det(C)(2π)
n
2

e−
1

2
(
ˆ
h

3
− ˆ
hk)

HC−1(
ˆ
h

3
− ˆ
hk), (2.31)

where the covariance matrix C is

C = ((PH
3 P3)

−1PH
3 ) · σ2

νIMXM · ((PH
3 P3)

−1PH
3 )H = σ2

ν(P
H
3 P3)

−1. (2.32)

This yields

P ˆ
h

3
| ˆhk

(ĥ3|ĥk) =
1√

det(C)(2π)
n
2

e
− 1

2σ2
ν
(
ˆ
h

3
− ˆ
hk)

H(PH
3

P3)(
ˆ
h

3
− ˆ
hk) (2.33)
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and (2.27) can then be rewritten as

(ĥ3 − ĥ1)
H(PH

3 P3)(ĥ3 − ĥ1)

H2

≷

H1

(ĥ3 − ĥ2)
H(PH

3 P3)(ĥ3 − ĥ2), (2.34)

which, after substituting ĥ3 with (PH
3 P3)

−1PH
3 Y

H
3 , is exactly (2.25).

The expected value of the left side of the inequality from (2.26) is

E{d̂H
PH
3 P3d̂− d̂

H
(PH

3 ν3)− (PH
3 ν3)

H
d̂}

= d̂
H
E{PH

3 P3}d̂ = d̂
H
RP3

d̂ = d̂
H
UΘUH

d̂ = M

J∑

j=1

θj||uH
j d̂||2,

(2.35)

where Θ is a diagonal matrix built out of the eigenvalues θj, j = 1, 2, ..., J of matrix

RP3
(the covariance matrix of P3) and U is a matrix built out of the corresponding

eigenvectors uj, j = 1, 2, ..., J . Motivated by the transmitted signal in orthogonal

frequency division multiplexing (OFDM) systems, elements of the input vectors are

assumed to be realizations of independent, zero-mean, normal random variables with

standard deviation σx. With this assumption, in the case of the considered Volterra

representation of nonlinear power amplifiers, described with (2.16),

J∑

j=1

θj||uH
j d̂||2 = d̂(1)

2 · σ2
x + d̂(2)

2 · σ2
x + d̂(3)

2 · 2σ4
x + d̂(4)

2 · 2σ4
x

+ (d̂(3) + d̂(4))
2 · σ4

x + d̂(5)
2 · σ4

x = WS(d̂).

(2.36)

WS(d̂) is a weighted sum of the components of the distance vector d̂. Eq. (2.36)

shows how the importance of different Volterra coefficients changes with the standard

deviation of the elements of the input vectors. For large values of σx, the elements

of the Volterra representation that model nonlinearities are more important. This is
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intuitively correct since the increase of the input power beyond the linear range of

the PAs should allow for better exploitation of the differences in the nonlinearities of

the considered units.

2.3.3 Generalized Likelihood Ratio Test

Another algorithm that can be used to solve the hypothesis testing problem from

Section 2.1, when the parameter vectors of the users are unknown, is based on the

Generalized Likelihood Ratio Test (GLRT). In the case of the GLRT, the receiver

does not estimate the parameters, but rather builds and compares the maxima of the

likelihood functions over the unknown parameter vectors.

2.3.3.1 Decision Rule

For equally probable hypotheses H1 and H2, the decision rule of the GLRT can

be expressed as

Λ(Y 3) ,
maxh

1

{P (Y 1,Y 3 |h1,X1,X3)}
maxh

2

{P (Y 2,Y 3 |h2,X2,X3)}

H1

≷

H2

1. (2.37)

In the AWGN channel

P (Y k,Y 3 |hk,Xk,X3)

=
1

(
√
2πσν)2M

· exp
{
−(Y k3 − Pk3 · hk)

H (Y k3 − Pk3 · hk)

2σ2
ν

}
,

(2.38)

where Pk3 and Y k3 are obtained by stacking matrices Pk, P3 and vectors Y k , Y 3

respectively

Pk3 =




Pk

P3


 k = 1, 2 (2.39)
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Y k3 =




Y k

Y 3


 k = 1, 2 (2.40)

and where M is the size of the input vector. After substitution of the corresponding

probability density functions into (2.37) the decision rule can be rewritten as

min
h

1

{(Y 13 − P13h1)
H(Y 13 − P13h1)}

H2

≷

H1

min
h

2

{(Y 23 − P23h2)
H(Y 23 − P23h2)}.

Since

(Y k3 − Pk3hk)
H(Y k3 − Pk3hk) = ||(Y k3 − Pk3hk)||2, (2.41)

the minimizations on each side of (2.41) are typical LS problems. Vectors minimizing

the squared error are

ĥk = (PH
k3Pk3)

−1PH
k3Y

H
k3, k = 1, 2 (2.42)

and

min
hk

||(Y k3−Pk3 ·hk)||2 = ||(Y k3−Pk3 ·ĥk)||2 = Y
H
k3(I2M×2M−Pk3(P

H
k3Pk3)

−1PH
k3)Y k3.

(2.43)

With (2.43), the decision rule (2.41) can be written as

Y
H
13(I2M×2M − P13(P

H
13P13)

−1PH
13)Y 13

H2

≷

H1

Y
H
23(I2M×2M − P23(P

H
23P23)

−1PH
23)Y 23.
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2.3.3.2 Algorithm Performance

Eq. (2.22) together with the decision rule (2.44) yields

Pe = Pr{(Y H
13(I2M×2M − P13(P

H
13P13)

−1PH
13)Y 13

> Y
H
23(I2M×2M − P23(P

H
23P23)

−1PH
23)Y 23)|H1}. (2.44)

Under H1 the third system is actually system 1 with parameters h1. Thus vectors

Y 13 and Y 23 in (2.44) can be replaced with

Y 13 =




Y 1

Y 3


 =




P1h1 + ν1

P3h1 + ν3


 = P13h1 +




ν1

ν3


 (2.45)

Y 23 =




Y 2

Y 3


 =




P2h2 + ν2

P3h1 + ν3


 =




P2h2

P3h1


+




ν1

ν3


 . (2.46)

With this substitution and after simple algebraic manipulations the probability of

error from (2.44) can be finally put in the form

Pe = Pr{(ν +B)HP (ν +B) < 0}, (2.47)

where

P(3M×3M) =




−(I − P1X
∗PH

1 ) 0 P1X
∗PH

3

0 (I − P2XP2) −P2XPH
3

P3X
∗PH

1 −P3XPH
2 −P3(X −X∗)PH

3




B(3M×1) =




0

P2.d

0




; ν(3M×1) =




ν1

ν2

ν3
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X =
(
PH
2 P2 + PH

3 P3

)−1
; X∗ =

(
PH
1 P1 + PH

3 P3

)−1

and

d = h2 − h1.

2.3.4 Naive Method

In addition to the algorithms introduced in the previous subsections, another

algorithm termed the Naive Method is considered. In this algorithm, the detection

system outputs the device number for which the estimated parameter vector ĥk, k =

1, 2, estimated with standard Least Squares, is closest to the estimated parameter

vector ĥ3 of the suspect’s device under an L2-norm criterion

||ĥ3 − ĥ2||
H1

≷

H2

||ĥ3 − ĥ1||.

2.4 Measurements and Simulations

In this section, the performance of the methods from Section 2.3 is investigated.

In particular, the influence of parameters such as the power of the input signal and

the signal-to-noise ratio (SNR) on the probability of error is analyzed. This section

also provides insight on the variations of components of transmitters used in practical

applications, and, most importantly, demonstrates the utility of the approaches for

such components even for short input sequences and practical SNRs.

Data sheets of digital-to-analog converters usually specify the maximal value of

the integral nonlinearity: INLmax. In addition to this information, the data sheets

often include exemplary INL paths [67]. Because of this, we found no need to perform

measurements to examine the variations of the I/O characteristics among the DACs.

In the case of the PAs, nonlinearity variations across individual devices are usually
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not described in the data sheets. Thus measurements were performed on commercial

RF PAs to analyze variations of the I/O characteristics among the PAs.

2.4.1 Exploitation of Digital-to-Analog Converter Nonlinearities for User

Identification

The required DAC size for commercial OFDM-based communication applications

varies from 6 to 18 bits and depends on the largest signal constellation and number of

OFDM subcarriers [68]. For our simulations, we considered 10-bit DACs. We set the

standard deviation σs of individual DAC sources to be 2% of their nominal value. The

upper plot of Figure 2.2 shows 1000 exemplary INL paths of 10-bit, thermometer-

coded DACs with σs = 0.02. The lower plot shows the INLmax histogram. For

10-bit DACs used in commercial communication transceivers, the value of INLmax is

typically in the range: ±1 LSB [69], which justifies the choice of 0.02 as a value for

the σS.

We applied the algorithms introduced in Section 2.3 to identify devices based

on their DAC INL paths. Figure 2.3 shows the probability of error as a function

of SNR, averaged over 100 DAC pairs and over 150 input vectors of size M =

2500, the elements of which were chosen as realizations of normal random variables

(rounded to an integer) with mean value equal to half of the the DAC input range

and standard deviation chosen as one third of the half of the input range (which

resulted in 99% of the input values within the input range, values outside the input

range were ignored). The size M of the input vector was limited by computational

capabilities of a computer used to run the simulations. The first eight eigenfunctions

of the Brownian Bridge random process were used for INL representation. Note that

a relatively high SNR was required for user identification at these short input lengths

in this case.
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Figure 2.2. INL Brownian Bridge paths of one thousand 10-bit, thermometer-
coded DACs with standard deviation of individual sources σs = 0.02 (upper plot)
and INLmax histogram (lower plot).

2.4.2 Exploitation of Power Amplifier Nonlinearities for User Identifica-

tion

Similarly, the performance of the considered methods was simulated when the

nonlinearities of PAs were exploited for the device identification. We assumed the

elements of the input vectors to be realizations of zero-mean normal random variable

with standard deviation σx. First, to investigate the behavior of Pe as a function

of increasing input power and increasing difference of the Volterra representations

of considered units, we artificially generated the Volterra series representation of the

amplifiers and standard deviation of the elements of the input vectors. Next, and most

importantly, we obtained the Volterra series representations from measurements of
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Figure 2.3. Probability of error versus signal-to-noise ratio (controlled with the
noise power level), averaged over 100 DAC pairs with σS = 0.02 and over 150 input
vectors of size M = 2500, with normally distributed elements with mean value equal
to half of the DAC’s input range and standard deviation equal to 1

6
of the DAC’s

input range (which resulted in 99% of the input values within the input range, values
outside the input range were ignored). The first eight eigenfunctions of the Brownian
Bridge random process were used for INL representation.

actual RF amplifiers and we analyzed the performance of the methods at input power

levels specified as linear or 802.11 standard compliant by the manufacturers.

Consider first the artificial generation of amplifier characteristics. Figure 2.4 shows

the simulated probability of error of the considered methods, for SNR = 30dB, versus

standard deviation σx of the elements of the input vectors, averaged over 200 different

input vectors of size M = 100 and over 200 randomly generated Volterra vector pairs.

For generation of Volterra vector pairs, random vectors with normally distributed

elements ∼ N (0, 10−6) were added to a mean value vector: [1 0.01 0.01 0.01 0.01].

Figure 2.5 also shows simulated Pe, but this time for the standard deviation of the

elements of the input vectors kept constant (σx = 100) and for the standard deviation
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Figure 2.4. Probability of error versus the standard deviation of the elements of
the input vectors averaged over 200 different input vectors of size M = 100 and over
200 randomly generated Volterra vector pairs, with standard deviation of elements
σh = 5 · 10−3; SNR = 30dB.

σh of elements of random vectors added to the mean value vector [1 0.01 0.01 0.01

0.01] for Volterra vector pairs generation varied in the range σh ∈ (0, 0.005). Each

point of the curve was obtained as an average over 1000 different input vectors of size

M = 100 and over 1000 randomly generated Volterra vector pairs. Similarly, as in

case of Figure 2.4, the SNR was set to 30dB.

As expected, Figures 2.4 and 2.5 demonstrate that the performance of the methods

increases when the power of input signals increases and when the differences among

amplifiers get larger. But speaking more precisely, the methods perform better when

the value of the weighted sum from (2.36) increases. In particular the differences in

the Volterra series representation of PAs should always be analyzed together with the

input power for complete insight into performance of the methods. Figure 2.6 shows

Pe as a function of weighted sum WS(d) (upper plot) and the L2 distance ||d|| (lower
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Figure 2.5. Probability of error versus the standard deviation of the Volterra coeffi-
cients averaged over 1000 randomly generated Volterra vector pairs and 1000 different
input vectors of size M = 100, with standard deviation of the elements σx = 100;
SNR=30dB.

plot) for 100 randomly generated amplifier pairs with σh = 2.5 · 10−4 averaged over

10000 input vectors of size M = 100 with the standard deviation of elements set to

σx = 100. It can be seen that the weighted sum is a much more appropriate metric.

To be able to validate effectiveness of the presented anonymity breaking techniques

when exploiting imperfections of PAs, we next consider how the nonlinearities of

power amplifiers, even these of the same model and from the same manufacturer,

differ in practice due to the production process inaccuracies. As mentioned previously

nonlinearity variations across devices are usually not described in the data sheets of

commercial RF PAs.

Measurements were performed on two different sets of power amplifier chips com-

mercially used inWLAN transmitters. First, two amplifier evaluation boards (MAX2242

EVKIT) loaded with MAXIMMAX2242 [3] amplifiers were stimulated with a 2.45GHz

45



Figure 2.6. Probability of error versus weighted sum from (2.36)- metric that com-
bines differences in Volterra coefficients and power of the input signal (upper plot)
and versus L2 norm of the vector d- metric that takes into account only differences
in Volterra coefficients (lower plot).

sinusoidal signal, generated with Agilent Technologies E8251A PSG−A signal gen-

erator and the output was measured on a 12.5GHz, 50GSa/s Tektronix DPO71254B

real time oscilloscope. A 20dB attenuator was connected to PAs’ output to ensure

a linear operation of the oscilloscope. We measured multiple points of the single-

tone, amplitude I/O characteristics. The measurement points were normalized to the

same value of linear gain, which was then used as a value of a linear, zero-memory

coefficient of the Volterra representation for both of the amplifiers. The linear part

was then subtracted from the normalized characteristics. The nonlinear coefficients

of memoryless Volterra representation were then obtained via curve fitting of the re-

maining, nonlinear part of the measured, normalized characteristics. For a 4th order

memoryless model this resulted in the following parameter vectors:
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Figure 2.7. Probability of error for measured MAXIM MAX2242 amplifiers versus
the standard deviation of the elements of input vectors σx, averaged over 2500 input
vectors of size M = 2500; SNR = 30dB.

h1 = [32.5462, 29.5342,−509.5277, 1311.5641]

h2 = [32.5462, 29.4025,−479.4057, 928.3273] ,

which were used for performance simulation results which are reported in Figures 2.7

and 2.8.

For the plots in Figures 2.7 and 2.8, the elements of the input vectors were chosen

as the absolute value of realizations of a zero mean random variable ∼ N (0, σ2
x).

Figure 2.7 shows how the Pe decreased as the standard deviation of the input went

up (while the SNR was kept constant at a level of 30dB and length of the input vector

was set to M = 2500). For standard deviation equal to σx = 0.055 the probability

that power of the input signal exceeded -7dBm was only 1%. -7dBm input power

corresponds to the upper level of the linear range of the considered MAXIM amplifiers

(adjacent channel power ratio below −33dBc and below −55dBc for, respectively, 1st
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Figure 2.8. Probability of error for measured MAXIM MAX2242 amplifiers versus
signal-to-noise ratio, (controlled with the noise power level), averaged over 25000
input vectors of size M = 2500, with standard deviation of the elements of input
vectors σx = 0.055.

and 2nd side lobe [3]). Whenever the input signal exceeded the the linear range, it

was clipped to its upper level. This means that the amplifiers worked in the range

specified as linear all the time. Figure 2.8 shows how the Pe behaved for a fixed

σx = 0.055 as a function of SNR (again the input signal was clipped to the upper

level of the linear region).

Motivated by the promising results obtained with the MAXIM evaluation boards,

we next prepared a larger experiment using SKYWORKS SKY 65006-348LF [1] am-

plifiers. For cost reasons, this motivated the development of our own evaluation board.

We executed a similar procedure as in the case of the MAXIM amplifiers to measure

the single-tone, amplitude I/O characteristics and to obtain parameter vectors of the

4th order polynomial for the SKYWORKS amplifiers. We chose elements of input

vectors to be the absolute value of realizations of a zero-mean normal random vari-
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# amplifier 1 2 3 4 5 6 7 8
1 - 0.245 0.000 0.011 0.322 0.000 0.331 0.003
2 0.000 - 0.081 0.308 0.478 0.099 0.135 0.000
3 0.000 0.000 - 0.389 0.030 0.506 0.000 0.000
4 0.000 0.000 0.002 - 0.199 0.428 0.001 0.000
5 0.000 0.226 0.000 0.000 - 0.046 0.153 0.000
6 0.000 0.000 0.318 0.017 0 - 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 - 0.003
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -

Table 2.1. Simulated probability of error of Generalized Likelihood Ratio Test (up-
per right part) and Likelihood Ratio Test with Estimated Parameters (lower left part)
for all possible pairs of 8 SKYWORKS SKY65006-348LF WLAN amplifiers, averaged
over 1000 input vectors of size M = 2500. The standard deviation of the components
of the input vectors was chosen such that the output power exceeded 21dBm (for
which, according to [1], the parts are still 802.11b mask-compliant) with probability
equal to 1%. The input was clipped to the upper level of the 802.11b mask-compliant
input range. Signal-to-noise ratio (controlled with the noise power level) was set to
35dB. For SNR=42dB and M=7500, no errors were observed for all possible pairs
for the Likelihood Ratio Test with Estimated Parameters in 1000 trials.

able, with a standard deviation set to a value for which 99% of the time the input was

within a range specified as 802.11b mask-compliant by the manufacturer; for the re-

maining 1% of the time, when the input exceeded the 802.11b mask-compliant range,

it was clipped to its upper level. Table 2.4.2 shows the simulated probability of error

for the Generalized Likelihood Ratio Test (upper right part) and the Likelihood Ratio

Test with Estimated Parameters (lower left part) for all possible amplifier pairs from

a group of 8 measured SKYWORKS amplifiers, averaged over 1000 input vectors of

size M = 2500 for SNR set to 35dB. Note that the identifiability of most of the

pairs was very good, at the SNR of 35dB for the very short input sequence of only

2500 physical-layer symbols. For SNR = 42dB and M = 7500 for the Likelihood

Ratio Test with Estimated Parameters, we found no identification errors for all pos-

sible pairs in 1000 trials. In reality of course, due to very high transmission rates
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employed, even short sessions will generally consist of hundreds or thousands of data

packets that can be used for user identification.

One of the main concerns about RF fingerprinting approaches exploiting transmit-

ter’s hardware imperfections is that they can be negatively influenced by the variation

of the performance of the transmitter components across the temperature. In par-

ticular, a meaningful variation of the performance of the power amplifiers can be

observed as a function of temperature. This is particularly true in large base station

amplifiers, where such temperature variation is the bane of designers attempting to

linearize such. However power amplifier chips used on wireless cards of today’s mobile

devices are very small (usually in the range of 4− 6mm2). These small chips achieve

their normal operating temperature very quickly, and in fact, we have observed such

stabilization of the chip temperature after tens of seconds. This is a very short time

that is often needed for the mobile device to boot up. Therefore, we believe it is

fair to ignore the temperature variations in this initial investigation. However, we do

believe that it is an important consideration as we consider further refinement of our

algorithms.

2.4.3 Evaluation of the Results

To our knowledge, model-based approaches similar to ours have not yet been

investigated. Thus, it is to hard conduct a comparison of our results with results of

previous work. In particular, it is not possible to conclusively compare our simulation

and measurement results with the strictly empirical results Hall et al. [23] and Brik

et al. [30], for which numerous parameters are not specified, including such basic

ones as the operating signal-to-noise ratio. Hence, we are reduced to re-stating the

experimental outcomes of Hall et al. [23] and Brik et al. [30] and comparing them quite

roughly to our work. In [23], Hall et al. report an average success rate of 94-100%,

while trying to distinguish among 14 802.11 transceivers. In [30], Brik et al. report
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identification error rates equal to fractions of a percent (0.34% for their best scheme),

while distinguishing among 138 802.11 transceivers. Methods introduced by Brik et al.

can however be thwarted with a success rate close to 100% with a simple adjustment

of the carrier frequency of the masquerading device and with digital modifications of

constellation symbols, as reported by Danev et al. [33]. As we mentioned previously,

for SNR = 42dB, even for short input sequences of M = 7500, no errors were

observed during 1000 simulation trials, while trying to distinguish among 8 802.11b

mask-compliant PAs from the same manufacturer. This suggests that our methods

can outperform methods of Hall et al. and Brik et al. ( [23] and [30]), when applied to

the same setup, but, per above, we cannot make this statement conclusively. While

methods of Hall et al. and Brik et al. are strictly experimental and their results hard

to reproduce, one advantage of our model-based approach is that the results are easy

to replicate for comparison to the performance of methods developed by others in the

future.

2.5 Conclusions

In this chapter, we proposed a new approach for breaking user anonymity in wire-

less communication systems based on minute imperfections of different components

of the transmitter hardware. The general models used to model the transmitter com-

ponents allow for the determination of the probability of error of the decisions, which

makes the proposed methods especially interesting for establishing probable cause

and for use in court. Our simulations have shown that the nonlinear variations of

digital-to-analog converters can only be exploited when the signal-to-noise ratio is

very high. However, in the case of power amplifiers, measurements from commer-

cially employed chips indicate that amplifiers can be easily identified at typical power

levels, at practical SNRs and with short observed sequences.

51



CHAPTER 3

IDENTIFICATION OF WIRELESS DEVICES OF USERS
WHO ACTIVELY FAKE THEIR RF FINGERPRINTS

WITH ARTIFICIAL DATA DISTORTION

3.1 Problem Statement

As discussed in Chapter 2, variations in the RF chain of radio transmitters caused

by imperfections of manufacturing processes can be used as a signature to uniquely

associate wireless devices with a given transmission. In Chapter 2 we proposed a

model-based approach that allows for the identification of wireless devices based on

signatures obtained with time domain analysis of steady state pairs of received and

decoded signals. All of the RF fingerprinting techniques based on steady state signal

analysis exploit the fact that nonideal transmitters cause signal distortions that, while

being slight enough for the transmitters to meet requirements of the communication

standards, are significant enough to make the distortions observable and able to be

tied with an individual transmitter. Therefore, an adversary user, who is capable of

modification of the higher-layer tags such as the IP address and MAC address can

be successfully identified based on its physical-layer fingerprint. However, a strong

adversary, aware of the fingerprinting methods, could inject slight distortions to the

digital data signal, before the signal is exposed to transmitter’s nonlinearities, based

on which the RF fingerprint is extracted. This slight, artificial distortion while still

allowing for reliable data transmission (see Section 3.4), would change the character

of the total distortion observable at the receiver over time, and hence the character

of the fingerprint which would significantly degrade performance of the steady state

signal based methods from Chapter 2 and methods of Brik et al. [30]. In particular
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in [33] authors report thwarting the identification methods of Brik et al. [30], with

success rate close to 100%, with a simple adjustment of the carrier frequency of

the masquerading device and with digital shrinking/expanding of the constellation

symbols’ positions.

The strong adversary, considered in this chapter, has the capability to intention-

ally distort the digital data by taking the digital symbols off the signal constellation

grid, before they are pulse-shaped and exposed to the PA’s nonlinearity. When such a

distortion is employed, the correctly detected data symbols, chosen at the receiver as

elements of the constellation, differ from the symbols at the transmitter directly before

the pulse-shaping and the exposure to the PA nonlinearities. This intentional dis-

tortion, while causing only slight signal quality degradation (see Section 3.4), causes

significant degradation of the identification methods from Chapter 2, which makes

the attack very attractive for the strong adversary. In particular, in Chapter 2 we

assumed that for the PA, which dominates the transmitter’s nonlinearity, the input

samples are accessible, as they can be reconstructed from the correctly decoded data

at the receiver if the rest of the transmitter chain is assumed linear. We then used

time-domain analysis of the decoded data and the received signal for the identification

decisions. In this chapter, we address a scenario when the input to the transmitter’s

PA can be different from the input reconstructed at the receiver because of slight

distortions that the strong adversary could have injected to the digital symbols, in

addition to inherent waveform distortions caused by the PA impairments. Such in-

jection might allow the strong adversary to fake the RF signature of its device, while

still allowing for correct data decoding. Therefore, in this chapter we develop an

identification method that allows for separation of the two possible sources of dis-

tortion: modification of the digital data symbols by a strong adversary and inherent

transmitter nonlinearities, thus allowing for successful identification of the devices

used by the strong adversaries.
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The method proposed in this chapter is based on the observation that the non-

linearity of the radio frequency power amplifiers, which are the last elements of the

transmitter chain and thus cannot be influenced by software modifications, cause

slight in-band distortion and spectral regrowth of the signal that is dependent on the

parameters of the amplifier’s nonlinearity. We demonstrate that this distortion can

be isolated from a potential, additional cause of spectral modification of the wave-

form: modification of the digital data symbols by the strong adversary. Hence, with

oversampling of the captured signals at the receiver, the mobile devices can be iden-

tified even if the masquerading users fake their RF signatures by injecting artificial

distortions to the data symbols while committing the crime.

It is important to stress here that, similarly to the Chapter 2, we only exploit the

differences in the nonlinear character of the power amplifiers. Differences of values

of the linear gain that could be masked by varying the distance between transmitter

and receiver or fading effects of the channel are ignored. Thus, as in Chapter 2, we

normalize all captured signals to the same gain value to prevent the exploitation of

gain for identification. Moreover, we consider a scenario where strong adversaries are

capable of changing the character of the distortion applied to each packet individually.

Hence, only a single packet is available to be used to detect and characterize the

distortion and to correct for it.

Figure 3.1 presents the identification scenario considered in this chapter. Simi-

larly to Chapter 2 we study here a post-incident mobile device identification method,

which involves testing of devices from a pool of suspects in order to decide which one

was most likely used while the crime was committed, when high-layer identification

mechanisms fail or are not implemented. The two-device scenario from Chapter 2

(Figure 2.1) is extended to a K-device scenario. A signal record from the criminal’s

device is captured by a receiver at the crime scene, when the strong adversary either

does or does not distort the digital symbols in order to fake the device’s RF signature.

54



Figure 3.1. The K-device identification scenario: record captured at a crime scene
from a device used by the strong adversary that is capable of artificial distortion of
the data symbols applied in order to fake RF signature of the device (upper part);
post-crime records captured from K devices building a pool of suspects (lower part).
An additive white Gaussian noise (AWGN) channel model is assumed.

After the crime is committed, using the same receiver, records are captured from a

group of devices that might have been used to commit the crime. The goal of this

work is to tie transmissions from the crime scene to other transmissions from that

same device. Being able to indicate a device that, with a given probably, was used to

commit the crime, can then allow law enforcement to reduce the size of the original

group of suspect devices and to justify issuing device confiscation warrants that can

then lead to final identification decisions and possible arrests based on the digital

content of the devices.
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Our identification method is based on an assumption that only short transmissions

are available from the crime scene captured at times when strong adversaries might

or might have not injected distortions to their data symbols and that the records from

the devices that are building the pool of suspects are captured at times when users do

not distort the data signals, and that the devices can be observed for a long enough

time to obtain relatively accurate estimates of their true RF signatures. We believe

that this is a reasonable assumption, since the digital data distortion does cause some

signal quality degradation and thus device performance degradation that the strong

adversary is not expected to tolerate over extended period of time. This is analogous

to a criminal taking an uncomfortable mask off some time after he masqueraded to

commit the crime.

3.2 Modeling the Spectrum of the Output of the Nonlinear

RF Power Amplifier

Behavioral modeling of RF power amplifiers is an extensive research area that

concentrates on extraction of low complexity models for system simulations that ac-

curately capture the performance impairments and distortions caused by circuit level

effects. Among various models that have been considered to model the behaviour of

the PAs are polynomial memoryless models, two-box Hammerstein and Wiener mod-

els, multiple-box models, Volterra series based models and neural networks based

models. Piecewise modeling approaches have also been considered. A variety of sur-

vey papers and books provide a rich overview of the existing behavioral modeling

approaches e.g. [70–72]. In this work we are considering low order, memoryless poly-

nomial behavioral models, which as reported by Isaksson et al. in [71], allow for

high modelling accuracy even for wide-band signals (up to 20MHz baseband). The

extension to more complex models is possible, but leads to increase of complexity of

the PA output spectrum model introduced in (3.7).
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Consider a communication signal modeled with a random process

x(t) =
∞∑

n=−∞
an · p(t− nTs), (3.1)

where p(t) is an analog pulse and an’s are data symbols, which for commonly used

digital modulation schemes are modeled as identically distributed, uncorrelated, zero-

mean complex random variables, for which the distribution depends on the digital

modulation scheme. x(t) is not a wide-sense stationary, but a cyclostationary random

process, as its expected value is zero and its autocorrelation function is periodic in Ts.

Thus, instead of using the Wiener−Khinchin theorem, we consider the more general

definition of power spectral density (psd) in order to describe the spectrum of the

signal captured from the device that needs to be identified.

Consider an arbitrary random process x′(t). Its power spectral density can be

expressed as

Sx′(f) = lim
T→∞

1

T
E
[
|X ′

T (f)|2
]
, (3.2)

where

x′
T (t) =





x′(t), t ∈ (−T/2, T/2)

0, otherwise .

(3.3)

and X ′
T (f) is the Fourier transform of x′

T (t).

On the transmitter side the cyclostationary communication process x(t) from (3.1)

is amplified with a nonlinear amplifier, the characteristic of which can be accurately

modeled with an odd-order polynomial with coefficients {h2p−1, p = 1, 2, ..., P} [71].

The resultant process y(t) can be expressed as

y(t) =
P∑

p=1

h2p−1

( ∞∑

n=−∞
an · p(t− nTs)

)(2p−1)

. (3.4)
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Define

yN(t) =





y(t), t ∈
(−N

2
Ts,

N
2
Ts

)

0, otherwise

(3.5)

and YN(f) = F {yN(t)}. With (3.2) the power spectral density of the random process

y(t) sampled at the receiver, after being sent through an additive white Gaussian noise

(AWGN) channel, can then be expressed as

Sy(f) = lim
N→∞

1

2N + 1
· E [YN(f) · YN(f)

∗] + σ2
ν , (3.6)

where σ2
ν is a power spectral density of an AWGN process ν(t).

With (3.4), (3.5) and (3.6), and the linearity of expectation and the Fourier trans-

form, the power spectral density of y(t) can be expressed as

Sy(f) = σ2
ν +

P∑

p1=1

h2p1−1

P∑

p2=1

h∗
2p2−1 lim

N→∞

1

2N + 1

N∑

n1
1
=−N

· · ·
N∑

n1
2p1−1

=−N

N∑

n2
1
=−N

· · ·
N∑

n2
2p2−1

=−N

E
[
an1

1
· . . . · an1

2p1−1
· a∗n2

1

· . . . · a∗n2
2p2−1

]

·F
{
p(t− n1

1Ts) · . . . · p(t− n1
2p1−1Ts)

}

·F
{
p(t− n2

1Ts) · . . . · p(t− n2
2p2−1Ts)

}∗
. (3.7)

Because the an
′s are identically distributed, uncorrelated and zero-mean random vari-

ables, (3.7) simplifies significantly, as the expected value

E
[
ak1

1
· . . . · ak1

2p1−1
· a∗k2

1

· . . . · a∗k2
2p2−1

]

inside of the multiple sum takes non-zero values only when among all (2p1−1)+(2p2−

1) sum indices n, all subsets of indices that take the same values have size that is an
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even number. In all other cases, because of the uncorrelated and zero-mean property

of the an
′s, the expected value can be written as a product of factors, at least one of

which is equal to zero. Therefore, for a known pulse-shaping filter, the power spectral

density (3.7) can be simplified and expressed as a function of even-order central

moments (pg. 86 of Section 2.4 [73]) of the, potentially digitally distorted, random

variables an, and of the coefficients of the nonlinearity of the amplifier. For a 5th order,

real, odd polynomial representation of the PA’s input/output (I/O) characteristic

(P = 3 in (3.7)) (3.7) can be reduced to

Sy(f, µ2, µ4, µ6, µ8, µ10, h1, h3, h5)

= h2
1 · µ2 ·R1(f) + h1h3(µ4 ·R2(f) + µ2

2 ·R3(f))

+ h1h5(µ6 ·R4(f) + µ2 · µ4 ·R5(f) + µ3
2 ·R6(f))

+ h2
3(µ6 ·R7(f) + µ2 · µ4 ·R8(f) + µ3

2 ·R9(f))

+ h3h5(µ8 ·R10(f) + µ6 · µ2 ·R11(f) + µ2
4 ·R12(f)

+ µ4 · µ2
2 ·R13(f) + µ4

2 ·R14(f)) + h2
5(µ10 ·R15(f)

+ µ6 · µ4 ·R16(f) + µ6 · µ2
2 ·R17(f) + µ4 · µ3

2 ·R18(f)

+ µ5
2 ·R19(f)) + σ2

ν

(3.8)

where µL is the Lth central moment of an, and the Rl(f)
′s are functions that only

depend on the pulse p(t) used for pulse-shaping and can be found as sums of products

of Fourier transforms of products of time shifted pulses p(t). For example

59



R1(f) = lim
N→∞

1

2N + 1

N∑

n=−N

F {p(t− nTs)} · F {p(t− nTs)}∗

R2(f) = lim
N→∞

1

2N + 1

N∑

n=−N

2ℜ
{
F {p(t− nTs)} · F

{
p3(t− nTs)

}
∗

}

R3(f) = lim
N→∞

1

2N + 1
3

N∑

n1=−N

N∑

n2=−N

2ℜ
{
F {p(t− n1Ts)} · F

{
p(t− n1Ts)p

2(t− n2Ts)
}
∗

}

R11(f) = lim
N→∞

1

2N + 1
3

N∑

n1=−N

N∑

n2=−N

2ℜ
{
F
{
p(t− n1Ts)p

2(t− n2Ts)
}
· F
{
p5(t− n1Ts)

}
∗

}

+ 15
N∑

n1=−N

N∑

n2=−N

2ℜ
{
F
{
p2(t− n1Ts)p(t− n2Ts)

}
· F
{
p4(t− n1Ts)p(t− n2Ts)

}
∗

}

+ 10
N∑

n1=−N

N∑

n2=−N

2ℜ
{
F
{
p3(t− n1Ts)

}
· F
{
p3(t− n1Ts)p

2(t− n2Ts)
}
∗

}
.

(3.9)

Although N → ∞ in (3.7) and (3.9), in practice these sums are finite, because

practical pulses have finite lengths and their shifted versions overlap only up to a

given finite relative time shift. Figure 3.2 shows the Rl(f) functions from (3.8) for

l = 1, 2, . . . , 18, for a raised-cosine pulse-shaping filter with roll-off factor r = 0.5.

Function R19(f) has not been plotted because of the extensive time required for its

calculation. Eq. (3.8) then shows how the psd of a received waveform changes with

the change of the moments of the data symbols that can be caused by potential

distortions intentionally injected to the data symbols by the strong adversary. As

we will show in the numerical results of Section 3.4, very good performance of the

proposed identification method is obtained even if the first 18 out of the 19 Rl(f)

functions are used to calculate the psd model (3.8), as the contribution of the Rl(f)

decreases with increasing index l. Model (3.8) was derived for a low-order polynomial

PA model (3.4) with real coefficients h. The extension of (3.8) to low-order, complex

polynomial PA models, which according to [71] allow for good accuracy of modeling

practical RF amplifiers, as well as extension to other practical PA models [71] is

possible at the expense of complexity of (3.8).
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Algorithm 1 Post-Crime Device Identification Algorithm

for number of hypotheses (number of devices building the pool of suspects) do
for number of packets captured when users do not distort data symbols do
• Receive a packet oversampled with factor M
• Normalize the received oversampled packet to unitary power and calculate
the periodogram estimate of the received signal’s psd
• Decode the data symbols
• Estimate the first L even central moments of the decoded data symbols
• Downsample the captured packet and normalize the received data symbols
to gain G = 1
• Based on the decoded data symbols and the received, normalized data sym-
bols estimate P coefficients of an odd-order polynomial model of the PA’s I/O
characteristic

end for
• Average the central moment estimates, estimates of the coefficients of the PA’s
I/O polynomial model, and the estimates of the psd over all captured packets
• With a known range of the decoded data symbols and with the averaged esti-
mates of the coefficients of the PA’s I/O polynomial model, find the coefficients
of a polynomial function inverse to the PA’s I/O polynomial model
for number of packets captured from the the strong adversary’s device at the
crime scene do
• Capture a packet oversampled with factor M
• Normalize the captured oversampled packet to unitary power and calculate
the periodogram estimate of the received signal’s psd
• Downsample the captured packet and normalize the received data symbols
to gain G = 1
• Apply the polynomial function inverse to the devices’s PA’s I/O polynomial
model to the normalized received data symbols
• Estimate the first L even central moments of the normalized received data
symbols after applying the inverse function
• Calculate the correction of the psd estimates with (3.15)

end for
• Average the estimate of the psd over the number of packets captured at the
crime scene
• Average the calculated correction over the number of packets captured at the
crime scene
• Calculate likelihood function (3.12) with the corrected psd estimate

end for
• With (3.14) find an index of a device with the maximal value of the likelihood
function
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Figure 3.2. Rl(f) functions, l = 1, 2, . . . , 18, used in (3.8) calculated for a raised-
cosine pulse-shaping filter with roll-off factor r = 0.5.

3.3 Proposed Identification Method

3.3.1 Hypothesis Test

Eq. (3.6) is a well-known formula for a periodogram spectral estimator (pg. 65 of

Section 4.3 [74]). Because such an estimator relies on random data of limited length,

the estimate of the psd at each frequency is a random variable itself. Although

the mean value of the estimate goes to the true value as N → ∞, the variance is

unaffected by the length of the captured time sequence (pg. 66 of Section 4.3 [74]).

The variance of the estimate can only be reduced by averaging the periodograms

calculated over multiple data sequences. The values of the periodogram at each

frequency asymptotically behave like independently-distributed Chi-square (for a non-

averaged periodogram) and Gamma (for an averaged periodogram) random variables

with mean value equal to the true value of the psd [75]. Hence a likelihood ratio test

can be performed to reveal the identity of the wireless device.
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Consider the two-device scenario. The two hypotheses of the test are H1: mas-

querading user uses device 1; H2: masquerading user uses device 2. Then the likeli-

hood ratio test is

Λ =
pSY |H1

(SY |H1)

pSY |H2
(SY |H2)

H1

≷

H2

τ (3.10)

Because the hypotheses are equally probable, for uniform Bayesian costs, a threshold

that minimizes the risk of the test is τ = 1 (pg. 26 of Section 2.2 [76]). The two-device

scenario can easily be generalized to a K-device scenario, for which the identified

device k is the device for which the likelihood function takes maximal value:

kopt = max
k=1,...,K

pSY |Hk
(SY |Hk). (3.11)

For the more general case of the averaged periodogram, the likelihood functions are

pSY |Hk
(SY |Hk) =

NDFT∏

n=1

SY(fn)
κ−1 exp{−SY(fn)/Θk(fn)}

Γ(κ)Θk(fn)κ
(3.12)

where NDFT is the length of the discrete Fourier transform (DFT) applied to calcu-

late the discrete version of Y (f) from (3.6), κ is a shape parameter of the Gamma

distribution that is equal to the number of averaged periodograms, and Θk(fn) is a

scale parameter of the Gamma distribution at the frequency fn. Under hypothesis

Hk, Θk(fn) is equal to

Θk(fn) = ζk(fn)/κ, (3.13)

where ζk(fn) is the true value of the psd at frequency fn. Γ(κ) is the Gamma function,

which for positive integers κ takes values Γ(κ) = (κ− 1)!. With (3.12), and because

of the monotonicity of the logarithm, the likelihood test (3.11) can be rewritten as

kopt = max
k=1,...,K

NDFT∑

n=1

{
(κ− 1) ln (SY(fn))−

SY(fn)

Θk(fn)
− κ · ln (Θk(fn))

}
. (3.14)
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Typically the true psd values ζk(fn) from (3.13) are not available and their accurate

estimates ζ̂k(fn) are used to calculate estimates Θ̂k(fn) of the scale parameters (3.13).

3.3.2 Correction of Hypothesis Test True Values for Identification of a

Strong Adversary

The K-ary likelihood test (3.14) provides good performance only if the adversary

does not inject distortions to its data symbols while committing the crime. If the

masquerading user modifies moments of its data symbols, the performance of the test

can degrade significantly. However, with the model from (3.8) it is possible to take

into account changes of the psd caused by moments’ modifications and accordingly

correct the scale parameter vectors Θk(fn) used in (3.14). For this, a knowledge of the

moments of the data symbols for the captures from the devices building the pool of

suspects and for capture from the device used to commit the crime is needed. For the

devices from the pool of suspects, unmodified decoded input data symbols are easily

accessible, and hence these moments can be estimated very accurately. However,

for the capture from the crime scene, the correctly decoded data symbols are not

necessarily identical to the data symbols generated at the transmitter, and we cannot

estimate the moments of the data symbols based on the decoded data. Therefore for

the purpose of identification, instead of decoding the received data from the crime

scene, we apply functions that are the inverse of the nonlinear I/O characteristics

of the amplifiers that under each hypothesis can be accurately estimated from the

I/O data collected from devices building the pool of suspects. Moments of the data

symbols obtained after applying these inverse functions can then be used to calculate

the corrected estimates of the true values of the psd ζ̂Ck (fn) and the corrected scale

parameters Θ̂C
k (fn) = ζ̂Ck (fn)/κ.
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ζ̂Ck (fn) = ζ̂k(fn)− SY(f, µ̂2,k, µ̂4,k, µ̂6,k, µ̂8,k, µ̂10,k, ĥ1,k, ĥ3,k, ĥ5,k)

+SY(f, µ̂
′
2,k, µ̂

′
4,k, µ̂

′
6,k, µ̂

′
8,k, µ̂

′
10,k, ĥ1,k, ĥ3,k, ĥ5,k).

(3.15)

ζ̂k(fn) in (3.15) is the psd estimated accurately for device k when the user was not

distorting the data symbols. SY is the model from (3.8). µ̂L,k are the Lth central

moments of the undistorted data symbols accurately estimated for the device k. µ̂′
L,k

are the Lth central moments of data symbols from the device that was used to commit

the crime, obtained after applying functions inverse to the estimated nonlinearity of

the amplifier under hypothesis Hk. The ĥj,k are estimated jth coefficients of the

odd 5th order polynomial approximation of the I/O characteristic of the amplifier

of the device k. Algorithm 1 summarizes the proposed scheme for post-incident

identification of devices used by strong adversaries.

Since (3.8) is a nonlinear function of the central moments, the correction needs

to be applied with the periodicity not lower than the periodicity of changes of the

character of data symbol distortion of which the strong adversary is capable. In

this work we assume a pessimistic scenario where the strong adversary can change

the character of the distortion applied to the data symbols for each individual packet.

Hence the correction needs to be applied to each received packet individually, and thus

the moment estimates used for the correction are obtained from a single packet only. A

lower periodicity of distortion character changes can only increase the accuracy of the

moment estimates and thus increase the performance of the proposed identification

method, reported in the following Section 3.4.

3.4 Numerical Results

To investigate the performance of the proposed identification device method, we

first generate polynomial representations of PA I/O characteristics artificially. Next,

and most importantly, we obtain polynomial representations for actual RF power
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Figure 3.3. Probability of erroneous identification decision (3.14), calculated over
250 randomly generated groups of 3 power amplifiers and input signals, as a function
of standard deviation ση of the zero-mean, normal random variable η (3.16), for
SNR = 30dB, for 50 signal records of length 1024 symbols, captured from the device
used to commit a crime, and for 500 signal records of length 1024 undistorted symbols
captured from the three suspected devices, for the three cases i), ii) and iii), described
in Section 3.4, together with the performance of the time domain based methods of
Chapter 2.

amplifiers by measurements, and we analyze the performance of the identification

method at input power levels specified as linear by the manufacturer.

Consider first the artificial generation of amplifier polynomial representations and

a 3-hypotheses scenario, where each amplifier was modeled with a real 5th order odd

polynomial coefficient vector. The first of the three vectors was arbitrarily set to

h = [1 h3 h5] = [1 − 0.1 − 431.71]. The second and the third vectors were then

generated as a sum of the vector h and respective random vectors

hadd2
= [0 − |η|h3 − |η|h5], hadd3

= [0 |η|h3 |η|h5], (3.16)
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where η was a zero-mean, normal random variable with standard deviation ση. The

input data signal to the power amplifiers was modeled as a sequence of realizations of

a zero-mean, normal random variable with standard deviation σx, clipped to the level

C, and pulse-shaped with a raised-cosine pulse-shaping filter with a roll-off factor

r = 0.5. The oversampling ratio O of the pulse-shaping filter was set to O = 4. The

clipping level C was set to the 1dB input compression point of the amplifier modeled

with the coefficient vector h. σx was chosen such that 99% of the data symbols

were below the clipping level C. We used the first 18 out of the 19 Rl functions to

calculate the psd model (3.8). NDFT from (3.12) was set to NDFT = 4096. We used

the frequency interval [0.76 · fs, 0.91 · fs] to calculate the likelihood functions (3.12),

as the high variance of the periodogram at frequencies lower than 0.76 · fs caused

degradation of the test performance. Also, for frequencies higher than 0.91 · fs, for

the considered pulse-shaping filter, the regrowth caused by the PA nonlinearity was

very small and including these frequencies did not bring performance improvements.

Figure 3.3 shows the probability of error of the hypothesis test (3.14), calculated

over 250 randomly generated groups of 3 power amplifiers and input signals, as a

function of the standard deviation ση of the zero-mean, normal random variable η

(3.16), for signal-to-noise ratio (SNR) equal to 30dB, for 50 signal records of length

1024 symbols, captured from the device when the crime was committed, and for 500

signal records of length 1024 undistorted symbols captured from the three suspected

devices, for three cases:

i) while committing the crime user 1 with I/O characteristic h was not modifying

the data symbols to fake the device’s RF signature

ii) while committing the crime user 1 with I/O characteristic h was faking the de-

vice’s RF signature by applying a different 3rd order odd polynomial functions to indi-

vidual data packets. The polynomials’ linear coefficients were fixed to 1 and the 3rd or-

der coefficients were chosen uniformly at random from range [0.75 ·k3,1.25, 1.25 ·k3,1.25],
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Figure 3.4. Probability of erroneous identification decision (3.14), calculated over
250 randomly generated groups of 3 power amplifiers and input signals, as a function
of SNR (controlled with the noise power level), for standard deviation ση = 0.3 of
the zero-mean, normal random variable η (3.16), for 50 signal records of length 1024
symbols, captured from the device used to commit a crime, and for 500 signal records
of length 1024 undistorted symbols captured from the three suspected devices, for the
three cases i), ii) and iii), described in Section 3.4, together with the performance of
the time domain based methods of Chapter 2.

where k3,1.25 was the 3rd order coefficient of a polynomial with 1.25dB compression

point for the data symbols

iii) while committing the crime user 1 with I/O characteristic h was faking its

device’s RF signature as in ii), but the proposed algorithm using the corrected true

values (3.15) was used to calculate the likelihood functions (3.12).

The modification of data symbols as in ii) resulted in degradation of EVM =
√

Perror

Preference
· 100% by 5.51% (averaged over 10000 trials). Such EVM degradation for

common modulation schemes at common SNR levels should not lead to a significant
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Figure 3.5. Probability of erroneous identification decision (3.14), calculated over
250 randomly generated groups of 3 power amplifiers and input signals, as a function
of number of signal records of length 1024 symbols captured from the device used to
commit a crime, for SNR = 30dB, for standard deviation ση = 0.3 of the zero-mean,
normal random variable η (3.16), and for 100 signal records of length 1024 undistorted
symbols captured from the three suspected devices, for the three cases i), ii) and iii),
described in Section 3.4, together with the performance of the time domain based
methods of Chapter 2.

increase of the bit error rates (Table IV [77]), which establishes the possibility and

attractiveness of the strong adversary attack model introduced in this work.

Figure 3.4 shows the probability of error of the hypothesis test (3.14), calculated

over 250 randomly generated groups of 3 power amplifiers and input signals, as a

function of SNR, for standard deviation ση = 0.3 of the zero-mean, normal random

variable η (3.16), for 50 signal records of length 1024 symbols, captured from the

device when the crime was committed, and for 500 signal records of length 1024

undistorted symbols captured from the two suspected devices, for the three cases i),

ii) and iii) described above.
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Figure 3.6. Probability of erroneous identification decision (3.14), calculated over
250 randomly generated power amplifiers and input signals, as a function of number of
signal records of length 1024 undistorted symbols captured from the three suspected
devices, for SNR = 30dB, for standard deviation ση = 0.3 of the zero-mean, normal
random variable η (3.16), and for 50 signal records of length 1024 symbols captured
from the device used to commit a crime, for the three cases i), ii) and iii), described
in Section 3.4, together with the performance of the time domain based methods of
Chapter 2.

Finally, Figures 3.5 and 3.6 show performance of the test (3.14) for fixed values of

the SNR and ση as a function of, respectively, the number of records captured from

the criminal’s device and the number of records captured from the devices building

the pool of suspects.

In addition, for comparison, the Figures 3.3, 3.4, 3.5 and 3.6 show performance

of the time domain based methods of [78]. Figures 3.3, 3.4, 3.5 and 3.6 show that if

the method proposed in this work is not employed, in the case of the considered 3-

hypotheses scenario, the strong adversary is able to successfully fake the RF signature

of its device by applying a simple nonlinear function to its data symbols. Spoofing
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via data symbol distortion is, however, not a trivial task, as it is not straightforward

to obtain the functions that, when applied to the data symbols, would modify the

moments properly when the characteristics of the victims are unknown. The search

for effective techniques that would give criminals the capability of faking the RF

signatures of their devices via slight modifications of the data symbols is an interesting

topic for future research. The method introduced in this work allows for the successful

identification of the devices even if the adversary user had such a capability.

To be able to verify the utility of the proposed identification method, insight

on the variations of the I/O characteristics of amplifiers used in practical applica-

tions is needed. To obtain such insight, similarly as in described in Section 2.4.2,

we used a 12.5GHz, 50GSa/s Tektronix DPO71254B oscilloscope and Agilent Tech-

nologies E8251A PSG − A signal generator and measured multiple points of the

single-tone, amplitude I/O characteristics of eight commercial WLAN amplifiers of

the same model: SKYWORKS SKY65006 [1] loaded on evaluation boards and op-

erating at a frequency f = 2.45GHz. The obtained measurement points were used

to approximate the amplitude I/O characteristics with 5th order, odd polynomials.

These approximated characteristics were then used to generate amplified data in

MATLAB. Similarly as in the case of the artificially generated amplifiers, the in-

put signal was modeled as a sequence of realizations of a zero-mean, normal random

variable with standard deviation σx, clipped to the level C, and pulse-shaped with

a raised-cosine pulse-shaping filter with a roll-off factor r = 0.5. The oversampling

ratio O of the pulse-shaping filter was set to O = 4. The clipping level C = 0.1412

of the input signal to the PAs was set to the upper boundary of the range specified

as 802.11b frequency mask-compliant for the considered amplifiers [1]. The standard

deviation σx was chosen such that 99% of the symbols were below the clipping level

C (σx = 0.055). The number of undistorted signal records of length 4096 symbols

captured from the devices building the pool of suspects was set to 10000. The num-
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ber of signal records of length 4096 symbols captured from the device committing the

crime was set to 500. NDFT from (3.12) was set to 4096. The K-ary test (3.14) was

used to identify each of the eight measured amplifiers. Again three cases similar to

cases i), ii) and iii), described earlier, for the artificially generated amplifier pairs

were considered.

Similarly, as in the case of the artificially generated amplifiers, we used the fre-

quency interval: [0.76 ·fs, 0.91 ·fs] to calculate the likelihood functions (3.12) and the

first 18 out of the 19 Rl functions were used to calculate the psd model (3.8).

Tables 3.1, 3.2 and 3.3, for SNR values of 30dB, 35dB, and 40dB respectively,

show the probability of erroneous identification decision (3.14) calculated over 250

trials for the three cases i), ii) and iii), for eight measured amplifiers. These tables

show that while users of devices 3, 6, 7 and 8 were not very successful at faking their

devices’ RF signatures by distorting the data symbols, the degradation of the perfor-

mance of the uncorrected (3.14) was significant when users of devices 1, 2, 4 or 5 were

distorting their data, especially at high SNRs. Correction of the scale factors from

the test (3.14) allowed for highly probable identification of these strong adversaries

for the considered high SNR values, which based on measurements reported from

existing WLAN deployments are reasonable for indoor short-range scenarios. In ad-

dition, for comparison, the Tables 3.1, 3.2 and 3.3 show the performance of the time

domain based methods of [78].

The work presented in this paper is an extension of work presented in [78] to a

scenario where the user fakes its RF signature with data symbol distortion. In [78]

we provide a comparative overview of related steady state identification techniques.

As we stress in [78], such a comparison is hard to conduct as approaches similar

to the model based identification approach that we introduced have not yet been

investigated as to the best of our knowledge. Hence in [78], we are necessarily limited

to restating the experimental outcomes of related steady state identification studies,
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SNR=30dB

PA # 1 2 3 4 5 6 7 8

i) 0.076 0.252 0.184 0.032 0.256 0.112 0.000 0.000

ii) 0.936 0.692 0.540 0.764 0.896 0.316 0.000 0.000

iii) 0.076 0.468 0.016 0.012 0.014 0.224 0.072 0.000

Ch. 2 no distortion 0.012 0.452 0.004 0.000 0.076 0.152 0.032 0.000

Ch. 2 distortion 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000

Table 3.1. Probability of erroneous identification decision (3.14) calculated over 250
trials for eight measured SKYWORKS amplifiers for SNR = 30dB (controlled with
the noise power level), for the three cases: i) user was not modifying the data symbols
while committing crime; ii) user was distorting the data symbols while committing
crime in order to fake device’s RF signature; iii) user was distorting the data sym-
bols while committing crime and the proposed algorithm using the corrected true
values (3.15) was used to calculate the likelihood functions (3.12), together with the
performance of the time domain based methods of Chapter 2.

SNR=35dB

PA # 1 2 3 4 5 6 7 8

i) 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000

ii) 0.996 0.764 0.156 0.944 1.000 0.012 0.000 0.000

iii) 0.000 0.240 0.000 0.000 0.000 0.052 0.000 0.000

Ch. 2 no distortion 0.000 0.064 0.012 0.000 0.092 0.000 0.000 0.000

Ch. 2 distortion 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000

Table 3.2. Probability of erroneous identification decision (3.14) calculated over 250
trials for eight measured SKYWORKS amplifiers for SNR = 35dB (controlled with
the noise power level), for the three cases: i) user was not modifying the data symbols
while committing crime; ii) user was distorting the data symbols while committing
crime in order to fake device’s RF signature; iii) user was distorting the data sym-
bols while committing crime and the proposed algorithm using the corrected true
values (3.15) was used to calculate the likelihood functions (3.12), together with the
performance of the time domain based methods of Chapter 2.

but, since these studies are largely empirical, we are only able to compare them quite

roughly to the results from [78]. Thus, here we are forced to limit ourselves to the

comparison to the identification methods from [78], and show significant performance

improvements (Figures 3.3, 3.4, 3.5 and 3.6 and Tables 3.1, 3.2 and 3.3)
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SNR=40dB

PA # 1 2 3 4 5 6 7 8

i) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ii) 1.000 0.676 0.008 0.908 1.000 0.000 0.000 0.000

iii) 0.000 0.252 0.000 0.000 0.000 0.000 0.000 0.000

Ch. 2 no distortion 0.000 0.020 0.000 0.000 0.008 0.000 0.000 0.000

Ch. 2 distortion 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000

Table 3.3. Probability of erroneous identification decision (3.14) calculated over 250
trials for eight measured SKYWORKS amplifiers for SNR = 40dB (controlled with
the noise power level), for the three cases: i) user was not modifying the data symbols
while committing crime; ii) user was distorting the data symbols while committing
crime in order to fake device’s RF signature; iii) user was distorting the data sym-
bols while committing crime and the proposed algorithm using the corrected true
values (3.15) was used to calculate the likelihood functions (3.12), together with the
performance of the time domain based methods of Chapter 2.

3.5 Conclusions

In this chapter, we considered the novel problem of wireless device identification

for the case when strong adversaries actively fake their device’s RF signature with

artificial injection of a slight distortion to the data symbols. While this is unlikely for

a standard adversary employing a wireless card, its potential use by strong adversaries

motivates the consideration of techniques to address such. Our identification method

does not require strict assumptions on the distribution of the data symbols. It is

only assumed that elements of the data symbol stream are uncorrelated and have

zero mean values. As shown with simulations based on parameters of commercially

employed PAs, for practical SNR values the application of the proposed method

allows for the prevention of the performance degradation caused by modification

of the data symbols by the strong adversaries, as results are similar to those when

adversaries are not sophisticated enough to modify the data. Because of the high data

rates of modern communications networks, the data records that need to be captured

to perform identification correspond to short observation times of the masquerading

users.
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Because of the fast stabilization of the operating temperature of the measured

SKYWORKS PAs [1], temperature variations were ignored in the presented investiga-

tion. These variations should however be considered in future research for refinement

of the proposed identification methods.
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CHAPTER 4

WIRELESS DEVICE IDENTIFICATION BASED ON RF
OSCILLATOR IMPERFECTIONS

4.1 Problem Statement

In Chapter 2, we considered two components of the transmitter chain: the digital-

to-analog-converter (DAC) and the power amplifier (PA) and showed that exploitation

of variations among PAs can lead to successful device identification at much lower

SNR levels when compared to the DACs. Here, we analyze the degree to which

a wireless device can be correctly identified from measurable non-idealities of RF

oscillators, employed by wireless transmitters. Work presented in this chapter is

motivated by the fact that, in contrast to the PAs, which in transmit power controlled

applications might be switching modes over time, characteristics of the RF oscillators

are power level independent, and thus can be used as unique device tags in systems

with implemented transmit power control mechanisms.

In the mobile devices, RF oscillators are typically implemented as phased-locked-

loops (PLLs). Figure 4.1 shows a basic block diagram of a PLL. An ideal PLL would

generate a sinusoidal oscillation at a carrier frequency f0. Instead, in practice, the

PLL generates a signal of the form

y(t) = cos (2π(f0PLL
+∆PLL(t))t+ΘPLL(t)) , (4.1)

where ∆PLL(t) is the frequency offset and ΘPLL(t) is the phase noise. The frequency

offset ∆PLL(t) is specific to a given PLL chip. However, it can be easily compromised
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Figure 4.1. A basic PLL block diagram.

by strong adversaries via multiplication of the digital symbols with a time-varying

factor, and it is also sensitive to chip temperature changes. Therefore, in this chapter

we focus on the extraction of devices’ RF fingerprints based on differences in the char-

acteristics of the PLL’s phase noise, which is caused by variations in the components

that comprise the PLL circuit and cannot be easily modified by the user.

4.2 PLL Phase Noise Model and RF Fingerprint Extraction

For the case of free running (open loop) RF oscillators Θ(t) becomes a Wiener

process as t → ∞ [79]. The phase noise is then characterized with a single quality

parameter that determines the width of the oscillator’s spectrum, which exhibits a

Lorenzian shape [80]. For PLLs, the analytic description of the phase noise is more

complex. In [81], the PLL is modeled with a set of stochastic differential equations

and the autocorrelation of the phase noise corrupted PLL’s output y(t) is found as

Ry(τ) =
∞∑

i=−∞
XiX

∗
i

· exp(−jiω0τ) · exp
[
−0.5ω2

0i
2

[
cref |τ |+ 2

n∑

l=1

(νl + µl) [1− exp(−λl|τ |)]
]]

,

(4.2)
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where Xi are coefficients of the Fourier series expansion of the PLL crystal’s reference

signal oscillating with nominal angular frequency ω0, cref is a quality parameter of

the crystal oscillator, and λl, νl and µl, l = 1, 2, . . . , n, are parameters that depend

on entries of matrices defining the set of differential stochastic equations modeling

the PLL of order n− 1 (Appendix of [81]). For the 1st order charge pump loop filter

with cut-off frequency ωcp and transfer function s+ωcp

s
, n = 2 and we find µl and νl,

l = 1, 2:

µ1 = cref
−λ2(λ1 − ωcp)

ωcp(λ1 − λ2)λ1

µ2 = cref
−λ1(ωcp − λ2)

ωcp(λ1 − λ2)λ2

(4.3)

ν1 =
cV CO + cref
(λ1 − λ2)2

(
λ2
2(ωcp − λ1)

2

2ω2
cpλ1

−
λ1λ2

ω2
cp

(
−ω2

cp + ωcp(λ1 + λ2)− λ1λ2

)

2(λ1 + λ2)

)

ν2 =
cV CO + cref
(λ1 − λ2)2

(
λ2
1(ωcp − λ2)

2

2ω2
cpλ2

−
λ1λ2

ω2
cp

(
−ω2

cp + ωcp(λ1 + λ2)− λ1λ2

)

2(λ1 + λ2)

)
. (4.4)

Typically λ1 = λ∗
2, which further implies that µ1 = µ∗

2 and ν1 = ν∗
2 . If the reference

signal is generated with a high quality crystal oscillator, its Fourier series expansion

can be accurately approximated with a single non-zero element. This allows for

simplification of (4.2). Let p = µ1 + ν1 and λ = λ1, then

Ry(τ) = exp(−jω0τ) · exp
[
−0.5ω2

0cref |τ |
]

· exp
[
−ω2

0 [p · (1− exp[−λ|τ |]) + p∗ · (1− exp[−λ∗|τ |])]
]

= exp(−jω0τ) · exp
[
−0.5ω2

0cref |τ |
]

· exp
[
−ω2

0 [2ℜ{p} − p · exp[−λ|τ |]− p∗ · exp[−λ∗|τ |]]
]
,

(4.5)

and with
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p · exp[−λ|τ |] + p∗ · exp[−λ∗|τ |]

= (ℜ{p}+ jℑ{p}) · exp {−λ|τ |}+ (ℜ{p} − jℑ{p}) · exp {−λ∗|τ |}

= ℜ{p} · exp{−ℜ{λ}|τ |} · 2 cos(ℑ{λ}|τ |)

+ jℑ{p} · exp{−ℜ{λ}|τ |} · −2j sin(ℑ{λ}|τ |)

= 2 · exp{−ℜ{λ}|τ |} · (ℜ{p} · cos(ℑ{λ}|τ |) + ℑ{p} · sin(ℑ{λ}|τ |))

(4.6)

we get

Ry(τ) = exp(−jω0τ) · exp
[
−0.5ω2

0cref |τ |
]

· exp
[
−2ω2

0 [ℜ{p} − exp [−ℜ{λ}|τ |] · (ℜ{p} cos(ℑ{λ}|τ |) + ℑ{p} sin(ℑ{λ}|τ |))]
]
.

(4.7)

Equation (4.7) shows multiple factors that determine the dependence of the envelope

of the autocorrelation function on the PLL parameters. The exponential decay factor

exp [−0.5ω2
0cref |τ |] depends on the quality of the crystal oscillator. The dependence of

the envelope of Ry(τ) on other PLL components, which we want to use for user iden-

tification, is most pronounced at small values of |τ |, for which the exp [−0.5ω2
0cref |τ |]

factor is close to 1, and hence can be neglected in the signature extraction process.

The envelope ERy(τ) of the autocorrelation function for small values of |τ | can thus

be expressed as

ERy(τ) = exp
[
−2ω2

0 [ℜ{p} − exp [−ℜ{λ}|τ |]

· (ℜ{p} cos(ℑ{λ}|τ |) + ℑ{p} sin(ℑ{λ}|τ |))]]

= exp
[
−2ω2

0 [ℜ{p} − exp [−ℜ{λ}|τ |]

·
√

ℜ{p}2 + ℑ{p}2 · cos
(
ℑ{λ}|τ |+ sgn (ℑ{λ}) · arccos

(
ℜ{p}√

ℜ{p}2 + ℑ{p}2

))]]
,

(4.8)
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which, with ERy(0) = 1, becomes

ERy(τ) = exp
[
−2ω2

0ℜ{p} (1− exp{−ℜ{λ}|τ |} · cos (ℑ{λ}|τ |))
]
. (4.9)

The characteristics of the envelope of the autocorrelation function at small |τ | can be

used as a unique feature identifying a given oscillator, and the parameter vector

F = [ℜ{p} ℜ{λ} ℑ{λ}] (4.10)

can be used as a unique fingerprint that directly depends on the values of the com-

ponents comprising the PLL circuit. For the range of |τ | considered for the signature

extraction, the undersampling rate should be chosen such that enough samples are

available for an accurate signature estimate.

4.3 Identification Method

4.3.1 Distribution of the Envelope of the Sample Estimate of the Auto-

correlation Function of the PLL Output

Consider an output y(t) of the PLL, sampled with the frequency fs. A sample

estimate of the autocorrelation of the random process y(t) calculated based on a

record y[n], n = 1, . . . , N can be obtained as

R̂y[m] =
1

(N −m)

N−k∑

n=1

y[n]y[n+m], m = 0, 1, . . . , N − 1. (4.11)

Denote the autocorrelation coefficient ρm = cov(y[n], y[n+m]/var(y[n])) . If N goes

to infinity, then the joint distribution of any finite set of elements of
(
R̂y[m]/R̂y[0]− ρm

)
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becomes jointly normally distributed with the covariance matrix W , the elements of

which are defined with [82, Eq.(1.4)]:

wi,j =
∞∑

ν=−∞

(
ρνρν+i−j + ρνρν+i+j + 2ρiρjρ

2
ν − 2ρiρνρν+j − 2ρjρνρν+i

)
, (4.12)

assuming that the stochastic process y[n] is stationary with mean µy and can be

represented as

y[n]− µy =
∞∑

i=−∞
h[i]ǫ[n− i], (4.13)

where ǫ[n− i] are independently and identically distributed zero-mean, random vari-

ables with finite variances, and
∑∞

i=−∞ |h[i]| < ∞. In other words, the considered

discrete random process y[n] must have a representation that is equivalent to a lin-

ear, time invariant filtering of a discrete white noise process, which is the case for the

modeled phase noise process as will be shown in Section 4.4.1.

Assume access to the noise-corrupted PLL output records y[n] = p[n]+η[n] under-

sampled with sampling rate fs. R̂y[m], calculated from these undersampled records,

oscillates with frequency f = min
N

|(f0 −Nfs)|, which because of the variations of f0

and ∆(t) from (4.1), varies among the devices and over time. Wireless devices could

potentially be identified by comparing vectors of envelopes of sample estimates of the

autocorrelation functions E R̂y
[m] at small values of |m|, normally distributed with

covariance matrix elements given in (1.4) [82].

For the autocorrelation function of the PLL output (4.7) Ry(∞) = µy = 0,

however, because (4.9) was derived for small values of the time shift, ERy
(∞) =

exp [−2ω2
0ℜ{p}], where p is device dependent. Since in [82] the covariance matrix

of the sample autocorrelation estimate was obtained for zero-mean stochastic pro-

cesses, to calculate the elements of the covariance matrix with the infinite sums from

(1.4) [82], we subtract the offset ERy
(∞), and, for the white noise corrupted PLL

output records, obtain
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ρm = cov(y[n], y(n+m · Ts))/var(y[n])) =
ERy

(|m · Ts|)− ERy
(∞) + σ2

η · δ[|m · Ts|]
1− ERy

(∞) + σ2
η

,

(4.14)

with a unit impulse δ[n], ERy
from (4.9), and σ2

η = 10NPNR/10, where NPNR is the

ratio of the power of the white noise to that of the phase noise

NPNR = 10 log10(Pη/Pp). (4.15)

4.3.2 Optimal Hypothesis Test

We consider first a two-device identification scenario. After the PLL output record

is captured from the device on the crime scene, the two hypotheses of the identification

test are H1: device 1 is the transmitting device; H2: device 2 is the transmitting

device. The likelihood ratio test is

Λ =
pER̂y

|H1
(E R̂y

|H1)

pER̂y
|H2

(E R̂y
|H2)

H1

≷

H2

ς. (4.16)

For equally probable hypotheses the threshold ς = 1 minimizes the risk of the test

(4.16) (pg. 26, Section 2.2 [76]). With jointly Gaussian distributed vectors E R̂y
,

p(E R̂y
|Hk) =

1

(2π)M/2 det{WHk
}1/2 exp

{
−1

2

(
E R̂y

− E R̂y,Hk

)H
W−1

Hk

(
E R̂y

− E R̂y,Hk

)}
,

(4.17)

where E R̂y,Hk

are envelopes of accurate estimates of the autocorrelation functions

obtained from the devices from the pool of suspects. The binary decision rule becomes
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ln (det{WH1
}) +

(
E R̂y

− E R̂y,H1

)H
W−1

H1

(
E R̂y

− E R̂y,H1

)

H2

≷

H1

ln (det{WH2
}) +

(
E R̂y

− E R̂y,H2

)H
W−1

H2

(
E R̂y

− E R̂y,H2

)
. (4.18)

The two-device scenario can easily be generalized to a K-device scenario, for which

the identified device k is the device for which the likelihood function takes its maximal

value

kopt = max
k=1,...,K

p(Ry |Hk) =

min
k=1,...,K

{
ln (det{WHk

}) +
(
E R̂y

− E R̂y,Hk

)H
W−1

Hk

(
E R̂y

− E R̂y,Hk

)}
.

(4.19)

The power levels of the phase noise are much below the carrier power even for inex-

pensive commercially used PLLs (e.g., -81dBc/Hz at 1kHz offset from the carrier for

ADF4360-1 [4]). Thus the measurement noise dominates the phase noise at common

SNR values. For the discrete additive white Gaussian noise (AWGN) random pro-

cess, ρm from (4.14) is dominated by the unit impulse and the covariance matrix W

becomes an identity matrix. As shown in Section 4.4, for practical SNR levels, the

approximation of W from (4.18) and (4.19) with the identity matrix does not cause

a noticeable degradation in identification performance. This allows for significant

simplification of the decision rules (4.18) and (4.19). Respectively, for the binary

scenario,

||E R̂y
− E R̂y,H1

||2

H2

≷

H1

||E R̂y
− E R̂y,H2

||2, (4.20)

and, for the K-ary scenario,

83



kopt = min
k=1,...,K

||E R̂y
− E R̂y,Hk

||2. (4.21)

4.3.3 Practical Identification Algorithm

One possible way to obtain access to the undersampled PLL output in practice is

to utilize (at least one) carrier phase recovery pilot tone, which for accurate extraction

of the phase noise needs to be sufficiently separated from the data tones [83]. Al-

though not present in current standards, security is becoming a critical issue in mobile

radio applications, and it is reasonable to understand the potential benefit if future

communication standards provide additional tones for security level enhancements.

In fact, the relative expense required decreases with the increase of bandwidth uti-

lized by individual users and hence the cost of adding such a tone is already trending

rapidly towards a negligible amount.

The autocorrelation function estimates (4.11) are calculated based on individual

signal records captured from the devices over time. Out of all of the samples of the

estimate of the autocorrelation function estimated based on a given signal record,

only for a subset of samples do we have E R̂y
≈ R̂y (samples close to the local extrema

of the autocorrelation function). With a fixed sampling rate, because of variations of

f0 among devices, as well as because of the time-varying frequency offset ∆(t) from

(4.1), the subsets of samples for which E R̂y
≈ R̂y can be different among the devices

and vary over time. Thus, to obtain accurate estimates of the fingerprint F (4.10) for

each device from the pool of suspects, the envelopes of the estimates at small values

of |τ | are matched to the model (4.9) through exhaustive search of the values of (4.10)

for each record available from a given device and averaged over these records. The

same procedure is followed for the records captured from the unknown device from

the crime scene. For the device identification p(E R̂y
|Hk) are compared. E R̂y,Hk

’s

and E R̂y
for each hypothesis and for the device from the crime scene respectively are
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Figure 4.2. Probability of error of the binary hypothesis test (4.18) and (4.20)
averaged over 500 trials for NPNR = 10dB and for capture length lc = 100ms as a
function of the standard deviation σκ used to artificially generate the oscillator pairs.

reconstructed for the same sets of |τ |′s with the fingerprint (4.10) and the model (4.9).

Algorithm 2 summarizes the proposed device identification scheme.

4.4 Measurements and Numerical Results

The performance of the proposed identification method is considered here with

simulations and hardware measurements. In Section 4.4.1, similarly as in [84], sample

paths of the PLL phase noise are simulated by numerically solving a discrete-time

version of equations set modelling a 1st order charge pump PLL. Most important is

Section 4.4.2, where PLL output signals are captured from commercially used PLLs

and the performance of the identification method is analyzed at 15dB and 35dB SNR

with records of length 200ms.
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Algorithm 2 Device Identification Algorithm

For the Device that Needs to be Identified
for number of available captured records do
• Capture an output record of the PLL undersampled with fs
• Calculate estimate of the capture’s autocorrelation function R̂y[m] with (4.11)

• Find values of m for which |R̂y[m]| has local maxima

• Based on (m, R̂y[m]) pairs and model (4.9) find the estimate of the parameter
vector F (4.10) via exhaustive search

end for
• Average the estimates of the parameter vector F over the number of captured
records
• Reconstruct the autocorrelation function E R̂y

with the model (4.9) and the aver-

aged fingerprint F for a fixed set of m′s

For the Devices Building the Pool of Suspects
for number of devices building the pool of suspects do
for number of available captured records do
• Capture an output record of the PLL undersampled with fs
• Calculate estimate of the capture’s autocorrelation function with (4.11)
• Find values of m for which |R̂y[m]| has local maxima

• Based on (m, R̂y[m]) pairs and model (4.9) find the estimate of the parameter
vector F (4.10) via exhaustive search

end for
• Average the estimates of the parameter vector F over the number of captured
records to obtain a very accurate fingerprint

end for
for number of hypothesis (devices from the pool of suspects) do
• Reconstruct the autocorrelation function E R̂y,Hk

with the model (4.9) and the

averaged fingerprint F for a fixed set of m′s
end for
• Make the identification decision based on (4.19) or (4.21)
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Figure 4.3. Probability of error of the binary hypothesis test (4.18) and (4.20) aver-
aged over 500 trials for the standard deviation σκ = 0.2 used to artificially generate
the oscillator pairs and for capture length lc = 100ms as a function of the NPNR.

4.4.1 Simulated Oscillators

We generated pairs of phase noise paths ΘPLLk
[n], k = 1, 2, by numerically solving

a discrete-time version of the set of equations modeling a 1st order, charge pump

PLL [84, Eq.(8) and (13)]:

β[n] = β[n− 1] +
√
ccontr∆tγ[n− 1] +

√
cV CO · ηV CO[n]−

√
cref · ηref [n], (4.22)

γ[n] = (1−ωGPLL
∆t)γ[n−1]−kpdωcp∆tβ[n−1]−kpd(

√
cV CO ·ηV CO[n]+

√
cref ·ηref [n]).

(4.23)

The generated phase noise path of the PLL is then

ΘPLL[n] =
(
β[n] +

√
cref · ηref [n]

)
· 2πf0PLL

. (4.24)
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Figure 4.4. Probability of error of the binary hypothesis test (4.18) and (4.20) aver-
aged over 500 trials for the standard deviation σκ = 0.2 used to artificially generate
the oscillator pairs and for NPNR = 10dB as a function the capture length.

β and γ in (4.22) and (4.23) are, respectively, output of the phase detector and input to

the voltage controlled oscillator (Figure 4.1). ηV CO and ηref are independent discrete

white Gaussian noise processes ∼ N (0,∆t). We set ∆t to 0.04µs (sampling rate fs =

25Msps) and f0PLL
to 2.4GHz. We generated the parameters used to generate each of

the paths of a given pair randomly by multiplying nominal values of the parameters

defined in [84]: quality parameters of, respectively, the voltage controlled and crystal

oscillators cV CO = 15 · 10−19 and cref = 10−25; cut-off frequency of the PLL structure

ωGPLL
= 2π·104; cut-off frequency of the charge pump ωcp = 2π·16·103; phase detector

gain kpd = 1 and
√
ccontr = ωGPLL/kpd , with a factor (1+ |κ|), where κ ∼ N (0, σκ). We

then generated the third path (potential capture from the crime scene) using the first

set of parameters. We then added white Gaussian noise with elements η[n] ∼ N (0, ση)
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to the three phase noise paths and estimated the autocorrelation functions from the

white noise corrupted phase noise paths yk[n] = Θk[n] + ηk[n], k = 1, 2, 3.

An oscillation of a frequency f0PLL
under-sampled with a sampling rate fs oscillates

with a frequency f = minN |(f0PLL
−Nfs)|, N ∈ Z. Since for the artificial phase noise

path generation, as described above, the choice of f0PLL
and fs is arbitrary, f0PLL

and

fs, as well as relative time shift between the sampling sequence and the PLL output

were chosen such that the undersampled output of the PLL and the phase noise path

were equivalent.

To show that the PLL output y[n] can be represented in the form (4.13), and

hence to justify application of the tests from Section 4.3.2, we write the z-transforms

of the coupled Equations (4.22) and (4.23)

B(z) · (1− z−1) = c1Γ(z) · z−1 +H1(z) · E(z), (4.25)

Γ(z) · (1− c2z
−1) = c3B(z) · z−1 +H2(z) · E(z), (4.26)

where c1, c2 and c3 are constants c1 =
√
ccontrol∆t, c2 = (1−ωGPLL

∆t), c3 = −kpdωcp∆t

and E(z) is a z-transform of the white noise sequence ǫ[n] (4.13). With (4.25) and

(4.26) one can write

Γ[z] = H(z) · E(z), (4.27)

where

H(z) =
z (zH2(z) + c3H1(z)−H2(z))

z2 − (1 + c2)z + (c2 − c1c3)
. (4.28)

For the parameter values used in the simulations both of the complex poles of the

transfer function (4.28) had amplitudes smaller than one, which is equivalent with

absolute summability of the corresponding impulse response and implies that the

simulated phase noise process has the representation (4.13).

Figures 4.2, 4.3 and 4.4, respectively, show the probability of error Perr of the

binary hypothesis tests (4.18) and (4.20) averaged over 500 trials as a function of the
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standard deviation σκ used to artificially generate the oscillator pairs (Figure 4.2); as

a function of the additive white noise power to the phase noise power ratio NPNR

(4.15) (Figure 4.3); and as a function the capture length (Figure 4.4). The region of

the autocorrelation function employed was τ ∈ (0.01, 0.15)ms. Covariance matrices

WHk
from (4.18) were calculated with (4.9), (4.12) and (4.14) with the assumption of

known oscillators’ parameters. Plots from Figures 4.2, 4.3 and 4.4 show a potential

for effective device identification based of oscillator non-idealities, even if only a single

capture from the devices building the pool of suspects and from the device that needs

to be identified is available; however, the variation of component values was generated

quite artificially; hence, hardware measurements are critical. These are provided in

the next section.

4.4.2 Measured Oscillators

After the qualitative performance analysis from Section 4.4.1, we analyzed the

effectiveness of the proposed technique for the case of commercially employed PLLs.

We considered the most challenging identification scenario, when the PLL’s that

need to be told apart are of the same model and from the same manufacturer. We

measured eight Analog Devices ADF4360-1 [4] oscillators, oscillating at f0 = 2.4GHz,

on a Tektronix DPO71254B oscilloscope. We captured 50 output records of length

200ms sampled with fs = 62.5Msps for each of the PLLs.

Table 4.1 shows the probability of identification error averaged over 250 trials

for all possible pairs from the group of 8 measured oscillators for the test (4.20)

at SNR = 15dB (lower left, below the diagonal) and at SNR = 35 dB (upper

right, above the diagonal), when all 50 captured records were used to extract the

fingerprints (4.10), and a single record, randomly chosen from the group of all 50

captured records, was used as a capture from the crime scene. The region of the

autocorrelation function employed was τ ∈ (0, 0.075)ms. Increase of the SNR
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PLL # 1 2 3 4 5 6 7 8
1 - 0.000 0.000 0.000 0.000 0.000 0.016 0.000

2 0.000 - 0.000 0.164 0.000 0.000 0.000 0.000

3 0.000 0.000 - 0.000 0.216 0.000 0.000 0.000

4 0.000 0.228 0.000 - 0.000 0.000 0.000 0.000

5 0.000 0.000 0.228 0.000 - 0.000 0.000 0.020

6 0.000 0.000 0.000 0.000 0.000 - 0.000 0.008

7 0.008 0.000 0.000 0.000 0.000 0.000 - 0.000

8 0.000 0.000 0.000 0.000 0.028 0.036 0.000 -

Table 4.1. Probability of device identification error for test (4.20), averaged over
250 trials, for all possible pairs from the group of 8 measured oscillators at SNR =
15dB (lower left, below the diagonal) and at SNR = 35dB (upper right, above the
diagonal), when all 50 captured records of length 12.5 · 106 samples were used to
extract the fingerprints of the devices from the pool of suspects, and a single record
from the crime scene, randomly chosen from the group of all 50 captured records, was
used for the identification.

did not bring significant performance improvement, as error floors emerged for some

pairs of oscillators. Low error probabilities from Table 4.1 justify application of the

proposed identification method for establishing probable cause and make it attractive

for cyber-crime investigations.

4.4.3 Influence of Aging of the PLLs on Identification Performance

It is known that aging can lead to changes in the PLL performance over long time

periods. Changes in the nominal frequency shift and character of the phase noise can

be expected as the elements of the PLL circuit age. To verify the influence of aging

on the character of the envelope of the autocorrelation function, and thus on the

character of the tags that we want to use for identification, we re-measured the PLL

outputs of the eight considered PLLs three months after the original measurements

used to obtain the results reported in Section 4.4.2 were taken. In a potential crime

investigation described in Chapter 1, the difference between the time of the capture

from the crime scene and the time of investigation would not exceed three months in
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most cases. Figure 4.5 shows the envelopes of the autocorrelation function calculated

based on the original measurements and on the measurements from three months

later. Different colors correspond to different oscillators. As shown in the Figure 4.5,

the character of the envelopes is very similar when calculated based on captures from

three months apart.

Figure 4.5. Envelopes of sample autocorrelation functions calculated for 8 measured
Analog Devices ADF4360-1 oscillators [4] for 10 original captures, used to obtain the
results reported in Section 4.4.2 (upper plot) and for 10 captures from 3 months
after the original captures were taken (bottom plot). Colors correspond to different
oscillators.

Having these two sets of captures, we re-ran our identification algorithm such that

captures from the new measurement set were used to extract the fingerprints of the

devices from the pool of suspects, and a single record, randomly chosen from the
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PLL # 1 2 3 4 5 6 7 8
1 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 - 0.00 0.27 0.00 0.00 0.00 0.00

3 0.00 0.00 - 0.00 0.27 0.00 0.00 0.01

4 0.00 0.32 0.00 - 0.00 0.00 0.00 0.00

5 0.00 0.00 0.24 0.00 - 0.00 0.000 0.01

6 0.00 0.00 0.00 0.00 0.00 - 0.00 0.07

7 0.01 0.00 0.00 0.00 0.00 0.00 - 0.00

8 0.00 0.00 0.00 0.00 0.02 0.04 0.00 -

Table 4.2. Probability of device identification error for test (4.20), averaged over
100 trials, for all possible pairs from the group of 8 measured oscillators at SNR =
15dB (lower left, below the diagonal) and at SNR = 35dB (upper right, above the
diagonal), when all 10 new captured records of length 12.5 · 106 samples were used to
extract the fingerprints of the devices from the pool of suspects, and a single record,
randomly chosen from the group of 50 old captured records, was used as a capture
from the crime scene.

group of old captured records, was used as a capture from the crime scene. Table 4.2

shows the probability of identification error averaged over 100 trials for all possible

pairs from the group of 8 measured oscillators at SNR = 15dB (lower left, below the

diagonal) and at SNR = 35 dB (upper right, above the diagonal). Tables 4.2 and

4.1 show only a very slight identification performance degradation, which presumably

was caused by aging.

Some variation in the performance of the oscillators over time can also be expected

because of chips’ temperature changes. We performed measurements to examine how

the frequency of the considered PLLs changes over time after the chips are powered

up. Figure 4.6 shows the measured frequencies of two oscillators randomly picked

from the group of the eight considered oscillators, measured every 10 minutes over

1.5h after the power-up (upper plot), as well as measured every 15 seconds over the

first five minutes after the power-up (bottom plot). We see that for the considered

chips, the changes of the carrier frequency over time, which might be caused by

temperature changes of the chip after power-up, are in the order of tens of Hz. This
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is a very slight variation that is much smaller than the frequency delta between the

oscillators. This makes us believe that the influence of the temperature variation on

the PLL performance can be ignored in the initial investigation. Refinement of the

algorithm by taking into consideration these variations is, however, an interesting

topic for future research.

Figure 4.6. Measured frequencies of two oscillators randomly picked from the group
of the eight considered oscillators, measured every 10 minutes over 1.5h after the
power-up (upper plot), as well measured every 15sec over first 5 minutes after the
power-up (bottom plot).

4.5 Conclusions

In this chapter, we analyzed the degree to which a wireless device can be identi-

fied from unique characteristics of the phase noise of the transmitter’s RF oscillator.
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Measurements of commercially used chips indicate that oscillators can be identified

at practical SNRs and with short observed sequences to the accuracy required to

establish probable cause. The extension to higher-order PLL models that more ac-

curately match characteristic of commercial PLLs could lead to improvement of the

identification performance. Among the topics for future research are the consider-

ation of frequency and temperature dependence of the characteristics of the phase

noise. While the first is not critical, as the access point can assign devices that need

to be identified to arbitrary frequency channels, the latter should be an important

consideration for further refinement of the identification methods.
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CHAPTER 5

PERFORMANCE BOUNDS FOR GROUPED
INCOHERENT MEASUREMENTS IN COMPRESSIVE

SENSING

5.1 Problem Statement

As discussed in Section 1.2.2, in this chapter we study the requirements on the

number of measurements needed for successful recovery of sparse signals when, in-

stead of individually random measurements, as assumed by conventional compressive

sensing [56], the measurements are taken uniformly at random in pre-defined, non-

overlapping groups of equal size. Such a grouped sampling scheme can be of practical

interest for multiple application, e.g. application of interference-robust, wide-band

interferer, or applications of medical imaging and remote sensing.

Consider a wide-band receiver, receiving a message of interest m(t) together with

an in-band, powerful and known interferer i(t) that saturates the receiver’s front-

end and is uncorrelated with the message of interest. For undistorted recovery of

the message of interest, samples can only be taken at times when the interferer’s

amplitude values are small. Figures 5.1 and 5.3 visualize such interference-dependent

sampling schemes. In Figure 5.1 the samples of m(t) are taken in groups of size 5

around the zero-crossings of the interferer’s waveform. While the zero-crossings of

the uncorrelated interferer are random with respect to the message of interest, the

remaining elements of the groups are chosen in a deterministic way as the adjacent

samples. Given a band-limited interference, the samples around the zero-crossing are

small, and hence the nonlinear distortion is avoided. Such a grouped sampling strategy

is similar to a strategy, where the entire sampling space (all possible sampling times
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Figure 5.1. A powerful interferer i(t) (upper subplot) and a message of interest m(t)
(lower subplot) sampled around the zero-crossings of the interferer.

Figure 5.2. Exemplary partition of the entire one dimensional sampling space into
non-overlapping groups of equal size.

of m(t)) is partitioned into a set of pre-defined, non-overlapping groups of equal size.

The groups of samples, instead of individual samples, are then drawn at random. A

grouping structure that partitions a 30 samples-long message block into 6 groups of

size 5 is visualized in Figure 5.2.

Different ways of partitioning the sampling space that can lead to different per-

formance of the grouped sampling are, of course, possible. As an example, consider a

grouping structure dictated by a powerful interferer i(t) that repeats periodically over

the duration of the block of the signal of interest m(t). While the zero-crossing times

during the first period of the interferer are random with respect to the message of

interest m(t), the zero-crossing times during the consecutive interferer’s periods are

shifted by the multiples of the length of the period. Figure 5.3 visualizes a sampling
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Figure 5.3. Periodically repeating powerful interferer i(t) (upper subplot) and a
message of interest m(t) (lower subplot) sampled at times when amplitude values of
i(t) are closest to zero.

Figure 5.4. Exemplary partition of the entire one dimensional sampling space into
non-overlapping groups of equal size.

scheme dictated by a powerful interferer repeating periodically 5 times over the dura-

tion of the message signal block, when only a single sample around the zero-crossings

of i(t) are kept for the recovery of m(t). For such a sampling scheme, each group of

samples consists of 5 samples taken at dependent sampling times and the entire sam-

pling space (all possible sampling times of m(t)) is divided into a set of pre-defined,

non-overlapping groups of samples of equal size, as visualized in Figure 5.4 for a 30

samples-long message block and an interferer with a period 5 times shorter than the

message block.

For the applications of medical imaging and remote sensing it is common for the

sensors to follow pre-defined trajectories during the acquisition process. Consider

Magnetic Resonance Imaging (MRI) [85], where the measurements in the 2-D Fourier
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Figure 5.5. Left: Independently random 2-D sampling. Middle: Vertical line tra-
jectories used for MRI. Right: Radial acquisition trajectories used for MRI. The
trajectories group measurement selections into slices of the 2-D Fourier domain.

Figure 5.6. Exemplary remote sensing applications, for which sensors follow pre-
defined trajectories.

space cannot be taken at random, as illustrated in the left subplot of Figure 5.5,

but need to follow relatively smooth sampling trajectories to satisfy hardware and

physiological constraints [86]. Two such trajectories: vertical lines and radial lines are

visualized in the Figure 5.5 (middle and right subplots respectively). For compressive

sensing MRI, in order to obtain a group of samples from the measurement space the

tomographic scanner is first randomly oriented, and then a number of samples along

a smooth trajectory is acquired. Many practical trajectories, such as the vertical

lines from Figure 5.5 or trajectories considered in Section 5.3.2, partition the 2D-

Fourier sampling space into a set of non-overlapping, pre-defined groups of equal

size. For such trajectories, in this chapter we introduce a metric that upper bounds
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the multiplicative penalty on the number of required measurements, with respect

to the conventional compressive sensing, where individual measurements are taken

uniformly at random. This factor can then be used to indicate trajectories that lead

to signal recovery from smaller subset of measurements, and hence lead to a reduction

of acquisition time and cost.

Similarly to the medical imaging applications, in the remote sensing applications

structure is introduced to the measurement scheme, as the sensors follow specific

trajectories (Figure 5.6). The cost of moving the sensor can be significant for many

remote sensing applications, therefore recovery of a sparse signals from grouped mea-

surements is of high practical interest. As an example of a practical application

consider recovery of a wavelet domain sparse image of the bottom of the ocean from

measurements taken from a ship that is moved randomly to different positions. After

the sensor (the ship) is randomly positioned, it is cost-effective to take a number of

local measurements in addition to the random measurement. Performance bounds

for signal recovery from random grouped measurements derived in this chapter can

help to make a decision on how to partition a spacial area of interest into groups in

order to reduce the total number of measurements required for successful recovery.

5.1.1 Compressive Sensing Background

Consider the acquisition of an N × 1 signal vector x. Assume that x is known

to be sparse in some basis; that is, we say the signal x is K-sparse for some integer

K if x has a representation c = UHx having only K non-zero entries in some known

orthonormal basis U , although the value and location of those non-zero entries may

be unknown. In the compressive sensing framework, we acquire the M × 1 output

y = Φx, for some M ≪ N , where Φ is the measurement matrix. According to CS

theory, given certain constraints on Φ and M , x can be reconstructed from y with

high probability.
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5.1.2 Incoherent Measurements

Given an orthonormal measurement basis V , a K-sparse signal x = Uc, sparse in

some known orthonormal basis U can be reconstructed successfully from a set of M

independently drawn random samples Ω ⊆ {1, . . . , N} of y = V HUc with probability

not lower than 1 − δ, for any 1 > δ > 0, as long as the number of samples is large

enough. Define A = V HU and denote by AΩ the matrix built from the M rows of A

corresponding to the index set Ω. Define a coherence parameter µ(A) of the matrix

A as

µ(A) = max
i,j

|A(i, j)|, (5.1)

which has range µ(A) ∈ [ 1√
N
, 1] [56]. A pair of bases V and U for which the minimal

value of µ(A) is achieved is referred to as a perfectly incoherent pair of bases.

When the elements of Ω are drawn independently at random, it can be shown that

the number M of measurements required for successful recovery of sparse x depends

on the coherence parameter µ(A) (5.1).

Theorem 1. [56] Let A be an N ×N orthogonal matrix (AHA = I) with coherence

parameter µ(A). Fix an arbitrary subset T of the signal domain. Choose a subset

Ω of the measurement domain of size |Ω| = M and a sign sequence z on T , both

uniformly at random over all possible choices. Suppose that

M ≥ Const ·Nµ2(A)|T | log(N/δ). (5.2)

Then with probability exceeding 1 − δ, every signal c0 supported on T with signs

matching z can be recovered from y = AΩc0 by solving the linear program

min
c

||c||1 s.t. AΩc = AΩc0. (5.3)
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Theorem 1 shows that the number of measurements required for successful recovery

of a sparse signal scales linearly with the signal’s sparsity, but only logarithmically

with its length, as long as V and U are perfectly incoherent.

5.1.3 Grouped Incoherent Measurements

In certain applications, the assumptions of Theorem 1 are violated as measure-

ments must be taken in groups instead of independently at random. More specifically,

divide the set of N rows of A into N/g disjoint groups Gi, i = 1, . . . , N/g, of size g

each. Note that it will still be possible to take a set of measurements Ω for a signal,

following Theorem 1, by selecting M/g groups out of the N/g groups available, in-

dependently at random.1 We say that such a process provides a grouped incoherent

measurement scheme. Grouped incoherent measurement schemes can be seen as a

generalization of the standard incoherent measurement scheme used in Theorem 1 by

setting g = 1. As discussed in Chapter 1, signal acquisitions applications for which

the samples are drawn at random in predefined groups include interference robust

wide-band receiver, medical imaging and remote sensing applications. In the follow-

ing sections, we introduce the penalty factor on the number of required measurements

due to the grouped measurement scheme and derive recovery guarantees.

5.2 Performance Analysis for Grouped Incoherent Measure-

ments

5.2.1 Performance Metric

The grouped incoherent measurement scheme introduced in Section 5.1.3 violates

the assumptions of Theorem 1 and causes an increase of the number of measurements

needed for successful recovery of sparse signals. Such a penalty factor depends on the

1We assume that g divides both M and N for simplicity.
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structure of the groups G = {G1, . . . , GN/g}, on the product of the measurement and

transformation basis A = V HU , and on the set T defining the sparse signal support.

We define a penalty factor

γ(A, T,G) = max
i∈1,...,N/g

∥∥AGiT

∥∥
2→1

, (5.4)

where ‖M‖p→q = maxf ‖Mf‖q/‖f‖p denotes the p → q operator norm of the matrix

M , M denotes the matrix M after row normalization, and AGiT is the submatrix

of A that preserves the g rows corresponding to the group Gi and the |T | columns

corresponding to the sparsity set T . Given the set T defining the sparse support, the

penalty factor γ(A, T,G) is a measure of similarity among the rows of AGiT for each

i. For example, if the rows of AGiT are equal for some i, we will have γ(A, T,G) = g;

in contrast, if all rows of AGiT are mutually orthogonal for each i, then we will have

γ(A, T,G) =
√
g. Figure 5.7 shows the structure of the matrix AΩ,T obtained by

drawing two out of four groups for two example grouping structures G1 and G2; here

N = 16 and g = 4. In the case of G1, groups are build out of samples that are

separated by N/g and spread over the entire sample space, whereas in the case of G2,

groups are built out of adjacent samples.

5.2.2 Recovery Guarantees

We now provide requirements on the number of measurements needed for success-

ful recovery of the sparse signal x when the subset Ω of the measurement domain is

built out of predefined measurement groups.

Theorem 2. Let A be an N × N orthogonal matrix (AHA = I) with coherence

parameter µ(A). Fix an arbitrary subset T of the signal domain. Choose a subset

Ω of the measurement domain of size |Ω| = M as the union of M/g groups from
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A 

A 

Figure 5.7. Visualization of the structure of the AΩ,T matrix, for N = 16 and g = 4,
obtained by drawing two out of four groups, for two example grouping structures G1

and G2. In the case of G1, groups are build out of samples that are separated by N/g
and spread over the entire sample space, whereas the in the case of G2, groups are
built out of adjacent samples.

G = {G1, . . . , GM/g} and a sign sequence z on T , both uniformly at random over all

possible choices. Suppose that

M ≥ γ(A, T,G) · Const · µ3(A)N3/2|T | log(N/δ). (5.5)

Then with probability exceeding 1 − δ, every signal c0 supported on T with signs

matching z can be recovered from y = AΩc0 by solving the linear program (5.3),

for any 1 > δ > 0.

The theorem shows that for a perfectly incoherent measurement and sparsity

bases, γ(A, T,G) provides a multiplicative penalty on the number of measurements

necessary for successful signal recovery due to the grouped structure of the incoherent

measurement selection. Note that for a group size g = 1 and for perfectly incoherent

pair of bases V and U our result coincides with Theorem 1 as it is equivalent to

drawing elements of Ω uniformly at random.
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Proof. In the following, we will prove the result of Theorem 2 with a small modifica-

tion on the distribution of the submatrices: instead of a uniform distribution among

all subsets Ω containing M/g out of the N/g available groups, we pose an indepen-

dent Bernoulli selection for each group submatrix Gi, i = 1, . . . , N/g, belonging in Ω

with selection probability P (δi = 1) = M/N . This independent model results in the

expected number of selected groups being equal to M/g. Furthermore, one can show

that since the probability of failure is a non-increasing function of the size M of the

set Ω, the probability of failure under the uniform distribution used in Theorem 2 is

upper-bounded by a constant times the probability of failure under the independent

selection model used in the proof (a property dubbed poissonization in [56]). Thus,

the effect of the conversion of the subgroup selection model is a constant multiplica-

tive factor in the required number of measurements, which is accounted for by the

constants in (5.2) and (5.5).

Following the argument of [56], one can show that the signal c0 is the unique

solution to (5.3) if and only if there exists a dual vector π ∈ R
N that has following

properties:

• π is in the row space of AΩ,

• π(t) = sign{c0(t)} for t ∈ T ,

• |π(t)| < 1 for t ∈ T c.

As in [56], we consider the candidate

π = AH
ΩAΩT (A

H
ΩTAΩT )

−1z0, (5.6)

where z0 is a |T |-dimensional vector whose entries are the signs of c0 on T . To prove

Theorem 2 we need to show that under its hypothesis: (i) AH
ΩTAΩT is invertible and

(ii) |π(t)| < 1 for t ∈ T c. We begin by showing that AH
ΩTAΩT is invertible with
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high probability given the requirement (5.5) on M . The following theorem is proven

in Appendix A and shows that if M is large enough then, on average, the matrix

AH
ΩTAΩT does not deviate much from M

N
I, where I is the identity matrix.

Theorem 3. Fix an arbitrary subset T of the signal domain. Define N/g index groups

G = {G1, . . . , GN/g} of the measurement domain, each of size g, and draw each group

independently at random with probability M/N into a set Ω. If

M ≥ 28

3
· γ(A, T,G) ·N · µ2(A) · |T | log

( |T |
δ

)
, (5.7)

with γ(A, T,G) introduced in (5.4), then

P

(∥∥∥∥
N

M
AH

ΩTAΩT − I

∥∥∥∥ ≥ 1

2

)
< δ, (5.8)

where ‖·‖ denotes the spectral norm

‖Y ‖ = sup
‖f1‖2=‖f2‖2=1

|〈f1, Yif2〉|.

Theorem 3 shows that if M is large enough, then AH
ΩTAΩT is invertible with high

probability. We continue by proving that |π(t)| < 1 for t ∈ T c. Following the

techniques in [56], we use the following three lemmas, proven in the Appendices B,

C and D.

Lemma 1. Denote by v0 a row of the matrix AH
ΩAΩT indexed by t0 ∈ TC. Then

E||v0||2 < M√
N
µ3(A)|T |γ. (5.9)
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Lemma 2. Define

σ̄2 := γµ2(A)
M

N
·max

{
1,
√
γµ3/2(A)N3/4|T |/

√
M
}
. (5.10)

For 0 < a ≤
√
M

µ(A)
√

Nγ|T |
if

√
γµ3/2N3/4(A)|T |√

M
< 1

and 0 < a ≤
(

M
γµ(A)

√
N

)1/4
if

√
γµ3/2N3/4(A)|T |√

M
≥ 1,

we have

P
(
||v0|| > µ3/2(A)N−1/4

√
γM |T |+ aσ̄

)
< 3e−κa2 (5.11)

for some positive constant κ.

Lemma 3. Let w0 = (AH
ΩTAΩT )

−1v0. With the notations and assumptions of Lemma

2 we have:

P

(
sup
t0∈T c

||w0|| ≥ 2N3/4µ3/2

√
γ|T |
M

+
2Naσ̄

M

)
≤ 3e−κa2 + P

(
||AH

ΩTAΩT || ≤
M

2N

)
.

(5.12)

Finally we will use [56, Lemma 3.4], reproduced below.

Lemma 4. Assume that z(t), t ∈ T is an i.i.d. sequence of symmetric Bernoulli

random variables. For each λ > 0, we have

P

(
sup
t∈T c

|π(t)| > 1

)
≤ 2Ne−1/2λ2

+ P

(
sup
t∈T c

||w0|| > λ

)
. (5.13)

Now that all lemmas are in place, we are ready to prove Theorem 2. If we pick

λ = 2N3/4µ3/2
√
γ|T |/M + 2Naσ̄/M in (5.13), from (5.12) and (5.13) we get

P

(
sup
t∈T c

|π(t)| > 1

)
≤ 2Ne−1/2λ2

+Ne−κa2 + P
(
||AH

ΩTAΩT || ≤ M/2N)
)
.
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For the right hand side of (5.14) to be smaller than 3δ we need all three summands

to be smaller than δ. We now derive conditions on δ that provide this guarantee. We

start with the second summand: for it to be no bigger than δ we can set a2 to be

a2 = κ−1 log(N/δ). (5.14)

For the first summand to be no bigger than δ, we need

1

λ2
≥ 2 log(2N/δ). (5.15)

If
√
γµ3/2(A)N3/4|T |√

M
> 1, Lemma 2 requires

0 < a ≤
(

M

γµ(A)
√
N

)1/4

. (5.16)

Then with σ̄2 from (5.10) we get

Naσ̄/M ≤ µ3/2N3/4
√

γ|T |/M, (5.17)

and so

λ ≤ 4µ3/2(A)N3/4
√

γ|T |/M. (5.18)

Reorganizing terms, we obtain

1

λ2
≥ M

16µ3(A)N3/2γ|T | . (5.19)

From (5.14) and (5.16) we get the following bound on M :

M ≥ γµ(A)
√
Nκ−2 log2(N/δ). (5.20)
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Suppose now that
√
γµ3/2(A)N3/4|T |√

M
< 1. Then, with (5.10), σ̄2 = γµ2(A)M

N
. If

µ(A)
√
N |T | ≥ a2, then

Naσ̄/M ≤ µ3/2N−1/4
√

γ|T |/M, (5.21)

and

λ ≤ 4µ3/2(A)N3/4
√

γ|T |/M, (5.22)

and thus

1

λ2
≥ M

16µ3(A)N3/2γ|T | , (5.23)

which matches the previous condition (5.19). On the other hand, if µ(A)
√
N |T | ≤ a2

then

Naσ̄/M ≥ µ3/2N−1/4
√

γ|T |/M, (5.24)

and

λ ≤ 4Naσ̄/M, (5.25)

and thus, with σ̄2 = γµ2(A)M
N
,

1

λ2
≥ M2

16N2a2σ̄2
=

M

16a2γµ2(A)N
. (5.26)

And so with (5.23) and (5.26) we can write

M

16γµ2(A)N
min

(
1

µ(A)N1/2|T | ,
1

a2

)
≥ 2 log(2N/δ), (5.27)

M ≥ 16γµ2(A)N max
(
µ(A)N1/2|T |, a2

)
2 log(2N/δ), (5.28)

which with (5.14) gives

M ≥ Const · γµ2(A)N max

(
µ(A)N1/2|T |, log

(
N

δ

))
log

(
N

δ

)
. (5.29)
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Due to Theorem 3, for the third summand to be smaller than δ, we need

M ≥ 28

3
· γ ·N · µ2(A) · |T | log

( |T |
δ

)
. (5.30)

Thus from (5.20), (5.29) and (5.30) we see that the overall requirement on M is:

M ≥ Const · γ(A, T,G) · µ3(A)N3/2|T | log(N/δ), (5.31)

which finishes the proof of the Theorem 2.

5.2.3 Calculation of the Performance Metric

For a fixed sparsity set T , we can obtain lower and upper bounds on the value of

γ(A, T,G) by leveraging the Pietsch Factorization theorem [87].

Theorem 4. Each matrix B can be factored as B = FD where D is a nonnegative,

diagonal matrix with trace(D2) = 1 and ‖B‖∞→2 ≤ ‖F‖2 ≤ Kp‖B‖∞→2, where Kp is

a constant equal to
√

π
2
≈ 1.25 for the real field and

√
4
π
≈ 1.13 for the complex field.

Since ‖M‖2→1 = ‖MH‖∞→2, thanks to the duality of the operator norms, we can

find bounds on γ by performing Pietsch factorization of the matrices (AGiT )
H = FiDi,

for i = 1, . . . , N/g, where Di is a nonnegative diagonal matrix with trace(D2
i ) = 1.

The value of γ(A, T,G) can then be bounded by

1

Kp

max
i

||Fi||2 ≤ γ(A, T,G) ≤ max
i

||Fi||2, (5.32)

The Pietsch factorization of matrix B can be performed by solving a semidefinite

program [87].
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5.3 Simulations

In this section, we present simulation results that justify the utility of the penalty

factor γ (5.4) as an indicator of the recovery performance of different group struc-

tures for the grouped incoherent measurement scheme. First, one-dimensional Fourier

sparse signals are considered. Next, we present the dependency of the recovery per-

formance on the penalty factor for multiple different grouping structures for images.

5.3.1 Fourier-Domain Sparse 1-D Signals

We generate discrete signals s of length N = 1100 and sparsity |T | = 5% · N ,

sparse in the frequency domain, generated as a product of an orthonormal Fourier

basis of size N × N and a sparse coefficient vector c with values of non-zero entries

distributed uniformly: ∼ U(−1, 1). We evaluate two different configurations for the

grouped incoherent measurements:

• G1: 100 groups of size 11 were constructed such that the first sample of each of

the groups was chosen out of the first 100 samples of s: {s[1], . . . , s[n]}, and the

remaining 10 samples for each group were shifted with respect to the first sample

by multiples of 100. More specifically, G1
i = {i, i + 100, i + 200, . . . , i + 1000}.

This configuration appears in the interference-robust compressive wide-band

receiver application. The first sample corresponds to a random zero-crossing

of a modulated interferer. Additional samples correspond to subsequent zero-

crossings of the interferer’s carrier.

• G2: 100 groups of size 11 were constructed such that each group contained 11

consecutive, adjacent samples. More specifically, G2
i = {s[i+(i−1)·11] : s[i·11]}.

Such configuration assumes that the samples are taken in sequential bursts.

Figure 5.8 shows the relation between the penalty factor γ(A, T,G) from (5.4) and

the ratio between the number M of samples required for successful recovery for the

two described group structures and the number of samples M0 required for successful
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Figure 5.8. γ versus M/M0 for group structures G1 and G2 for different concentra-
tions of the nonzero Fourier coefficients of a 5% sparse signal s. Top: a sub-band built
out of two 5%-wide channels; middle: a sub-band built out of four 5%-wide channels;
bottom: the entire band.

recovery for random sampling. The values shown are the minimal number of mea-

surements needed to obtain normalized recovery error NRE = ‖s − ŝ‖/‖s‖ < 0.001

for 99 out of 100 draws of the measurement groups (uniformly at random) and the

values of the Fourier coefficients (from U [−1, 1]).2 Each point of the scatter plots

corresponds to a fixed signal support. We consider three different classes of signal

supports: for the first two classes, the positions of the non-zero Fourier coefficients

2Throughout this section, the SPGL1 solver [88, 89] was used for recovery, while the CVX opti-
mization package [90] was used to solve a semidefinite program [87] for Pietsch factorization of the
matrices (AGiT )

H and subsequent calculation of the penalty factors γ(A, T,G).
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𝑮𝟏: vertical lines 𝑮𝟐: horizontal lines 𝑮𝟑: rectangles 

𝑮𝟒: spiral 𝑮𝟓: max Manhattan distance 𝑮𝟔: random spatial samples 

Figure 5.9. Illustration of tested group structures for 8 × 8-pixel images and for a
group size g = 4, where elements of the same group are marked with the same color.

are chosen uniformly at random within a sub-band built out of two and four 5%-wide

channels, respectively, positioned uniformly at random within the entire frequency

band; we then compare their performance against the baseline of signals with unre-

stricted sparse supports. Figure 5.8 shows that for the first two classes γ was a good

performance indicator; in contrast, for the last class the values of γ misleadingly

suggest that both group structures perform equally well.

5.3.2 Wavelet domain sparse 2-D signals

Next, we consider the recovery of images from grouped measurements. For differ-

ent measurement trajectories (group structures), we use the penalty factor to assess

the suitability of different group measurement structures to obtain successful recov-

ery with the least number of measurements. We consider six different 2-D group

structures:

• G1: vertical lines;
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• G2: horizontal lines;

• G3: g/2× 2 rectangles;

• G4: spiral;

• G5: maximal Manhattan distance; and

• G6: groups build out of random spacial samples.

Figure 5.9 shows the structures for 8×8-pixel images and for a group size g = 4, where

elements of the same group are marked with the same color. The group structure

G5 was constructed as follows: the upper left pixel was chosen as the first element of

the first group, and successive elements of the group were chosen from the remaining

pixels to maximize the total Manhattan distance between the new element and the

existing elements of the group. After all elements of the group were chosen, a new

group was constructed starting with the pixel closest to the top left corner among

those remaining, following the same procedure as the first group afterwards; this

procedure was repeated for all other groups.

The suitability of the penalty factor γ as an indicator of the performance of differ-

ent 2-D group measurement structures was evaluated with two sets of experiments.

The first experiment evaluates grouped spatial measurements. The second experiment

evaluates grouped frequency-domain measurements that emulate MRI acquisition.

5.3.2.1 Recovery of Satellite Terrain Images

The images used in the first experiment were taken from a satellite terrain image

of areas around the town of Amherst, MA that was obtained from Google Maps. 25

low-resolution (32 × 32 pixels) tiles were gray-scaled and compressed using wavelet

transform coding to 51 coefficients. We study the recovery of these images from

grouped pixel measurements under configurations G1-G6 with groups of size g =

8. Figure 5.10 shows the relationship between the penalty factor γ(A, T,G) and
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𝐺1: vertical lines 𝐺2: horizontal lines 𝐺4: spiral 𝐺5: max Manhattan distance 
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Figure 5.10. Top: relationship ofM versus γ for the six considered group structures,
for 25 low-resolution (32×32 pixels) compressed images from a satellite terrain images
of areas around the town of Amherst; bottom: average value of γ and M , averaged
over the 25 segments.

the number M of samples required for successful recovery for each of the six group

structures from Figure 5.9. Each point of the top scatter plot corresponds to a single

32×32-pixel tile, while each point of the bottom scatter plot shows the average values

of γ andM , over all of the tiles, for each of the grouped measurement configuration. In

these experiments, recovery success is defined by a normalized recovery error NRE =

‖s − ŝ‖/‖s‖ < 0.1 for 49 out of 50 draws of the measurement groups, uniformly at

random. The values of M tested are multiples of 4 · g = 32.

Figure 5.10 shows how the value of γ(A, T,G) increases as a function of the number

of measurements M required for successful recovery until it reaches its maximal value

γ = g = 8 for the group structure G3. The Figure shows that the metric γ can be

a useful indicator of the performance for group structures of practical interest. The
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Figure 5.11. 160× 160-pixel chest MRI image used in the experiment.

metric indicates a superior performance of the randomized sampling structure G6, as

well as the Manhattan distance-based group structure G5, both of which bear out

in practice. Out of the four group structures G1, G2, G3 and G4, characterized with

continuous measurement trajectories, G3 exhibited the worst performance, and the

highest value of the penalty γ(A, T,G). The recovery performance, as well as the value

of γ(A, T,G), was very similar for group structures G1, G2 and G4. Despite similar

performances for group structures G5 and G6 a certain level of variation of the γ factor

was observable. This is indicative of the potential looseness of the bound provided

by Theorem 2. We believe that such looseness is characteristic of guarantees that

rely on worst-case metrics, such as the coherence parameter µ(A) from (5.1) and our

metric γ(A, T,G), and is compounded by the looseness in the estimate of γ(A, T,G)

obtained via Theorem 4 (of up to 1/
√
π/2 ≈ 21%).

5.3.2.2 Recovery of MRI Images

In the second experiment, we study the recovery of MRI images from grouped

measurements taken in the Fourier domain. 25 small-scale (32 × 32 pixels) images
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𝑮𝟒: spiral group structure used for 

measurements in the image domain 

𝑮𝟒: spiral group structure used for 

measurements in the Fourier domain 

Figure 5.12. Grouped measurement structure G4 used in the MRI experiments.

were obtained as segments of an 160× 160 pixels chest MRI image from Figure 5.11

and compressed using wavelet transform coding to 51 coefficients. The group size was

again set to g = 8. For the MRI experiments, the spiral group structure G4 shown in

Figure 5.9, where adjacent measurements form a spiral trajectory, was replaced with

a structure where adjacent measurements in the same spiral trajectory are assigned

to the different groups lexicographically and cyclically. For such a grouping structure,

the measurements contributing to a given group were spread across the spectrum of

the considered 2-D signal – including both low and high-frequency measurements in

each group. Figure 5.12 visualizes the new grouping structure G4 for the Fourier

measurement domain of size 8× 8 and for a group size g = 4.

Figure 5.13 shows the relationship between the penalty factor γ(A, T,G) and the

number M of samples required for successful recovery for each of the six aforemen-

tioned group structures. Each point of the top scatter plot corresponds to a single

32 × 32-pixel tile, while each point of the bottom scatter plot shows the average

values of γ and M , over all of the tiles, for each of the grouped measurement config-

uration. In these experiments, recovery success is defined by a normalized recovery

error NRE = ‖s − ŝ‖/‖s‖ < 0.1 for 19 out of 20 draws of the measurement groups,

uniformly at random. The values of M tested are once again multiples of 4 · g = 32.

The figure shows that while the group structures G1, G2, G3 and G5 demonstrate sim-
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𝐺1: vertical lines 𝐺2: horizontal lines 𝐺4: spiral 𝐺5: max Manhattan distance 

𝐺3: rectangles 𝐺6: random 

Figure 5.13. Top: relationship ofM versus γ for the six considered group structures,
for 25 small-scale (32 × 32 pixels) compressed images from a 160 × 160-pixel chest
MRI image (cf. Figure 5.11); bottom: average value of γ and M , averaged over the
25 segments.

ilar performance and values of γ, the group structure G4 and the randomized group

structure G5 exhibit smaller values of γ and lead to lower requirements on the number

of measurements, which suggest the utility of γ as a performance indicator for the

Fourier domain grouped sampling schemes.

5.4 Conclusions

In this chapter, we presented an analytically derived multiplicative penalty on the

number of measurements needed for compressive sensing recovery when the measure-

ments exhibit grouped structure instead of the usual independently drawn measure-

ment assumption taken by most existing CS literature. Such grouped sampling is of

large practical interest as full randomization of measurements is difficult to achieve
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in many compressive sensing acquisition systems. We showed the utility of the intro-

duced penalty factor as an indicator of the performance for acquisition scenarios of

practical interest. A notable limitation of the introduced penalty factor γ is that it

is dependent on the signal support.
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CHAPTER 6

RECOVERY OF SPARSE SIGNALS FROM
AMPLITUDE-LIMITED SAMPLE SETS

6.1 Problem Statement

In Chapter 5 we studied the recovery of sparse signals from grouped measurements,

where the measurement scheme was independent from the signal that needed to be

recovered (it was dictated by physical constraints of the acquisition system). In

this chapter, we study compressive sensing recovery of sparse signals from irregular

signal dependent samples. In particular, we study recovery from samples taken only

when the amplitude of the signal that needs to be recovered is small; that is, we

attempt to recover the signal using samples with values within a range [−τ, τ ]. The

small-amplitude signal sampling approach introduced in this chapter falls in the field

of signal dependent non-uniform sampling. Early and significant work on signal-

dependent sampling was done by Logan [91], who established sufficient conditions for

the zero-crossings of a signal to uniquely determine it. Existing practical recovery

algorithms from the zero-crossing information are, however, known to be unstable.

Boufounos and Baraniuk [92] introduced an additional signal sparsity assumption to

gain robustness in signal recovery from zero-crossings. Recovery of frequency-sparse

signals from non-zero level crossings as well as from multiple level crossings has been

addressed recently by Sharma and Sreenivas [93]. Our work is significantly different

from [92,93]: instead of sampling non-uniformly at the times when the signal crosses

predefined levels, we consider sampling the signal uniformly at high sampling rates

and then selecting only the samples whose amplitudes are below a given threshold
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τ , while discarding potentially nonlinearly distorted samples with values that exceed

the threshold.

Perhaps the prior contribution most closely related to the work presented is the

recent independent work of [94], which also considers the recovery of frequency-sparse

signals from a reduced set of samples. The sample subselection in [94] is driven by

signal clipping; the resulting algorithms that account for clipping are similar to those

we discuss here. However, in contrast to [94], we study the performance of CS with

the proposed algorithms as a function of the amplitude of the threshold that samples

must meet to be deemed suitable for undistorted signal recovery. Such threshold τ

controls the fraction of samples that are used in recovery, cf. Figure 6.4. Our results

show the impact that different options to leverage sample selection information during

recovery have on CS performance.

Consider a frequency sparse signal s, with an unknown support, captured at the

receiver. s needs to be recovered from a set of its small-amplitude samples. For that

purpose, we solve a linear program

Ŝ = argmin
S̄

||S̄||1 s.t. AS̄ = AS, (6.1)

where S = Fs is the Fourier representation of s, A = MFH is a transformation

matrix, M is a measurement matrix, and FH is the Hermitian conjugate of the

Fourier matrix F . The probability of recovery error Perr is defined as the probability

of the normalized recovery error

NRE = ‖s− ŝ‖2/‖s‖2 (6.2)

being above a target value ρ.

The characteristics of the measurement matrix depend on the measurement scheme.

In order to reduce the sampling rate of analog-to-digital converters (ADCs), individ-
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ual measurements can be built as a linear combination of multiple time samples [95].

We assume that the measurement matrix M is built out of rows of an identity matrix

that correspond to the indices of small-amplitude samples.

It is well known [56] that if the time samples are taken uniformly at random, then

the recovery guarantees of compressive sensing are independent from the support of

the frequency-sparse signal that needs to be recovered. When the uniform random-

ness of the sampling scheme is violated, recovery performance can become support-

dependent (see Chapter 5). The signal-dependent sampling approach considered in

this work clearly violates the randomness assumptions of compressive sensing. Thus,

it is expected that the recovery method (6.1) will have varying performance for signals

with different supports of the same size, even if the size of the set of small-amplitude

samples used for the recovery is the same. The next section presents approaches for

enhancing the recoverability of the sparse signals from the amplitude limited sample

sets for the cases when the standard recovery (6.1) leads to erroneous results.

6.2 Approaches

We will demonstrate in Section 6.3 that an ℓ1-norm minimization (6.1) fitting

only the values of the samples with amplitude less than τ will encounter ambiguities

for some signals (i.e., signal-dependent performance). In this section, we consider

three approaches for improving performance of the recovery. Methods described in

Subsections 6.2.1 and 6.2.2 have been considered in independent work of [94], where

signal clipping was driving small sample selection.

6.2.1 ℓ1-norm minimization with inequality constraints

The recoverability of a frequency-sparse signal s from a small-amplitude sample

set can be enhanced by taking into account additional information about s that

becomes available while discarding large-amplitude samples. In particular, the indices
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of samples whose amplitudes exceed the predefined threshold τ are known, and this

information can be exploited via inequality constraints in the linear program (6.1).

The resulting optimization problem becomes

Ŝ = argmin
S̄

||S̄||1 s.t. AS̄ = AS, |s(Γ)| > τ (6.3)

where Γ is a vector of time stamps of samples that have been discarded. The in-

corporation of these inequality constraints into standard CS recovery was suggested

in [60], where unbounded measurement quantization errors caused by the saturation

of ADCs were considered. Because of the relatively easy implementation of threshold

comparators at the receiver, the extension of the constraints from (6.3) to multiple

thresholds τn > τn−1 > · · · > τ is worth considering for our application of interest.

The advantage of adding a second threshold and additional constraints to (6.3) of the

form

AS̄ = AS, τ2 ≥ |s(Γ)| > τ, |s(Γ2)| > τ2, (6.4)

will be studied in Section 6.3.

6.2.2 Iterative ℓ1-norm minimization

A second approach for performance enhancement of (6.1) when only small-amplitude

samples are available is iterative ℓ1-norm minimization. The minimization problem

from (6.1) is a relaxation of a computationally intractable combinatorial problem of

ℓ0-“norm” minimization

Ŝ = argmin
S̄

||S̄||0 s.t. AS̄ = AS. (6.5)

The problem (6.1) can be solved efficiently and a body of existing work has shown

there exist conditions under which the combinatorial problem (6.5) and its relaxation
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(6.1) are equivalent [96]. However, with the signal-dependent sampling scheme con-

sidered in this work, the conventional assumptions of CS are violated, which often

leads to non-equivalence of (6.1) and (6.5). In [97], the authors introduced an iter-

ative recovery algorithm consisting of a sequence of weighted ℓ1-norm minimizations

that promotes the sparsity of the result of the computationally tractable ℓ1-norm

minimization for the cases when (6.1) and (6.5) are not equivalent:

Ŝi = argmin
S̄

‖CiS̄‖1 s.t. AS̄ = AS. (6.6)

The diagonal matrix Ci in (6.6) contains positive weights that are updated in every

iteration i to be inversely proportional to the values of the solution of the previous

iteration:

Ci+1(k, k) =
1

|Ŝi(k)|+ ǫ
, (6.7)

with ǫ being a positive constant used for stability; one can set C1 to be the identity.

The algorithm is robust with respect to the choice of ǫ, which, as found empirically

[97], should be set to a value smaller than the expected amplitudes of coefficients of

the solution. The weights (6.7) promote sparsity of the solution, as the coefficients

with small amplitude values contribute strongly to the weighted ℓ1-norm ‖CiS̄‖1 in

consecutive iterations. Thus, the final solution tends to consist of a small number of

coefficients of highest significance.

As shown in Section 6.3, the iterative recovery algorithm (6.6) can lead to suc-

cessful recovery of signals from small-amplitude samples when (6.1) and (6.5) are not

equivalent due to a violation of the assumptions in CS, which leads to an incorrect

solution during the first iteration of (6.6).

6.2.3 Injection of artificial interferers

As a third approach to enhance the performance of (6.1) when only small-amplitude

sample sets are available, we consider injection of a known interferer to the signal s.
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Figure 6.1. Probability of recovery error for the cases (i) and (ii) for ℓ1-norm
minimization (6.1) as a function of the threshold τ .

This corresponds to the addition of a known interferer to the received signal before

the LNA in a wide-band receiver. After injection of the interferer, the samples of

the signal s′ = s + iadd for which the amplitude exceeds τ are discarded. Since the

interferer is known, the values of iadd for the samples retained are subtracted from the

respective samples of s′ and the resulting signal is used for recovery. If the injected

interferer is uncorrelated with the signal s and the power of s and iadd are similar,

then the sampling times get decorrelated from the frequency content of the signal

s. The level of the randomization is higher as the injected interferer becomes more

unstructured. Since in practice the threshold τ is a fixed value specified by the nonlin-

earity of the LNA, the injection of the interferer implies a reduction of the number of

samples retained, due to the increased power in s′ with respect to s. However, as will

be shown in Section 6.3, the injection of a known interferer can significantly enhance
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Figure 6.2. Probability of recovery error for the case (ii) for ℓ1-norm minimization
(6.1), for iterative ℓ1-norm minimization (6.6) and for constrained ℓ1-norm minimiza-
tion (6.3) and (6.4) as a function of the threshold τ .

recoverability, despite the penalty (decrease) on the number of samples caused by the

increase of the power of the sampled signal s′.

6.3 Simulations

In this section, we present simulation results for CS recovery from sets of small-

amplitude samples of frequency-sparse signals. Consider a discrete signal s of length

N = 751 that consists of 10 tones. We consider two cases: (i) the tones are randomly

located on the frequency axis; and (ii) the tones are positioned adjacently to build a

single frequency band, located randomly on the frequency axis. For both considered

cases (i) and (ii), the amplitudes and phases of the tones are chosen uniformly at

random from respective ranges: [0, 1] and [0, 2π]. We let the threshold τ vary over the

range [0, smax], where smax is the maximal amplitude of the signal s. We then discard
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Figure 6.3. Probability of recovery error for the case (ii) for ℓ1-norm minimization
(6.1) as a function of the threshold τ , for different types of known injected interferers.

all samples whose amplitudes are above the threshold τ and preserve the remaining

samples as measurements. These measurements are used to solve the minimization

problem (6.1) and to find the estimate of the message signal ŝ(t) as described in

Section 6.1. Figure 6.1 shows the probability of recovery error Perr of (6.1), defined

as the probability that NRE from (6.2) is above ρ = 3%, calculated over 100 trials

for both considered cases (i) and (ii) as a function of the threshold τ . The figure

shows that signal recovery is possible from fewer low-amplitude samples of s for the

case (i) as compared to the case (ii).

For the case (ii), ℓ1-norm minimization with inequality constraints and iterative

ℓ1-norm minimization (cf. Sections 6.2.1 and 6.2.2) were applied to improve recovery

performance from small-amplitude samples. Figure 6.2 shows the probability of error

Perr calculated over 50 trials as a function of the threshold τ for the case (ii) when

(6.1), (6.3) and (6.6) were used. Five iterations were used for method (6.6); increasing
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Figure 6.4. Number of small-amplitude samples used for recovery as a function of
the threshold τ for the case (i) and for the case (ii) for different types of known
interferers injected.

the number of iterations above five did not lead to meaningful performance improve-

ments. Figure 6.2 also shows Perr for the case (ii) when (6.3) was used with the

additional threshold constraint (6.4). The second threshold τ2 was used only when

τ < 0.7 · smax and was set to τ2 = 0.75 · smax.

Finally, we study the recovery performance improvement achieved via injection

of known interferers. Figure 6.3 shows Perr of (6.1), calculated over 100 trials as a

function of the threshold τ for the case (ii), when three different types of known

interferers were injected: 1 and 5 randomly positioned tones and a random Gaussian

noise. The average power of the injected interferer was set to be equal to the power

of the signal s. For the considered frequency-sparse signal s, even a highly structured

injected interferer (i.e., the sum of 5 tones) leads to significant decorrelation of the

sampling times from the signal structure and thus significant recovery performance
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enhancement. Figure 6.3 shows that, even for a fixed threshold, which in practice is

dictated by the characteristics of the nonlinearity of the LNA, adding an interferer

iadd enhances recovery performance despite a reduction of the number of samples due

to the average power increase of s′ = s + iadd with respect to s. Figure 6.4 shows

the mapping between the threshold τ and the number of small-amplitude samples

used for recovery, calculated over 100 trials, for different types of known injected

interferers. It shows how a fraction of samples is lost due to the injected interferer,

and how the choice of the interferer is causing only a small difference in the number

of samples preserved.

6.4 Conclusions

In this chapter we studied compressive sensing recovery of frequency-sparse signals

from irregular, small-amplitude samples. We have shown that the standard ℓ1-norm

minimization recovery performance becomes signal-dependent due to the correlation

between the signal structure and the location of small-amplitude samples, thus mo-

tivating the exploration of enhanced CS recovery schemes. Three such schemes that

have been presented in this chapter show significant improvement over the standard

ℓ1-norm minimization recovery from small-amplitude signal samples.
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CHAPTER 7

MITIGATION OF SPECTRAL LEAKAGE FOR SINGLE
CARRIER, BLOCK-PROCESSING COGNITIVE RADIO

RECEIVERS

7.1 Problem Statement

As discussed in Chapter 1, in addition to the receiver’s nonlinearities, time-

truncation of the processed signal records causes degradation of the dynamic range

of wide-band receivers. While the dynamic range enhancement via selected sampling

that leads to linear operation of the receiver’s front-end was studied in Chapters 5

and 6, in this chapter we consider the latter cause of degradation and study a method

for adaptation of the processing window size for dynamic range improvement for the

receivers of single-carrier, block transmission.

Block transmissions, for which groups of data symbols are processed as a unit,

allow for the implementation of frequency domain channel equalization (FDE), which

for broadband transmissions in rich multi-path environments can bring significant

complexity relaxations when compared to time-domain equalization [98]. To allow

for FDE, block transmissions employ a cyclic prefix (CP). The CP is a copy of the

end of the signal block attached in front of the block. To avoid inter-block interference

(IBI), the length of the CP is chosen larger than the maximum delay spread of the

channel. Because of the dynamic character of wireless channels, value of the delay

spread changes over time and space [99]. For the high reliability demanded of modern

communication systems, the tail of the distribution of the delay spread dictates a

conservative choice of the length of the cyclic prefix, which is fixed during the design

stage.
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Since truncation in the time domain causes spreading in the frequency domain,

weak signals in a block transmission can be corrupted by strong in-band interferers

(see Section 2.1). In this work we propose enhancement of the dynamic range of a

block processing CR receiver by an adaptive choice of the processing block size to

minimize the spectral leakage into the frequency sub-bands occupied by the signal

of interest. In particular we will show that with a non-complete removal of the CP

at the receiver, which can be employed in wireless environments with channel delay

spreads even slightly shorter than the length of the CP, significant receiver dynamic

range improvements can be achieved for block transmissions.

The discrete Fourier transform (DFT) is an invertible signal processing operation

that projects a time-limited signal onto a set of complex frequencies, and gives a

discrete representation of the signal’s spectrum. The values of the frequencies that

the signal is projected onto build a discrete grid, equidistantly dividing the entire

sampling bandwidth. A complex sinusoid oscillating with a frequency off the discrete

frequency grid cannot be represented with a single element of the grid, and its energy

leaks between multiple elements, which leads to misinterpretation of the spectral

content. This is visualized in Figure 7.1, where the observation time of a complex

oscillation is shown for two different cases: (a) the frequency of the sinusoid overlaps

with that of one of the grid points (left subplots); (b) the frequency of the sinusoid

lies off the grid which leads to spectral leakage (right subplots). For wide-band, block-

processing receivers, the finite block length can cause misinterpretation of the Fourier

coefficients of the in-band interference, possibly orders of magnitude stronger than

the message of interest, which can lead to significant contamination of the message.

A cyclic prefix is employed in the single-carrier frequency division multiplexing

(SC-FDM) scheme [100], which is often considered for broadband transmissions over

wireless channels. For example SC-FDM has been selected as an uplink communi-

cation scheme for the Long Term Evolution (LTE) standard for wireless, high-speed
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(𝑎) (𝑏) 
Figure 7.1. Spectral representation of a complex sinusoid with the DFT. Observation
time is such that: (a) the frequency of the oscillation overlaps with one of the DFT
grid points; (b) the frequency lies off the grid which leads to the spectral leakage.

data communication for mobile phones and data terminals [101]. Similar to orthog-

onal frequency division multiplexing (OFDM), SC-FDM processes data in blocks;

however, unlike OFDM, it utilizes a single carrier modulation at the transmitter,

which allows for reduction of the peak-to-average power ratio (PAPR) [100] and thus

improves the efficiency of RF power amplifiers. The inherent DFT operation at the

receiver (Figure 7.2) makes SC-FDM suitable for spectral sensing applications of cog-

nitive radio. If the length of the CP is longer than the longest delay path of the

channel, then the received blocks arriving at the receiver over different channel paths

appear as circularity shifted versions of the transmitted block. A circular shift of a

discrete-time record corresponds to a multiplication of its DFT with a linear phase.

Therefore FDE can be implemented as a simple, frequency domain multiplication

with an inverse of the estimate of the channel transfer function, in contrast to time

domain equalization, which can involve time-domain adaptive filters with tens of taps

and hundreds of multiplication operations required per data symbol.

132



insert CP 

* 

𝒑𝒎 𝒕  

*  𝜸𝒊𝑰
𝒊=𝟏 𝒕  

channel 

𝒑𝜸𝟏 𝒕  

𝒔𝜸𝟏  

…
 

* 
𝒔𝜸𝑰  

𝒑𝜸𝑰 𝒕  

D 

F 

T 

1 

2 

3 …
 

N 

remove CP 𝒕𝒔 

F 

D 

E 

I

D 

F 

T 

down 

sample 

𝒔𝒎 𝟏 ,… , 𝒔𝒎 𝑴  

𝒔 𝒎 𝟏 ,… , 𝒔 𝒎 𝑴  

1 

2 

3 

N 

2 

3 

N 

1 

𝒇𝒎 

𝒇𝜸𝟏  

𝒇𝜸𝑰 

𝒎 𝒕  

Figure 7.2. Block diagram for a single carrier frequency division multiplexing cog-
nitive radio transmission subject to interference.

Consider a single-carrier, block transmission and a wide-band, highly over-sampling,

cognitive radio receiver visualized in Figure 7.2. Message data symbols sm after cyclic

prefix insertion are pulse-shaped with pulse pm(t), up-converted to frequency fm,

and sent over the channel. The received signal, including an additive interference
∑I

i=1 γi(t), possibly with power orders of magnitude higher than that of the message,

is over-sampled with a sampling rate fs = 1/ts. A block of high-rate samples is cap-

tured, the cyclic prefix is discarded, and the DFT of the time capture of length N is

calculated for frequency domain channel equalization. The transmitted data is then

recovered from the time representation of the equalized and digitally filtered parts of

the spectrum.

Consider an off-grid complex interferer sinusoid with unit amplitude and a fre-

quency fγ such that: fγ · ts · N = l + a; l ∈ N;−0.5 < a ≤ 0.5. The DFT of the

sinusoid is ((5.103) [102, pg. 262])

O(fγ, k) =
sin (π(fγ · ts ·N − k))

sin
(
π
N
(fγ · ts ·N − k)

) · ejπ(fγ ·ts·N−k)N−1

N ,

k = 1, . . . , N. (7.1)
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For an interferer γ(t) with a continuous bandwidth (fγ −Wγ/2, fγ +Wγ/2), spectral

power leakage into a set Km of the discrete frequencies occupied by the message of

interest (either a message to be sensed or to be received) is therefore

LN [Km] =
∑

k∈Km

∣∣∣∣∣

∫ fγ+Wγ/2

fγ−Wγ/2

Γγ(f)O(f, k)df

∣∣∣∣∣

2

, (7.2)

where Γγ(f) are the values of the continuous Fourier transform of the interferer. If the

power of the interferer is orders of magnitude higher than the power of the message

of interest, the leakage can cause significant degradation of the message’s quality.

7.2 Proposed Method for Receiver Dynamic Range Enhance-

ment for Block Transmissions

For conventional block receivers the cyclic prefix is removed completely before the

block is processed to retrieve the transmitted message of interest. The complete CP

removal allows for the cancellation of IBI caused by the channel delay spread τCH not

exceeding the length LCP of the cyclic prefix and leads to a fixed processing block

size NB. As we saw in the Section 2.1 (Figure 7.1 and eq. (7.1)) the character of the

DFT leakage depends on the size N of the processing block. If the delay spread of a

considered channel is smaller than the length of the CP, then without compromising

the ability to cancel the IBI completely, a potential leakage reduction and therefore

dynamic range enhancement can be achieved with an adaptive, partial removal of the

cyclic prefix. In particular an adaptive choice of the length N of the processing block

can be made from a search set Nsearch =
{
NB, NB + 1, . . . , NB + LCP−τCH

ts

}
, where ts

is the sampling period. The current value of τCH that determines the size of Nsearch

can be estimated at the receiver using conventional channel order estimation methods

as studied for example in [103].

To gain an intuition on how the spectral leakage can be controlled with the size

N of the observation window, consider an interferer γ consisting of a set of I complex
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Figure 7.3. Time domain (top) and DFT (bottom) capture (r[n] and RN [k]) of
a QPSK block transmission of 5 symbols of interest equipped with 1 cyclic pre-
fix symbol, transmitted at a symbol rate Wm = 3.84MHz and power Pm for two
different choices of the processing block size: (a) N = 640 after a complete CP
removal (b) N = 660 after a partial CP removal. The signal of interest was con-
taminated with three interferers occupying 7.68MHz sub-bands, with total power
Pγ. The signal-to-interference ratio and sampling frequency were set to, respectively:
SIR = 10 log10

Pm

Pγ
= −60dB and fs = 491.52MHz. The message signal carrier

frequency was located at fm/fs ≈ 0.4297.

oscillations with amplitudes Γγi and frequencies fγi , i = 1, . . . , I, and a message m

consisting of a set of M complex oscillations with frequencies fmµ , µ = 1, . . . ,M .

Depending on the size N of the observation window, fmµ , µ = 1, . . . ,M , can ei-

ther lie on or off the discrete frequency grid. Denote the rounded value of x to

the nearest integer as JxK. The discrete frequency set Km of the message is thus

Km =
{r

fm1

fs
N

z
, . . . ,

r
fmM

fs
N

z}
. Ignoring the rounding operation when building the

set Km, defining ∆i,µ =
(fγi−fmµ )

fs
, with (7.1) and (7.2), the total interference experi-

enced by the message due to the leakage caused by the limited observation window

size N is
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LN [Km] =
M∑

µ=1

∣∣∣∣∣

I∑

i=1

Γγi

sin (π∆i,µ ·N)

sin (π∆i,µ)
ejπ∆i,µ·N

∣∣∣∣∣

2

=
M∑

µ=1

∣∣∣∣∣

I∑

i=1

Γγi

1

2j · sin(π ·∆i,µ)
·
(
e2jπ∆i,µ·N − 1

)
∣∣∣∣∣

2

.

(7.3)

Denote Γ̃i,µ = Γγi · 1
2j·sin(π·∆i,µ)

. The minimization of the interference leakage experi-

enced by the message over the choice of the window size N simplifies to

Lmin[Km] = min
N∈Nsearch

M∑

µ=1

∣∣∣∣∣

I∑

i=1

Γ̃i,µ ·
(
e2jπ∆i,µ·N − 1

)
∣∣∣∣∣

2

, (7.4)

which is a function of Γ̃i,µ’s that depend on the signal transmitted by the interferers,

weighted with factors that depend only on the frequency spacing between the message

and the interferers and that can be controlled with the choice of the value of the length

N of the processing block.

Figure 7.3 shows a visualization of the possible reduction of the leakage of inter-

ferers’ power into the frequency band occupied by the message of interest that can be

achieved with the partial removal of the CP and hence an adjustment of the process-

ing window size from 640 to 660. While increasing the spectral leakage to some parts

of the spectrum, the adjustment leads to a roughly 10 dB reduction of the leakage

into frequency bins around message carrier frequency.

In practice the receiver does not have access to LN [Km] (7.2), (7.3); thus, some

other measurable quantity must be used to determine the optimal N . We will employ

the total received power in the frequency band occupied by the message of interest.

To establish its utility we show that the power of the message of interest and the

interference decorrelate quickly with the size N of the processing block. Consider a

received signal r(t) consisting of the message of interest m(t) with power Pm and an

interferer γ(t) with power Pγ. The baseband sampled received signal can be written

as r[n] = m[n] + γ[n]. Its power is
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Pr =
1

N

N∑

n=1

r[n]2 = Pm + Pγ + 2C; C =
1

N

N∑

n=1

m[n] · γ[n]. (7.5)

Let m[n] and γ[n] be respective digital streams of symbols sm and sγ, with periods

Tm and Tγ, pulse-shaped with analog pulses pm(t) and pγ(t), sampled with frequency

fs = 1/Ts:

m[n] =
∞∑

l=−∞
sm[l] · pm(nTs − lTm), γ[n] =

∞∑

l=−∞
sγ[l] · pγ(nTs − lTγ). (7.6)

Assume sm[l] and sγ[l] to be uncorrelated, zero-mean random variables, which is the

case for commonly used digital modulation schemes. Then E {C} = 0 and

V ar{C} =
V ar{sm} · V ar{sγ}

N2

N∑

n=1

∞∑

l1=−∞

∞∑

l2=−∞
p2m(nts − l1Tm) · p2γ(nts − l2Tγ).

(7.7)

For analog pulses pm(t) and pγ(t) and values of N considered in Section 7.3, V ar{C}

is close to zero, and therefore the power of the block of the received signal r[n]

concentrated in the frequency range occupied by the message of interest, which is

easily measured, can be used to make the decisions on the size of the processing

block. Denote the DFT of length N of the received signal r[n], n = 1, . . . , N , carrying

a message of interest, occupying a continuous bandwidth (fm −Wm/2, fm +Wm/2)

as RN . The optimal size of the processing block can then be chosen as

Nopt = argmin
N∈Nsearch

J fm+Wm/2
fs

NK∑

km=J fm−Wm/2
fs

NK
|RN [km]|2. (7.8)

7.3 Numerical Results

In this section we numerically study possible dynamic range improvements for

the block CR receivers, employing adaptive, partial removal of the CP, and hence
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Figure 7.4. RMSE of the recovered QPSK message symbols before and after the
adjustment of the processing block size N with (7.8) as a function of the SIR for a
fixed guard bandwidth from (7.9) WG=50MHz (top subplot) and as a function of the
guard bandwidth WG for a fixed SIR=-60 dB (bottom subplot).

with the adaptive, block-to-block choice of the processing block size. Consider a CR

receiver working with a sampling rate fs = 491.52MHz receiving a transmission of

interest together with strong interference. The transmission of interest m(t), at a

carrier frequency fm, is a QPSK transmission with a symbol rate of Wm = 3.84MHz,

pulse-shaped with a raised-cosine filter pm(t) with a roll-off factor β = 0.5. The

interferer signal consists of three QPSK transmissions at carrier frequencies fγi , with

symbol rates Wγi , also pulse-shaped with β = 0.5 raised-cosine filters pγi(t), i =

1, 2, 3; however, the method’s performance did not change for various settings of the

interferers’ excess bandwidth β. The processing block was built out of 32 QPSK

message symbols and was equipped with a cyclic prefix of length 6.25% · 32 = 2

symbols, which allows the avoidance of IBI caused by a channel with a maximal

delay path difference ∆dCH1
= c · τCH1

= c · 2
3.84MHz

= 156.14m, where c is the speed
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of light. The number of samples building the processing block at the receiver after

the complete CP removal was then NB =
q

32
3.84MHz

· fs
y
= 4096.

We assume that the transmission occurs in a wireless environment with the max-

imal channel delay path difference ∆dCH2
slightly shorter than ∆dCH1

. In such

an environment, a complete IBI cancelation is achieved even if a fraction of the

CP (up to τCH1
− τCH2

seconds) is not discarded and kept for further processing.

This allows for a processing block size search set: Nsearch = {NB, . . . , Nmax}, with

Nmax = 4096 + (τCH1
− τCH2

) · fs.

For the considered transmission, for Nmax = 4134 corresponding to a search space

of size 15% of the CP length, the upper subplot of Figure 7.4 shows the root mean

square error (RMSE) of the recovered QPSK message symbols as a function of the

SIR before and after the adjustment of N with (7.8). Figure 7.4, averaged over 500

random choices of message and interferers’ symbols sm and sγi , carrier frequencies

fm and fγi and interferers’ symbol rates Wγi ∈ {1.92, 3.84, 7.68, 15.36, 30.72, 61.44}

MHz, shows that for a desired value of RMSE a significant reduction of required SIR

value, and hence dynamic range improvement of over 10dB, can be achieved with this

simple adjustment of the block processing length N . The random choice of fm, fγi

and Wγi was subject to a constraint

|fm − fγi | < WG +Wγi/2, i = 1, 2, 3, (7.9)

where WG is a guard bandwidth set to 50MHz. The lower subplot of Figure 7.4 for

Nmax = 4134 and SIR = −60dB shows the RMSE of the recovered QPSK mes-

sage symbols as a function of the guard bandwidth WG. The effect of the spectral

leakage decreases with increasing SIR, and therefore the room for impact for the

proposed leakage reduction technique (or any other) is limited at high SIRs. For

fixed SIR the performance of the proposed method decreases with decreasing WG.
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Small WG can lead to small values of ∆i,µ from (7.4), which limits the rotation speed

of
(
e2jπ∆i,µ·N − 1

)
.

7.4 Conclusions

In this chapter an approach for the mitigation of spectral leakage via an adaptive

choice of processing window size was proposed for block processing, single-carrier CR

receivers. The method is based on an adaptive partial removal of the CP and can be

applied in environments with maximal channel delay paths shorter than the length of

the CP. The proposed method does not require any structural changes to the receiver

and allows for significant dynamic range improvements (over 10 dB) when compared

to a studied fixed window size approach from [104].
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CHAPTER 8

CONCLUSIONS

Wireless security and interference rejection in wide-band wireless communications,

which are often considered as two main challenges in wireless networks’ design and

research, were studied in this dissertation. We conducted research that illuminates

the effects of non-ideal components in wireless communication systems and presented

novel signal processing methods that address the two aforementioned challenges. In

particular, we proposed novel, model-based approach that exploits transmitters’ in-

herent nonlinearities for the purpose of device identification. We also studied novel

signal recovery methods that allow for a higher tolerance of inherent nonlinearities of

wireless wide-band receivers.

The proposed model-based identification methods were shown effective via simu-

lations and measurements of components of commercial wireless devices. Nonlinear-

ities of power amplifiers (PAs) and RF oscillators are most suitable for the purpose

of device identification. While the character of the PA nonlinearity is power level de-

pendent and can change over time in systems with power control employed, operation

of the RF oscillators is power mode independent, which should dictate the choice of

the identification methods for different system deployments.

The model-based approach proposed in this dissertation is advantageous over the

empirical methods reported in the literature, as it is more resistant against poten-

tial countermeasure attacks that can be implemented by sophisticated, masquerading

users. Moreover, in contrast to the empirical methods, the model-based approach

allows for analysis of the identification performance as a function of important com-
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munications parameters such as SNR. Low probabilities of identification errors were

reported in this dissertation at practical SNR levels for short capture lengths. It is

important to stress here that an increase of available processing power, and therefore

an increase of the length of the captures that can be processed for identification, can

lead to a proportional improvement in the performance versus SNR.

In addition to its application for post-crime device identification, we see the device

fingerprinting work presented here as informative to the recently emerged world-wide

debate about the level of personal privacy, as it gives insight into the degree to which

such may be compromised due to device hardware imperfections.

It is a common concern that hardware based fingerprints can suffer time-instability

because of temperature variations of the device’s components. This concern applies to

all hardware based fingerprinting approaches, which we summarized in Section 1.1.1.

During measurements that we performed to obtain results reported in this disserta-

tion, we observed a very quick temperature stabilization of the measured components,

and therefore we initially ignored the temperature variation in our investigations.

These variations, mostly due to the ambient temperature variations, should however

be considered in the future for refinement of the proposed identification methods.

While the identification methods presented in the first part of this dissertation

exploited nonlinearities of transmitter’s components, in the second part of the disser-

tation we presented signal recovery methods for mitigation of nonlinear effects at the

receiver, for more efficient spectrum utilization. The contributions that we reported

in this area are threefold. First we presented an analytically derived multiplicative

penalty on the number of measurements needed for successful recovery of sparse sig-

nals, when the measurements, instead of being taken at random, exhibit a grouped

structure. Second we introduced three methods that improve recoverability of sparse

signals from small-amplitude samples. Third we proposed an adaptive choice of pro-
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cessing block size for block-processing receivers that leads to significant reduction of

the effect of spectral leakage.
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APPENDIX A

PROOF OF THEOREM 3

Denote

Y :=
N

M
AH

ΩTAΩT − I =
N

M

N/g∑

i=1

δiA
H
GiT

AGiT − I, (A.1)

where δi is a Bernoulli random variable with P (δi = 1) = M
N
. Because AHA = I, we

have
N/g∑

i=1

AH
GiT

AGiT = I, (A.2)

and so we can write

Y =
N

M

N/g∑

i=1

(
δi −

M

N

)
AH

GiT
AGiT =:

N/g∑

i=1

Yi. (A.3)

We will now use [105, Theorem 1.4], which we include below for completeness.

Theorem 5. Consider a finite sequence {Yi} of independent self-adjoint random ma-

trices with dimension d. Assume that each matrix Yi satisfies E{Yi} = 0 and ‖Yi‖ ≤ B

almost surely. Then, for all t ≥ 0,

P

{∥∥∥∥∥
∑

i

Yi

∥∥∥∥∥ > t

}
≤ d · exp

( −t2/2

σ2 +Bt/3

)
,

where σ2 =

∥∥∥∥∥
∑

i

EY 2
i

∥∥∥∥∥ .

For our case,

Yi =

(
δi −

M

N

)
AH

GiT
AGiT

N

M
(A.4)

and E(Yi) = 0. We find a bound B on ‖Yi‖:
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‖Yi‖ = sup
f1,f2

|〈f1, Yif2〉| ≤ sup
f1,f2

∣∣∣∣∣

〈
f1,

N

M

∑

l∈Gi

al ⊗ alf2

〉∣∣∣∣∣ ≤
N

M
sup
f1,f2

∑

l∈Gi

|〈f1, al ⊗ alf2〉|

=
N

M
sup
f1,f2

∑

l∈Gi

|〈f1, al〉〈al, f2〉| ≤
N

M

∥∥al
∥∥2 sup

f2

∑

l∈Gi

|〈al, f2〉|
||al|| ≤ N

M
µ2(A)|T |γ =: B,

(A.5)

where the supremum is over unit-norm vectors f1 and f2, a
l is the lth row of the

matrix AT , and γ is defined in (5.4).

Next, we calculate σ2 from Theorem 5 as

σ2 =

∥∥∥∥∥∥

N/g∑

i=1

E(Y 2
i )

∥∥∥∥∥∥
= var{δi}

N2

M2

∥∥∥∥∥∥

N/g∑

i=1

(AH
GiT

AGiT )
2

∥∥∥∥∥∥
. (A.6)

SinceAH
GiT

AGiT is a Hermitian matrix, its eigendecomposition isAH
GiT

AGiT = ΩiΛiΩ
H
i ,

where Ωi is a matrix whose columns are the orthonormal eigenvectors ωij, j =

1, . . . , |T |, of the matrix AH
GiT

AGiT , and Λi is a diagonal matrix containing the eigen-

values {λij}|T |
j=1 of the matrix AGiTA

H
GiT

. Thus, we can write

AH
GiT

AGiTA
H
GiT

AGiT = ΩiΛiΩ
H
i ΩiΛiΩ

H
i = ΩiΛ

2
iΩ

H
i =

∑

j=1,...,|T |
λ2
ijωijω

H
ij ,

and so ∥∥∥∥∥∥

N/g∑

i=1

AH
GiT

AGiTA
H
GiT

AGiT

∥∥∥∥∥∥
=

∥∥∥∥∥∥

N/g∑

i=1

|T |∑

j=1

λ2
ijωijω

H
ij

∥∥∥∥∥∥
. (A.7)

The right side of (A.7) is a weighted double sum of positive semidefinite matrices.

The spectral norm of such a sum increases monotonically with the value of each of
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the weighting coefficients. Therefore, we can upper-bound (A.7) by replacing λij with

maxi=1,...,N
g
maxj=1,...,|T | λij and taking it out of the operator norm:

∥∥∥∥∥∥

N/g∑

i=1

AH
GiT

AGiTA
H
GiT

AGiT

∥∥∥∥∥∥
≤ max

i=1,...,N
g

max
j=1,...,|T |

λij

∥∥∥∥∥∥

N/g∑

i=1

|T |∑

j=1

λijωijω
H
ij

∥∥∥∥∥∥

= max
i=1,...,N

g

∥∥AH
GiT

AGiT

∥∥ ·

∥∥∥∥∥∥

N/g∑

i=1

AH
GiT

AGiT

∥∥∥∥∥∥
.

(A.8)

With (A.8) we can bound (A.6) by

σ2 ≤ var{δi}
N2

M2
max

i=1,...,N
g

||AH
GiT

AGiT || ·

∥∥∥∥∥∥

N/g∑

i=1

AH
GiT

AGiT

∥∥∥∥∥∥

= var{δi}
N2

M2
max

i=1,...,N
g

||AH
GiT

AGiT || · ||AH
T AT ||

=
M

N

(
1− M

N

)
N2

M2
max

i=1,...,N
g

sup
‖f1‖=‖f2‖=1

∣∣∣∣∣

〈
f1,
∑

l∈Gi

al ⊗ alf2

〉∣∣∣∣∣

≤ N

M
max

i=1,...,N
g

sup
‖f1‖=‖f2‖=1

∑

l∈Gi

|〈f1, al ⊗ alf2〉|

=
N

M
max

i=1,...,N
g

sup
‖f1‖=‖f2‖=1

∑

l∈Gi

|〈f1, al〉| · |〈al, f2〉|

≤ N

M

∥∥al
∥∥2 max

i=1,...,N
g

sup
‖f1‖=1

∑

l∈Gi

〈f1, al〉
||al||

≤ N

M
µ2(A)|T | max

i=1,...,N
g

sup
‖f1‖=1

∑

l∈Gi

〈f1, al〉
||al||

=
N

M
µ2(A)|T |γ = B. (A.9)

We put together (A.5), (A.9) and Theorem 5 to write

P (||Y || ≥ 1/2) ≤ |T | · exp
{

−1/8

7/6 · N
M
µ2(A)|T |γ

}
, (A.10)

which proves Theorem 3.
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APPENDIX B

PROOF OF LEMMA 1

One can express v0 as

v0 =

N/g∑

i=1

δi
∑

l∈Gi

A(l, t0)a
l. (B.1)

Now due to the orthogonality of the columns of the matrix A,

N/g∑

i=1

∑

l∈Gi

A(l, t0)A(l, t) = 0, (B.2)

and we can write

v0 =

N/g∑

i=1

(δi − E(δi))
∑

l∈Gi

A(l, t0)a
l =

N/g∑

i=1

Yi, (B.3)

with

Yi :=

(
δi −

M

N

)∑

l∈Gi

A(l, t0)a
l. (B.4)

We see that E(Yi) = 0 and we can write

E||v0||2 = E

∥∥∥∥∥∥

N/g∑

i=1

Yi

∥∥∥∥∥∥

2

= E

〈
N/g∑

i=1

Yi,

N/g∑

i′=1

Yi

〉
= E

N/g∑

i=1

〈Yi, Yi〉+ E

N/g∑

i 6=i′

〈Yi, Yi′〉 =
N/g∑

i=1

E 〈Yi, Yi〉 .

(B.5)

Each element of the sum above can be bounded by

E 〈Yi, Yi〉 = E

〈(
δi −

M

N

)∑

l∈Gi

A(l, t0)a
l,

(
δi −

M

N

)∑

l′∈Gi

A(l′, t0)a
l′

〉
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= var{δi}
〈
∑

l∈Gi

A(l, t0)a
l,
∑

l′∈Gi

A(l′, t0)a
l′

〉

=
M

N

(
1− M

N

)∑

l∈Gi

A(l, t0)
∑

l′∈Gi

A(l′, t0)
〈
al, al

′
〉

≤ M

N

∑

l∈Gi

|A(l, t0)|
∑

l′∈Gi

|A(l′, t0)| ·
∣∣∣
〈
al, al

′
〉∣∣∣

≤ µ(A)
M

N

∑

l∈Gi

|A(l, t0)|
∑

l′∈Gi

∣∣∣
〈
al, al

′
〉∣∣∣

≤ µ(A)
M

N

∑

l∈Gi

|A(l, t0)|
∑

l′∈Gi

∣∣∣∣
〈
al, al

′

‖al′‖

〉∣∣∣∣
‖al‖ ·

∥∥al
∥∥ ·
∥∥∥al′
∥∥∥

≤ µ3(A)|T |M
N

∑

l∈Gi

|A(l, t0)|
∑

l′∈Gi

∣∣∣∣
〈
al, al

′

‖al′‖

〉∣∣∣∣
‖al‖

≤ µ3(A)|T |M
N

γ
∑

l∈Gi

|A(l, t0)|. (B.6)

Putting together (B.5) and (B.6), we get

E||v0||2 ≤ M

N
µ3(A)|T |γ

N/g∑

i=1

∑

l′∈Gi

|A(l′, t0)| =
M

N
µ3(A)|T |γ

N∑

l=1

|A(l, t0)| =
M

N
µ3(A)|T |γ ‖A(:, t0)‖1 .

Now since AHA = I, we have ‖A(:, t0)‖2 = 1, and since for any vector h of length N

we have ||h||1 ≤
√
N ||h||2, it follows that

E||v0||2 ≤ M√
N
µ3(A)|T |γ, (B.7)

which proves Lemma 1.

148



APPENDIX C

PROOF OF LEMMA 2

By definition,

||v0|| = sup
||f ||=1

〈
v0, f

〉
= sup

||f ||=1

N/g∑

i=1

〈Yi, f〉 , (C.1)

with v0 from (B.3) and Yi from (B.4). For completeness, we reproduce below [56,

Theorem 3.2], which we use to prove Lemma 2.

Theorem 6. Let Y1, . . . , YN be a sequence of independent random variables taking

values in a Banach space and let Z be the supremum Z = supf∈F
∑N

n=1 f (Yi), where

F is a countable family of real-valued functions. Assume that |f(Y )| < B for every

f ∈ F and all Y , and Ef(Yi) = 0 for every f ∈ F and i = 1, . . . , N . Then, for all

t ≥ 0,

P (|Z − EZ| > t) ≤ 3 exp

( −t

KB
log

(
1 +

Bt

σ2 +BEZ̄

))
,

where

σ2 = sup
f∈F

N∑

i=1

Ef 2(Yi),

Z̄ = sup
f∈F

∣∣∣∣∣

N∑

i=1

f(Yi)

∣∣∣∣∣ ,

and K is a numerical constant.

Denote the mapping 〈Yi, f〉 for a fixed unit vector f as f(Yi), so that Z̄ = sup||f ||=1

∑N/g
i=1 f(Yi) =

||v0||. We have E{f(Yi)} = 0, and

|f(Yi)| =
∣∣∣∣∣

〈(
δi −

M

N

)∑

l∈Gi

A(l, t0)a
l, f

〉∣∣∣∣∣
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=

∣∣∣∣∣

(
δi −

M

N

)∑

l∈Gi

A(l, t0)
〈
al, f

〉
∣∣∣∣∣

<

∣∣∣∣∣
∑

l∈Gi

A(l, t0)
〈
al, f

〉
∣∣∣∣∣

≤ max
l∈Gi

|A(l, t0)| ·max
l∈Gi

||al|| ·
∑

l∈Gi

|〈al, f〉|
||al||

≤ γ · µ2(A) ·
√

|T | =: B. (C.2)

Now we find a bound on E{f 2(Yi)}:

E{f 2(Yi)} = E





∣∣∣∣∣

〈(
δi −

M

N

)∑

l∈Gi

A(l, t0)a
l, f

〉∣∣∣∣∣

2


 = var{δi} ·

∣∣∣∣∣
∑

l∈Gi

A(l, t0)〈al, f〉
∣∣∣∣∣

2

=
M

N

(
1− M

M

)
·
∣∣∣∣∣
∑

l∈Gi

A(l, t0)
〈
al, f

〉
∣∣∣∣∣

2

≤ M

N
µ2(A)

∑

l∈Gi

∣∣〈al, f〉
∣∣2 ,

and so
N/g∑

i=1

E{f 2(Yi)} ≤ µ2(A)
M

N

N/g∑

i=1

∑

l∈Gi

|
〈
al, f

〉
|2.

We know that
∑N/g

i=1

∑
l∈Gi

|〈al, f〉|2 = 1; therefore,

N/g∑

i=1

E{f 2(Yi)} ≤ M

N
µ2(A) =: σ2. (C.3)

Plugging (C.2) and (C.3) in Lemma 1, we have

E{Z̄} = E{||v0||} ≤ µ3/2(A)
√
|T |√γ

√
M

N1/4
. (C.4)

Assume that

√
γ|T |µ3/2(A)N3/4

√
M

< 1 ; 0 < a ≤
√
M

√
γµ(A)

√
N
√

|T |
;
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then with (5.10), we have

σ̄2 = γµ2(A)
M

N
> BE{Z̄} = BE{

∥∥v0
∥∥} > Bµ3/2(A)

√
γ
√
|T |

√
M

N1/4
, (C.5)

and by writing t = aσ̄ we have

Bt = Baσ̄ ≤ σ̄2. (C.6)

For
√
γ|T |µ3/2(A)N3/4

√
M

> 1 and 0 < a ≤
(

M
γµ(A)

√
N

)1/4
, with (5.10) we have

σ̄2 = γ3/2µ7/2(A)|T |
√
M = BE{Z̄} = BE{

∥∥v0
∥∥} = Bµ3/2(A)

√
γ
√

|T |
√
M

N1/4

and so

Bt ≤ σ̄2. (C.7)

Putting together (C.6), (C.7), and Theorem 6, we can write

P
(
||v0|| > µ3/2(A)N−1/4

√
γM |T |+ aσ̄

)
< 3e−κa2 ,

where κ is a numerical constant κ = log(1.5)
K

and K comes from Theorem 6. This

completes the proof of Lemma 2.
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APPENDIX D

PROOF OF LEMMA 3

Denote the events

E1 :

{∥∥AH
ΩTAΩT

∥∥ ≥ M

2N

}

and

E2 :

{
sup
t0∈T c

||v0|| ≤ µ3/2(A)N−1/4
√
γM |T |+ aσ̄

}
.

We can write

P

(
sup
t0∈T c

||w0|| ≥ 2N3/4µ3/2

√
γ|T |
M

+
2Naσ̄

M

)
≤ P (E1 ∩ E2) = P (E1 ∪ E2) ≤ P (E1) + P (E2),

and with Lemma 2 we have

P

(
sup
t0∈T c

||w0|| ≥ 2N3/4µ3/2

√
γ|T |
M

+
2Naσ̄

M

)
≤ P

(
||AH

ΩTAΩT || ≤
M

2N

)
+ 3e−κa2 ,

(D.1)

which proves Lemma 3.
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