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Summary

The majority of signals encountered in real applications, such as radar, sonar,

speech, and communications, are often characterized by time-varying spectral

contents. For this type of signals whose frequency contents evolve with time,

signal representation in time or frequency domain alone cannot fully describe its

time-varying characteristics. It would be far more useful to describe the signals

with the time-frequency representations (TFRs).

The TFRs for processing signals with time-varying frequencies can be gen-

erally categorized as linear and nonlinear transforms. The widely used linear

transform is the short-time Fourier transform (STFT). The nonlinear transforms

include the Wigner-Ville distribution (WVD) and various classes of quadratic

time-frequency transforms. During the studies of various signal processing

methods, it is found that the local polynomial Fourier transform (LPFT) is an

important and effective processing tool for many practical applications, mainly

because the LPFT is a linear transform and free from the cross terms that exist

in the WVD. Furthermore, the LPFT uses extra parameters to approximate the

phase of the signal into a polynomial form to describe time-varying signals with

a much better accuracy than the STFT.

This thesis focuses on the theoretical analysis of the LPFT, such as its

uncertainty principle and SNR analysis, followed by applications to demonstrate

its advantages and verify the theoretical analysis of the LPFT. Moreover, the
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reassignment technique is employed to further increase the concentration of the

local polynomial periodogram (LPP), which is the square of the LPFT.

First, the uncertainty principle of the LPFT is investigated. It is shown that

the uncertainty product of the LPFT of an arbitrary order is related to the signal

parameters, the window function, and the errors of estimating the polynomial

coefficients. The uncertainty principle of the LPFT becomes time-independent

when the Gaussian window is used to segment the signal and the parameters of

the LPFT kernel are estimated correctly. Factors that affect resolutions of signal

representation, such as the window width, the length of overlap between signal

segments, order mismatch and estimation errors of polynomial coefficients, are

also discussed. Examples in speech and bat sound processing are demonstrated

to show the advantage of the LPFT, compared with the STFT and the WVD.

Second, the quantitative signal-to-noise ratio (SNR) analysis of the LPFT

is derived based on the relationship between the LPFT and the WVD. The

quantitative SNR analysis of the pseudo WVD (PWVD) in continuous-time

form is presented as well. Comparisons are made among the SNRs achieved

by using the LPFT, the FT, the STFT and the PWVD. Both the theoretical

analysis and simulations have shown that the LPFT can provide higher SNR

improvement than the FT, the STFT and the PWVD.

Third, applications in radar imaging and linear frequency modulated (LFM)

signal detection are presented to show the improved performance using the

LPFT and to verify the theoretical SNR analysis of the LPFT. It shows that

compared with the FT and the STFT, the resolution of the ISAR images are

improved by using the LPFT. Furthermore, the improvement on imaging per-

formance is obtained by the non-overlapping approach to minimize the required

computational complexity. Since it can provide a better noise suppression than

the PWVD, the LPFT is a better tool to be combined with the Hough trans-

form for LFM signal detection. Simulations are presented for the detection of
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LFM signals corrupted by additive white Gaussian noise (AWGN) and impul-

sive noise to show that the LPP-Hough transform (LHT) achieves significant

performance improvement on detecting LFM signals in very low SNR environ-

ments. In addition, the computation time needed by the LHT can be further

reduced by using the time-frequency filtering.

Finally, the reassignment method is extended to the LPP to get the reas-

signed LPP. Its interesting properties, such as perfectly localization of the chirp

and impulse signals, are investigated with mathematical proofs. Compared

with the reassigned spectrogram and reassigned smoothed pseudo WVD, the

reassigned LPP shows the desirable ability for improvement on the signal con-

centration in the time-frequency domain. Moreover, the reassignment method is

extended to the robust methods, such as the robust spectrogram and the robust

LPP, to process signals corrupted by impulsive noise. Performances using vari-

ous LPP-related methods are compared for signals in AWGN, impulsive noise,

and the mixture of AWGN and impulsive noises. It shows that while the reas-

signed LPP can improve the distribution concentration for signals in AWGN,

the reassigned robust LPP can achieve improved concentration for signals in

impulsive noise because the median filtering effectively minimizes the effects of

the impulsive noise. However the reassigned LPP and reassigned robust LPP

are not useful to minimize the mean squared errors of instantaneous frequency

estimation, compared with those without reassignments.
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Chapter 1

Introduction

1.1 Motivation

In many practical applications, such as radar, sonar, and communications, the

signals under consideration are usually time-varying, that is, their frequencies

are varying with time. According to the Weierstrass approximation theorem

[1], the phase of an arbitrary time-varying signal can be well approximated by

a polynomial of sufficient order. This kind of time-varying signals with polyno-

mial phase, also known as the polynomial-phase signals (PPSs), are of significant

importance. The PPSs have been reported to be used in many different areas,

such as biomedical engineering [2–4], image processing [5, 6], image and audio

watermarking [7, 8], motion estimation in video sequence [9, 10], communica-

tions [11–17], sonar [18] and radar applications [19–24]. The following are some

examples.

• In biomedical engineering, seizures usually occur as the first sign of un-

derlying neurological disease or dysfunction in the newborn. Electroen-
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cephalogram (EEG) is a useful tool in evaluating a person’s tendency for

seizure disorders. It has been shown that the EEG signals exhibit sig-

nificant nonstationary and multicomponent feature [3, 4]. Characterizing

nonstationary EEG signals is a first step toward a global method of seizure

detection and classification.

• In the direct-sequence spread spectrum (DSSS) system, its performance

will deteriorate significantly when the interference is broadband such as

the linear or nonlinear frequency modulated (FM) interference. This kind

of interference may appear when the DSSS signal is transmitted in a band

containing PPS transmission to enhance the security [11]. Estimations of

the phase parameters of these PPSs provide the information to detect and

excise the interference [12, 13], therefore improving the error rate perfor-

mance and leading to increased system capacity and acquisition capability.

• In inverse synthetic aperture radar (ISAR) imaging, when the target has a

rotational motion, its kinematic parameters can be modelled by the PPS

[19]. In synthetic aperture radar (SAR), there is an increasing demand

for high resolution at low frequencies to recognize targets moving under

various scenarios such as hidden by foliage [20]. In such a case, longer

observation intervals are needed and the received signal can be modelled

as higher-order PPS [21].

The general frequency representation, Fourier transform (FT), is not suitable

for the time-varying signals, because it does not tell us when the frequencies of

the signals occur. As a result, in many real-time applications, it is far more use-

ful to characterize the signals with the time-frequency representations (TFRs).
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The TFR describes how the frequency content of a signal evolves over the time

and helps us obtain more detailed information of the time-varying signals. The

advantages of TFRs have been shown in a variety of applications such as radar

imaging [25], radar target detection [26], communications [27, 28], music analy-

sis [29–31], speech signal processing [32] and biomedical signal processing [4, 33].

There exist many different TFRs, and they generally fall into two categories,

which are linear TFRs and nonlinear TFRs [34–36]. Linear TFRs mainly include

the short-time Fourier transform (STFT) and the wavelet transform. Nonlin-

ear TFRs include the Wigner-Ville distribution (WVD), the ambiguity function

(AF), smoothed versions of the WVD, and the Cohen’s class. Generally speak-

ing, it is impossible to select a particular TFR for all possible applications. The

choice of a TFR depends on the available properties of the TFR and the specific

application at hand [34–36]. For instance, the WVD is known to be optimal for

monocomponent linear frequency modulated (LFM) signals since it achieves the

best energy concentration around the signal instantaneous frequency (IF) law.

Therefore it has been used as the optimal IF estimator for LFM signals [37] and

is well suited to time-varying filtering particularly for moncomponent signals

[18]. To evaluate whether a TFR is a suitable tool for practical high resolution

time-frequency analysis, the following criteria are generally considered.

• High concentration. Concentration describes how the TFRs concentrate

along the signal’s instantaneous frequency. To improve the concentration,

we need to minimize the sidelobe amplitude relative to mainlobe ampli-

tude, and to minimize mainlobe bandwidth about the signal instantaneous

frequency.

• High resolution. Resolution usually means whether we can separate two
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closely located components in the time and/or frequency domains. The

resolution can be measured by the minimum frequency separation between

the components’ mainlobes where their amplitudes and bandwidths are

preserved.

• Minimized cross terms for multicomponent signals. Due to their nonlin-

earity, nonlinear transforms generally suffer from the cross terms when

multicomponent signals are considered. Since the cross terms often make

the interpretation of the results difficult, it is greatly desired to suppress

the cross terms.

• Low computational complexity. In many practical applications, real-time

processing is required. To support high processing throughput, it is crucial

to select a TFR with low computational complexity.

Each TFR has its own advantages and disadvantages. For example, the

linear STFT is simple to implement and free from the cross terms for multicom-

ponent signals, but it only provides low resolution for time-varying signals. In

contrast, the WVD provides high resolution but contains cross terms for multi-

component signals. The LPFT, which is a generalized form of the STFT, was

presented recently [38]. Since it uses extra parameters to approximate the poly-

nomial phase of the PPSs, the LPFT can provide much better concentration and

resolution than the STFT. Moreover, due to its linearity, the LPFT is free from

the cross terms that exist in the WVD. The disadvantage of the LPFT is that

it is computationally demanding because its calculation involves the estimation

of extra parameters using the maximum likelihood estimator polynomial time

frequency transform (PTFT) [39, 40]. Luckily, various fast algorithms [39, 41–

47] have been proposed to reduce the computational complexity of the PTFT.
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Furthermore, methods to reduce the overlap between adjacent segments are

also presented to reduce the computational complexity [48]. In this way, the

computational load of the LPFT can be greatly reduced.

The LPFT has received considerable attention in the past years. The prop-

erties of the LPFT were studied and its energy concentration was illustrated in

[38]. This concentration motivates the use of the LPFT as an IF estimator [49].

Moreover, the LPFT has been used in a variety of applications, such as radar

imaging [50, 51], interference suppression in communications [52, 53], motion

parameter estimation in video sequences [10], and the IF estimation [38, 49].

Although much research has been done on the LPFT, there are still a lot of

questions that remain open and further investigations are always desired to

gain better understanding of the LPFT. In this thesis, we focus on the following

four areas.

1.1.1 Uncertainty Principle of the LPFT

The uncertainty principle, which arose in quantum mechanics, has been a fun-

damental issue in signal analysis [54]. The compromise between signal concen-

trations in the time and frequency domains is generally described in the form

of the uncertainty principle. Generally speaking, the more concentrated the

signal is, the more spread out its Fourier transform must be. Particularly, the

scaling property of the Fourier transform may be illustrated as follows: if we

“squeeze” a signal in the time domain, its Fourier transform will “stretch out”

in the frequency domain. It is well known that it is not possible to arbitrarily

concentrate a signal in both time and frequency domains at the same time.

Many different transforms, such as the time-frequency transforms of the Co-
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hen’s class [55, 56], the fractional Fourier transform [57] and the linear canonical

transform [58], are limited by the uncertainty principles. For example, it was

reported that the STFT is restricted by the uncertainty principle [59]. It is

understood that a shorter window used to capture the signal segment leads to

a better resolution in time domain but a poorer resolution in the frequency

domain to represent the signal. In contrast, a longer window used to capture

the signal segment leads to a better resolution in the frequency domain but a

poorer resolution in the time domain.

The LPFT, as a generalized form of the STFT, has been shown that its reso-

lution in the time-frequency domain is also affected by the window length which

controls the trade-off of bias and variance [38, 49]. However, a comprehensive

study on the uncertainty principle for the LPFT has not been reported in the

literature. Therefore, it will be of great interest to investigate the uncertainty

principle of the LPFT and the main factors which will affect the performance

of this time-frequency representation.

1.1.2 SNR Analysis of the LPFT

One important feature of time-frequency representations (TFRs) is that they

usually increase the signal-to-noise ratio (SNR) in the time-frequency domain

[60]. To quantitatively analyze the SNR increase by using TFRs is an important

issue for practical applications. Generally the SNR is defined as the ratio of the

mean power of the signal over the mean power of the noise, where the mean

is taken over the entire domain. However, this definition is not proper for

evaluating the possibility of detecting the narrowband signals in the frequency

domain as well as for time-varying signals in the time-frequency domain [61].
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Therefore another definition of SNR, which is similar to the definition of

3dB SNR in communications where only the signal in the 3dB bandwidth is

considered, is introduced in [61]. This 3dB SNR definition is transform-domain

dependent and directly relates to the bandwidth of the signal. It is suitable

for signals in the time-frequency domain as well as in the time domain and

frequency domain. Following this definition, quantitative SNR analysis of the

STFT and the WVD has been presented [61, 62].

In various applications [10, 38, 49–53], compared with the FT and the STFT,

the LPFT has shown its capability for improving the SNR. For example, in

radar imaging, the LPFT can achieve more focused and clearer image than that

using the STFT in cases of fast maneuvering targets [50, 51]. For interference

suppression in communication systems, the LPFT is able to achieve performance

improvement in comparison with that obtained from the systems based on the

STFT [52, 53].

However, how much SNR improvement can be obtained with the LPFT has

not been investigated in the literature. The SNR analysis of the LPFT should

be further studied to help us quantitatively evaluate the SNR improvement

achieved by using the LPFT.

1.1.3 Applications of the LPFT

Some applications, such as the ISAR imaging and LFM signal detection, are

needed to demonstrate the improved performance achieved by using the LPFT

and verify the theoretical SNR analysis of the LPFT.
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1.1.3.1 ISAR Imaging

Radar image formation is a process of reconstructing images of radar targets

from recorded complex data [63]. When the movements of radar targets are

complicated such as rotation, acceleration or maneuvering, the time-frequency

transforms (TFTs) can be used to achieve more focused and clearer ISAR images

[25, 63].

Different types of TFTs have been employed for ISAR imaging. For exam-

ple, the short-time Fourier transform (STFT) [25] is employed in ISAR imaging

due to its simplicity and easy implementation. However, its resolution is low

for time-varying signals. High resolution TFTs, such as Wigner-Ville distribu-

tion (WVD) [25] and continuous wavelet transform [64], were studied for ISAR

image applications. However, the performances achieved by using some of these

transforms generally suffer from the cross-term interferences. In general, it is

desired to find a TFT that provides high concentration, has low cross-term

interferences and accurately reflects the IF of the analyzed signal.

As introduced before, the LPFT can provide high resolution for time-varying

signals with a local polynomial function approximating to the IF characteristic

of the analyzed signals. In addition, it is free from the cross terms due to its

linearity. Therefore, the LPFT can be employed as the TFT to process the

LFM signals for ISAR imaging to obtain higher resolution images.

1.1.3.2 LFM Signal Detection

Among the PPSs, the linear frequency modulated (LFM) signals, also known as

the chirp signals, are the most common ones in nature. For example, they can
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be observed in echolocation by bats and dolphins [22], epileptic seizure activity

in electroencephalographic (EEG) data [65], and glissando in music which is a

slide up or down the notes of a scale [66]. They are also extensively used in

manmade systems, such as radar and sonar [19]. In these areas, chirp detection

is important since it helps in understanding the underlying characteristics of

the signal.

For LFM signal detection, the time-frequency based methods have attracted

significant attention [67–69]. Since a LFM signal will be described as a straight

line in the time-frequency domain, it is possible to combine the TFR with some

image processing tools, such as the Hough transform, for LFM signal detection.

The Hough transform is a feature extraction technique to detect lines in an

image, which has been widely used in image analysis, computer vision and

digital image processing. It is robust to the extraneous noise due to the line

integration. Therefore, by resorting to the Hough transform, the task of tracking

straight lines in the time-frequency domain is turned into locating the maximum

peak in the signal parameter domain.

The WVD has been combined with the Hough transform for LFM detection

[67]. However, the WVD is suffered from cross terms for multicomponent sig-

nals. Moreover, the WVD cannot provide good representation for signals under

heavy noise due to the inherent noise threshold effect problem [37]. It is desir-

able to use some other transforms, such as the LPFT, which can concentrate

the LFM signal in low SNR environment to achieve better representation, then

the Hough transform can be employed as the post-processor to detect the LFM

signals.
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1.1.4 Combining the Reassignment Method with the LPFT

to Further Improve the Concentration

As mentioned above, a good TFR should provide high concentration and resolu-

tion for signals in the time-frequency domain. Although the LPFT can provide

a good resolution for the time-varying signals, methods to further increase the

concentration and resolution are always preferred so that an accurate interpre-

tation of the signal components can be possibly made.

The reassignment method is an effective operation to improve signal con-

centration in the time-frequency domain. It has been generalized to deal with

the bilinear time-frequency and time-scale distributions [70], the affine class

[71] and S-method [72]. This observation motivates us to extend the reassign-

ment method to the local polynomial periodogram (LPP), which is the squared

LPFT, to further improve the concentration of time-varying signals.

In practice, the signals under consideration are always corrupted by noise.

In general, the embedded noise is assumed to be additive while Gaussian noise

(AWGN). However, in some situations, such as in the applications of commu-

nications and imaging, signals are disturbed by noises exhibiting the impulsive

characteristics. For these situations, the robust methods [73, 74] are often used.

It will be interesting to extend the reassignment method to the robust methods

to improve the concentration of signals corrupted by impulsive noise. Moreover,

performance analysis of the reassigned LPP (RLPP) and the reassigned robust

LPP (RrLPP) in different noise environments is also desired.
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1.2 Objectives

This thesis aims to further explore the LPFT with theoretical analysis and to

process time-varying signals with techniques based on the LPFT. The main

objectives of this thesis are summarized as follows.

• To investigate the uncertainty principle of different order LPFTs and to

get a generalized form of the uncertainty product.

• To present the quantitative SNR analysis of the LPFT, with comparison

to that of the FT, the STFT and the WVD.

• To demonstrate application examples of the LPFT in radar imaging and

LFM signal detection in heavy noise environments.

• To combine the reassignment method with the LPP to improve the con-

centration in the time-frequency domain. The properties of the reassigned

LPP are to be investigated. The reassignment method is also to be com-

bined with the robust methods, such as the robust spectrogram and the

robust LPP, to improve the concentration for signals in impulsive noise.

Performances of various LPP-related transforms are to be compared in

different noise environments.

1.3 Major Contributions of the Thesis

The major contributions of the thesis are as follows:

• From the second-order, third-order and fourth-order LPFT, the uncer-

tainty principle is generalized to the Mth-order LPFT, and the derivation
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of the uncertainty principle of the Mth-order LPFT with correctly esti-

mated parameters is also given. It is shown that the uncertainty product

of the LPFT is affected by the signal parameters and the window function,

in addition to the errors of estimating the polynomial parameters. A few

issues, such as the window width, the overlap length between the signal

segments, the order mismatch and the estimation error, are explained in

terms of the uncertainty products. The LPFT is compared with the FT,

STFT and WVD to show its superiority in processing time-varying signals

such as the speech signal and the bat sound.

• Based on the relationship between the LPFT and the WVD, theoretical

analysis on the 3dB SNR achieved by using the LPFT is provided. The

3dB SNR analysis of the pseudo WVD in continuous-time form is also

presented. Comparisons are made among the SNRs achieved by using

different transforms such as the LPFT, the FT, the STFT and the WVD.

Theoretical analysis and simulations show that the LPFT can provide

improved SNR, compared with the FT, the STFT and the WVD.

• Application examples in radar imaging and LFM signal detection are pre-

sented to show the improved SNR performance achieved by using the

LPFT. It shows that compared with the FT and the STFT, the resolution

of the ISAR images is improved by using the LPFT. Furthermore, the

improvement on imaging performance is obtained by the non-overlapping

approach to minimize the required computational complexity. Compared

with the WVD, the LPFT can better suppress the noise effect. Therefore,

the LPFT is a better tool to be combined with the Hough transform for

LFM signal detection. Using the Wigner-Hough transform (WHT) and
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the LPP-Hough transform (LHT), simulation results for detecting mono-

component and multicomponent LFM signals are presented. Compared

with the WHT, the LHT can provide better detection for LFM signals in

very low SNR environments.

• The reassigned LPP (RLPP) is developed and its interesting properties

are investigated with mathematical proofs. Simulation results for vari-

ous signals, such as parallel linear chirps, crossed linear chirps, parabolic

frequency modulated signals and sinusoidal frequency modulated signals

are presented to show that the reassigned LPP is capable of improving

the signal concentration in the time-frequency domain. The reassignment

method is also combined with the robust methods to process signals in im-

pulsive noise. Furthermore, performance using various LPP-related meth-

ods are compared for signals in different noise environments, in terms

of readability, computation complexity, distribution concentration, and

mean squared error (MSE) of IF estimation.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 outlines the basics for the analysis of PPSs. The background of the

PPS model and the Cramér-Rao lower bound (CRLB) of the PPS parameters

are reviewed. The parametric methods, which are utilized for the estimation

of the PPSs, are introduced and compared. Finally, a review of time-frequency

representations, such as the STFT, the WVD and the LPFT, is given.

In Chapter 3, the uncertainty principle of the LPFT with arbitrary or-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



1.4. Organization of the Thesis 14

der is investigated. Some issues which affect the signal concentration in the

time-frequency domain are discussed. Comparisons and simulations among the

STFT, the WVD and the LPFT are presented to show the advantage of the

LPFT.

Based on the relationship between the LPFT and WVD, Chapter 4 provides

theoretical SNR analysis for the LPFT. Comparisons are made among the SNRs

achieved by using the LPFT, the FT, the STFT and the WVD. Simulations are

given to show that the LPFT can achieve higher SNR improvement than the

FT, the STFT and the WVD.

In Chapter 5, application examples in radar imaging and LFM signal de-

tection are presented to verify that the LPFT can achieve improved SNR per-

formance compared with other transforms such as the FT, the STFT and the

WVD.

Chapter 6 focuses on the reassigned LPP and its properties to improve the

signal concentration in the time-frequency domain. The reassigned robust meth-

ods are also proposed to better process the signals in impulsive noise. Perfor-

mance on LPP-related transforms are compared in various noise environments.

This thesis is concluded in Chapter 7. Some recommendations for future

work are also given in Chapter 7.
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Chapter 2

Background

2.1 Introduction

This chapter is to review some fundamental concepts related to the time-varying

signals and to provide the necessary background for better understanding the

following chapters. The rest of this chapter is organized as follows. Section 2.2

discusses the PPS and its CRLB. In Section 2.3, the suboptimal maximum

likelihood methods, such as the high-order ambiguity function (HAF) and the

product HAF (PHAF), are briefly introduced. The polynomial time frequency

transform (PTFT) is introduced as the maximum likelihood method and is com-

pared with the suboptimal maximum likelihood methods to show its advantages.

The fast algorithms for the PTFT are also presented. Finally the time-frequency

representations are introduced and reviewed in Section 2.4. Several basic repre-

sentations such as the STFT and WVD are introduced, and the local polynomial

Fourier transform (LPFT) is discussed with its definition and properties.
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2.2 The PPS and Its CRLB

As stated in Chapter 1, polynomial-phase signals (PPSs) are often used in

a variety of applications, such as pulse compression radar systems [23, 24],

synthetic aperture radar imaging [63] and mobile communications [75]. The

form of the PPS is defined as

s(t) = A(t)ejφ(t), (2.2.1)

where A(t) is the amplitude and φ(t) is the phase of the signal. An important

parameter of the time-varying signal is the instantaneous frequency (IF) defined

as the derivative of the phase, i. e. f(t) = 1
2π

dφ(t)
dt

. The IF, as a time-varying

parameter, describes the location of the signal’s spectral peak as it varies with

time [18]. Much research has been carried out for estimating the IF of signals

and various approaches have been proposed [18, 34, 35, 76, 77].

According to the Weierstrass approximation theorem [1], the phase φ(t) of

the time-varying signal x(t) can be approximated by a polynomial function on

a closed and bounded interval if φ(t) is a continuous function of t. Therefore

the general form of the Mth-order PPS is expressed as

s(t) = A(t)ejφ(t) = A(t)e
j2π

M∑

m=0
amtm

, (2.2.2)

where the amplitude A(t) is a constant or a real-valued stationary process. It

can be easily seen that s(t) becomes a harmonic signal when M = 1. When

M = 2, s(t) becomes a linear frequency modulated (LFM) signal, which is also

called a chirp signal.

For a constant amplitude monocomponent PPS embedded in additive white
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Gaussian noise (AWGN), the discrete signal model is given by

x(n) = Ae
j2π

M∑

m=0
am∆mnm

+ w(n), n = 0, 1, · · · , N − 1 (2.2.3)

where ∆ is the sampling interval, which is assumed (without loss of generality)

to be unit unless otherwise indicated in the rest of the thesis, and w(n) is

independent and identically distributed (i.i.d) sequence of complex Gaussian

random variables with zero mean and variance σ2. The unknown parameters

are assumed to be the amplitude A and the phase parameters a0, a1, · · · , aM .

For the unbiased mth-order phase parameter estimate âm, the Cramér-Rao lower

bound (CRLB), which is the theoretical minimum variance of estimators for a

deterministic parameter, is given as follows [78]

var{âm} ≥ 1

8π2N(N∆)2m SNR

[

1

2m + 1
+

(M + 1)2

2N(m + 1)2
− 1

2N
+ O(N−2)

]

·[(M + m + 1)Cm
M+mCm

M ]2, (2.2.4)

where Ck
n = n!

(n−k)!
is the binomial coefficient, and SNR = A2/σ2 is the input

SNR. It shows that the CRLB is approximately inversely proportional to the

SNR, the number of measurements N , and the 2mth power of the observation

interval N∆. Interestingly, the CRLB is independent of the phase parameters

am. Some special cases are given by

var{â0} ≥
[

1 +
(M + 1)2 − 1

2N
+ O(N−2)

]

(M + 1)2

8π2N SNR

var{â1} ≥
[

1

3
+

(M + 1)2 − 4

8N
+ O(N−2)

]

[M(M + 1)(M + 2)]2

8π2N(N∆)2 SNR

var{âM} ≥ [1 + O(N−2)]
(2M + 1)(CM

2M)2

8π2N(N∆)2M SNR
. (2.2.5)

Multicomponent PPSs are also very common in a variety of applications,

such as radar and mobile communications [21, 79, 80]. In these applications,
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multiple targets, multiple paths or multicomponent interferences often occur.

The number of components is equal to the number of targets in the radar appli-

cation or to the number of multiple paths or interferences in the communication

application. For an L-component PPS, the discrete signal can be expressed as

x(n) =
L

∑

i=1

Ai(n)e
j2π

M∑

m=0
ai,mnm

+ w(n), 0 ≤ n ≤ N − 1, (2.2.6)

where the parameter ai,m is the phase coefficient, and the subscript i denotes

the ith component. The definition of IF is meaningful only for monocomponent

signals. For multicomponent signals, the signal can be viewed as a weighted

sum of monocomponent signals, each one with its own IF [81].

2.3 Parameter Estimation of PPSs

In many applications, estimation of the PPS parameters is of significant impor-

tance since these parameters usually carry the desirable and relevant informa-

tion. In inverse synthetic aperture radar (ISAR) imaging, for example, when

the target has a rotational motion, its kinematic parameters can be modelled

by the PPS [19]. To achieve a focused image of the target, polar reformatting

is usually needed to allow the FT to be used properly. The knowledge of initial

kinematic parameters of the target is needed to perform the polar reformat-

ting. In synthetic aperture radar (SAR), there is an increasing demand for high

resolution at low frequencies to recognize targets moving under various scenar-

ios such as hidden by foliage [20]. In such a case, longer observation intervals

are needed and the received signal should be modelled as higher-order PPS

[21]. Furthermore, in the direct-sequence spread spectrum system, the perfor-

mance will deteriorate significantly when the interference is broadband such as
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the linear or nonlinear frequency modulated interference. Estimations of the

phase parameters of the PPSs provide the information to detect and excise the

interference [12, 13].

Tremendous research work has been done on the estimation of PPSs [21,

23, 34, 39, 40, 79, 82–90]. These reported approaches can be categorized as

nonparametric methods and parametric methods. Nonparametric methods can

employ the filter-based techniques such as the phase-locked loop (PLL), least

mean square (LMS) and recursive least square (RLS) adaptive filters to track

the phase of the signals [82–84]. However, these filter-based methods are unable

to track very rapid changes in the IF. Moreover, the step size has to be adjusted

a priori; otherwise, they may not converge to the true answer [18]. The time-

frequency transforms can also be used as nonparametric methods to estimate

the IF of the signals [34] and they have the advantages of providing time infor-

mation about the variations of the IF of the analyzed signal. Their effectiveness

to provide accurate estimates of the IF has been extensively investigated in the

past decades [18, 34, 35, 60, 76]. The parametric methods are motivated by

the Weierstrass approximation theorem to estimate the polynomial phase pa-

rameters. Compared with the nonparametric methods, the parametric methods

provide inherently unlimited resolution and good noise rejection capability [91].

Generally, the parametric methods can be categorized into two classes, which

are the suboptimal methods such as those based on high-order ambiguity func-

tion (HAF) [21, 23, 79, 85–88] and the maximum likelihood estimator based on

the polynomial time frequency transform (PTFT) [39, 40, 89, 90].
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2.3.1 Suboptimal Maximum Likelihood Methods

The high-order ambiguity function (HAF) is an efficient transform to estimate

the parameters of PPSs [23, 79, 85, 86]. Among the suboptimal maximum

likelihood methods, HAF-based estimation is the most popular candidate due

to its computational efficiency. Given a sequence x(n), the generalized Mth-

order multi-lag high-order instantaneous moment (ml-HIM) is given recursively

as [87]

x1(n) = x(n),

x2(n; τ 1) = x1(n + τ1)x
∗
1(n − τ1),

· · ·

xM(n; τM−1) = xM−1(n + τM−1; τM−2)x
∗
M−1(n − τM−1; τM−2), (2.3.1)

where τM−1 = [τ1, τ2, · · · , τM−1] is the vector containing all the lags for the

Mth-order ml-HIM. The multi-lag HAF (ml-HAF) of the signal x(n) is defined

as the FT of the ml-HIM

XM(f ; τM−1) =
N−1
∑

n=0

xM(n; τM−1)e
−j2πfn. (2.3.2)

This definition of the ml-HIM, however, differs from the definitions in [23,

79, 85, 86] in two aspects: i) it does not assume that the lags τi are all equal

to each other; ii) it is symmetric with respect to the lags. It means that the

HAF given in [23, 79, 85, 86] is the special case of the ml-HAF, corresponding

to the situation in which the lags are all equal to each other, i.e., τM−1 =

(τ, τ, · · · , τ) and nonsymmetric definitions. It has been proved in [88] that the

lag diversity introduces a redundancy which is then exploited to attenuate cross

terms and spurious harmonics with respect to the useful terms. Furthermore,
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the symmetric definition yields the same variance in the estimate of the highest

order parameter but smaller variances for the estimates of all other parameters

compared with the nonsymmetric definition. Therefore, the multi-lag symmetric

definition is preferred.

The basic property is that the Mth-order ml-HIM can reduce a sampled

Mth-order PPS into a single tone with frequency f = 2M−1M !
M−1
∏

k=1

τkaM . Thus,

the estimation of the parameter aM can be obtained by searching for the peak

of the magnitude of (2.3.2), i.e.,

âM =
1

2M−1M !
M−1
∏

k=1

τk

arg max
f

|XM(f ; τM−1)| . (2.3.3)

Once the highest order parameter âM has been estimated, it can be removed

from the signal x(n) by multiplying x(n) with e−j2πâMnM
to obtain a PPS of

order M − 1, where âM−1 can be estimated using the (M − 1)th-order ml-HAF.

The technique can then be iterated to estimate all the phase parameters up to

the first order one.

Although the HAF is computationally efficient, it suffers from the noise-

masking effects at low SNR and the cross terms in the presence of multicompo-

nent signals due to its nonlinearity [79]. Moreover, it has been shown in [21, 88]

that HAF-based methods suffer from an identifiability problem if multicompo-

nent signals have the same highest order phase parameters. To overcome the

identifiability problem and attenuate the cross terms, the product high-order

ambiguity function (PHAF) was proposed in [21, 88]. Given L sets of lags

τ
(l)
M−1 = (τ

(l)
1 , τ

(l)
2 , · · · , τ

(l)
M−1) with l = 1, 2, · · · , L, the PHAF is obtained as the
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product of the ml-HAFs, properly scaled, i.e.,

XL
M(f ; TL

M−1) =
L

∏

l=1

XM











M−1
∏

k=1

τ
(l)
k

M−1
∏

k=1

τ
(1)
k

f ; τ
(l)
M−1











, (2.3.4)

where τ
(l)
k indicates the kth component of the lth set, and TL

M−1 is the matrix

containing all the sets of lags. The main property of the PHAF is that the

locations of only the useful sinusoids are dependent with the lags, and the scaling

operation aligns the useful sinusoids. In contrast, the peaks of the spurious

sinusoids fall in different locations after scaling. In this way, the PHAF enhances

the useful peaks and suppresses the spurious ones. In the monocomponent case,

the PHAF has a lower SNR threshold than the HAF.

Several other algorithms have been proposed to improve the statistical per-

formance including output SNR and asymptotic variance. For instance, the in-

tegrated generalized ambiguity function (IGAF) [87], an extension of the HAF-

based methods, is defined by coherent integrations along each lag in the ml-HIM

defined in (2.3.1). The IGAF estimates two phase parameters at each iteration

as opposed to estimating one in the HAF-based methods, therefore it is more

computationally intensive. Because of the coherent integrations, the IGAF can

effectively suppress the cross terms. Therefore, the IGAF provides higher out-

put SNR, which leads to a lower SNR threshold and a closer approach to the

CRLB. It also provides a better capability of discriminating multicomponent

signals. Moreover, the high-order phase function (HPF) [92, 93] has been intro-

duced recently to estimate the parameters of a PPS. The advantage of the HPFs

is that they always have lower orders of nonlinearities than the HAFs, therefore

having a lower SNR threshold for effective analysis. For multicomponent PPS,

the algorithm based on the generalized HPF is suggested in [94] by adopting a
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similar idea of PHAF. A new and very broad generalization has been proposed

in the form of the generalized multilinear function class [95]. The generalized

multilinear function class subsumes many previously defined classes, including

the HAF, the polynomial WVD, and the HPF. It also provides a framework for

creating new class numbers for efficiently analyzing high-order PPS. Another

interesting method [91] was proposed to use a “bottom-up” approach which

first estimates the parameters associated with the lowest order instead of the

highest order, based on the observation that the number of cross terms increases

drastically with the order of HAF (PHAF).

However, it should be mentioned that the improvements on the output SNR

and estimation variances of these reported methods are limited, especially for

PPSs with high order and/or low input SNR. This is because these methods

do not change the nonlinearity, which is the fundamental reason for the perfor-

mance deterioration. Moreover, the recursive estimation structure will produce

the error propagation phenomena.

2.3.2 Maximum Likelihood Method

Maximum likelihood estimation (MLE) is a popular method used for fitting a

statistical model to data and providing estimates for the model’s parameters.

Compared with the HAF-based methods, the MLE provides higher output SNR

without any SNR threshold and achieves better statistical performance which

asymptotically approaches the CRLB [90, 96]. This is because that the MLE is

implemented with a linear transform which is free from the cross terms. For the

constant amplitude PPS embedded in AWGN, as defined in (2.2.3), the MLE
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of the phase parameters and the amplitude are given by [89, 97]

{â1, â2, · · · , âM} = arg max
θ

∣

∣

∣

∣

∣

N−1
∑

n=0

x(n)e
−j2π

M∑

m=1
θmnm

∣

∣

∣

∣

∣

2

â0 = angle

(

N−1
∑

n=0

x(n)e
−j2π

M∑

m=1
âmnm

)

Â =
1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

x(n)e
−j2π

M∑

m=1
âmnm

∣

∣

∣

∣

∣

, (2.3.5)

where θ = {θ1, θ2, · · · , θM}.

If the amplitude is random time-varying, it can be assumed to be a real-

valued stationary process with any structure and independent of the AWGN.

Accordingly the discrete signal model can be given by

x(n) = A(n)e
j2π

M∑

m=0
am∆mnm

+ w(n), n = 0, 1, · · · , N − 1 (2.3.6)

and the MLE of the phase parameters and the amplitude are expressed as

follows [90]:

{â1, â2, · · · , âM} = arg max
θ

∣

∣

∣

∣

∣

N−1
∑

n=0

x2(n)e
−j2π

M∑

m=1
2θmnm

∣

∣

∣

∣

∣

2

â0 =
1

2
angle

(

N−1
∑

n=0

x2(n)e
−j2π

M∑

m=1
2âmnm

)

Â(n) =
1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

x(n)e
−j2π

M∑

m=1
âmnm

∣

∣

∣

∣

∣

. (2.3.7)

2.3.2.1 Polynomial Time Frequency Transform (PTFT)

To obtain the MLE, θ = {θ1, θ2, · · · , θM} needs to be digitized. Therefore, the

Mth-order polynomial time frequency transform (PTFT) is defined as [39, 40]

PTFT(k0, k1, · · · , kM−1) =

N0−1
∑

n=0

y(n)W k0n
N0

W k1n2

N1
· · ·W kM−1nM

NM−1
, (2.3.8)
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where WN = e−j2π/N , y(n) = x(n) for constant amplitude and y(n) = x2(n) for

time-varying amplitude, 0 ≤ ki ≤ Ni−1 for i = 0, 1, · · · ,M−1, and ki/Ni is the

discrete form of θi+1. For simplicity of presentation, let us define a demodulated

sequence y(d)(n) = y(n)W k1n2

N1
· · ·W kM−1nM

NM−1
, then (2.3.8) can be expressed as

PTFT(k0, k1, · · · , kM−1) =

N0−1
∑

n=0

y(d)(n)W k0n
N0

, (2.3.9)

which means that the PTFT of y(n) is equivalent to the discrete Fourier trans-

form (DFT) of y(d)(n). Due to the property of DFT, sharp peaks appear in the

PTFT if there exist sinusoidal signals in y(d)(n). This occurs when integer ki for

i = 1, · · · ,M − 1 can take values satisfying ki/Ni ≈ ai+1. Since the parameters

a1, a2, · · · , aM are estimated according to the defined grids, the performance of

PTFT is influenced by the quantization errors δi, i.e., δi = ai+1 − ki/Ni, which

can be controlled by the dimension size Ni. The frequency deviation caused by

the quantization errors δi is assumed to be much smaller than the frequency of

the sinusoidal component, which can be expressed as [39]

∣

∣

∣

∣

∣

M−1
∑

i=1

niδi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

M−1
∑

i=1

ni/(2Ni)

∣

∣

∣

∣

∣

≪ |a1| ≤ 0.5, n = 0, · · · , N0 − 1, (2.3.10)

since the maximum quantization error δi along the ith dimension is 1/(2Ni).

Otherwise the peak may not be easily identified due to the quantization errors.

Therefore we have

M−1
∑

i=1

N i
0

Ni

≪ 1, (2.3.11)

which mean that for 1 ≤ i ≤ M−1, Ni ≫ N i
0 is required to achieve a satisfactory

accuracy for parameter estimation.

When the above constraint is satisfied the PTFT of a multicomponent PPS

exhibits the same number of peaks as that of components in the PPS. For
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Figure 2.1: The PTFT of the sum of two second-order PPSs having the same
amplitude (SNR = 0dB).

example, Figure 2.1 indicates that the second-order PTFT of a two-component

PPS clearly shows the locations of two peaks even in the presence of AWGN

with SNR = 0dB. From the location coordinates of the peaks, the parameters

of the PPS can be estimated.

2.3.2.2 Advantages of the PTFT

Compared with the suboptimal estimation methods, such as the HAF, the

PHAF and the IGAF, the most significant advantage of the maximum like-

lihood method based on the PTFT is that it is a linear transform with respect

to the signal x(n). This linear property is important since it makes the PTFT

work well even at low SNRs and/or higher orders. The PTFT generally provides

advantages in the following three aspects.

Firstly, the PTFT provides MLE of the PPS’s phase parameters [90] and

asymptotically approaches the CRLB [78]. In contrast, statistical analysis in [86]
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Figure 2.2: Comparison of variances of the estimates achieved using HAF,
PHAF, PTFT and CRLBs, (a) â1 and (b) â2, versus SNR.

demonstrates that, although the asymptotic variances of estimates based on

HAF are close to the CRLB for high SNR, they exhibit a consistent departure

from the CRLB for low SNR and the deviation increases with the phase polyno-

mial order. As shown in [88], although the PHAF can improve the performance

of the HAF in the presence of noise, the estimation variances obtained from

PHAF cannot reach the CRLB, that is due to the noise masking effects caused

by the nonlinearity structure of the estimator. Therefore, the estimation based

on the HAF or PHAF is comparable to that based on PTFT only when SNR is

high and the phase polynomial order is small. The IGAF is a recursive approach

that estimates two phase parameters at each iteration, and its performance falls

between those of the maximum likelihood method and the HAF-based methods

[87]. It is asymptotically efficient for the second order but loses the efficiency

when the degree of the polynomial increases [87]. The following experiment is

given to compare their performances. A second-order PPS corrupted by AWGN

is considered, with the parameter a1 = 0.2, a2 = 0.001 and N = 128 samples.

The numbers of the grids for computing HAF and PTFT are selected large
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enough to keep the maximum quantization errors smaller than the root of the

CRLB. For each value of the SNR, the variances of estimating a1 and a2 are

obtained from 200 independent trials. The variations achieved using the HAF,

PHAF (with L=3 sets), and PTFT are compared with the CRLBs [78] in Fig-

ure 2.2. It can be easily observed that the variances acquired by the PTFT

are always closer to the CRLB than the HAF-based methods. The variances

achieved from the HAF-based methods become close to the CRLB only when

the SNR is greater than a threshold. When the SNR is smaller than the thresh-

old, the performance degrades rapidly, which means the methods cannot work

properly under this condition.

Secondly, the PTFT has a higher output SNR (SNRout) than the HAF-

based methods, especially when the input SNR (SNRin) is low. The SNRout

is an important measurement of the estimator’s sensitivity to noise [67, 87].

The relationship between the SNRin and SNRout of the PTFT has been derived

in [98] as

SNRout = N SNRin, (2.3.12)

which clearly shows that the ratio between SNRout and SNRin of the PTFT

is a function of the number of samples and independent of the order M . The

expressions of SNRout of the IGAF and HAF are summarized in [87] and are

given here for comparison. The expressions relative to the IGAF for the second-

order and third-order PPSs are as follows

SNR
(2)
out =

N2 SNR2
in

2N SNRin +2
(2.3.13)

and

SNR
(3)
out =

10N5 SNR4
in

240N2 + 960N2 SNRin +450N3 SNR2
in +81N4 SNR3

in

. (2.3.14)
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The expressions relative to the HAF are given as

SNR
(2)
out =

N SNR2
in

4 SNRin +2
(2.3.15)

and

SNR
(3)
out =

N SNR4
in

6 + 24 SNRin +33 SNR2
in +18 SNR3

in

(2.3.16)

According to equations from (2.3.12) to (2.3.16), Figure 2.3 plots the SNRout

normalized with respect to the number of samples N as a function of SNRin,

i.e., SNRout /N vs. SNRin. The dashed, solid and dotted lines refer to the

PTFT, IGAF and HAF respectively. From this figure, we can observe that:

i) both IGAF and HAF exhibit the threshold effect, i.e., the output SNRs

decrease drastically below a certain value of SNRin. Moreover, the threshold

effect becomes more evident as the polynomial orders increases; ii) the threshold

of the IGAF decreases as the number of samples increases, while the HAF has

a threshold that does not depend on the number of samples; iii) the PTFT is

free from the threshold effect. Furthermore, for a given SNRin, the PTFT has

the highest SNRout compared with the HAF-based methods.

Finally, since the PTFT estimates all the phase parameters simultaneously,

it does not suffer from the error propagation which occurs in the recursive

structures of the HAF, PHAF and IGAF algorithms. In addition, when dealing

with multicomponent PPSs, the PTFT has no cross terms due to its linearity. In

contrast, the cross terms generally exist in HAF, PHAF and IGAF algorithms

due to their nonlinearity.
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Figure 2.3: The output SNR, normalized by N , versus input SNR for (a) second-
order and (b) third-order PPS. Dashed line: PTFT, dotted line: HAF, and solid
line: IGAF with (a) N = 1024, (b) N = 256, (c) N = 64, (d) N = 16.

2.3.2.3 Fast Algorithms for the PTFT

Although the PTFT can provide MLE for the phase parameters of PPSs, it

generally requires a huge computation complexity due to the multi-dimensional

calculation. Therefore fast algorithms for the PTFT are very important for

practical applications. Some algorithms have been proposed to reduce the com-

putational complexity, which will be reviewed as follows.

As shown in (2.3.9), the PTFT of y(n) can be expressed as

PTFT(k0, k1, · · · , kM−1) =

N0−1
∑

n=0

y(d)(n)W k0n
N0

= DFTn[yd(n)], (2.3.17)

where the subscript n indicates that the DFT is performed in terms of index n.

Thus, the computation defined in (2.3.8) can be performed by using 1D DFT cal-

culations, which is similar to the row-column method for the multi-dimensional

DFTs. For an Mth-order PTFT of a length-N input sequence, (
M−1
∏

i=1

Ni) 1D

length-N DFTs are required. Assuming the input sequence length N is a power
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of two, with the help of the fast Fourier transform (FFT) [99], the PTFT can

reduce its complexity from the order of (
M−1
∏

i=1

Ni)N
2 to (

M−1
∏

i=1

Ni)N log2 N , which

is still difficult to support even with high speed processors.

To achieve a better computational efficiency, the fast quadratic phase trans-

form [39] was proposed for the second-order PTFT. Compared with the FFT

version of the PTFT, the fast quadratic phase transform can reduce the com-

putational complexity by a factor log2 N . This work was extended to the third-

order PTFT by exploiting the intrinsic symmetric properties of the PTFT [41].

It was further generalized to support an arbitrary order PTFT in [42], based on

the decimation-in-time (DIT) decomposition technique, to reduce the overall

computational complexity. For example, the numbers of complex multiplica-

tions and additions are reduced by a factor of 2M−1 log2 N for the Mth-order

PTFT of length-N input sequence, compared with the algorithm that directly

uses the 1D FFTs.

However, further reduction on computational complexity is still possible

since some properties of the PTFT are not fully utilized. Recent work [43, 44]

was reported to provide a significant computational saving for an arbitrary or-

der PTFT. For example, a general fast algorithm for arbitrary order PTFTs

is derived based on the split-radix concept [43], and a radix-2 decimation-in-

frequency (DIF) fast algorithm for any order PTFTs was reported in [44] by

using the periodic and symmetric properties of the PTFT.

It should be noted that these reported fast algorithms for PTFT [39, 41–44]

only support sequence length being a power of two. When the sequence length

is not supported by the available fast algorithms, however, zero padding tech-

niques have to be employed to augment the input sequence to the next available
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size supported by these fast algorithms. This mismatch surely wastes the com-

putational resources and increases the computational complexity. Therefore fast

algorithms based on various radix numbers for other sequence lengths are also

highly desired. Based on radix-3 decomposition techniques, fast algorithms for

the PTFT of any order is presented in [45]. By combining other factors in the

sequence lengths, it can be used to efficiently support many different sequence

lengths. The fast algorithms are further generalized for computing the PTFT of

length apb, where a, b and p are positive integers [46]. The periodic and symmet-

ric properties of the PTFT are effectively used to minimize the computational

complexity. By assigning values of a, b, and p, various algorithms, for example,

radix-a and split-radix-2/(2a) are presented to provide the flexibility supporting

PTFTs of various sequence lengths. Similarly, fast algorithms for computing

the PTFT that deals with a real-valued sequence of length apb are investigated

in [47]. Since the PTFT has a conjugate symmetric property for real-valued

input sequence, the corresponding fast algorithms can effectively reduce the

computational complexity compared to the fast algorithms for complex-valued

sequences.

2.4 Time-Frequency Representations

From a mathematical point of view, a given signal can be described in many

different ways. In the time domain representation, it is shown how signal mag-

nitude changes over time. Frequency domain is another most important repre-

sentation. One widely used frequency representation is the Fourier transform

(FT), which tells us the distribution of the frequencies and their amplitudes.

However, the spectrum obtained via the FT does not tell us when those fre-
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quencies occur or vanish. In many practical applications, it is far more useful

to characterize the signal in time and frequency domain simultaneously, which

is the time-frequency representations (TFRs).

The fundamental idea of the TFRs is to describe how the frequency content

of a signal changes in time, so that we can deal with the time-varying signal

more accurately. As shown in Figure 2.4, the plot at the bottom of the figure

is the time waveform of the bat sound which can be downloaded from [100].

The plot on the left is the standard power spectrum from the FT. From the

spectrum alone, however, we cannot tell how those frequencies evolve over time.

The main plot is the time-dependent spectrogram, a function of both time

and frequency, which clearly reveals the frequency characteristics of the signal.

From this plot, we can not only tell how the frequency changes, but also see the

intensity of the frequencies shown by the relative brightness levels of the plot.

Consequently, by using the TFRs, the information in the frequency domain can

be more accurately revealed.

TFRs have been used in many practical applications. In radar imaging, due

to the complex motion of a target, the Doppler frequency shifts are generally

time-varying. By using the Fourier transform to retrieve Doppler information,

the Doppler spectrum becomes smeared and the image is blurred. The TFRs can

be used to replace the Fourier transform as a means of radar image reconstruc-

tion, and the blurred image due to complex motion can be refocused without

polar reformatting [25]. In image and audio watermarking, when the linear

chirps are embedded as watermark signal, the detection of this kind of water-

mark can be performed by the TFRs [6, 7]. The TFRs significantly improve the

performance of the watermark detection process and can be combined with other

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



2.4. Time-Frequency Representations 34

Spectrogram

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Spectrum

50 100 150 200 250 300 350 400

Time waveform

Figure 2.4: The time waveform, spectrum, and TFR of the bat sound data.

existing watermark embedding/extraction algorithms for increased robustness.

In the spread spectrum communications, the TFRs are used for nonstationary

interference excision with improved bit error ratio (BER) performance [27, 28].

Moreover, the TFRs provide interesting approaches to mathematically analyze

music, identify patterns in the time-frequency structure of music at multiple

time scales, and provide insight into the nature of music [29, 30]. The TFRs

are employed to provide time-frequency structures of the sounds produced by

different musical instruments [31]. These time-frequency structures correlate

well with our perceptions of the sounds and their differences produced by these

instruments. The advantages of TFRs can also be found in radar target de-

tection [26], speech signal processing [32, 101] and biomedical signal processing

[3, 4, 33].

There are various types of TFRs. Each type has its individual advantages

and disadvantages. Generally speaking, it is not possible to have a particular
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TFR that is suited to all possible applications. The choice of a TFR depends

on the specific application at hand [34–36] to best use the available properties

of the TFR. Performance criteria for the TFRs are introduced in [102]. For

a monocomponent signal, performance of the TFRs can be measured in terms

of the energy concentration that the TFR approaches to the signal IF. To im-

prove the concentration, we need to minimize the sidelobe amplitude relative

to mainlobe amplitude, and to minimize mainlobe bandwidth about the sig-

nal IF. For a multicomponent signal, performance of the TFR can be analyzed

by not only the energy concentration of each component but also the reso-

lution, which is measured by the minimum frequency separation between the

components’ mainlobes where their amplitudes and bandwidths are preserved.

Resolution measure criteria was introduced in [103], which takes into account

key attributes of TFRs, such as components’ mainlobes, sidelobes and cross

terms. The introduction of this measure allows to quantify the quality of TFRs

instead of relying solely on visual inspection of their plots in the time-frequency

domain.

2.4.1 Short-time Fourier Transform (STFT)

The most popular linear TFR is the STFT due to its simple concept and easy

implementation. The basic idea behind STFT is straightforward. As shown in

Figure 2.5 [60], at each time instant t0, the spectrum is represented by the FT

of a small segment of the signal x(t) around t0. For the signal x(t), the STFT

is defined as

STFT(x; t, ω) =

∫ ∞

−∞
x(t + τ)h∗(τ)e−jωτdτ, (2.4.1)
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where h(τ) is the window function of finite sequence length. For simplicity in

the rest of the thesis, the integral without limits implies that the integration is

from −∞ to ∞. Since the STFT is a linear transform, it is free from the cross

terms that appear in many nonlinear TFRs.
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Figure 2.5: Illustration of the STFT.

The STFT is widely used because of its easy implementation and linearity

property. It has been used for many practical applications such as speech pitch

and format analysis [32], interference excision in spread spectrum communica-

tions [28], fingerprint enhancement [104] and onset detection in music signals

[105].

Nevertheless, the basic assumption of the STFT is that the frequencies in

each signal segment are not changed with time so that the Fourier transform

can be used to analyze the frequency characteristics. In this way, the frequency

variations with time are approximately described by the Fourier transforms of

the successive signal segments. Because the basic assumption mentioned above

is not generally true, however, the resolution of the STFT in the time-frequency
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domain is often limited. Moreover, it should be noted that the time resolution

and frequency resolution of the STFT are limited by the uncertainty principle

[34]. With a time-limited window function, the resolution of the STFT is de-

termined by the window size. A larger window has a higher time resolution but

lower frequency resolution; a smaller window has a higher frequency resolution

but lower time resolution.

In most applications, such as the instantaneous frequency estimation which

arises in a variety of applications including FM demodulation [106] and non-

stationary interference excision in direct sequence spread spectrum communica-

tions [28], high resolution is desired. Therefore, some forms of adaptive STFT

are presented to get a better resolution for the signals [106–109]. The STFTs

with different window lengths are computed at different time instances. The

window used at each time instance, which can be decided according to the adap-

tation criteria such as concentration measurement [106] and maximum correla-

tion rule [108], should be matched to the signal characteristics of that instance,

therefore increasing the resolution of the STFT. To reduce the computational

complexity, the STFTs with different window lengths can be computed in a

recursive way [28, 107].
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2.4.2 Nonlinear TFRs

2.4.2.1 Quadratic TFRs: Wigner-Ville distribution (WVD), ambi-

guity function (AF) and Cohen’s class

The WVD is defined as the FT of the product function x(t + τ/2)x∗(t − τ/2)

with respect to τ ,

WVD(x; t, ω) =

∫

x(t + τ/2)x∗(t − τ/2)e−jωτdτ, (2.4.2)

which is obtained by performing the Fourier transform with respect to the vari-

able τ .

By performing the Fourier transform with respect to the variable t, we obtain

another popular time-frequency representation called the ambiguity function

(AF), i.e.,

AF(x; θ, τ) =

∫

x(t + τ/2)x∗(t − τ/2)ejθtdt. (2.4.3)

The ambiguity function has been widely used in the context of radar and sonar.

It has a close relationship with the WVD as

WVD(x; t, ω) =
1

2π

∫ ∫

AF(x; θ, τ)e−j(ωτ−θt)dθdτ, (2.4.4)

which indicates that the WVD is a double Fourier transform of the ambiguity

function.

The WVD satisfies a large number of desirable mathematical properties [34].

For example, it is always real-valued, preserves time and frequency shifts, sat-

isfies the marginal properties, and also provides the optimal concentration for

LFM signals. Despite all these desirable properties, the WVD suffers from the

cross terms due to its nonlinearity when multicomponent signals are considered.
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Since the cross terms often make the interpretation of the results difficult, the

reduction of the cross terms becomes an important issue. Many alternatives,

such as pseudo WVD (PWVD), smoothed pseudo WVD (SPWVD) [60], and

reduced interference distribution (RID) [110], have been proposed to suppress

the undesired cross terms. In general, these solutions are to use various win-

dows to filter out the oscillating cross terms. With fewer cross terms, these

modified WVDs have been used in many applications, such as analysis of the

biological signals [110] and the radar imaging [111]. Although these modified

methods can substantially suppress the cross terms, the smoothing operation

will destroy many of the desirable properties of the WVD.

Generally, these variations, together with the WVD, constitute the Cohen’s

class defined by

C(x; t, ω) =
1

4π2

∫ ∫ ∫

x(u + τ/2)x∗(u − τ/2)φ(θ, τ)e−jθt−jτω+jθududτdθ

=
1

4π2

∫ ∫

φ(θ, τ)AF(x; θ, τ)e−jθt−jτωdτdθ (2.4.5)

where φ(θ, τ) is the kernel function. This indicates that a quadratic TFR is

obtained from a two-dimensional filtering in the ambiguity domain. The prop-

erties of the TFRs in this class can be readily known by simply examining the

kernel function φ(θ, τ).

The S-method is another technique proposed to suppress the cross terms

[72]. It performs well when the components are well separated and its per-

formance deteriorates if the signal components overlap in the time-frequency

domain [112].
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2.4.2.2 High-order TFRs − Polynomial WVD

As we introduced, the WVD provides optimal concentration for a LFM signal

in the time-frequency domain, that is, it can yield delta function around the

instantaneous frequency (IF) for the LFM signal. However, for nonlinear FM

signals the optimal concentration cannot be obtained and some artifacts may

occur to hide the real feature of the signals. This limitation motivates the

design of the polynomial WVD [113], which is an extension of the WVD. The

polynomial WVD is defined as

W (M)
x (t, ω) =

∫ M/2
∏

m=1

x(t + dmτ)x∗(t + d−mτ)e−jωτdτ, (2.4.6)

to exhibit delta functions around the signal IF for polynomial FM signals. The

order M of the polynomial WVD is an even integer which indicates the order of

nonlinearity of the polynomial WVD, whereas dm and d−m are real coefficients.

The realness of the polynomial WVD results in dm = −d−m. The optimal energy

concentration of the polynomial WVD enables it to be used for estimation of the

IF of polynomial FM signals. Its performance as an IF estimator is evaluated

in the presence of additive white Gaussian noise [77] and impulsive noise [114].

The design of higher order polynomial WVD and the selection criteria for the

optimal set of kernel coefficients are discussed in [115].

Due to its nonlinearity, the polynomial WVD suffers from the cross terms

when it is used to analyze multicomponent signals. The number of cross terms

increases very rapidly with the order of the polynomial WVD [77]. Moreover,

when it is used as the IF estimator, the polynomial WVD performs well at high

SNR but suffers from threshold effects at low SNR [116].
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2.4.3 Local Polynomial Fourier Transform (LPFT)

Recently the local polynomial Fourier transform (LPFT) [38] was developed as a

high-order generalization of the STFT. It was reported to provide high resolution

for time-varying signals with a local polynomial function approximating to the

IF characteristic of the analyzed signals. To realize the local polynomial function

approximation, the LPFT introduces polynomial parameters including the first

order derivative and other higher order derivatives of the IF of the analyzed

signal. The form of the LPFT is as follows [38],

LPFT(x; t,̟) = LPFT(x; t, ω, ω1 · · ·ωM−1)

=

∫

x(t + τ)h(τ)e−jθ(τ,̟)dτ, (2.4.7)

where

θ(τ,̟) = ωτ + ω1τ
2/2 + · · · + ωM−1τ

M/M !,

̟ = (ω, ω1, · · · , ωM−1),

and M is the order of the LPFT. The local polynomial periodogram (LPP) is

defined as

LPP(x; t,̟) = |LPFT(x; t,̟)|2 . (2.4.8)

When M = 1, the LPFT and LPP become the STFT and spectrogram, respec-

tively.

The LPFT has found applications in many areas. For instance, it has been

used for improvement of the radar images in cases of fast maneuvering targets

[50, 51] and for nonstationary interference suppression in noise radar systems

[117]. It is useful for interference suppression in communication systems to

achieve performance improvement in comparison with that obtained from the
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systems based on the STFT [52, 53]. In [118], a new form of beamformer based

on the LPFT is derived for source localization and tracking in nonstationary

environment, which can resolve closely spaced sources provided that their ve-

locities are sufficiently different. Motion parameters in video sequences, such as

the velocity and acceleration, can be estimated using the LPFT [10]. Moreover,

the LPFT can be used as an IF estimator, and the corresponding asymptotic

covariance matrix and bias of the estimates are studied in [38, 49]. The concept

of the LPFT is also implemented for the polynomial WVD to produce high

signal concentration along the IF [119], and it is also extended to the L-Wigner

distribution in [120].

For the LPFT, the corresponding form of Parseval’s theorem can be written

as [119]

1

2π

∫

|LPFT(x; t,̟)|2 dω =

∫

|x(t + τ)h(τ)|2 dτ, (2.4.9)

which indicates that the LPFT can be interpreted as a time-frequency energy

distribution over the t−ω
0(t) space, where ω

0(t) = [Ω(t), Ω(1)(t), · · · , Ω(m−1)(t)]T

is a vector of the true values of the IF Ω(t) and its derivatives. The energy con-

centration of LPFT(t,ω) in ω
0(t) for the time instant t is illustrated in [38, 49].

The principal difference between the LPFT and the quadratic and high-order

TFRs has been discussed in [38]. The LPFT is linear with respect to the signal

and uses the polynomial function, θ(τ,̟), in the complex exponent (or the

transform kernel). On the other hand, quadratic and higher degree polynomials

of the signals are used with the exponential function e−jωτ in TFRs, wherein

the argument of the exponent is linear with respect to variable τ . Due to

its linearity, the LPFT can be inversed to reconstruct the original signal by
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integrating the LPFT over ω, that is

x(t) =
1

2πh(0)

∫

LPFT(x; t,̟)dω. (2.4.10)

It has been shown in [74] that for a LFM signal s(t) = Aej(a0t+
b0
2

t2) the

corresponding second-order LPFT is

|LPFT(s; t, ω)| = A

√

2π

|ω1 − b0|
exp

{

j
(ω − a0 − b0t)

2

4(ω1 − b0)

}

∗H(ω),

(2.4.11)

where ∗ is the convolution in the frequency domain and H(ω) is the Fourier

transform of the window function h(t). Therefore the second-order LPFT is

concentrated along the instantaneous frequency of the LFM signal, ω = a0+b0t,

for ω1 = b0. The fractional Fourier transform (FRFT), a generalization of the

FT, is another method that can concentrate LFM signals. Its definition is

expressed as [121]

Fα(u) =























√

1−j cot α
2π

ej(u2/2) cot α
∫

x(t)ej(t2/2) cot α−jut csc αdt, α 6= nπ,

x(t), α = 2nπ,

x(−t), α = (2n + 1)π.

(2.4.12)

The FT is a special case of the FRFT with the rotation angle α = π
2
. For M=2,

ω = u csc α and ω1 = cot α in (2.4.7), the FRFT can be expressed in terms of

the second-order LPFT as

Fα(u) =

√

1 − j cot α

2π
ej(u2/2) cot αLPFT(x; t, ω, ω1), (2.4.13)

therefore the LPFT provides a broad generalization of the FRFT [36].

The LPFT is computationally demanding because it is based on the PTFT

estimation which involves calculating a multi-dimensional function and finding

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



2.4. Time-Frequency Representations 44

the maximum of the multi-dimensional function. To decrease calculation bur-

den, the second-order LPFT with point-wise chirp rate parameter estimation

was proposed as [50, 74]

LPFTα(t)(x; t, ω) =

∫

x(t + τ)h∗(τ)e−jα(t)τ2/2e−jωτdτ, (2.4.14)

where α(t) is time-varying chirp parameters, which can be estimated by

α̂(t) = arg max
α∈Λ

H(α, t), (2.4.15)

where Λ is a set of values of considered chirp rate parameters, and H(α, t) is

the concentration measure discussed in [122, 123]. For signals with multiple

components, another efficient method known as the modified LPFT was intro-

duced in [48]. It can be approximately viewed as the sum of the LPFT of each

component. It is computed through the following steps:

• use a window function to divide the signal into a number of segments, and

model each segment as an Mth-order PPS;

• estimate the phase parameters of each segment using the PTFT;

• compute LPFT with the estimated parameters and selected window length.

The length of overlap between two consecutive segments controls the compu-

tation load as well as the smoothness of the spectrum. It has been shown in

[48] that the LPFT with no overlap can still yield satisfactory performance if

the window length is small enough. In this way, the computational complexity

can be greatly reduced. More details on the application of the LPFT can be

found in [48]. Since the computation complexity of the LPFT increases with the

order of the PPS, processing higher order PPSs with lower order LPFT is an-

other way to reduce the computational complexity. It should be noted that for
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higher-order PPSs, the second-order LPFT can employ a small window length

to ensure that each segment within the window can be assumed to be a chirp

signal. In this way, the second-order LPFT, which is particularly suitable to

process the LFM signals, can also be used to process higher-order signals with

time-varying frequencies, which will be shown later.

Compared with the nonlinear transforms such as the WVD, the LPFT is

free from the cross terms due to its linearity [38]. Moreover, theoretically the

LPFT can provide high resolution for PPSs if the extra parameters required by

the LPFT computation are properly estimated and updated [38]. In general,

accurate estimation of parameters can be easily obtained by using the PTFT

[39, 40] to achieve a high resolution of the time-frequency representation. There-

fore, the LPFT is a nonparametric method which has strong links with both

nonparametric methods and the parametric estimators of the polynomial phase

[49]. To further explore the theoretical analysis and applications of the LPFT,

as well as to further improve the concentration for the LPP, will be the theme

of this thesis.
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Chapter 3

Uncertainty Principle of the

LPFT

3.1 Introduction

The uncertainty principle plays an important role in signal processing [54] as

well as in physics [124]. For the Fourier transform, generally speaking, the

more concentrated the signal is, the more spread out its Fourier transform must

be. It is impossible to arbitrarily concentrate both a function and its Fourier

transform. This trade-off can be formalized in the form of the uncertainty

principle. Similarly, the STFT is also limited by the uncertainty principle [34].

Based on the uncertainty principle, it is understood that a shorter window used

to capture the signal segment leads to a poor resolution in the frequency domain

to represent the signal, and vice verse. It is not possible to arbitrarily increase

the resolution in both domains at the same time. Literatures [125, 126] and

the references therein can be referred to about the review on the uncertainty
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principle.

Studies on the uncertainty principle of various transforms have been reported

in the literature. It was addressed in [55] that the time-frequency transforms

of the Cohen’s class are affected by some fundamental properties such as the

marginal property, the energy conservation property, and the Moyal’s relation.

Each of these properties implies a restriction on the signal concentration in the

time-frequency domain and is thus related to the uncertainty principle. The

local uncertainty product of the spectrogram and a large class of bilinear time-

frequency distributions were considered in [56], and the uncertainty principle of

local quantities was demonstrated to show that the local uncertainty product

is always less than or equal to the global uncertainty product. The uncertainty

principle for real signals in the domain of fractional Fourier transform (FRFT)

was investigated in [57], and a tighter lower bound than that reported in [127]

was derived on the product of the signal spreads in the time and FRFT domains.

The logarithmic, Heisenberg’s and short-time uncertainty principles associated

with the FRFT were recently presented in [128], and it was shown that the

uncertainty principles continue to hold for these transforms involving the FRFT

parameter. Two entropic uncertainty principles in FRFT domains, i.e., Shannon

entropy uncertainty principle and Rényi entropy uncertainty principle, were

recently derived in [129] and were generalized for multiple functions and discrete

case as well. Similarly, the uncertainty principle for real signals in the linear

canonical transform (LCT) domain was derived in [58] to give a tighter lower

bound than that given in [121]. The uncertainty principle for complex signals

in the LCT domain were derived in [130], and the tighter lower bound for real

signals in [58] was also proven to hold for arbitrary LCT parameters based on

the properties of moments for the LCT.
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It has been observed that the resolution of the LPFT in the time-frequency

domain is also influenced by the window size which controls the trade-off of

bias and variance [38, 49]. A data-driven approach based on the intersection of

confidence intervals (ICI) was proposed in [131] to solve the problem of window

size selection. The window size is considered as a parameter of estimation and a

number of estimates are calculated for a set of values of this parameter. Then,

the ICI rule is used for selection of the estimate with the best window size,

therefore obtaining a varying adaptive window size selection optimizing the local

accuracy of estimation. Note that when nonsymmetric rectangular window is

used and the signal is corrupted by AWGN, the LPP estimator coincides with

the maximum likelihood estimator mentioned in Section 2.3.2. It is believed

that there must exist some form of the uncertainty principle based on the LPFT.

However, a comprehensive study on the uncertainty principle for an arbitrary

order LPFT has not been reported in the literature.

The definition of the LPFT has been given in Chapter 2 and is rewritten

here for the convenience of the readers. The Mth-order LPFT is expressed as

[38]:

LPFT(t, ω, ω1 · · ·ωM−1) (3.1.1)

=

∫

s(t + τ)h(τ) exp

{

−jωτ − j

M
∑

m=2

ωm−1τ
m

m!

}

dτ,

=

∫

s(τ) exp

{

jωt − j

M
∑

m=2

ωm−1(τ − t)m

m!

}

h(τ − t) exp {−jωτ} dτ,

where M is the order of the polynomial function, ω1 = dΩ(t)
dt

, ω2 = d2Ω(t)
dt2

, ..., and

ωM−1 = dM−1Ω(t)
dtM−1 are the polynomial parameters, and Ω(t) is the instantaneous

frequency of the signal.

The LPFT is particularly suited to process the polynomial-phase signals
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(PPSs) with a Gaussian amplitude defined by

s(t) = (
a

π
)1/4 exp

{

−at2

2

}

exp

{

j
P

∑

m=1

am−1t
m

m!

}

, (3.1.2)

where P is the order of the PPSs. To compute the LPFT in (3.1.1), the polyno-

mial parameters ω1, ω2, ..., ωM−1 are first estimated using the polynomial time

frequency transform (PTFT) [39, 40] and then used to form the polynomial

phase, as shown in (3.1.1). The LPFT is obtained by using an STFT procedure

whose input is obtained by modulating s(τ) with exp

{

jωt − j
M
∑

m=2

ωm−1(τ−t)m

m!

}

.

When M , the order of the LPFT, is large, one practical problem is that

the corresponding PTFT requires a heavy computational load even using the

fast algorithms reported in Section 2.3 of Chapter 2. Based on the radix-2 fast

algorithm for the PTFT [44] and the fast Fourier transform (FFT) algorithm

[99] for the STFT computation, the number of complex multiplications needed

by the LPFT is approximately

CLPFT (N) ≃
[

Cr
PTFT (q) +

q

2
log2q + 0.75q

] N

q − l
, (3.1.3)

where N is the length of the input signal, q is the length of the window (or

signal segment), and l, 1 ≤ l ≤ q − 1, is the length of overlap between signal

segments. In (3.1.3), Cr
PTFT (q) is the number of complex multiplications needed

by the rth-order PTFT of length q, the second term in the square bracket is

the number of complex multiplications for an FFT of length q, the third term

in the square bracket is the number of complex multiplications for windowing

and modulation operations, and the factor outside the square bracket is approx-

imately the number of the signal segments used for the LPFT. It was reported

that for the rth-order PTFT of length N , where r = 2 or 3, the required number
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of complex multiplications are in the order of N r [44],

C2
PTFT (N) =

13

64
N2 − 3

2
N + 1, (3.1.4)

C3
PTFT (N) =

31

1536
N3 − 7

6
N + 1, (3.1.5)

which means that the PTFT requires a heavy computational complexity, es-

pecially when N is large. Therefore it is important to find various methods

to minimize the computational complexity for the parameter estimations by

using the PTFT. Similar to the concept of the STFT which uses Fourier trans-

form to deal with the time-varying signal, we can use a smaller number of the

polynomial parameters in the LPFT to approximate the frequency contents of

the signal segments. If the second-order LPFT is used to process higher-order

PPSs, as shown in [48, 74], for example, the number of polynomial parameters

to be estimated is reduced, which directly leads to the reduction of the PTFT

order, or equivalently the required computational complexity. We will discuss

the side effects of this order mismatch, i.e., the order of the LPFT is smaller

than the order of the PPSs, on the resolution of the signal representation in the

time-frequency domain. Other practical issues, which also exist in the STFT,

including the effects of window width and the length of overlap between adja-

cent signal segments, will be discussed. The computational complexity can be

significantly reduced if the overlap length can be minimized without obviously

degrading the resolution of the time-frequency representation. The effects of

estimation errors of the polynomial parameters are also to be observed in this

chapter.

This chapter firstly reports the mathematical derivations of the uncertainty

principles of the second, third, fourth-order and thereafter Mth-order LPFTs.

It is found that the uncertainty product of an arbitrary order LPFT is related
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to the parameters of the signal and the window function, as well as the errors of

estimating the polynomial parameters. When the polynomial parameters of the

transform kernel are accurately estimated, the uncertainty product becomes a

constant when a Gaussian window is used to segment the input signal. Based on

the derived signal duration and bandwidth, from which the uncertainty product

is obtained, we then discuss the effects, in terms of the resolution in the time-

frequency domain and the minimization of the required computational com-

plexity, of window width, order mismatch, i.e., using the second-order LPFT

to process higher-order PPSs, and the length of overlap between signal seg-

ments. Comparisons are also made on the resolutions of signal representations

in the time-frequency domain achieved by using the STFT, the Wigner-Ville

distribution (WVD) and the second-order LPFT.

The rest of the chapter is organized as follows. After the review on the

terminologies used in deriving the uncertainty principle of the STFT in Sec-

tion 3.2, the uncertainty principles of the LPFTs of different orders are given in

Section 3.3. Section 3.4 discusses the effects of various issues on obtaining desir-

able signal representations in the time-frequency domain. Signal concentrations

of different time-frequency representations are also compared. Conclusions are

given in Section 3.5. Finally the mathematic derivation of the uncertainty prod-

uct of the Mth-order LPFT, with the parameters correctly estimated, is given

in Appendix in Section 3.6.
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3.2 Review on the Uncertainty Principle of STFT

We will consider the P th-order PPS defined in (3.1.2) as the input signal. By

multiplying s(t) with a window function h(t), the local signal is defined as

st(τ) = s(τ)h(t − τ). It is easily seen that the Fourier transform of the local

signal st(τ) is exactly the STFT of the original signal s(t). The normalized local

signal at time t is

ηt(τ) =
s(τ)h(τ − t)

√

∫

|s(τ)h(τ − t)|2dτ
, (3.2.1)

which ensures that for any t,
∫

|ηt(τ)|2dτ = 1. We will review some terminologies

based on the normalized local signal ηt(τ) [34] which is a function of τ within a

short duration, and its Fourier transform is defined as

Ft(ω) =

∫

ηt(τ) exp {−jωτ} dτ,

to reveal the spectral information around the time instant t. For this normalized

local signal, all the relevant quantities, such as the mean time, duration, mean

frequency and bandwidth, are time dependent [34].

The mean time of the normalized local signal is defined as

〈τ〉t =

∫

τ |ηt(τ)|2dτ

=

∫

τ |s(τ)h(τ − t)|2dτ
∫

|s(τ)h(τ − t)|2dτ

, (3.2.2)

and its duration, or signal spread in time, is defined as

T 2
t =

∫

(τ − 〈τ〉t)2 |ηt(τ)|2 dτ

= 〈τ 2〉 − 〈τ〉2t , (3.2.3)
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where 〈τ 2〉 is the second-order moment of the normalized local signal, defined

as

〈τ 2〉 =

∫

τ 2|ηt(τ)|2dτ.

Similarly, the nth-order moment of the normalized local signal is defined as

〈τn〉 =

∫

τn|ηt(τ)|2dτ.

The mean frequency of the normalized local signal is defined as

〈ω〉t =

∫

ω|Ft(ω)|2dω

=

∫

η∗
t (τ)

1

j

d

dτ
ηt(τ)dτ, (3.2.4)

and its bandwidth, or signal spread in frequency, is

B2
t =

∫

(ω − 〈ω〉t)2|Ft(ω)|2dω

= 〈ω2〉 − 〈ω〉2t , (3.2.5)

where

〈ω2〉 =

∫

ω2|Ft(ω)|2dω = −
∫

η∗
t (τ)

d2ηt(τ)

dτ 2
dτ. (3.2.6)

The duration T 2
t and bandwidth B2

t are good measures of the broadness of

the local signal in the time and frequency domains, respectively. For example,

T 2
t (or B2

t ) of a signal means the squared width of the signal concentrated around

the mean time 〈τ〉t (or mean frequency 〈ω〉t). The uncertainty product in the

STFT domain is generally a function of time, the signal s(t) and the window

h(t), and has a lower bound [34]

B2
t T

2
t ≥ 1

4
.
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It should be noted that the focus of this chapter is on the uncertainty product

obtained by multiplying the duration and bandwidth of the local signal. It

is important to understand that this uncertainty product places limits on the

processing techniques of the windowed transforms. Other kinds of uncertainty

products, such as the global uncertainty products, can be referred to [59].

3.3 Uncertainty Principles of the LPFTs

Based on the definitions given in the previous section, this section first presents

the uncertainty principles for the lower order, i.e., M = 2, 3 and 4, LPFTs.

Then, a general expression of the uncertainty principle for the Mth-order LPFT

is deduced. It is assumed that the input signals are PPSs with the same orders

of the LPFTs, i.e., M in (3.1.1) is equal to P in (3.1.2). The corresponding

normalized local signal is

ηt(τ) =

s(τ)h(τ − t) exp

{

jωt − j
M
∑

m=2

ωm−1(τ−t)m

m!

}

√

∫

|s(τ)h(τ − t)|2dτ
, (3.3.1)

where

h(t) =
(α

π

)1/4

exp

{

−αt2

2

}

, (3.3.2)

is a Gaussian window used to obtain the signal segments and α > 0 is the

parameter to control the window width.

With the above defined input signal and the window function, the normal-

ization factor, i.e., the integral in the denominator of (3.3.1), becomes

∫

|s(τ)h(τ − t)|2dτ =

(

aα

π(a + α)

)1/2

exp

{

− aαt2

a + α

}

. (3.3.3)
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Therefore, the normalized local signal is expressed as

ηt(τ) =

(

α + a

π

)1/4

exp

{

− α2t2

2(α + a)
− (α + a)τ 2

2
+ ατt + j

P
∑

m=1

am−1t
m

m!

}

· exp

{

jωt − j
M

∑

m=2

ωm−1(τ − t)m

m!

}

. (3.3.4)

For an arbitrary order PPS, it is easy to derive

|ηt(τ)|2 =

(

α + a

π

)1/2

exp

{

−(α + a)(τ − αt

α + a
)2

}

, (3.3.5)

which is independent of the order of the PPS. With (3.2.2), the mean time, 〈τ〉t,

of the normalized local signal becomes

〈τ〉t =
αt

a + α
.

Similarly, we also obtain

〈τ 2〉 =
1

2(a + α)
+

α2t2

(a + α)2
. (3.3.6)

Therefore the duration defined in (3.2.3), or the signal spread in time, of the

normalized local signal is expressed as

T 2
t =

1

2(a + α)
. (3.3.7)

Since both 〈τ〉t and T 2
t are related to |ηt(τ)| instead of ηt(τ), they are indepen-

dent of the order of the input signal. It means that the signal duration in the

time domain is determined by the signal parameter α and window parameter a

only.

We will compute the mean frequency 〈ω〉t and the bandwidth Bt for the

LPFTs of various orders. For the second-order LPFT, the local signal is

st(τ) = s(τ)h(τ − t) exp

{

jωt − j
ω1(τ − t)2

2

}

, (3.3.8)
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where s(t), the input of the second-order LPFT, is the second-order PPS, or

the chirp signal, obtained by setting P = 2 in (3.1.2), and ω1 is estimated by

using the second-order PTFT. In this case, the Fourier transform of the local

signal st(τ) becomes the second-order LPFT of s(t).

The normalized local signal for P = 2 in (3.3.4) at the time t becomes

ηt(τ) =
s(τ)h(τ − t) exp

{

jωt − j ω1(τ−t)2

2

}

√

∫

|s(τ)h(τ − t)|2dτ

=

(

α + a

π

)1/4

exp

{

−(α + a)τ 2

2
+ ατt +ja0τ +

ja1τ
2

2
− α2t2

2(α + a)

}

· exp

{

jωt − jω1(τ − t)2

2

}

.

With the definition in (3.2.4), we have

〈ω〉t = a0 + ω1t +
αt(a1 − ω1)

a + α

= a0 + ω1t + (a1 − ω1)〈τ〉t, (3.3.9)

in which the first term is related to the signal parameter a0, the second term is

related to ω1, and the last term is a product of the deviation of ω1 from a1 and

the mean time 〈τ〉t. Similarly, by using (3.2.6), we have

〈ω2〉 =
a + α

2
+ 〈ω〉2t +

1

2(a + α)
(a1 − ω1)

2, (3.3.10)

which shows that the frequency variance is determined by the parameters of the

signal and the window in the first term, the square of mean frequency in the

second term, and the scaled square of the estimation error of the polynomial

parameter ω1 in the last term. With the above derivation results, the bandwidth

in the domain of the second-order LPFT becomes

B2
t = 〈ω2〉 − 〈ω〉2t

=
a + α

2
+

(a1 − ω1)
2

2(a + α)
. (3.3.11)
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Therefore

B2
t T

2
t =

1

4
+

(a1 − ω1)
2

4(a + α)2
, (3.3.12)

which is related to the parameters of the signal and the window, and the errors

of estimating the polynomial parameters ω1.

Next we will consider the uncertainty principle of the third-order LPFT. The

local signal is

st(τ) = s(τ)h(τ − t) exp
{

jωt − j
ω1

2
(τ − t)2 − j

ω2

6
(τ − t)3

}

,

where s(t), the input of the third-order LPFT, is the third-order PPS obtained

by setting P = 3 in (3.1.2).

In this case, the local normalized signal becomes

ηt(τ) =

(

α + a

π

)1/4

exp

{

jωt − jω1(τ − t)2

2
− jω2(τ − t)3

6

}

(3.3.13)

· exp

{

−(α + a)τ 2

2
+ ατt +ja0τ +

ja1τ
2

2
+

ja2τ
3

6
− α2t2

2(α + a)

}

.

With the same procedure, the mean frequency defined in (3.2.4) is expressed

as

〈ω〉t = a0 + ω1t −
ω2t

2

2
+ (a1 − ω1 + ω2t)〈τ〉t +

1

2
(a2 − ω2)〈τ 2〉,

(3.3.14)

and 〈ω2〉 defined in (3.2.6) becomes

〈ω2〉 =
a + α

2
+ 〈ω〉2t (3.3.15)

+
1

2(a + α)
[(a1 − ω1 + ω2t) + (a2 − ω2)〈τ〉t]2 +

(a2 − ω2)
2

8(a + α)2
.

Thus, the bandwidth becomes

B2
t = 〈ω2〉 − 〈ω〉2t (3.3.16)

=
a + α

2
+

1

2(a + α)
[(a1 − ω1 + ω2t) + (a2 − ω2)〈τ〉t]2 +

(a2 − ω2)
2

8(a + α)2
.
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Therefore

B2
t T

2
t =

1

4
+

1

4(a + α)2
[(a1 − ω1 + ω2t) + (a2 − ω2)〈τ〉t]2 +

(a2 − ω2)
2

16(a + α)3
.

(3.3.17)

It is observed that the uncertainty product, B2
t T

2
t , is affected by the errors of

estimating the polynomial parameters ω1 and ω2 in addition to the parameters

of the signal and the window function.

By setting P = 4 in (3.1.2) and using the fourth-order LPFT, we can similarly

obtain the corresponding mean frequency, 〈ω〉t, and the bandwidth, Bt, which

are listed in Table 3.1, respectively. From the expressions in Table 3.1, we can

observe the rules of 〈ω〉t and B2
t as M , the order of the LPFT, is increased. The

mean frequency and the bandwidth for the Mth-order LPFT are

〈ω〉t = a0 +
M

∑

m=2

(−1)mωm−1t
m−1

(m − 1)!

+
M−1
∑

n=1

1

n!

(

an +
M

∑

m=n+1

(−1)m−nωm−1t
m−n−1

(m − n − 1)!

)

〈τn〉, (3.3.18)

B2
t =

a + α

2
+

M−1
∑

l=1

1

2ll!(a + α)l

·
[

M−1
∑

n=l

1

(n − l)!

(

an +
M

∑

m=n+1

(−1)m−nωm−1t
m−n−1

(m − n − 1)!

)

〈τn−l〉
]2

.

(3.3.19)

It is observed that both 〈ω〉t and B2
t are related to the moments 〈τn〉.

In general the uncertainty product of an arbitrary order LPFT is related to

the parameters of the signal and the window function, as well as the errors of

estimating the polynomial parameters. When the polynomial parameters are

estimated correctly for the Mth-order LPFT, that is, ω1 = dΩ(t)
dt

, ..., ωM−1 =
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Table 3.1: Expressions of 〈ω〉t and B2
t for LPFTs of order 2, 3 and 4

M 〈ω〉t
2 a0 + ω1t + (a1 − ω1)〈τ〉t
3 a0 + ω1t − ω2t2

2
+ (a1 − ω1 + ω2t)〈τ〉t + 1

2
(a2 − ω2)〈τ 2〉

4 a0 + ω1t − ω2

2
t2 + ω3

6
t3 + (a1 − ω1 + ω2t − ω3

2
t2)〈τ〉t

+1
2
(a2 − ω2 + ω3t)〈τ 2〉 + 1

6
(a3 − ω3)〈τ 3〉

B2
t

2 a+α
2

+ 1
2(a+α)

(a1 − ω1)
2

3 a+α
2

+ 1
2(a+α)

[(a1 − ω1 + ω2t) + (a2 − ω2)〈τ〉t]2 + 1
8(a+α)2

(a2 − ω2)
2

4 a+α
2

+ 1
2(a+α)

[(a1 − ω1 + ω2t − ω3

2
t2) + (a2 − ω2 + ω3t)〈τ〉t

+1
2
(a3 − ω3)〈τ 2〉]2 + 1

8(a+α)2
[(a2 − ω2 + ω3t) + (a3 − ω3)〈τ〉t]2

+ 1
48(a+α)3

(a3 − ω3)
2

dM−1Ω(t)
dtM−1 , the mean frequency becomes

〈ω〉t = a0 + a1t +
a2

2
t2 + ... +

aM−1

(M − 1)!
tM−1

=
M

∑

m=1

am−1t
m−1

(m − 1)!
(3.3.20)

which is exactly the instantaneous frequency of the Mth-order PPS. The band-

width in the domain of the Mth-order LPFT becomes B2
t = a+α

2
, which leads

to the uncertainty product as

B2
t T

2
t =

1

4
. (3.3.21)

The uncertainty principle for the Mth-order LPFT, with the parameters cor-

rectly estimated, is mathematically proved in Appendix in Section 3.6.

Based on the above derived results, we have the following conclusions. When

using the Gaussian window to segment the signal, the signal duration of the PPS

is related to the signal parameter a and the window parameter α only and is

independent of the order. For M > 1, the bandwidth Bt is related to the param-

eters of the signal and the window function, as well as the errors of estimating
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the polynomial parameters ω1, ω2, ... , and ωM−1. When the polynomial param-

eters are estimated accurately, the uncertainty product of the Mth-order LPFT,

with the same order PPS as the input, is independent of time or frequency, and

becomes a constant. When there are errors of estimating the polynomial pa-

rameters, the bandwidth together with the uncertainty product, are polynomial

functions of these errors, which directly affect the signal representation in the

time-frequency domain.

3.4 Discussions

The main objective on studying various issues of the LPFT is to achieve the

desired signal concentration in the time-frequency domain with minimum com-

putational costs. This section considers a few important issues, in terms of the

uncertainty principles of the LPFTs, that have direct impact on signal concen-

tration and the required computational complexity.

3.4.1 Window Width Effects

The uncertainty products derived in the previous section show that there exists

a trade-off between the resolutions in the time and frequency domains. With the

assumption that the polynomial parameters used in the LPFT are accurately

estimated, the signal duration T 2
t is inversely proportional to the sum of window

width α and the signal parameter a. Meanwhile the signal bandwidth B2
t , which

is independent of the order of the PPS and the LPFT, is directly proportional

to the sum of window width α and the signal parameter a.

With different widths of the Gaussian window, Figure 3.1 shows the sig-
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nal concentrations in the time-frequency domain achieved by using the second-

order LPFT to process the PPS which contains chirp components. As defined

in (3.1.3), the length of the input signal is N and the window length is q. It
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Figure 3.1: The second-order LPFTs of a second-order multicomponent PPS,
with different α values. Here q = N

4
, where q is the window length and N is the

length of the input signal.

is seen that, as α decreases or the window width increases, the chirp compo-

nents become more concentrated in the frequency direction, or equivalently, the

resolution of the signal representation in the frequency direction is increased.

As for the resolution in the time direction, the signal in Figure 3.1(a) can be
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clearly separated in different time index. As the parameter α decreases, such

separation in time direction disappears. Therefore from Figure 3.1(a) to (d) we

can observe that the resolution in the time direction decreases as the parameter

α decreases. This observation is consistent with the signal duration T 2
t and the

bandwidth B2
t derived in the last Section. For example, decreasing the window

parameter α leads to the increase of the signal duration T 2
t , or equivalently, the

increase of signal spread in time. At the same time, the bandwidth B2
t decreases

as α decreases so that the signal spread in frequency is reduced. That is, the

resolution of the signal representation in the frequency direction is increased.

Because it is impossible to arbitrarily increase the resolution in both domains

at the same time, a compromise has to be made to balance the requirements of

the signal representation in the time-frequency domain. When α = 2.5 which

is the default value in MATLAB Gaussian window function, for example, Fig-

ure 3.1(b) provides acceptable resolutions for both time and frequency domains.

3.4.2 Order Mismatch Effects

It is desired to use lower order LPFTs to deal with higher-order PPSs to signif-

icantly reduce the required computational complexity. However, this mismatch

between the orders of the LPFT and the PPSs will affect the performance of

the signal representation in the time-frequency domain. It is necessary to find

out how the signal representation in the time-frequency domain is affected and

if possible, how the mismatch effects are to be minimized. First we will consider

the use of the second-order LPFT to process the third-order PPSs.

By setting ω2 = 0 in (3.3.14) and (3.3.16), the mean frequency and the
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bandwidth become

〈ω〉t = a0 + ω1t + (a1 − ω1)〈τ〉t +
1

2
a2〈τ 2〉

= a0 + ω1t +
αt(a1 − ω1)

a + α
+

a2(2α
2t2 + a + α)

4(a + α)2
,

B2
t =

a + α

2
+

1

2(a + α)

[

(a1 − ω1) +
a2αt

a + α

]2

+
a2

2

8(a + α)2
.

When the parameter ω1 is estimated correctly, i.e., ω1 = a1 + a2t, we have

〈ω〉t = a0 + a1t +
a2t

2

2
+

a2a2t
2

2(a + α)2
+

a2

4(a + α)
, (3.4.1)

B2
t =

a + α

2
+

(a2at)2

2(a + α)3
+

a2
2

8(a + α)2
. (3.4.2)

Therefore, the uncertainty product becomes

B2
t T

2
t =

1

4
+

1

4(a + α)2

(

a2at

a + α

)2

+
a2

2

16(a + α)3
. (3.4.3)

In (3.4.1) and (3.4.2), the last two terms are the effects of the order mismatch,

which are directly proportional to the polynomial parameter, a2. Therefore, the

order mismatch may have a small effect when a2 is small enough, which is

generally true in many practical applications. Another way to reduce the effect

of the order mismatch is to decrease the window width, that is to increase the

window parameter α. For example, when α → ∞, 〈ω〉t in (3.4.1) is approaching

to a0 + a1t + a2

2
t2, which is the instantaneous frequency of the third-order PPS.

Meanwhile B2
t in (3.4.2) is approaching to a+α

2
. It means that, when the third-

order PPS is processed with the second-order LPFT, 〈ω〉t and B2
t of the second-

order LPFT approach to those of the third-order LPFT as the window width is

decreased. The uncertainty product in (3.4.3) also approaches to the minimum.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.4. Discussions 64

When the signal parameter a approaches to zero, the third-order PPS with

a Gaussian amplitude becomes a third-order PPS with a constant amplitude.

Under this situation, the mean frequency and bandwidth become

〈ω〉t = a0 + a1t +
a2t

2

2
+

a2

4α
,

B2
t =

α

2
+

a2
2

8α2
. (3.4.4)

Since

T 2
t =

1

2(a + α)
,

the uncertainty product is

B2
t T

2
t =

1

4
+

a2
2

16α3
as a −→ 0, (3.4.5)

which increases with the polynomial parameter a2 and decreases with the win-

dow parameter α. Similarly, as α goes to infinity, 〈ω〉t approaches to the in-

stantaneous frequency, and B2
t T

2
t approaches to 1

4
which is the minimum of the

uncertainty product.

Although it is difficult to draw a general conclusion for all possible cases, the

order mismatch effect of using the second-order LPFT to process the Mth-order

PPSs can be expressed as follows.

By setting ω2 = ω3 = ... = ωM−1 = 0 in (3.3.18) and (3.3.19), the mean

frequency and the bandwidth become

〈ω〉t = a0 + ω1t − ω1〈τ〉t +
M−1
∑

n=1

an

n!
〈τn〉

= a0 + ω1t + (a1 − ω1)〈τ〉t +
M−1
∑

n=2

an

n!
〈τn〉,

B2
t =

a + α

2
+

1

2(a + α)
(a1 − ω1)

2

+
M−1
∑

l=2

1

2l · l!(a + α)l
[
M−1
∑

n=l

1

(n − l)!
an〈τn−l〉]2.
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and thus

B2
t T

2
t =

1

4
+

1

2(a + α)2
(a1 − ω1)

2

+
M−1
∑

l=2

1

2l · l!(a + α)l+1
[
M−1
∑

n=l

1

(n − l)!
an〈τn−l〉]2.

Therefore as α goes to infinity, 〈ω〉t approaches to the instantaneous fre-

quency, and B2
t T

2
t approaches to 1

4
which is the minimum of the uncertainty

product.

From the above discussion, it is seen that increasing the window parameter

α always helps to achieve a better estimation of the instantaneous frequency

〈ω〉t. It should be noted that, however, as α goes to infinity, that is as the win-

dow becomes narrower in the time domain, the signal bandwidth B2
t in (3.4.4)

also approaches to infinity, which decreases the resolution in frequency. There-

fore, the window width for practical applications should be properly selected to

achieve a compromise between the resolutions in time and frequency.

3.4.3 Effects of Overlap Lengths

It was shown in [48] that when the second-order LPFT is used to process the

chirp signals, the length of overlap between the adjacent signal segments can

be significantly reduced without obviously degrading the signal concentration

in the time-frequency domain, which allows us to further minimize the required

computational complexity. For example, the required number of complex mul-

tiplications in (3.1.3) is reduced as the length of overlap l increases. For the
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Figure 3.2: The third-order LPFTs of a third-order PPS using Gaussian window
function with α=2.5 and q = N

4
, where q is the window length and N is the

length of the input signal.

third-order PPS,

s(t) (3.4.6)

=
(a

π

)1/4

e−at2/2[ej(0.4t+1.15×10−3t2+1.48×10−6t3) + ej(0.45t+1.15×10−3t2+1.48×10−6t3)]

with a = 10−4, Figure 3.2(a) shows the signal representation obtained by the

third-order LPFT without any overlap. Compared with the performance with

the maximum overlap, i.e., l = q−1, as shown in Figure 3.2(b), no obvious degra-

dation in signal concentration is observed from Figure 3.2(a). Because the total

computational complexity is directly proportional to the number of signal seg-

ments being processed, the LPFT computation without overlap between signal

segments makes significant savings on the computational complexity compared

to that using the overlap between signal segments.

Next we will consider the effects of using lower order LPFT with different

overlap lengths. Figure 3.3(a) shows the representation of the third-order PPS

obtained by using the second-order LPFT without any overlap. Obvious un-

smoothness is observed at the junctions of two adjacent segments where the
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Figure 3.3: The LPFTs of the third-order PPS using Gaussian window function
with α=2.5 (a) the second-order LPFT without overlap, (b) the second-order
LPFT with the maximum overlap, (c) the second-order LPFT without overlap
and with a shorter window length q = N

8
, and (d) the third-order LPFT without

overlap. q = N
4

in (a) and (b), and q = N
8

in (c) and (d).

estimated chirp rates have sudden changes. This order mismatch effect can be

minimized by increasing the length of overlap between the adjacent segments.

As shown in Figure 3.3(b), the second-order LPFT with the maximum over-

lap achieves a representation that is comparable to that obtained by using the

third-order LPFT in Figure 3.2(b).
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Figure 3.4: The LPFTs of the third-order PPS using Hamming window function
(a) the second-order LPFT without overlap, (b) the second-order LPFT with
the maximum overlap, (c) the second-order LPFT without overlap and with a
shorter window length q = N

8
, and (d) the third-order LPFT without overlap.

q = N
4

in (a) and (b), and q = N
8

in (c) and (d).

To process higher-order PPSs with the second-order LPFT, another method

for improving the signal representation is to reduce the window length to en-

sure that each segment can be approximately assumed as a chirp component.

Compared with Figure 3.3(a), Figure 3.3(c) shows the improvement on the

smoothness of signal representation, which is achieved by reducing the window

length q from N
4

to N
8
. It should be noted that, compared with the third-order

LPFT with the small window length in Figure 3.3(d), the second-order LPFT
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with the same window length in Figure 3.3(c) can achieve comparable result and

with less computational complexity. It is worth mentioning that for any order

LPFTs, the frequency resolution will become degraded as the window length

is reduced, as shown in Figure 3.3(c) and (d). For other higher-order PPSs,

the second-order LPFT can also be used, as long as the window length is small

enough to ensure that each segment within the window can be approximately

assumed as the chirp signal.

It should be noted that in this chapter the Gaussian window function is

employed to obtain closed-form expressions for the uncertainty principles of

the LPFTs. Other types of window functions, such as the Hamming window

function, can also be used in the LPFT to segment the signal. As shown in

Figure 3.4, when the Hamming window function is used, similar results can be

achieved as in Figure 3.3.

3.4.4 Concentration Comparisons

In this section, we will consider the performances achieved by the STFT, the

WVD and the second-order LPFT of a chirp signal obtained from (3.1.2) with

P = 2. Using the STFT, the corresponding mean frequency and bandwidth are

[34]

〈ω〉t = a0 +
αa1t

a + α
, B2

t =
a + α

2
+

a2
1

2(a + α)
. (3.4.7)

The mean time 〈τ〉t and the duration T 2
t of the STFT are same as those of the

LPFT. Therefore the uncertainty product of the STFT is

B2
t T

2
2 =

1

4
+

a2
1

4(a + α)2
. (3.4.8)
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When a1 = 0, the frequencies of the input signal do not change with time

and the STFT achieves the lowest bound of the uncertainty product B2
t T

2
t =

1
4
. Therefore, the STFT can provide the best resolution only for signals with

constant frequencies. For the chirp signals, however, B2
t in (3.4.7) has a non-

zero second term. Therefore, the uncertainty product B2
t T

2
t of the STFT of

signals having time varying frequencies must be larger than 1
4
. For the same

input signal, if the polynomial parameter ω1 of the LPFT is correctly estimated,

we achieve the lowest bound of the uncertainty product B2
t T

2
t = 1

4
, as seen

in (3.3.21). Therefore the second-order LPFT achieves a more concentrated

distribution in the time-frequency domain than the STFT.

Another important issue on the LPFT is about the estimation errors on ω1.

Although the PTFT is the maximum likelihood estimator, it is still possible to

have some estimation errors, especially when the signals are corrupted by heavy

noises. Because the second term of (3.3.11) is proportional to (a1 − ω1)
2, the

uncertainty product for the second-order LPFT of chirp signals is B2
t T

2
t > 1

4
if

ω1 is not correctly estimated. Comparison between (3.3.11) and (3.4.7) reveals

that as long as |a1 − ω1| < |a1|, i.e., the estimation error of ω1 is smaller than

|a1|, the LPFT of the chirp signal achieves a smaller bandwidth than the STFT.

Therefore, the second-order LPFT can still achieve a more concentrated distri-

bution in the time-frequency domain than the STFT. It should be noted that

if the estimation error of ω1 is larger than |a1|, the resolution of the LPFT will

become worse than that of the STFT. However such a case rarely happens when

the PTFT is used to estimate the polynomial parameters, since the PTFT is the

maximum likelihood estimator of the PPS’s phase parameters and a satisfactory

accuracy for parameter estimation can be easily achieved [90] as discussed in

Section 2.3.2.1 of Chapter 2.
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In addition to the STFT and LPFT, which are linear time-frequency trans-

forms, another bilinear time-frequency transform, known as the WVD, is often

used for many applications [34]. The WVD of the chirp signal is

WVD(t, ω) =
1

π
exp

{

−at2 − (ω − a1t − a0)
2

a

}

.

When a is small, the WVD is concentrated on ω = a0 + a1t. The associated

mean frequency and bandwidth are [34]

〈ω〉t = a0 + a1t and B2
t =

a

2
.

It means that the WVD can provide a better frequency resolution for chirp

signals as far as a is small enough. However, the WVD suffers from the cross

terms for multicomponent signals. It is difficult to remove the cross terms

without sacrificing the resolution of the signal representation, particularly for

non-linear multicomponent chirp signals [34].

Figure 3.5 compares the signal concentration obtained from the FT, the

STFT, the LPFT and the WVD. Figure 3.5(a) clearly shows that the FT fails

to provide sufficient resolution to represent the chirp signal. For signals with

constant frequency components, the STFT can provide the best frequency res-

olution, as shown in Figure 3.5(b). For chirp signals, with the same window

length and window parameter a, however, the LPFT achieves the better fre-

quency resolution than the STFT, as seen from Figure 3.5(c) and (d). Al-

though the WVD has a higher frequency resolution, the cross terms between

the two chirp components, as shown in Figure 3.5(e), can be easily mistaken

as a valid frequency component. Therefore, the LPFT is the best choice for

dealing with multicomponent chirp signals since it is free from the cross terms

and also achieves a higher resolution than the STFT.
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Figure 3.5: Comparison of the time-frequency representations. (a) the FT of
the chirp signals, (b) the STFT of a signal with constant frequencies, (c), (d)
and (e) the time-frequency representations of chirp signals using the STFT, the
second-order LPFT, and the WVD, respectively. The horizontal axis is the
normalized frequency and vertical axis is the amplitude.

Furthermore, some real signals are used to compare the resolution perfor-

mances achieved by the STFT, the WVD and the LPFT. The first example

is a speech segment ”your mail”, and the sampling frequency of the signal is

5512.5Hz. Figure 3.6 shows the speech segment using the STFT, the WVD and

the LPFT. The window function is a Hamming window with a length of 512.

Figure 3.6 shows that the STFT cannot provide a satisfactory representation

of this signal, particularly between the time duration of 0.2 − 0.4, while the

WVD gives undesirable results due to many cross terms between harmonics.

The LPFT can provide the best representation for the speech without cross

terms. The concentration of the LPFT between t = 0.2 and 0.4 is much higher
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(a) |STFT|2

(b) WVD

(c) |LPFT|2

Figure 3.6: The |STFT|2, WVD and |LPFT|2 of a speech segment. The hori-
zontal axis is the time instance and vertical axis is the frequency.
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(a) |STFT|2

 

 

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) WVD

 

 

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) |LPFT|2

Figure 3.7: The |STFT|2, WVD and |LPFT|2 of a bat sound. The horizontal
axis is the time instance and vertical axis is the normalized frequency.
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than that achieved by the other two transforms, since the extra parameter ω1

is employed.

The second example we consider is an echolocation pulse emitted by the

big brown bat eptesicus fuscus [100]. Figure 3.7 illustrates joint time-frequency

representations computed by the STFT, the WVD and the LPFT for the bat

echolocation. The window function is a Hamming window with q = N
4
. As

shown in Figure 3.7, this sound sample basically consists of three time-varying

tones. Compared with other methods, the LPFT not only has better time-

frequency resolution but also is free from cross term interference.

3.5 Conclusion

In this chapter, the LPFT is shown to be limited by the uncertainty principle,

and the uncertainty principles of various order LPFTs are derived to show the

trade-off between the resolutions of signal representation in the time and fre-

quency domains. The uncertainty product of an arbitrary order is determined

by the signal parameters, the window function and the errors of estimating the

polynomial coefficients. When Gaussian window function is employed to seg-

ment the signals, the uncertainty products of the LPFT are time independent

under the condition that the polynomial parameters are accurately estimated.

The effects of the window width, the estimation errors, and the order mismatch

by using the second-order LPFT to process higher-order PPSs are discussed.

Concentration comparisons with the STFT and the WVD are also provided to

show the merits of the LPFT. Examples in speech and bat sound processing

are demonstrated to show that, compared with the STFT and the WVD, the
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LPFT is a better tool to deal with signals having time-varying frequencies.

3.6 Appendix: Derivation of the Uncertainty

Product for the Mth-order LPFT

In this appendix, the uncertainty product is to be derived for the Mth-order

LPFT. It is assumed that the input of the Mth-order LPFT is the PPS of the

same order and Gaussian window defined in (3.3.2) is used. For simplicity, only

the major steps of derivation are presented.

The phase of the Mth-order PPS defined in (3.1.2) is

Φ =
M

∑

m=1

am−1t
m

m!
.

The normalized local signal segment is

ηt(τ) = (
α + a

π
)1/4 exp

{

− a2t2

2(α + a)
+ jωt − j

M
∑

m=2

ωm−1(τ − t)m

m!

}

· exp

{

−(α + a)τ 2

2
+ aτt + j

M
∑

m=1

am−1t
m

m!

}

.

With the definition in (3.2.4), we have

η∗(τ)
d

dτ
ηt(τ) = (

α + a

π
) exp

{

− a2t2

a + α

}

exp
{

−(a + α)τ 2 + 2atτ
}

·
{

−(a + α)τ + at + j

M
∑

m=1

am−1τ
m−1

(m − 1)!
− j

M
∑

m=2

ωm−1(τ − t)m−1

(m − 1)!

}

.

When the parameters of the LPFT, such as ω1, ω2, ..., ωM−1 are estimated cor-

rectly, i.e., ωM−1 = Φ(M) = aM−1, ... , ωm = Φ(m+1), ... , ω1 = Φ(2) =
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M
∑

m=1

am−1tm−2

(m−2)!
, where the superscript of Φ(m) is the derivative order of Φ, we have

η∗(τ)
d

dτ
ηt(τ) = (

α + a

π
) exp

{

− a2t2

a + α

}

exp
{

−(a + α)τ 2 + 2atτ
}

·
{

−(a + α)τ + at + j
M

∑

m=1

am−1t
m−1

(m − 1)!

}

.

Therefore,

〈ω〉t =

∫

η∗
t (τ)

1

j

d

dτ
ηt(τ)dτ

=
M

∑

m=1

am−1t
m−1

(m − 1)!

= Φ(1),

which is the instantaneous frequency of the Mth-order PPS.

Similarly with ωM−1 = Φ(M) = aM−1, ... , ωm = Φ(m+1), ... , ω1 = Φ(2) =
M
∑

m=1

am−1tm−2

(m−2)!
, we have

〈ω2〉 = −
∫

η∗(τ)
d2ηt(τ)

dτ 2
dτ

=

∫







a + α +

[

(a + α)τ − at − j

M
∑

m=1

am−1t
m−1

(m − 1)!

]2






· exp
{

−(a + α)τ 2 + 2atτ
}

dτ

=
a + α

2
+

[

M
∑

m=1

am−1t
m−1

(m − 1)!

]2

.

Based on the above derivation, we can conclude that if the parameters of

the polynomial phase are accurately estimated, the bandwidth obtained by the

LPFTs of any order M > 1 can be derived to be (a + α)/2. With the duration

of the PPSs of any order in (3.3.7), the uncertainty product becomes 1/4.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4

Quantitative SNR Analysis of

the LPFT

4.1 Introduction

In addition to the study of a time-varying signal’s frequency content changes, an-

other important role of the time-frequency representations (TFRs) is that they

usually increase the signal-to-noise ratio (SNR) in the time-frequency domain

[60]. While random noise tends to spread evenly into the entire time-frequency

domain, the signal energy is usually concentrated in a relatively small region.

Consequently, the regional SNR could be substantially improved in the time-

frequency domain. This feature makes the TFRs minimize the effect of noises

and better detect and estimate the noisy signals [60]. It also motivates the

time-frequency filtering to extract the useful information and reconstruct the

signal in the time domain [18].

Quantitatively analyzing the SNR increase for time-frequency representa-
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tions is an important issue in practical applications. Generally the SNR is

defined as the ratio of the mean power of the signal over the mean power of the

noise, where the mean is taken over the whole time domain. Suppose y(Ω) is a

distorted signal

y(Ω) = s(Ω) + η(Ω), (4.1.1)

where the variable Ω is in a domain, such as the time domain, the frequency

domain or the time-frequency domain, s(Ω) is the desired signal and η(Ω) is the

additive white Gaussian noise with a mean of zero and a variance of σ2. The

SNR is expressed as

SNR =

∫ N

0
s2(Ω)

Nσ2
, (4.1.2)

where N is the length of the signal s(Ω). The higher the SNR, the easier the

signal detection.
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Figure 4.1: A signal with one constant frequency component buried in additive
white Gaussian noise with SNR = −10dB in (a) time domain and (b) frequency
domain.

According to this SNR definition, an orthogonal transform such as the
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Fourier transform does not change the SNR [61]. This is because of the energy

preservation property of orthogonal transforms. Thus, by taking the Fourier

transform the SNR in the frequency domain is equal to the SNR in the time

domain. Let us consider a signal with one constant frequency component buried

in additive white Gaussian noise with the SNR = −10dB. In Figure 4.1 (a), in

the time domain it will be impossible to detect the signal from the noise since

the SNR is too low. According to the SNR defined in (4.1.2), the SNR of the

signal in the frequency domain in Figure 4.1 (b) is still −10dB. However, we

can clearly see the signal in the frequency domain. This suggests that the SNR

definition in (4.1.2) is not suitable to judge the possibility of detecting the nar-

rowband signals in the frequency domain, as shown in Figure 4.1 (b). It is also

shown in [61] that this definition is not proper for time-varying signals in the

time-frequency domain. For the time-varying signals, we are not interested in

the average signal power but in the peak power of the signal.

Another definition of SNR, introduced in [61], is more suitable for signals in

the time-frequency domain as well as in the time and frequency domains, respec-

tively. Compared with the general SNR definition, this definition is transform-

domain dependent and directly relates to the bandwidth of the signal [61].

Following the terminology in [61], the 3dB SNR is defined as the ratio of the

3dB mean power of the signal over the mean power of the noise,

SNR3dB =

∫

ß
|s(Ω)|2dΩ

|ß|σ2
. (4.1.3)

Here |ß| is the cardinality of the set ß, with

ß = {t : |s(Ω)|2 > 0.5max|s(Ω)|2)}, (4.1.4)

where the number 0.5 is from the 3dB bandwidth definition.
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The definition of 3dB SNR is the same as the definition in communications,

where only the signal in the 3dB bandwidth is considered. The superscript 3dB

is used to represent the SNRs defined in (4.1.3) in the rest of the chapter. Fol-

lowing this transform-domain dependent SNR definition in (4.1.3), quantitative

analysis on the SNRs achieved by the STFT [61] and the pseudo WVD [62] has

been reported in the literature. Because the TFRs concentrate the time-varying

signals better than the FT, the SNR increase in the time-frequency domain is

higher than the one in the frequency domain due to the increase of the mean

signal power. This property quantitatively explains the advantage of the TFRs

over the FT for the ISAR imaging [63, 132].

As stated in Chapter 2, compared with the STFT, the local polynomial

Fourier transform (LPFT) can further enhance the concentration of chirp sig-

nals while spreading the noise. In many different applications [10, 38, 49–53],

compared with the FT and the STFT, the LPFT has shown its capability for

improving the SNR. For example, in radar imaging, the LPFT can achieve more

focused and clearer image than that using the STFT in cases of fast maneuver-

ing targets [50, 51]. For nonstationary interference suppression in noise radar

systems, the LPFT is able to achieve performance improvement in comparison

with that obtained from the systems based on the STFT [117]. However, how

much SNR improvement can be obtained with the LPFT has not been reported.

The SNR analysis of the LPFT will help us quantitatively evaluate the SNR

improvement of the LPFT.

The focus of this chapter is to present the quantitative analysis of SNRs

achieved by using the LPFT based on the relationship between the LPFT and

the WVD. Following the 3dB SNR definition in [61, 132], the SNR analysis of
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the LPFT is to be investigated and compared with those of the FT, the STFT,

and the WVD. Both theoretical analysis and simulation results will show that

the use of the LPFT achieves a higher SNR than the FT, the STFT and the

WVD.

This chapter is organized as follows. In Section 4.2, the quantitative 3dB

SNR analysis of the Fourier transform (FT) and STFT is reviewed. Quantitative

3dB SNR analysis of the pseudo WVD (PWVD) in continuous-time form is

presented in Section 4.3. In Section 4.4, quantitative 3dB SNR analysis of the

LPFT is derived based on the relationship between the LPFT and the WVD.

Section 4.5 presents comparisons on SNRs achieved by using the LPFT, the

FT, the STFT and the WVD. Simulation results are presented in Section 4.6

to verify our theoretical analysis and comparisons. Finally, conclusion is given

in Section 4.7.

4.2 Review on 3dB SNR Analysis of the FT

and STFT

The 3dB SNR analysis of the FT and STFT has been presented in [61, 132]

and will be briefly reviewed in this section. The analysis is based on the linear

frequency modulated (LFM) signal. As an example, an LFM signal model with

monocomponent is considered as:

y(t) = s(t) + η(t) = A exp

[

j(a1t +
b1

2
t2)

]

+ η(t) (4.2.1)

where a1 is the initial frequency, b1 is the chirp rate of the signal, A is the signal

amplitude, and η(t) is the additive white Gaussian noise with the correlation

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2. Review on 3dB SNR Analysis of the FT and STFT 83

function defined as

Rη(t, τ) = E[η(t)η∗(τ)] = σ2δ(t − τ). (4.2.2)

Similarly, the signal model containing multiple chirp components with the

same mean power is defined by

ỹ(t) =
K

∑

i=1

si(t) + η(t) (4.2.3)

=
K

∑

i=1

A exp[j(ait +
bi

2
t2)] + η(t),

where K > 1, si(t) is the ith chirp component, ai is the initial frequency, bi is

the chirp rate of different signal components and A is the signal amplitude.

4.2.1 3dB SNR Analysis of the FT

For the signal model containing multiple chirp components with the same mean

energy defined in (4.2.3), suppose Si(f) is the Fourier transform of the LFM

signal si(t). The 3dB mean power of Si(f) is less than or equal to [61]

Energy of Si(f)

Bi

, (4.2.4)

where Bi is the bandwidth of the si(t), that is, Bi = |bi|T where T is the time

interval length.

Since the Fourier transform is an orthogonal transform which preserves

the signal energy, the energy of Si(f) is same as that of the si(t), that is

Energy of Si(f) = Energy of si(t) = TA2. Therefore, the 3dB SNR in the

Fourier transform of si(t) is

SNRFT ≤ TA2

Biσ2
(4.2.5)
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Since the bandwidth Bi = |bi|T , the 3dB SNR in the frequency domain for the

LFM signal si(t) is

SNRFT ≤ 1

|bi|
SNRt, (4.2.6)

where SNRt = A2/σ2 is the SNR of the signal defined in (4.2.1). Following the

definition in [61], the overall 3dB SNR of the multicomponent signal can be

defined using the overall average 3dB mean power of the signals and the overall

noise. Therefore we can easily achieve that

SNRt

max1≤i≤K |bi|
≤ max(SNRFT ) ≤ SNRt

min1≤i≤K |bi|
. (4.2.7)

For the signal model containing mono chirp component, the 3dB SNR in the

Fourier domain is [61]

SNRFT ≤ 1

|b1|
SNRt . (4.2.8)

4.2.2 3dB SNR Analysis of the STFT

The square of |STFT(s; t, ω)|, that is the spectrogram, is related to the WVD

by [60]:

|STFT(s; t, ω)|2 =

∫ ∫

WVD(s; x, y)WVD(h; t − x, ω − y)dxdy (4.2.9)

where WVD(s; t, ω) and WVD(h; t, ω) denote the WVDs of the analyzed signal

s(t) and the window function h(t), respectively.

Consider the STFT with a Gaussian window function

h(t) = (
α

π
)1/4 exp(−α

2
t2), α > 0 (4.2.10)

where α is a parameter controlling the width of the window.
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For the LFM signal s(t) = A exp
[

j(a1t + b1
2
t2)

]

, the STFT can be achieved

as [61, 132]

|STFT(s; t, ω)|2 =
2A2

√
π

√

α + 1
α
b2
1

exp

{−(ω − b1t − a1)
2

α + 1
α
b2
1

}

. (4.2.11)

When ω = b1t + a1, the maximum is achieved as

max
(t,ω)

|STFT(s; t, ω)|2 =
2A2

√
π

√

α + 1
α
b2
1

. (4.2.12)

The 3dB mean signal power is defined as

mean(t,ω)∈S |STFT(s; t, ω)|2 (4.2.13)

where

S =







(t, ω) : |STFT(s; t, ω)|2 >
0.5 × 2A2

√
π

√

α + 1
α
b2
1







. (4.2.14)

Using (4.2.11) and (4.2.14), we have

S =

{

|ω − b1t − a1|2 < (α +
1

α
b2
1) ln 2

}

. (4.2.15)

Then, (4.2.13) becomes

mean(t,ω)∈S |STFT(s; t, ω)|2 (4.2.16)

=
2A2

√
π

√

(α + 1
α
b2
1)

1√
ln 2

∫

√
ln 2

0

exp(−u2)du.

Since the noise η(t) is stationary, its mean power can be calculated in the sample

space.

E|STFT(η; t, ω)|2 = E|
∫

η(t + s)h(s) exp(−jωs)ds|2

= σ2.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2. Review on 3dB SNR Analysis of the FT and STFT 86

Therefore the 3dB SNR in the STFT domain is [132]

SNR3dB
STFT =

2γ
√

πA2

√

α + 1
α
b2
1σ

2

=
2γ

√
π

√

α + 1
α
b2
1

SNRt (4.2.17)

where

γ =
1√
ln 2

∫

√
ln 2

0

exp(−u2)du ≈ 0.8.

The maximum of the SNR3dB
STFT , in terms of the parameter α in (4.2.10), is

achieved when

α = |b1| (4.2.18)

and the maximum is

max
α

(SNR3dB
STFT ) =

2γ
√

π
√

2 |b1|
SNRt

=
0.8

√
2π

√

|b1|
SNRt. (4.2.19)

Thus,

max
α

(SNR3dB
STFT ) > SNRt

when |b1| < 1.28π, (4.2.20)

which shows the condition that the 3dB SNR in the STFT domain is improved

compared with the SNRt. When the absolute value of the coefficient b1 is not

too large, the SNR in the STFT domain is greater than that in the time domain.

Because the STFT is linear, the above conclusions can be generalized for the

signal model containing multiple chirp components with the same mean power

defined in (4.2.3). The maximum of the SNR3dB
STFT is bounded as [132]

0.8
√

2πSNRt
√

max1≤i≤K |bi|
≤ max

α
(SNR3dB

STFT ) ≤ 0.8
√

2πSNRt
√

min1≤i≤K |bi|
, (4.2.21)
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i.e., it is between the maximum and minimum of the components in (4.2.19).

The SNR analysis for the STFT using rectangular or Gaussian window func-

tion for discrete time signals was obtained in [61] in terms of the sampling rate.

For a multicomponent signal with K monocomponents, the SNR in the discrete

STFT domain is

SNRdiscrete
tf ≈ D

T0

K

N

T0

SNRt = D
N

K
SNRt, (4.2.22)

where D is a constant, T0 is the window length, and N/T0 is the sampling rate.

It can be observed that the SNR improvement in the STFT domain over the

SNR in the time domain is in the order of N/K, and the sampling rate plays

an important role in the SNR analysis.

4.3 Quantitative 3dB SNR Analysis of the PWVD

For the WVD expressed as

WVD(s; t, ω) =

∫

s(t + τ/2)s∗(t − τ/2)e−jωτdτ, (4.3.1)

the lag variable τ may practically need to be truncated by a short window.

Therefore the windowed version of the WVD, which is called the pseudo WVD

(PWVD), defined as

PWVD(s; t, ω) =

∫

h(τ)s(t + τ/2)s∗(t − τ/2)e−jωτdτ, (4.3.2)

is often employed.

The 3dB SNR analysis for the PWVD has been presented in [62] in discrete-

time form, which is expressed by

SNRdiscrete
tf ≈ D

N

K2
SNRt . (4.3.3)
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By comparing (4.3.3) with (4.2.22), we can observe that the SNR increase for

the PWVD is in the order of N/K2 while that for the STFT is in the order of

N/K. This is because the PWVD is a bilinear transform, whereas the STFT is

a linear one. K2 in (4.3.3) is due to the cross terms for multicomponents in the

PWVD [62].

In order to better compare the SNR of the LPFT with that of the PWVD,

this section presents the quantitative analysis of the PWVD in continuous-time

form.

Based on the definition of the PWVD in (4.3.2), we have

PWVD(y; t, ω) =

∫

h(τ)s(t + τ/2)s∗(t − τ/2)e−jωτdτ

+

∫

h(τ)N(t; τ)e−jωτdτ. (4.3.4)

where

N(t; τ) = η(t +
τ

2
)η∗(t − τ

2
) + s(t +

τ

2
)η∗(t − τ

2
) + η(t +

τ

2
)s∗(t − τ

2
).

On the right hand side of (4.3.4), the first term is the PWVD of the signal and

the second term is the PWVD of the noise and cross terms.

Using the Gaussian window function defined in (4.2.10) which is h(t) =

(α
π
)1/4 exp(−α

2
t2), the PWVD of s(t) = A exp

[

j(a1t + b1
2
t2)

]

is

PWVD(s; t, ω) = A2(
α

π
)1/4

∫

e−
α
2

τ2−j(ω−a1−b1t)τdτ

= A2(
α

π
)1/4

√

2π

α
e−

(ω−a1−b1t)2

2α . (4.3.5)

The maximum of the PWVD(s; t, ω), achieved with ω = a1 + b1t, is

max
(t,ω)

PWVD(s; t, ω) = A2(
α

π
)1/4

√

2π

α
. (4.3.6)
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The energy of the PWVD(s; t, ω) within the 3dB bandwidth is defined as

mean(t,ω)∈ß PWVD(s; t, ω) (4.3.7)

where

ß = {(t, ω) : PWVD(s; t, ω) > 0.5 max
(t,ω)

PWVD(s; t, ω)}. (4.3.8)

Using (4.3.5) and (4.3.6), we have

ß = {(t, ω) : |ω − a1 − b1t|2 < 2α ln 2}. (4.3.9)

Thus the 3dB mean of the PWVD in (4.3.7) becomes

mean(t,ω)∈ß PWVD(s; t, ω) = A2(
α

π
)1/4

√

2π

α

1√
ln 2

∫

√
ln 2

0

e−u2

du

= 0.8
√

2A2(
π

α
)1/4. (4.3.10)

Since the noise η(t) is stationary and independent of s(t), the mean power of

the noise terms in the PWVD domain is

E

[∫

h(τ)N(t; τ)e−jωτdτ

]

= E[PWVD(η; t, ω)] = σ2. (4.3.11)

Thus from (4.3.10) and (4.3.11) we have

SNR3dB
PWV D = 0.8

√
2(

π

α
)1/4SNRt,

which means that the SNR of the PWVD is controlled by the window parameter

α. When the α is not too big, the SNR in the PWVD domain is greater than

that in the time domain.

4.4 Quantitative 3dB SNR Analysis of the LPFT

In this section, the relationship between the LPFT and the WVD will be derived.

Based on this relationship, the 3dB SNR analysis of the LPFT will presented.
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4.4.1 Relationship between the LPFT and WVD

It has been reported in [60] that the square of |STFT(s; t, ω)| is related to the

WVD by:

|STFT(s; t, ω)|2 =

∫ ∫

WVD(s; τ, θ)WVD(h; t − τ, ω − θ)dτdθ (4.4.1)

where WVD(s; t, ω) and WVD(h; t, ω) denote the WVDs of the analyzed signal

s(t) and the window function h(t), respectively.

Similarly the square of |LPFT(s; t, ω)|, that is also known as local polynomial

periodogram (LPP) [38], can be written as:

|LPFT(s; t, ω)|2 =

∫ ∫

WVD(s; t − τ, ω − ω1τ − θ)WVD(h; τ, θ)dτdθ,

(4.4.2)

which is the relationship between the LPFT and the WVD to be used to analyze

the SNR achieved by using the LPFT. Here we assume that the window function

h(t) is real even window. This equality can be proved by expanding the right

hand side of (4.4.2) as follows:

∫ ∫ ∫ ∫

s(t − τ +
µ

2
)s∗(t − τ − µ

2
)

· exp[−j(ω − ω1τ − θ)µ]h(τ +
ν

2
)h∗(τ − ν

2
) exp[−jθν]dµdνdτdθ

=

∫ ∫ ∫

s(t − τ +
µ

2
)s∗(t − τ − µ

2
)

· exp[−j(ω − ω1τ)µ]h(τ +
ν

2
)h∗(τ − ν

2
)δ(ν − µ)dµdνdτ

=

∫ ∫

s(t − τ +
ν

2
)s∗(t − τ − ν

2
)

·h(τ +
ν

2
)h∗(τ − ν

2
) exp[−j(ω − ω1τ)ν]dνdτ. (4.4.3)

Let a = τ + ν/2 and b = τ − ν/2, we have τ = (a + b)/2 and ν = a − b.
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With dνdτ = |J |dadb, where the Jacobian determinant is

J =

∣

∣

∣

∣

∣

∣

∣

∂τ
∂a

∂τ
∂b

∂ν
∂a

∂ν
∂b

∣

∣

∣

∣

∣

∣

∣

= −1,

(4.4.3) becomes

∫

s(t − b)h∗(b) exp(jωb) exp(−j
ω1

2
b2)db

·
∫

s∗(t − a)h(a) exp(−jωa) exp(j
ω1

2
a2)da

= |LPFT(s; t, ω)|2.

In the next section, we will use the relationship in (4.4.2) between the LPFT

and the WVD as the basis to develop the SNR analysis of the LPFT.

As introduced in Chapter 2, another popular time-frequency representation,

which is called the ambiguity function (AF), is defined as

AF(x; θ, τ) =

∫

x(t +
τ

2
)x∗(t − τ

2
)ejθtdt. (4.4.4)

The WVD has a close relationship with the AF, and it can be expressed as a

double Fourier transform of the AF. The relationship between the spectrogram

and the AF has been reported as follows [133],

|STFT(s; t, ω)|2 =

∫ ∫

AF(s; θ, τ)AF(h; θ, τ)e−j(θt+ωτ)dτdθ. (4.4.5)

Following the similar procedure as the derivation of the relationship between

the LPFT and WVD, we can derive the relationship between the LPFT and the

ambiguity function, which is presented below without giving further details.

|LPFT(s; t, ω)|2 =

∫ ∫

AF(s; τ, θ − ω1τ)AF(h; τ, θ)e−j(θt+ωτ−ω1tτ)dτdθ

(4.4.6)
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4.4.2 Derivation of the Quantitative 3dB SNR Analysis

for the LPFT

Similar to that in [132], let us consider the LPFT with a Gaussian window

function

h(t) = (
α

π
)1/4 exp(−α

2
t2), α > 0 (4.4.7)

where α is a parameter controlling the width of the window. Since the LPFT

is a linear transformation, the LPFTs of the signal s(t) and the noise η(t) can

be considered separately.

The WVD of the signal s(t) = A exp
[

j(a1t + b1
2
t2)

]

is

WVD(s; t, ω) ≈ A2δ(ω − b1t − a1). (4.4.8)

The WVD of the Gaussian window function was reported to be [60],

WVD(h; t, ω) = 2 exp[−(αt2 +
1

α
ω2)]. (4.4.9)

Using (4.4.2), the LPP of the signal is

|LPFT(s; t, ω)|2

= 2A2

∫ ∫

δ[ω − ω1x − y − b1(t − x) − a1]

· exp[−(αx2 +
1

α
y2)]dxdy

=
2A2

√
π

√

α + 1
α
(ω1 − b1)2

exp

{−(ω − b1t − a1)
2

α + 1
α
(ω1 − b1)2

}

. (4.4.10)

The maximum of |LPFT(s; t, ω, ω1)|2, achieved at ω = b1t + a1, is

max
(t,ω)

|LPFT(s; t, ω)|2 =
2A2

√
π

√

α + 1
α
(ω1 − b1)2

. (4.4.11)
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The energy of |LPFT(s; t, ω, ω1)|2 within the 3dB bandwidth is defined as

mean(t,ω)∈S |LPFT(s; t, ω)|2 (4.4.12)

where

S =







(t, ω) : |LPFT(s; t, ω)|2 >
0.5 × 2A2

√
π

√

α + 1
α
(ω1 − b1)2







. (4.4.13)

Using (4.4.10) and (4.4.13), we have

S =

{

|ω − b1t − a1|2 < (α +
1

α
(ω1 − b1)

2) ln 2

}

. (4.4.14)

Then, (4.4.12) becomes

mean(t,ω)∈S |LPFT(s; t, ω)|2 (4.4.15)

=
2A2

√
π

√

(α + 1
α
(ω1 − b1)2)

1√
ln 2

∫

√
ln 2

0

exp(−u2)du.

Since the noise η(t) is stationary, its mean energy can be found in the sample

space.

E|LPFT(η; t, ω)|2 = E|
∫

η(t + s)h(s) exp(−jωs) exp(−j
ω1

2
s2)ds|2

= σ2.

Therefore the 3dB SNR in the LPFT domain is

SNR3dB
LPFT =

2γ
√

πA2

√

α + 1
α
(ω1 − b1)2σ2

=
2γ

√
π

√

α + 1
α
(ω1 − b1)2

SNRt (4.4.16)

where SNRt = A2/σ2 is the SNR of the signal defined in (4.2.1), and

γ =
1√
ln 2

∫

√
ln 2

0

exp(−u2)du ≈ 0.8.
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The maximum of the SNR3dB
LPFT , in terms of the parameter α in (4.2.10), is

achieved when

α = |ω1 − b1| (4.4.17)

and the maximum is

max
α

(SNR3dB
LPFT ) =

2γ
√

π
√

2|ω1 − b1|
SNRt

=
0.8

√
2π

√

|ω1 − b1|
SNRt. (4.4.18)

Thus,

max
α

(SNR3dB
LPFT ) > SNRt

when
0.8

√
2π

√

|ω1 − b1|
> 1, (4.4.19)

which shows the condition that the 3dB SNR in the LPFT domain is improved

compared with the SNRt.

The above analysis is for analog LFM signals, but in practical computations,

the analog signals need to be sampled. Thus the sampling rate plays an impor-

tant role in achieving the sufficient resolution. Since the LPFT is a generalized

form of the STFT, the LPFT can be obtained by using an STFT procedure, i.e.,

by sliding the window h(t) over the modulated signal s(t + τ) exp(−jω1τ
2/2),

and then implementing the FFT. Therefore, the SNR of the discrete LPFT

domain can be expressed as [61],

SNRdiscrete
tf ≈ D

T0

K

N

T0

SNRt = D
N

K
SNRt (4.4.20)

where D is a constant, K is the number of monocomponents in the signal,

T0 is the window length, and N/T0 is the sampling rate. Let us discuss the
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relationship among the SNR, the coefficient |ω1,i − bi|, the sampling rate, and

the window length.

For simplicity, let us consider the following sampled signal

sT (
k

N
) = exp{j|ω1 − b1|(T0k/N)2}, (4.4.21)

where k = 0, 1, ..., N−1. In (4.4.21), it is equivalent that the coefficient |ω1−b1|

tends to be zero when the sampling rate N/T0 tends to be infinity.

For the discrete LPFT of discrete-time signals in (4.4.20), the SNR in the

LPFT domain tends to be infinity when the sampling rate approaches to infinity.

For analog signals, in (4.4.18), the SNR in the LPFT domain becomes infinite

when the coefficient |ω1−b1| approaches to zero. As seen from the consideration

on the sampled signal, these two results are equivalent, i.e., (4.4.20) is equivalent

to (4.4.18) from the point view of SNR improvement.

Because the LPFT is linear, the above conclusions can be generalized for the

signal model containing multiple chirp components with the same mean power

defined in (4.2.3). The maximum of the SNR3dB
LPFT is bounded as

0.8
√

2πSNRt
√

max1≤i≤K |ω1,i − bi|
≤ max

α
(SNR3dB

LPFT ) ≤ 0.8
√

2πSNRt
√

min1≤i≤K |ω1,i − bi|
, (4.4.22)

where ω1,i denotes the chirp rate of LPFT of the ith component.

It is worth noting that when ω1 is set to zero, the LPFT becomes the STFT,

and the quantitative analysis for the LPFT becomes that for the STFT as given

in [132].
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4.5 Comparisons

In this section, the LPFT is compared with the FT, the STFT and the WVD in

SNR analysis to show that the LPFT can achieve improved SNR performance

than the FT, the STFT and the WVD.

The details of the 3dB SNR achieved by the LPFT was presented in Section

4.4.2, and the main results are rewritten here for the convenience of the readers

to compare the LPFT with other transforms. The 3dB SNR in the LPFT

domain is

SNR3dB
LPFT =

1.6
√

π
√

α + 1
α
(ω1 − b1)2

SNRt . (4.5.1)

The maximum of the SNR3dB
LPFT , achieved with α = |ω1 − b1|, is

max
α

(SNR3dB
LPFT ) =

0.8
√

2π
√

|ω1 − b1|
SNRt. (4.5.2)

Because the 3dB SNR in the frequency domain is SNR3dB
FT ≤ 1

|b1|
SNRt [132],

we have

max
α

(SNR3dB
LPFT ) > SNR3dB

FT

when
0.8

√
2π|b1|

√

|ω1 − b1|
> 1, (4.5.3)

which shows the condition that the 3dB SNR in the LPFT domain is improved

compared with the SNR in the Fourier transform domain.

The maximum 3dB SNR in the STFT domain was [132]

max
α′

(SNR3dB
STFT ) = 0.8

√
2π√
b1

SNRt, (4.5.4)

where α′ = |b1|, which is optimal to achieve the maximum of SNR3dB
STFT . From
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(4.5.2) and (4.5.4), we have

maxα(SNR3dB
LPFT )

maxα′(SNR3dB
STFT )

= | b1

ω1 − b1

| (4.5.5)

which indicates that as long as | b1

ω1 − b1

| > 1, the maximum of SNR3dB
LPFT is

larger than SNR3dB
STFT . When ω1 = b1, the ratio in (4.5.5) becomes infinity,

which means that the method based on the LPFT can achieve a significantly

higher SNR than that based on the STFT.

The 3dB SNR achieved by the PWVD has been presented in Section 4.3 as

SNR3dB
PWV D = 0.8

√
2(

π

α
)1/4SNRt,

Thus, we have

maxα(SNR3dB
LPFT )

SNR3dB
PWV D

=

(

π

|ω1 − b1|

)1/4

(4.5.6)

which means that as long as |ω1 − b1| ≤ π, or b1 − π ≤ ω1 ≤ b1 + π, a higher

SNR3dB
LPFT than SNR3dB

PWV D is obtained. Furthermore, when ω1 is estimated

correctly, the parameter α = |ω1− b1| approaches to zero. Under this condition,

the maximum SNR3dB
LPFT approaches to infinity.

From (4.5.3), (4.5.5) and (4.5.6), we can see that the estimation of the pa-

rameter ω1 is very important. For example, for the comparison of the SNR of

the LPFT and STFT in (4.5.5), as long as |ω1 − b1| < |b1|, that is the estima-

tion error of ω1 is smaller than |b1|, the LPFT can achieve a better SNR than

the STFT. It should be noted that if the estimation error of ω1 is larger than

|b1|, the SNR of the LPFT will become worse than that of the STFT. However

such a case rarely happens when the PTFT is used to estimate the polynomial

parameters, since the PTFT is a maximum likelihood estimator of the PPS’s

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.5. Comparisons 98

phase parameters and a satisfactory accuracy for parameter estimation can be

easily achieved [90] as discussed in Section 2.3.2.1 of Chapter 2.

As shown in Section 4.4.2, for the signal model containing multiple chirp

components with the same mean power defined in (4.2.3), the maximum of the

SNR3dB
LPFT is bounded as

0.8
√

2πSNRt
√

max1≤i≤K |ω1,i − bi|
≤ max

α
(SNR3dB

LPFT ) ≤ 0.8
√

2πSNRt
√

min1≤i≤K |ω1,i − bi|
, (4.5.7)

clearly we have

max
α

(SNR3dB
LPFT ) > SNRt

when

max
1≤i≤K

|ω1,i − bi| < 1.28π. (4.5.8)

As shown in [132] that 3dB SNR in the frequency domain is SNR3dB
FT ≤ 1

|bi|
SNRt,

we have

max
α

(SNR3dB
LPFT ) > SNR3dB

FT

when

0.8
√

2π|bi|
√

|ω1,i − bi|
> 1. (4.5.9)

It is shown that for the multiple chirp signal model, SNR3dB
STFT is [132]

max
α′

i

(SNR3dB
STFT ) = 0.8

√
2π√
bi

SNRt.

where α′
i = |bi|.

Thus for multiple chirp signals the condition for

max
αi

(SNR3dB
LPFT ) > max

α′

i

(SNR3dB
STFT )
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is

|bi|
max1≤i≤K |ω1,i − bi|

> 1.

It can be concluded that as long as ω1 is estimated correctly, the use of

LPFT indeed achieves a significant performance improvement compared to those

achieved by using the FT and the STFT.

For signals having multiple components, the WVD generally has cross terms

that often lead to incorrect interpretation of signal content. The LPFT, as a

linear transform, is free from the cross terms. Therefore, the LPFT of signals

having multiple components can still achieve higher 3dB SNR than the WVD,

which will be shown using simulations in Chapter 5.

4.6 Simulations

In this section, simulation results are presented to verify the theoretical analysis

presented in the above sections. The simulation uses the signal s(t) = exp[j(2t+

8t2)] + η(t) with a sampling rate 333 Hz and SNRt = −3dB. Figure 4.2 shows

that the maximum 3dB SNR is obtained when ω1 = 16, which indicates that

the 3dB SNR in the time-frequency domain reaches the maximum value when

the chirp rate of LPFT ω1 matches the signal chirp rate b1.

Figures 4.3, 4.4 and 4.6 present the ratios between SNR3dB
LPFT and SNR3dB

FT ,

between SNR3dB
LPFT and SNR3dB

STFT , and between SNR3dB
LPFT and SNR3dB

PWV D, re-

spectively. In all figures, the simulation results (solid curves) closely match the

theoretical results (dashed curves). More importantly, these figures illustrate

that the maximum gain in SNR is achieved when the chirp rate ω1 used by the

LPFT matches the signal chirp rate b1, compared with those achieved by using
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Figure 4.2: The SNR3dB
LPFT versus ω1.

the FT, the STFT and the PWVD. In order to observe how the estimation of the

parameter ω1 affects the SNR ratios, we take the ratio between the SNR of the

LPFT to that of the STFT as an example. As shown in Figure 4.5, we enlarge

Figure 4.4 and add the horizontal line to indicate the case when the SNR of the

LPFT is equal to that of the STFT. We can see that when ω1 is smaller than

32, that is the estimation error of the ω1 is smaller than the signal’s chirp rate

b1, the SNR of the LPFT will become bigger than that of the STFT. However,

when ω1 is bigger than 32, that is the estimation error of the ω1 is bigger than

the signal’s chirp rate b1, the SNR of the LPFT will become smaller than that of

the STFT. The observation is consistent with our theoretical analysis as shown

in (4.5.5).

It should be noted that the SNR analysis for the LPFT is based on the

LFM signals. Other kind of time-varying signals such as the sinusoidal FM

signals have widely used in applications. For example, when an oscillating

object is illuminated with an incident laser, radio frequency, or acoustic wave,

sinusoidal FM signals will arise [134]. In helicopter recognition problems, the

reflected signal from the helicopter is characterized by sinusoidal FM signals
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Figure 4.5: Enlarged figure of Figure 4.4 with the ratio between SNR3dB
LPFT and

SNR3dB
STFT .
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Figure 4.6: The ratio between SNR3dB
LPFT and SNR3dB

PWV D.

[135]. Validated by real data collected in pulse-Doppler radars, sinusoidal FM

signals also appear as a result of the so-called jet engine modulation phenomenon

[136]. For this kind of time-varying signals such as sinusoidal FM signals or

parabolic FM signals, we can use the window function to segment the signals

so that each segment within the window can be assumed to be the LFM signal.

In this way, the LPFT can still achieve high SNR improvement for higher-order

time-varying signals. Consider a parabolic FM signal s(t) = exp[j2π(0.4t −

0.00135t2 + 0.00000173t3)] with SNRt = −3dB. Figure 4.7 presents the signal

in different domains. It can be seen that the LPFT can provide improved SNR

performance than the methods in other domains such as time domain, frequency

domain, STFT domain and WVD domain. Similar conclusion can be drawn for

the sinusoidal FM signal as shown in Figure 4.8, as well as for signal with

multicomponents as shown in Figure 4.9.
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Figure 4.7: The representations of the parabolic FM signal in different domains.
From top to bottom: time domain, frequency domain, STFT domain, WVD
domain, and LPFT domain. SNR = −3dB.
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Figure 4.8: The representations of the sinusoidal FM signal in different domains.
From top to bottom: time domain, frequency domain, STFT domain, WVD
domain, and LPFT domain. SNR = −3dB.
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Figure 4.9: The representations of a signal with multiple components in different
domains. From top to bottom: time domain, frequency domain, STFT domain,
WVD domain, and LPFT domain. SNR = 0dB.
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4.7 Conclusion

In this chapter, the 3dB SNR definition, which is transform-domain dependent

and directly relates to the bandwidth of the signal, is employed to quantitatively

analyze the SNR increase for TFRs. Based on the relationship between the

LPFT and WVD, this chapter presents the analysis of 3dB SNR achieved by

using the LPFT. The quantitative analysis of the PWVD in continuous-time

form is presented as well. Comparisons are made among the SNRs achieved by

using the LPFT, the FT, the STFT and the WVD. Both theoretical analysis and

simulations show that substantial SNR performance improvements are obtained

by using the LPFT.
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Chapter 5

Applications of the LPFT in

ISAR Imaging and LFM Signal

Detection

5.1 Introduction

In Chapter 3 and Chapter 4, theoretical analysis on the LPFT is given on its

uncertainty principle and SNR analysis. It has been shown that the LPFT can

achieve higher resolution than the STFT and is free from the cross terms that

exist in the WVD. Moreover the LPFT can provide higher SNR improvement

compared with other transforms such as the STFT and the WVD. The LPFT

has been found to be a better tool to deal with signals having time-varying

frequencies and has been employed in a variety of practical applications. The

following are some examples.

• The LPFT is useful for interference suppression in communication sys-
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tems to achieve performance improvement [52, 53], compared with that

obtained from the systems based on the STFT.

• A new form of beamformer based on the LPFT is derived in [118] for

source localization and tracking in nonstationary environment, which can

resolve closely spaced sources provided that their velocities are sufficiently

different.

• Motion parameters in video sequences, such as the velocity and accelera-

tion, can be estimated using the LPFT [10].

In this chapter some more applications using the LPFT are presented to

show the advantage of the LPFT and verify the theoretical SNR analysis of

the LPFT presented in Chapter 4. This chapter will focus on two application

examples, i.e., inverse synthetic aperture radar (ISAR) imaging and LFM signal

detection. As presented in Chapter 4, the LPFT can provide higher SNR than

other transforms such as the FT, STFT and PWVD. It should be noted that the

SNR increase in the LPFT domain is due to the mean signal power increase. It

is because that the LPFT can concentrate the LFM signals better than the FT,

STFT and PWVD. This property indicates that better ISAR imaging quality

using the LPFT can be achieved over the one using the FT and STFT. Moreover,

it indicates that the LPFT can achieve more concentrated representation for

LFM signals in heavy noise. Therefore, in this chapter, we first use the example

in ISAR imaging to show that the LPFT can achieve more focused image than

the FT and STFT, followed by the application in chirp detection to show that

the LPP can be employed for signals in heavy noise for which the PWVD cannot

provide clean presentation.
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This chapter is organized as follows. In Section 5.2, the application of

the LPFT in ISAR imaging is presented and compared with the FT and the

STFT. Simulations which use two sets of radar imaging data to produce the

ISAR images are presented to illustrate that the resolution of the ISAR images

are improved by using the LPFT. Furthermore, the improvement on imaging

performance is obtained by the non-overlapping approach to minimize the re-

quired computational complexity. In Section 5.3, the squared LPFT is combined

with the Hough transform therefore achieving the LPP-Hough transform (LHT)

for LFM signal detection. Numerical examples show that, compared with the

pseudo Wigner-Hough transform (PWHT), the LHT achieves significantly bet-

ter performances for signals corrupted by heavy additive white Gaussian noise

(AWGN) and impulsive noise. In addition, the computation time needed by the

LHT can be further reduced by using the time-frequency filtering. Conclusion is

given in Section 5.4. Appendix in Section 5.5 provides details of the theoretical

detection probability of Hough detector.

5.2 ISAR Imaging

5.2.1 Introduction

Radar is an instrument used for the detection and location of targets, such as

aircraft, ships, ground vehicles, and terrain. It transmits electromagnetic energy

to a target and receives the reflected signal from the target. From the received

radar signal, target-related information, such as position and velocity, can be

accurately measured. Synthetic aperture radar (SAR), as an airborne or space-

borne radar, generates a high-resolution map of stationary surface targets and
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terrain, while inverse synthetic aperture radar (ISAR) uses a geometrically in-

verse operation where the radar is stationary and targets are moving to generate

image of targets [19].

To construct images of radar targets from recorded complex data, radar im-

age formation is often required [63], which is a mapping of a three-dimensional

(3D) target onto a two-dimensional (2D) range and cross-range plane. The

conventional radar image formation is based on the Fourier transform (FT). In

ISAR, because the movements of radar targets are usually complicated, motion

compensations are generally needed to obtain focused images by using the FT.

If the motion compensation is not sufficient, the resulting image can still be

blurred when the FT is applied. However, the problem of using the FT can

be circumvented if it is replaced by a time-frequency transform (TFT). Vari-

ous TFTs have been used to mitigate image blurring for improvement on the

quality of ISAR images. Although the short-time Fourier transform (STFT)

[25] is simple and easy to implement, its resolution is inherently limited by the

uncertainty principle. High resolution TFTs, such as Wigner-Ville distribution

(WVD) [25] and continuous wavelet transform [64], were studied for ISAR image

applications. The approaches based on the adaptive chirplet decomposition and

spectral subtraction have been proposed in [137] for detecting a manoeuvring air

target in strong sea clutter. However the performances achieved by using some

of these transforms generally suffer from the cross-term interferences. Adaptive

Gaussian representation [26] and smoothed pseudo WVD [111] were reported

to obtain better performances with reduced cross-term interferences. However,

these methods need complex computation and require much more computation

time than the STFT. In principle, any TFT can be employed for radar image

formation. However, a desired TFT should satisfy the following requirements:
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i) it should have high resolution in the time-frequency domain, ii) it should

accurately reflect the instantaneous frequency (IF) of the analyzed signal, and

iii) it should have low cross terms. The LPFT, as introduced in Chapter 2, can

provide high resolution for time-varying signals with a local polynomial function

approximating to the IF characteristic of the analyzed signals. In addition, it

is free from the cross terms due to its linearity. Therefore, in this section the

LPFT will be employed as the TFT to obtain higher resolution images.

In radar systems, signals having wide bandwidth are generally required to

achieve high range resolution. Widely used wideband signals include linear fre-

quency modulated (LFM) signals and stepped frequency signals. The ISAR

signal model that employs stepped frequency modulation has been recently de-

veloped in [138], and it has been shown that ISAR imaging reconstruction algo-

rithms based on stepped frequency and linear frequency modulation waveforms

attain almost the same performance. In this section the LFM signal model is

employed for ISAR imaging using the second-order LPFT. The simulation with

the radar data shows that the imaging resolution achieved by using the LPFT

is substantially better than that obtained by using other transforms.

This section is organized as follows. After briefly reviewing the ISAR imaging

model based on time-frequency transform in Section 5.2.2, simulation results are

presented in Section 5.2.3 to illustrate the improvements achieved by using the

LPFT on ISAR images.

5.2.2 ISAR Imaging Based on TFTs

To generate an image with radar systems, three major components, i.e., trans-

mitter, target, and receiver, are needed [63]. The transmitter emits a sequence

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.2. ISAR Imaging 112

of pulses to the target to be imaged; then the receiver records the reflected pulses

from the target and processes the recorded data to reconstruct an image of the

target. For example, to generate the image of the target, the radar transmitter

emits a sequence of N pulses and the range resolution is determined by the

bandwidth of the pulse. For each transmitted pulse, the total number of range

cells, M , is determined by the maximum range covered and the range resolution.

The total number of pulses, N , for a given imaging integration time determines

Doppler or cross-range resolution. The radar data sequence is formed as a com-

plex 2D array G(rm,n), (m = 0, 1, · · · ,M − 1; n = 0, 1, · · · , N − 1), where M is

the number of range cells and N is the number of pulses. The 2D radar data

used in this chapter can be downloaded from [139].
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Figure 5.1: Illustration of ISAR imaging using time-frequency transform

Based on the TFTs, Figure 5.1 illustrates the process of radar image for-

mation [63]. Standard motion compensation is needed before the image forma-
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tion. An N × N Doppler-time distribution is generated by performing the

TFT at each range cell. Then the M × N × N range-Doppler-time cube,

Q(rm, fn, tn) = TFTnG(rm,n), can be formed by combining the Doppler-time

distributions at the M range cells. By time sampling from the cube Q(rm, fn, tn),

a range-Doppler image frame Q(rm, fn, tn = ti) can be obtained for a particular

time instant ti. Each of the N image frames represents a full range-Doppler

image with a better resolution at a particular time instant [63]. In contrast,

the imaging formation based on Fourier transform generates only one blurred

2D M × N range-Doppler ISAR image frame from the M × N radar data set.

Therefore, by replacing the Fourier transform with the TFT, a 2D range-Doppler

image becomes a 3D time-range-Doppler image cube. By taking time sampling,

a temporal sequence of 2D range-Doppler images can be achieved. The time-

varying properties of the recorded signals can also be observed from these image

frames at various time instants.

5.2.3 Simulations

In this section, simulation results are presented to show the advantage of the

LPFT and verify the theoretical SNR analysis presented in Chapter 4.

A heavy computational load may be required if a significant overlap between

consecutive signal segments is used to deal with long data sequences by using

the LPFT, as reported in [50]. However, based on the method in [48], this

section shows that even without overlapping between consecutive signal seg-

ments, the performance improvement on the resolution of ISAR images can still

be achieved by using the LPFT. Thus it is possible to significantly reduce the

required computational complexity for the applications of ISAR imaging. It
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should be pointed out that for ISAR imaging using the LPFT, in this section

ω1 is estimated from PTFT as reported in [48]. In contrast, the estimation of

ω1 reported in [50] is based on maximizing the concentration measure.

Let us now consider the improvement on ISAR images by using the LPFT.

The first simulation uses the simulated aircraft B727 data [63] with SNRt =

−5dB. The TFT shown in Figure 5.1 is replaced by the LPFT. It is assumed

that the center frequency of the radar is 9 GHz and the bandwidth is 150 MHz.

The total number of pulses used to form the image is 256.
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Figure 5.2: ISAR image of B727 formed by using the FT
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Figure 5.3: ISAR image of B727 formed by using the STFT (64th temporal
frame)
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Figure 5.4: ISAR image of B727 formed by using the LPFT (64th temporal
frame and (Q − 1)-point overlapping)
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Figure 5.5: ISAR image of B727 formed by using the LPFT (64th temporal
frame and no overlapping)

Following the method reported in [48], the initial window length Q is se-

lected to be small enough (for example, Q = 63 in this case) to provide an

acceptable accuracy of the approximation and the actual length of the window

is increased according to the properties of consecutive signal segments. In our

experiment, the lengths of overlap between adjacent data segments are set to be

the maximum overlapping, i.e., by (Q − 1)-points, and no overlapping, respec-

tively. Figure 5.2 presents the blurred ISAR image of B727 data constructed by

using the FT, and Figure 5.3 is the blurred ISAR image constructed by using the
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STFT. Figures 5.4 and 5.5 show the ISAR images formed by using the LPFT

with an overlap of (Q − 1)-points and no overlap, respectively. It is observed

that the ISAR achieved by using the LPFT is much better than that achieved

by using the STFT and the FT. Furthermore, the difference between Figures

5.4 and 5.5 is hardly visible.
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Figure 5.6: ISAR image of MIG-25 formed by using the FT
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Figure 5.7: ISAR image of MIG-25 formed by using the STFT (64th temporal
frame)

The next experiment uses the simulated aircraft MIG-25 ISAR data [63] with

SNRt = −5dB. The simulated aircraft is composed of 120 point scatters of equal

reflectivity and the operating frequency is centered at 9 GHz. The 64 stepped
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Figure 5.8: ISAR image of MIG-25 formed by using the LPFT (64th temporal
frame and (Q − 1)-point overlapping)
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Figure 5.9: ISAR image of MIG-25 formed by using the LPFT (64th temporal
frame and no overlapping)

frequencies with 8 MHz intervals and 512 samples of the time history series are

used. It is assumed that the aircraft has only a fast rotational motion and the

translational motion is perfectly compensated. The overlapping setting is the

same as that for the previous experiment. Figure 5.6 is the ISAR image of MIG

25 constructed by using the FT and Figure 5.7 is the ISAR image constructed by

using the STFT. Figures 5.8 and 5.9 are the ISAR images obtained by using the

LPFT with different lengths of overlapping, respectively. Similar observations

can be made as those from Figure 5.2 to Figure 5.5. Such observations are
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expected because the LPFT can concentrate the LFM signals better than the

FT and the STFT, therefore the use of the LPFT effectively improves the SNRs,

as indicated by our analysis in Chapter 4. This property indicates that better

ISAR imaging quality using the LPFT can be achieved than the one using the

FT and STFT.

Table 5.1: Computational time needed by the STFT and the LPFT for radar
imaging

Data STFT (s) LPFT without overlap (s) LPFT with max overlap (s)
B727 13.1389 25.8929 1038.8
Mig25 15.5146 104.2623 5094.4

Table 5.1 compares the computational time needed by the STFT, the LPFT

without overlap and the LPFT with the maximum overlap for the radar imag-

ing. The computations are under the Window XP operating system and the

programming environment of MATLAB 7.1. The computer is Pentium 4 with a

clock rate of 2.66 GHz and a RAM size of 512 MBytes. The simulation results

may not be accurate for actual computation time, but they are sufficient for

relative comparisons on the computational complexity. The simulation results

show that the computation with an overlap of Q−1 points needs the most com-

putation time. Because the signal concentration is not sensitive to the length of

the overlap, improved concentration can be achieved by using the LPFT with

a zero overlap length between the adjacent signal segments. In this way, the

performance on signal concentration can be improved without requiring a sig-

nificant increase in computational complexity compared to that needed by the

STFT. More details on the reduction of overlap length can be found in [48].
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5.3 LFM Signal Detection

5.3.1 Introduction

Linear frequency modulated (LFM) signals, also known as chirp signals, are

often encountered in many applications such as in radar, sonar and communica-

tions. Detection and estimation of the LFM signals in a noisy environment are

of great importance. Although the generalized likelihood ratio test (GLRT) is

assumed to be optimal for chirp detection [140], it requires too much computa-

tional complexity to be used for practical applications. Therefore other subopti-

mal approaches, such as the multiple frequency tracker [141], the recursive least

squares (RLS) algorithm [142], the least mean squares (LMS) algorithm [143],

neural networks [144] and time-frequency based methods [67–69], are proposed.

The time-frequency-based methods have been reported to be effective for

detecting and estimating chirp signals [67–69, 145, 146]. Among all the time-

frequency representations, the bilinear Wigner-Ville distribution (WVD) can

provide a superior performance on localization of the chirp signal [34]. There-

fore an optimal WVD-based detector was designed to detect the LFM signals

corrupted by noises [145]. The optimal detector was shown to be equivalent

to quadrature matched filtering or the dechirp method [147]. Other time-

frequency-based methods for detecting and estimating the LFM signals are

also presented. For instance, the Radon-ambiguity transform [68], by apply-

ing the Radon transform to the ambiguity function, can detect multiple LFM

signals embedded in noise. This approach considers the case that the chirp

rate is the only parameter of interest and reduces the detection of LFM signals

to the location of maxima over chirp rates only. The pseudo-Wigner-Hough
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transform (PWHT) was also proposed in [146] as an estimator for the phase

parameters of FM signals, with both good numerical properties and statistical

performance. Moreover, the WVD has been combined with the Hough trans-

form, i.e., the Wigner-Hough transform (WHT), to detect the chirp signals [67],

with the application to suppressing wideband interferences in spread spectrum

communications [12]. Although the WHT can decrease the undesirable cross

terms for multicomponent signals, it cannot provide the desirable performance

for signals distorted in a heavy noise environment, due to the inherent noise

threshold effect problem of the WVD [37]. The Hough transform, combined

with the linear STFT, was reported to detect a weak and low rate chirp signal

[69]. The detector in the Hough transform domain is close to the optimal detec-

tor GLRT for chirp signals corrupted by AWGN and powerful noisy tones [69].

For these methods which combine the time-frequency representation with the

Hough transform, a signal representation in the time-frequency domain should

be firstly obtained, then it is further processed by the Hough transform, which

is a method widely used in image processing for shape detection and feature

extraction. Because chirp signals can be described as straight lines in the time-

frequency domain, the Hough transform, which integrates along all these lines, is

used to convert the task of tracking straight lines in the time-frequency domain

into locating the maximum peak in the signal parameter domain. Therefore, for

chirp detection, a proper processing method is needed to obtain an appropriate

line representation in the time-frequency domain.

Unlike the WVD, due to its linearity the LPFT is free from the cross terms

for multicomponent signals. Moreover, for signals with time-varying frequencies

the LPFT can provide a higher resolution than the STFT since it employs extra

parameters to describe the polynomial phase of the signal. Consider an LFM
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signal expressed as

s(t) = Aej(a1t+
b1
2

t2), (5.3.1)

using the Gaussian window h(t) = (α
π
)1/4e−

α
2

t2 , the modulus of the LPFT of the

LFM signal has been derived in Chapter 4 and is rewritten here as

|LPFT(s; t, ω)| =
√

2A 4

√

π

α + 1
α
(b1 − ω1)2

e
− (ω−a1−b1t)2

2(α+ 1
α (b1−ω1))2 . (5.3.2)

Therefore the LPFT is concentrated along the instantaneous frequency of the

LFM signal ω = a1+b1t, for ω1 = b1. The parameter ω1, which is proportional to

the chirp rate of the signal, can be estimated from the location coordinates of the

maximum in the polynomial time frequency transform (PTFT) [39, 40]. Since

the PTFT is the maximum likelihood estimator and asymptotically achieves

the CRLB [78], it can be used to estimate, with a satisfactory accuracy, the

parameters of the signal phase which is modelled as a polynomial function. In

this section, we will focus on the detection of the LFM signals. Details on

parameter estimation of chirp signals can be referred to [39, 40].

It has been shown in Chapter 4 that the LPFT can achieve higher SNR

improvement than the PWVD. Therefore the Hough transform becomes more

effective on detecting the chirp signals with very low SNRs when the LPFT is

used for the image formation. By combining the LPP with the Hough trans-

form, we achieve the new chirp detection method LPP-Hough transform (LHT).

The LHT can be indicated as a mapping of the signal from the time-frequency

domain onto the signal parameter domain. Based on the combination of the

LPP with the Hough transform, this section reports a detailed evaluation of

this detection method. It shows that the LHT achieves significant improve-

ments on detecting the chirp signals in very low SNR environments. Moreover

the time-frequency filtering can be used to reduce the computation complexity.
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This section is organized as follows. Section 5.3.2 provides a review of the

Hough transform and the time-frequency filtering. In Section 5.3.3, simula-

tion results for signals in AWGN and impulsive noises are given to show the

advantages of the LHT.

5.3.2 Reviews on Hough Transform and Time-Frequency

Filtering

5.3.2.1 Hough Transform

The Hough transform is a feature extraction technique to detect lines in an im-

age, which has been widely used in image analysis, computer vision and digital

image processing [148]. It converts a difficult global detection problem in im-

age space into a more easily solved local peak detection problem in a parameter

space. The Hough transform has many desirable features [149]. First, each point

in the image can be treated independently and therefore the Hough transform

can be implemented using more than one processing unit; that is, parallel pro-

cessing of all points is possible. Therefore the Hough transform is an algorithm

suitable for real-time applications. Second, the Hough transform can recognize

partial or slightly deformed shapes. Occlusion is a severe problem for most other

shape detection methods but the Hough transform degrades gracefully because

the size of a parameter peak is directly proportional to the number of matching

points. Third, the Hough transform is very robust to the extraneous noise due

to the line integration operation. The Hough transform was also generalized

to detect arbitrary shapes, such as circles, ellipse and parabolas [150]. The

Hough transform has been used in a variety of applications, as reported in the
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literature [69, 151–154]. For example, the Hough transform has been used to

extract detections and simultaneous tracks from multi-dimensional radar data

maps [151]. Compared with other traditional techniques, this technique offers

many advantages including improved detection, flexibility of implementation,

a solution to the range walk problem and automatic track acquisition without

revisit. For moving target with rotating parts the Hough transform has been

employed as an imaging method to detect the straight lines and the sinusoids,

which correspond to the nonrotating parts and the rotating parts, respectively

[152]. Thus the spectrum components of the rotating parts can be eliminated

and the focused ISAR image as well as the information of the extracted rotating

parts can be obtained. Besides its application in image processing, the Hough

transform was also applied to nonimage data and parameter estimation [153].

Its efficiency has been confirmed by comparison with the Least Square Method.

Moreover, the Hough transform has been used to detect lines and curves in

pictures [154], as well as for chirp detection [69].
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Figure 5.10: Illustration of Hough transform

In the time-frequency domain, the polar parameterization of a line can be
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expressed as

x cos θ + y sin θ = ρ, (5.3.3)

where ρ and θ are the distance and angle of the normal vector to the line from

the origin, respectively. The Hough transform associates with each point (x, y)

in the time-frequency domain with a sinusoid in the (ρ, θ) domain, as shown

in Figure 5.10 [149]. If N points are concentrated along a straight line in the

time-frequency domain, they will correspond to N sinusoidal curves intersecting

at the same point in the (ρ, θ) domain. The integration along the line produces

a maximum and its coordinates in the (ρ, θ) domain are directly related to the

parameters of the lines. A comprehensive review on the Hough transform is

available in [149].

The Hough transform combined with the WVD, known as the Wigner-Hough

transform (WHT), is an effective tool to detect and estimate the parameters of

the LFM signal [67]. After the chirp signal is represented with a two-dimensional

image of straight lines by using the WVD, the Hough transform is employed

to process the image to better reveal important features of the chirp signal for

detection and estimation. The WHT of multicomponent chirp signals can also

reduce the effects of cross terms on the final estimates [67].

It is noted that the WVD has an inherent noise threshold effect problem

[37] and therefore cannot give satisfactory representations of the LFM signals

in heavy noises. As shown in Chapter 4, the LPP has a much better noise

resistance capability than the WVD and is able to obtain desirable signal rep-

resentations in the time-frequency domain even in a very low input SNR envi-

ronment. Therefore, when the LPP is used for the image formation to detect

the chirp signals with very low SNRs, the Hough transform, which converts

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.3. LFM Signal Detection 125

a difficult global detection problem in image space into a more easily solved

local peak detection problem in the parameter space, becomes more effective.

The algorithm proposed for the detection of chirp signals, with the unknown

parameters and embedded in AWGN, consists of the following steps:

(a) estimate ω1 for the LPFT using the PTFT;

(b) compute the LPP of the signal;

(c) compute the Hough transform of the LPP;

(d) compare the values achieved by the Hough transform with a given thresh-

old for each pair of ρ and θ.

When a certain value exceeds the threshold, a detection is made on the presence

of a chirp signal.

5.3.2.2 Time-Frequency Filtering

In many practical applications, it is necessary to extract signals from noises.

Since the signals may overlap either in the time domain or in the frequency

domain, a conventional time-domain windowing or frequency-domain windowing

may not be adequate. However, under this situation we can use the time-

frequency filtering to extract the useful signal information in the time-frequency

domain and suppress the noise effect [18].

The time-frequency filtering has been used in many different applications.

For instance, it has been used as an approach for sonar target classification

[155], which is more robust to reverberation and background noise perturba-

tions. Combined with the LPFT and STFT, the time-frequency filtering is
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employed for jammer rejection in the spread spectrum communications to im-

prove the desired signal receiving performances [52], as well as for nonstationary

interference suppression in noise radar systems [117]. The time-frequency filter-

ing is also applied to audio time-scale and pitch modification [156]. In [157], the

concept of time-frequency filtering is extended to nonstationary space-varying

filtering to demonstrate superiority over the space-invariant filters. The time-

frequency filtering with the S-transform is explored in [158] to filter nonstation-

ary signals in a better way than the Fourier-domain filtering. For multicompo-

nent noisy signals, the S-method can be used as a tool for the filter’s region of

support estimation [159].

To design a time-frequency filter, we first need to estimate the instanta-

neous frequency of the signal, for example, based on peak detection in the

time-frequency domain [18]. Then the time-frequency filtering, also known as

the “mask”, can be defined as

M(t, ω) =











1, for (t, ω) ∈ R

0, for (t, ω) /∈ R
(5.3.4)

where R is the instantaneous frequency region.

In the following, some simulations are given to show how the time-frequency

filtering works. Various signals corrupted by AWGN with SNR = 0dB are

considered, such as the sinusoidal FM signal, the parabolic FM signal, the

signal with two parallel chirp components, and the signal with two cross chirp

components. From Figure 5.11, it is observed that the time-frequency filtering

can help to suppress the noise effect and extract the useful information.

In this application for LFM chirp detection, the time-frequency filtering

is used for the representation in the time-frequency domain to obtain a much
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Figure 5.11: Illustration of the time-frequency filtering. The plots in the left
column are the LPPs of the noisy signals, and the plots in the right column are
the filtered LPP of the corresponding signals, using the time-frequency filtering.

cleaner representation. Then the filtered representation is followed by the Hough

transform for chirp detection. Applying the time-frequency filtering to the time-

frequency representation can help to filter out the points in the time-frequency

domain which have relatively small amplitude and do not contribute much to the

detection. Considerable Hough transform effort can be saved when these points

are filtered out, which therefore can greatly reduce the computation complexity

of the detection. This time-frequency filtering operation is similar to the idea
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of introducing the primary threshold in the detection, as shown in [69, 151].

5.3.3 Simulations

In this section, signals in AWGN and impulsive noise are processed respectively

to demonstrate the merits of the LHT. Various level of SNR are used for signals

in additive white noise and the impulsive noise. With different SNRs in the sim-

ulations we try to illustrate that the methods can still provide good performance

even with the low SNRs. With the help of the time-frequency filtering, the cor-

responding computation complexity of detection can be minimized while the

performances remain almost the same. It should be noted that in this section

ω1 is estimated in presence of the stated noise, using the maximum likelihood

estimator PTFT which has been introduced in Chapter 2.

5.3.3.1 Signals in Additive White Gaussian Noise

We will consider a few signals containing mono- and multi-component chirps

corrupted by AWGN with various values of SNR.

(a). Monocomponent chirp signal

Consider a monocomponent 256-point chirp signal

s(t) = ej2π(0.00078t2). (5.3.5)

Figure 5.12 shows the PWVD and the LPP of the monocomponent chirp

signal defined in (5.3.5) with SNR = −10dB. It is seen that the LPP achieves

a much better noise suppression than the PWVD for a usable representation
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in the time-frequency domain. The PWHT and LHT of this signal are given

in Figure 5.13 to show that the LHT has a much larger noise margin than the

PWHT for correctly detecting the chirp component. When the time-frequency

filtering is employed to suppress the noise effect, the representation of the chirp

in Figure 5.12(b) becomes much cleaner, and therefore the noise shown in Figure

5.13(b) can be further suppressed.
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(b) LPP

Figure 5.12: The PWVD and LPP of a monocomponent chirp signal (SNR =
−10dB).

(a) PWHT (b) LHT

Figure 5.13: The PWHT and LHT of a monocomponent chirp signal (SNR =
−10dB)
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We will evaluate the performance in terms of the probability of detection,

Pd, for the signal in (5.3.5) embedded in AWGN with different SNRs. Let

us define a grid containing 3 point by 3 point as the expected location of the

peak. A detection is successful when the peak above the threshold is within this

grid. We also assume that the probability of false alarm is 10−2, from which

the threshold of detection can be calculated. Theoretical analysis of the Hough

detector was presented in [69]. For the convenience of readers, Appendix in

Section 5.5 summarizes the main details of theoretically deriving the detection

probability.
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Figure 5.14: Detection performance comparison of LHT and PWHT under the
probability of false alarm 10−2.

From Figure 5.14, it is observed that the performance of the LHT for Pd >

0.99 is close to that of the theory. For signal with a low SNR between −6 and

−12dB, the probability of detection using the LHT is much higher than that

of the PWHT. Compared with the LHT without time-frequency filtering, the

detection performance of the LHT with the time-frequency filtering is almost

the same. However, with the help of the time-frequency filtering, the com-

putation complexity is greatly reduced, which will be shown later. Since the
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time-frequency filtering helps to filter out the points that do not contribute much

to the detection, the LHT with the time-frequency filtering can save the com-

putation time but cannot further improve the detection performance, compared

with the LHT without the time-frequency filtering.

It should be noted that the probability of detection, Pd, is related to the

signal length. We can always increase the signal length and/or increase the

SNR to improve the detection performance.

(b). Multicomponent chirp signal

To further demonstrate the advantage of the LHT, let us now consider a

two-component chirp signal,

s(t) = ej2π(0.000488t2) + ej2π(0.2t−0.000488t2)

with SNR = −8dB.

Figure 5.15 shows that this signal is almost invisible from its PWVD, but the

two chirp components are clearly seen with some noise disturbances by using the

LPP. The PWHT and LHT of this signal are shown in Figure 5.16. The PWHT

can hardly be used for a correct detection of the two chirp components because

it has many peaks of similar magnitudes. However, there exist two peaks with a

large noise margin in the LHT for correct detection of the two chirp components.

Therefore, the LHT gives a significantly better peak detection than the PWHT

for multicomponent chirp signals corrupted by heavy noises.
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Figure 5.15: The PWVD and LPP of a multicomponent chirp signal (SNR =
−8dB).

(a) PWHT (b) LHT

Figure 5.16: The PWHT and LHT of a multicomponent chirp signal (SNR =
−8dB).

It should be noted that compared with the PWVD, the LPFT or LPP gen-

erally needs more computation time since it employs the PTFT to estimate

the extra parameter ω1. However, the LPP can achieve a much clearer repre-

sentation for signals in a heavy noise environment compared with the PWVD.

This advantage has a direct impact on the computation of Hough transform

of these time-frequency representations. For the monocomponent chirp signal
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discussed in Figures 5.12 and 5.13, for example, the computational times re-

quired by the LHT and PWHT are 7.2175s and 9.0718s, respectively. For the

multicomponent chirp signal related to Figures 5.15 and 5.16, the computation

times of the LHT and the PWHT are 9.2815s and 9.2433s, respectively. The

above reported computation times on the LHT and the PWHT were the aver-

ages of 50 measurements of the computations. The reason that the LHT needs

less computation time than PWHT is that although the LPP needs more com-

putation time than the PWVD, the Hough transform generally needs a much

less computational complexity for the cleaner images provided by the LPP. The

computational complexity of the LHT can be further reduced with the help of

the time-frequency filtering. For the same monocomponent and multicomponent

signals, the computation times required by the LHT with the time-frequency

filtering are reduced to 3.7473s and 5.6860s respectively. Besides, the LHT with

time-frequency filtering can also achieve comparable performance as the LHT

without filtering.

5.3.3.2 Signals in Impulsive Noise

In many practical applications involving communications and imaging, signals

are often corrupted by impulsive noise. To better process signals in the impulsive

noise environment, the robust M-estimation [160] and the robust estimation in

the marginal-median form [73] are proposed. However, because they use the

iterative and sorting procedures, respectively, these two robust methods require

heavy computational complexities. Clipper is a standard tool to deal with

impulsive noises due to its natural ability to eliminate the outliers with a simple

computational procedure [161]. The clipper method has been compared with
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other methods such as the M-estimation and L-estimation based forms of signal

transforms in [162]. It has been shown that the clipper method can provide

similar performance as the M-estimation and L-estimation based methods, and

reduce the computation complexity significantly. Thus in this section for the

signals corrupted by impulsive noise, we first use the clipper to reduce the effect

of impulsive noise before applying the LHT to detect the chirp signals. In this

way, the LHT, which was previously used for signals in AWGN, can be used to

process signals corrupted by impulsive noises.

Let us consider the α-stable impulsive noise n(t) = α(w3
1(t) + w3

2(t)), where

w1(t) and w2(t) are independent Gaussian random variables with unit variances.

The variance of the impulsive noise is σ2
n = 30α2 [163], leading to a SNR of

−28.75dB when α = 5, for example.

In Figures 5.17 to 5.20, the mono- and multi-component signals are cor-

rupted by the impulsive noises with α = 5 and 3.5, respectively. From these

figures, it is observed that the LPPs of the clipped mono- and multi-component

chirp signals achieve a better representation than their PWVDs. Thus the

corresponding LHTs can provide a more accurate peak detection of the chirp

components than the PWHT. Since the clipping method does not increase the

computational complexity significantly, the LPPs of the clipped signals require

almost the same computation time as those for the signals corrupted by the

AWGN. For the monocomponent chirp signal mentioned above, the LHT and

the PWHT require the computation times 8.6674s and 9.9389s, respectively. For

the multicomponent chirp signal, the computation times required by the LHT

and PWHT are 10.2533s and 9.7493s, respectively. With the time-frequency

filtering, the computation complexity can be reduced to 3.9820s and 4.1139s,
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respectively.
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Figure 5.17: The PWVD and LPP of a monocomponent chirp signal in impulsive
noise (α = 5).

(a) PWHT (b) LHT

Figure 5.18: The PWHT and LHT of a monocomponent chirp signal in impul-
sive noise (α = 5).
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Figure 5.19: The PWVD and LPP of a multicomponent chirp signal in impulsive
noise (α = 3.5)

(a) PWHT (b) LHT

Figure 5.20: The PWHT and LHT of a multicomponent chirp signal in impulsive
noise (α = 3.5)

For comparisons, the results of the PWVD and the LPP without the use of

clipper are demonstrated in Figure 5.21 and Figure 5.22 for the monocomponent

signal and the multicomponent signal, respectively. It can be seen that without

the use of the clipper, neither the PWVD nor the LPP can provide clean repre-

sentation for the signals corrupted by the impulsive noise. This is because that

without the clipper the standard PWVD and LPP are not the proper represen-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.3. LFM Signal Detection 137

tations to process signals corrupted by the impulsive noise, as demonstrated in

literature [74]. Accordingly, the PWHT and LHT cannot provide useful peak

detection for monocomponent and multicomponent chirp signals corrupted by

heavy impulsive noises.
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Figure 5.21: The PWVD, LPP, PWHT and LHT of a monocomponent chirp
signal in impulsive noise (α = 5), without the use of clipper.
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Figure 5.22: The PWVD, LPP, PWHT and LHT of a multicomponent chirp
signal in impulsive noise (α = 3.5), without the use of clipper.

5.4 Conclusion

Application examples in ISAR imaging and LFM signal detection are presented

to show the advantage of the LPFT and verify the theoretical SNR analysis

of the LPFT. It shows that compared with the FT and the STFT, the reso-

lution of the ISAR images is improved by using the LPFT. Furthermore, the

improvement on imaging performance can be achieved with reduced computa-
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tional complexity by using the non-overlapping approach. Since it can provide

a better noise suppression than the PWVD, the LPP is a better tool to be

combined with the Hough transform to detect the LFM signals. Numerical ex-

amples show that, compared with the PWHT, the LHT achieves significantly

better performances for signals corrupted by heavy AWGN and impulsive noise.

In addition, the computation time needed by the LHT can be further reduced

by using the time-frequency filtering.

5.5 Appendix: Analytical Performance of the

Hough Detector

Based on the materials given in [69], this appendix presents the theoretical

derivation of the probability of detection for the convenience of the readers.

The detection of chirp signal can be symbolically modelled as

H0 : xn = wn

H1 : xn = wn + Aej2π(f+kn)n,

where H0 is the noise-only hypothesis, H1 is the signal-present hypothesis for

n = 0, 1, . . . , Ls −1, and Ls is the length of the signal. The complex noise term,

{wn}, is assumed to be independent identically distributed (i.i.d.) and with

both real and imaginary parts having distribution N (0, 1).

Assuming all the points in the Hough plane are independent, the amplitude

of the point under H0 has the chi-square distribution χ2
2L with 2L degrees of

freedom, where L is the number of FFTs in the time-frequency domain. The

amplitude of the point, under H1, corresponding to the signal in the Hough
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plane has the noncentral chi-square distribution with 2L degrees of freedom

and the noncentrality parameter as NE(A)2L, where N is the FFT length in

the time-frequency domain; other point distributions are same as those under

H0.

With the given probability of false detection, Pfa, the detection threshold τ

can be calculated as

τ = G2
2L

−1((1 − Pfa)
1/K) (5.5.1)

where G2
2L is the cumulative distribution function of the chi-square distribution

with 2L degrees of freedom and K is the number of active points in the Hough

plane. An active point is that in the Hough plane which has a corresponding

line in the data plane. For the given threshold τ , the probability of detection

can be calculated as

Pd =

∫ ∞

τ

f(t)dt (5.5.2)

where f(t) = χ
′2
2L(NE(A)2L).
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Chapter 6

The Reassigned Local

Polynomial Periodogram

6.1 Introduction

To better process the time-varying signals, the essential requirement of a good

TFR is to obtain a sufficient concentration of the signal components to repre-

sent the signal as accurate as possible. As introduced in Chapter 1, although

the LPFT can provide concentrated presentation for the time-varying signals,

ways to further improve the concentration are always desired. Therefore in this

chapter we will focus on the ways to further improve the concentration of the

LPFT.

The reassignment method is an effective operation to improve signal con-

centration in the time-frequency domain. It has been generalized to deal with

the bilinear time-frequency and time-scale distributions [70], the affine class

[71] and S-method [72]. The reassignment method has also been employed in
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many practical applications. It was combined with the multi-tapering for better

estimating time-varying spectra with possibly localized components [164]. In

[165] the reassignment method was adopted to improve the bandwidth-enhanced

additive sound model to produce a sharper and more robust additive represen-

tation. Moreover, the reassignment method was used to process broadband

scattering data from an open-ended waveguide cavity [166]. It was also applied

to study the micro-Doppler features of a moving human [167]. Furthermore,

it has been used in many other areas, such as speech analysis [168], musical

transcription [169, 170] and seismic analysis [171]. Recursive algorithms were

provided in [172, 173] to make the reassignment methods well suited for real-

time implementations. More detailed information on the reassignment method

can be found in [70, 174, 175].

Although the reassignment method generally provides a higher concentration

in the time-frequency domain, it cannot remove the cross terms [70]. Therefore,

selection of a proper kernel for a TFR becomes essential to the reassignment

method to achieve both high concentration and low cross terms between the

signal components. In general, a more readable reassigned TFR can be ob-

tained if the kernel of a TFR better fits the analyzed signal. As introduced

in Chapter 2, the LPFT has a kernel that is able to more accurately describe

the time-varying signals. Furthermore, the LPFT is a linear transform that has

no cross terms between signal components. The local polynomial periodogram

(LPP), which is the modulus square of the LPFT, is the energy distribution

of the LPFT. Similar to the spectrogram (SP) which is the modulus square of

the STFT, the LPP is a bilinear transform, therefore it has the cross terms.

Since the LPFT is a generalization of the STFT, the cross terms in the LPP is

similar to that in the SP. For multicomponent signals, unlike the cross terms in
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the WVD, the cross terms in the SP, which depend on the signal structure and

the window used, occur at the intersection of their respective STFT space [176].

Since the LPFT can achieve higher resolution than the STFT, the cross terms

in the LPP is also much less conspicuous than the SP. The LPP is free from the

cross terms as long as the signal components do not intersect and the window

length used in the LPP is sufficient [177]. Therefore the reassignment method

based on the LPP is able to give an improved resolution for signals containing

more than one closely located components. The second-order LPFT, with one

extra parameter ω1, is particularly suitable to process chirp signals. It can also

be used to process higher-order time-varying signals with a small window to

ensure that each signal segment is approximated as a chirp signal. Therefore

in this chapter, the reassignment method is applied to the LPP, which is the

reassigned LPP (RLPP), to deal with various time-varying signals with a better

concentrated representation.

The rest of the chapter is organized as follows. Section 6.2 provides some

related background information on the reassigned method. Section 6.3 mathe-

matically defines the RLPP and investigates its properties. Numerical examples

for some of the properties and performance improvements are also provided in

Section 6.3. The reassignment method is extended to the robust LPP in Sec-

tion 6.4. The performance comparisons among the LPP-related methods are

given in Section 6.5. Conclusions are given in Section 6.6. The expressions of

the reassignment operators for the RLPP and some of its properties are proved

in Section 6.7.
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6.2 Review on the Reassignment Method

As introduced in Chapter 2, the spectrogram (SP), WVD, smoothed pseudo

WVD (SPWVD) and many other bilinear counterparts can be written in a

general form, known as the Cohen’s class, expressed as [60]

TFR(x; t, ω) =
1

4π2

∫ ∫

φ(u, Ω)WVD(x; t − u, ω − Ω)dudΩ, (6.2.1)

where WVD(x; t, ω) is the WVD of a given signal x(t) and φ(u, Ω) is the dis-

tribution kernel which determines the distribution and its properties. Many

members in the Cohen’s class are able to suppress the cross terms of the WVD,

but with undesirable effects of broadening the signal components in the time-

frequency domain. In order to minimize such undesirable effects, a reassigned

time-frequency representation (RTFR) is used to improve the concentration

of the signal component by reallocating its energy distribution in the time-

frequency domain. By moving the attribution point of the average operation to

the gravitational center of the energy contribution, the RTFR is defined as

RTFR(x; t′, ω′) =

∫ ∫

TFR(x; t, ω) (6.2.2)

·δ(t′ − t̂(x; t, ω))δ(ω′ − ω̂(x; t, ω))dtdω,

where t̂(x; t, ω) and ω̂(x; t, ω) are the coordinates of the gravitational center, by

way of analogy to a mass distribution. In [178] these coordinates are demon-

strated to represent the center of gravity of Rihaczek’s complex energy distri-
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bution. They are also known as reassignment operators, defined as [70]:

t̂(x; t, ω) = t −

∫ ∫

u φ(u, Ω)WVD(x; t − u, ω − Ω)dudΩ
∫ ∫

φ(u, Ω)WVD(x; t − u, ω − Ω)dudΩ
, (6.2.3)

ω̂(x; t, ω) = ω −

∫ ∫

Ω φ(u, Ω)WVD(x; t − u, ω − Ω)dudΩ
∫ ∫

φ(u, Ω)WVD(x; t − u, ω − Ω)dudΩ
. (6.2.4)

For the well known SP, the reassignment operators of its reassigned form,

the RSP, are expressed as [174],

t̂(x; t, ω) = t −

∫ ∫

u WVD (h; u, Ω) WVD (x; t − u, ω − Ω) dudΩ
∫ ∫

WVD (h; u, Ω) WVD (x; t − u, ω − Ω) dudΩ

= t − Re

{

STFTTh(x; t, ω)

STFTh(x; t, ω)

}

(6.2.5)

ω̂(x; t, ω) = ω −

∫ ∫

Ω WVD (h; u, Ω) WVD (x; t − u, ω − Ω) dudΩ
∫ ∫

WVD (h; u, Ω) WVD (x; t − u, ω − Ω) dudΩ

= ω + Im

{

STFTDh(x; t, ω)

STFTh(x; t, ω)

}

, (6.2.6)

where Re and Im indicate the real part and imaginary part, respectively, and

the subscripts h, Th and Dh indicate that the associated STFTs use the window

h(t), the time ramped window t · h(t), and the first derivative of the window

dh(t)

dt
, respectively.

6.3 The Reassigned LPP

This section focuses on the theoretical studies of the RLPP. The definition of the

RLPP is given and its properties are presented with mathematical proofs. It is
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shown that the RLPP has several interesting properties such as non-negativity,

non-bilinearity, time and frequency shifts invariance, time-scaling, time-folding,

symmetry, and energy conservation. In particular, our analysis shows that the

RLPP is able to perfectly localize the chirp and impulse signals, which proves

the effectiveness of the RLPP on improving signal concentration. The proposed

RLPP has the same property as that of the RSP and the reassigned smoothed

pseudo WVD (RSPWVD) to localize the chirp and impulse signals. It is well

known that the RSPWVD cannot mitigate the cross terms resulted from the

WVD and that the RSP cannot separate closely localized chirp components in

the time-frequency domain. In contrast, because the use of the extra parameter

for the phase of the signal helps to obtain a higher resolution in the time-

frequency domain, the cross terms in the RLPP are negligible and the RLPP

is also able to provide a better resolution than the RSP for the closely located

chirp components. Due to these desirable properties, it will be shown in the

simulation that compared with the RSP and RSPWVD, the RLPP achieves a

better signal concentration for chirp signals, especially for closely located chirps,

as well as for higher-order PPSs and other time-varying signals.

6.3.1 Definition of the Reassigned LPP

We will consider the definitions of the reassignment methods based on the

second-order LPP. Since ω1 can be estimated from the PTFT, the LPP is a

bilinear TFR and the reassignment method can be extended to the LPP to

obtain performance improvement [179]. Therefore, the RLPP is defined as

RLPP(x; t′, ω′) =

∫ ∫

LPP (x; t, ω) δ
(

t′ − t̂(x; t, ω)
)

·δ (ω′ − ω̂ (x; t, ω)) dtdω. (6.3.1)
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The expressions of the reassignment operators for the RLPP are given in

(6.3.2) and (6.3.3), and their proofs are presented in Appendix in Section 6.7.1.

t̂(x; t, ω)

= t −

∫ ∫

u WVD
(

h; u,−ω1

2
u + Ω

)

WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ
∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ

= t − Re

{

LPFTTh(x; t, ω) LPFT∗
h(x; t, ω)

|LPFTh(x; t, ω)|2
}

= t − Re

{

LPFTTh(x; t, ω)

LPFTh(x; t, ω)

}

(6.3.2)

ω̂(x; t, ω)

= ω −

∫ ∫











(

Ω − ω1

2
u
)

WVD
(

h; u,−ω1

2
u + Ω

)

·WVD
(

x; t − u, ω − ω1

2
u − Ω

)











dudΩ

∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ

= ω + Im

{

LPFTDh(x; t, ω) LPFT∗
h(x; t, ω)

|LPFTh(x; t, ω)|2
}

= ω + Im

{

LPFTDh(x; t, ω)

LPFTh(x; t, ω)

}

(6.3.3)

Because the WVD is always real-valued, the reassignment operators in (6.3.2)

and (6.3.3) are also real-valued. It is noted that when ω1 = 0, the LPFT

becomes the STFT, and the reassignment operators of the LPP in (6.3.2) and

(6.3.3) become those of the RSP as in (6.2.5) and (6.2.6).

6.3.2 Properties of the Reassigned LPP

The RLPP has a number of properties that can be derived from (6.3.2) and

(6.3.3). Some of their proofs are presented in Appendix in Section 6.7.2.
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(a) Non-negativity

Since the LPP is the square of the LPFT, the non-negativity is preserved

so that the RLPP yields non-negative TFR. The non-negative distributions are

preferred because they can be interpreted as true energy densities to assure ac-

curate signal representation to be obtained.

(b) Non-bilinearity

Bilinear distributions are obtained by kernels that are functionally indepen-

dent of the signal [34]. Because the reassignment operations depend on the

signal, as seen in (6.3.2) and (6.3.3), the RLPP is not bilinear. However, it is

noted that the bilinearity is sacrificed for the benefit of perfectly localizing the

chirp and impulse signals.

(c) Time and frequency shifts invariance

Let us consider a signal y(t) = x(t − t0)e
jω0t. According to the time and

frequency shift properties of the WVD [34], it is known that

WVD(y; t, ω) = WVD(x; t − t0, ω − ω0).

Thus

t̂(y; t, ω) = t̂(x; t − t0; ω − ω0) + t0,

ω̂(y; t, ω) = ω̂(x; t − t0; ω − ω0) + ω0,

lead to

RLPP(y; t′, ω′) = RLPP(x; t′ − t0, ω
′ − ω0),

which means that when the signal is shifted in time and/or frequency domain,

the reassignment operators in (6.3.2) and (6.3.3), and the associated RLPP are
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shifted accordingly.

(d) Time-scaling property

For a signal y(t) = x(at), where a is a non-zero constant, the WVD of y(t)

becomes [34]

WVD(y; t, ω) =
1

|a|WVD(x; at,
ω

a
).

Applying this property to (6.3.2) and (6.3.3), we have

t̂(y; t, ω) =
1

a
t̂(x; at,

ω

a
),

ω̂(y; t, ω) = aω̂(x; at,
ω

a
).

Thus

RLPP(y; t′, ω′) =
1

|a|RLPP(x; at′,
ω

a

′
).

It means that the time-scaled signal with a constant |a| > 1 has an RLPP

that is reduced in magnitude, squeezed in the time domain and expanded in the

frequency domain. Similarly, the RLPP is increased in magnitude, expanded in

the time domain and squeezed in the frequency domain when 0 < |a| < 1.

Based on the above time-scaling property, when a = −1, i.e., y(t) = x(−t),

we have

t̂(y; t, ω) = −t̂(x;−t,−ω),

ω̂(y; t, ω) = −ω̂(x;−t,−ω).

Thus

RLPP(y; t′, ω′) = RLPP(x;−t′,−ω′),

which shows that the RLPP of a time-folded signal is the folded version of the

RLPP of the original signal in both time and frequency domains.
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(e) Symmetry

When the signal is an even or odd function, i.e., x(t) = x(−t) or x(t) =

−x(−t), based on the property of the WVD, it is known that for both cases,

WVD(x; t, ω) = WVD(x;−t,−ω).

Therefore we can easily have

t̂(x; t, ω) = −t̂(x;−t,−ω),

ω̂(x; t, ω) = −ω̂(x;−t,−ω).

Thus

RLPP(x; t′, ω′) = RLPP(x;−t′,−ω′),

which means that when the signal x(t) is even or odd symmetrical, the RLPP

is also symmetrical in time and frequency domains.

(f) Energy conservation

The energy reallocation by the RLPP is consistent with the energy conser-

vation, i.e.,
∫ ∫

RLPP(x; t′, ω′)dt′dω′ =

∫

|x(t)|2dt,

when
∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

dudΩ = 1.

This property shows that the signal energy in the time-frequency domain

after reassignment operation is equal to the energy of the signal in the time

domain provided that the window function h(t) is of unit energy.
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(g) Perfect localization on chirp and impulse signals

For a chirp signal x(t) = Aej(ω0t+αt2/2), we have

WVD(x; t, ω) = A2δ(ω − ω0 − αt).

When ω1 is estimated exactly, we have

ω̂(x; t, ω) = ω0 + αt,

which is exactly the instantaneous frequency (IF) of the chirp signal. Thus

RLPP(x; t′, ω′) =

∫ ∫

LPP(x; t, ω)δ(ω′ − ω0 − αt)δ
[

t′ − t̂(x; t, ω)
]

dtdω.

It shows that with ω1 estimated exactly, the RLPP of a chirp signal is totally

concentrated along the instantaneous frequency of the signal, that is

ω′ = ω0 + αt.

For an impulse signal x(t) = Aδ(t − t0), we have

WVD(x; t, ω) = A2δ(t − t0),

and t̂(x; t, ω) = t0. Thus

RLPP(x; t′, ω′) = δ(t′ − t0)

∫ ∫

LPP (x; t, ω) δ [ω′ − ω̂ (x; t, ω)] dtdω,

which demonstrates that the RLPP of an impulse signal is totally concentrated

at the time of occurrence, that is t′ = t0.

The localization properties show that the RLPPs in (6.3.2) and (6.3.3) will

always perfectly localize the chirp and impulse signals. It should be mentioned

that there are very few representations having such properties. Among the

Cohen’s class, for instance, only the WVD perfectly localizes a chirp signal
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on its instantaneous frequency [60]. However, the cross terms of the WVD

deteriorate the obtained time-frequency representation.

There are two simplified variations of the RLPP. One is the reassigned LPP

along the frequency direction (RfLPP), defined as:

RfLPP(x; t, ω′) =

∫

LPP(x; t, ω)δ[ω′ − ω̂(x; t, ω)]dω, (6.3.4)

in which no reassignment is made in the time direction. The other one is the

reassigned LPP along the time direction (RtLPP), defined as:

RtLPP(x; t′, ω) =

∫

LPP(x; t, ω)δ[t′ − t̂(x; t, ω)]dt, (6.3.5)

in which no reassignment is made in the frequency direction.

The RfLPP and RtLPP share with the RLPP on the properties of non-

negativity, non-bilinearity, time-scaling, energy conservation, time folding and

symmetry. Moreover, the RfLPP particularly has the properties of frequency

shift invariance and perfectly localizing the chirp components, while the RtLPP

has the properties of time shift invariance and perfectly localizing the impulse

components. It means that the RfLPP is responsible for perfectly localizing the

chirps and the RtLPP is for perfectly localizing the impulse. It will be shown

in the simulations that for signals containing only the chirp components, the

RfLPP can achieve an even better signal concentration than the RLPP. The

reason is as follows. In the RLPP, ω′ = ω0 + αt is obtained under the condition

that the parameter ω1 is estimated exactly. While in the RfLPP, even when ω1

is not exactly estimated, we can still obtain ω′ = ω0 + αt with t′ = t, which is

exactly the IF of the chirp signal. Thus on the theoretical basis, the RfLPP of

the chirp signal is able to represent chirp components more accurately than the

RLPP with an easy implementation and less computation complexity, especially
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for signals corrupted by the noise. On the other hand, if a signal only contains

impulse components, the RtLPP, instead of the RLPP, can be used. For a signal

containing both chirp and impulse components, the RLPP can generally achieve

a good performance that is compromised for both types of signal components.

These conclusions are to be confirmed in the simulations presented in the next

section.

6.3.3 Simulations

This section presents simulation results demonstrating some properties of the

RLPP and comparisons on the signal concentration performances achieved by

using different reassigned methods. Although most simulations use chirp signals

for the demonstration, considerations are also given for more general or higher-

order signals. The window function used in this section is the Hamming window.

The length of the signal is 520 points.

(a) LPP (b) RLPP

Figure 6.1: The LPP and RLPP of a signal with two parallel chirp components.

To demonstrate the property of perfectly localization, a signal

x(t) = ej2π(−0.00029t2+0.4t) + ej2π(−0.00029t2+0.36t),
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(a) RfLPP (b) RtLPP

Figure 6.2: Localizing chirp signals with RfLPP and RtLPP.

containing two parallel chirp components is used. Figure 6.1 shows its LPP and

RLPP obtained by using a window of 131 points. It is observed that both the

LPP and RLPP can localize the two chirp components. However, the RLPP

achieves a significant improvement on signal concentration.

Figure 6.2 presents the RfLPP of the same signal as that used in Figure 6.1.

It is seen that the RfLPP can perfectly localize the chirp signals as the RLPP in

Figure 6.1(b) and the RtLPP becomes blurred. Both Figure 6.1(b) and Figure

6.2 (a) clearly show that the RLPP and RfLPP excellently localize the chirp

components.

Figure 6.3 gives the LPP, RLPP, RfLPP and RtLPP of a signal containing

two impulses, defined as x(t) = δ(t − 169.5) + δ(t − 205.5). It clearly shows

that the RLPP and the RtLPP achieves a more concentrated representation.

It should be noted that the impulses can be perfectly localized in theory. In

practice, however, the impulse may be observed with some errors when the time

instant of the impulse is not coincident with the valid point in the time axis. The

magnitude of the error is closely related to the resolution in the time direction

of the reassigned representation and the deviation of the impulse time instant
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(a) LPP (b) RLPP

(c) RfLPP (d) RtLPP

Figure 6.3: Localizing impulse signals using LPP, RLPP, RfLPP and RtLPP.

away from the valid point in the time axis.

To further demonstrate the property of perfect localization, a signal with

one chirp and one impulse is considered in Figure 6.4 to show that the RLPP

achieves a better signal concentration than the LPP, RfLPP and RtLPP. From

Figures 6.2, 6.3, and 6.4, it is concluded that, if a signal only contains chirp

components, the RfLPP is preferred to achieve a better signal concentration

with a reduced computation complexity. On the other hand, if a signal only

contains impulse components, the RtLPP can be used instead of the RLPP. For

a signal containing both chirp and impulse components, the RLPP achieves the

best signal concentration performance for all components.
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(a) LPP (b) RLPP

(c) RfLPP (d) RtLPP

Figure 6.4: Localizing a signal with chirp and impulse components using the
LPP, RLPP, RfLPP and RtLPP.

(a) RSP (b) RSPWVD

Figure 6.5: RSP and RSPWVD of a signal with two parallel chirp components.
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(a) RLPP (b) RfLPP

(c) RSP (d) RSPWVD

Figure 6.6: The RLPP, RfLPP, RSP and RSPWVD of a signal containing two
crossed chirp components.

Figure 6.5 gives the RSP and RSPWVD of the signal used in Figure 6.1

to clearly demonstrate that the RSP cannot separate two closely located chirp

components, and the RSPWVD suffers from the existence of cross term interfer-

ences. The RLPP in Figure 6.1 and the RfLPP in Figure 6.2 can achieve a much

better time-frequency representation than the RSP and RSPWVD in Figure 6.5

with more concentrated signal components and without any cross terms. Fur-

thermore, the RfLPP uses much less computation time than the RLPP because

the reassignment is performed along the frequency direction only.
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(a) RLPP (b) RfLPP

(c) RSP (d) RSPWVD

Figure 6.7: The RLPP, RfLPP, RSP and RSPWVD of a signal containing two
parabolic frequency modulated components.

Next we will consider a signal

x(t) = ej2π(0.00048t2) + ej2π(−0.00048t2+0.5t),

containing two chirp components with different chirp rates. The window length

used in this case is 131 points.

Figure 6.6 shows the RLPP, RfLPP, RSP and RSPWVD. It is seen that the

RfLPP achieves the signal representation even better than the RLPP, which

verifies the conclusion in Section 6.3 that the RfLPP is able to represent chirp

components more accurately than the RLPP.

To show the efficiency of the RLPP for the higher-order time-varying signals,
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(a) RLPP (b) RfLPP

(c) RSP (d) RSPWVD

Figure 6.8: The RLPP, RfLPP, RSP and RSPWVD of a signal containing two
sinusoidal frequency modulated components.

a signal with two parabolic frequency modulated components,

x(t) = ej2π(0.38t−0.00125t2+0.00000168t3) + ej2π(0.48t−0.00135t2+0.00000178t3),

is used with a window length of 65 points. Figure 6.7 shows the RLPP, RfLPP,

RSP and RSPWVD. It is observed that the RSP and RSPWVD can also obtain

concentrated representations, but cannot separate two closely located compo-

nents. In contrast, the RLPP and RfLPP can provide much clean representa-

tions. Since the segment within each window size is assumed to be a chirp, the

RfLPP can still achieve a better representation than the RLPP. Similar results

can be achieved for signal with two sinusoidal frequency modulation components

with a window length of 65 points, as shown in Figure 6.8.
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In general a long window length used in the LPFT provides a higher fre-

quency resolution and a lower time resolution. For the higher-order time-varying

signals, the window length should be small enough so that each segment within

the window can be assumed to be the chirp signal. When this condition is

satisfied, it is possible to use the second-order LPFT to process higher-order

time-varying signals such as the sinusoidal frequency modulation signals shown

in Figure 6.8. Then, the use of the proposed reassignment method can effectively

improve the concentration of the signal components.

6.4 The Reassigned Robust LPP

In practice, the signals under consideration are always embedded in noise. For

signals corrupted by additive white Gaussian noise (AWGN), the required per-

formance can be achieved with the standard methods, such as the STFT and

the LPFT [48]. However, in some situations such as in the applications of com-

munications and imaging, signals are corrupted by impulsive noise. In this case,

these standard methods have difficulties in obtaining sufficient signal concentra-

tion and resolution. To minimize the effects of impulsive noise, Huber proposed

the robust estimation methods to obtain the parameters of the corrupted sig-

nals [180]. The robust STFT based on median filtering [73] was also introduced

recently to achieve significantly better performance in impulsive noise environ-

ments. Similarly, the robust LPFT was proposed to produce highly concentrated

representations of time-varying signals in impulsive noise [74].
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6.4.1 Review on the Standard and Robust Methods

The STFT form of a signal x(t) is defined by the following minimization problem

[180]:

STFT(t, ω) = arg min
m

J(t, ω; m), (6.4.1)

where

J(t, ω, m) =
∑

n

h(nT )F [e(t, ω, n; m)], (6.4.2)

h(nT ) is a real and even window function, F (e) is a loss function and e(t, ω, n; m)

is the error function given by

e(t, ω, n; m) = x(t + nT )e−jωnT − m, (6.4.3)

where T is the sampling period and m is an estimated expectation of the sample

average of x(t + nT ) e−jωnT .

Listed below are definitions of the standard STFT, LPFT and their robust

variations.

A. Standard STFT and standard LPFT

The standard STFT, which is a solution to (6.4.1) with a loss function F (e) =

|e|2, is defined as

STFT(t, ω) = FT{x(t + nT )h(nT )}, (6.4.4)

where FT is the Fourier transform operator. The spectrogram is defined as

|STFT|2.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.4. The Reassigned Robust LPP 162

As a generalized form of the STFT, the LPFT of an input x(t) is defined as

[38]:

LPFT(t, ω, ω1, · · ·, ωM−1) = FT[x(t + nT )h(nT ) e
−j

M∑

m=2
ωm−1

(nT )m

m!
]. (6.4.5)

When M = 2, we have the second-order LPFT defined as

LPFT(t, ω, ω1) = FT[x(t + nT )h(nT ) e−jω1(nT )2/2],

which is particularly suitable to deal with chirp signals. Here ω1 can be esti-

mated from the location coordinates of the maximum in the PTFT, defined as

[39, 40]

PTFT(ω, ω1) = FT[x(nT ) e−jω1(nT )2/2]. (6.4.6)

The second-order LPP with M = 2, which is proper to process the chirp

signals, is defined as |LPFT|2.

B. Robust STFT and robust LPFT

With the loss function F (e) = |e| or F (e) = |Re(e)| + |Im(e)|, the robust

M-STFT [160] or the robust STFT with the median filtering [73] can be ob-

tained. The computation of the robust M-STFT needs the iterative procedures

and therefore generally requires a heavy computational load [160]. The robust

STFT with the median filtering has a simpler solution because it uses a sort-

ing procedure [73]. Therefore the robust method based on median filtering is

employed in this chapter. The robust STFT is defined as [73]

rSTFT(t, ω) = median{Re[x(t + nT )h(nT ) exp−jωnT ]}

+jmedian{Im[x(t + nT )h(nT ) exp−jωnT ]}. (6.4.7)
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The robust spectrogram is defined as |rSTFT|2.

The robust LPFT of the input x(t) is defined as [74]:

rLPFT(t, ω, ω1) = median{Re[x(t + nT )h(nT ) e−jωnT−jω1(nT )2/2]}(6.4.8)

+ jmedian{Im[x(t + nT )h(nT ) e−jωnT−jω1(nT )2/2]}.

In this case, the robust PTFT is used to estimate ω1 for signals corrupted by

impulsive noise. The estimation performances achieved by using the PTFT and

robust PTFT of the signals in impulsive noise were compared in [48]. It was

shown that the peaks from the robust PTFT are more easily identified than

from the PTFT. Similarly the robust LPP is defined as |rLPFT|2.

In general, the standard transforms are used as the maximum likelihood

estimators for signals in AWGN, and the robust methods based on median

filtering produces good representations of the signals corrupted by impulsive

noise [73, 74]. For signals corrupted by the mixture of AWGN and impulsive

noises, however, the L-estimation-based transforms outperform the standard

and the robust transforms [181].

6.4.2 Definition of the Reassigned robust SP and LPP

In this section, the reassignment method is extended to the robust spectrogram

and the robust LPP to obtain a good distribution concentration for signals em-

bedded in impulsive noise. The operators of the reassigned robust spectrogram

(RrSP) are defined as:

t̂(x; t, ω) = t − Re

{

rSTFTTh(x; t, ω)

rSTFTh(x; t, ω)

}

, (6.4.9)

ω̂(x; t, ω) = ω + Im

{

rSTFTDh(x; t, ω)

rSTFTh(x; t, ω)

}

. (6.4.10)
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The reassignment operators of the reassigned robust LPP (RrLPP) are de-

fined as:

t̂(x; t, ω) = t − Re

{

rLPFTTh(x; t, ω)

rLPFTh(x; t, ω)

}

, (6.4.11)

ω̂(x; t, ω) = ω + Im

{

rLPFTDh(x; t, ω)

rLPFTh(x; t, ω)

}

. (6.4.12)

The reassigned robust LPP along the frequency direction (RfrLPP) is given

by:

RfrLPP(x; t, ω′) =

∫

rLPP(x; t, ω)δ[ω′ − ω̂(x; t, ω)]dω.

In general, the use of the robust LPFT in robust LPP is similar to the use

of the robust STFT in the robust spectrogram. One additional requirement for

the robust LPFT is that the parameter ω1 in (6.4.8) has to be estimated from

the robust PTFT of each signal segment.

6.5 Performance Comparisons

In this section, we compare the performances of those methods discussed in

Sections 6.3 and 6.4. The comparisons are made in terms of the readability of

signal components, the required computational complexity, the ratio of distri-

bution concentration, and the mean squared errors (MSEs) of the instantaneous

frequency estimation.

Let us consider a parabolic FM signal,

x(t) = ej2π(0.5t−0.00173t2+0.0000022t3), (6.5.1)

which is assumed to be corrupted by impulsive noise, n(t) = α[w3
1(t) + jw3

2(t)],

where α = 0.5, w1(t) and w2(t) are independent Gaussian random variables with
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unit variances. The variance of the impulsive noise is σ2
n = 30α2 [163], leading

to a signal-to-noise ratio (SNR) of −8.75dB when α = 0.5. The probability

density function of the noise is g(x) = 1/3
√

2πe−|x|2/3/2|x|−2/3, which was used

to model many real-life engineering problems [73] [74] . A Hamming window of

65 points is used in the simulations. Within the window duration, each signal

segment of the signal can be approximately assumed to be a chirp.

A. Readability

(a) (b)

(c) (d)

Figure 6.9: The spectrogram-related representations of the parabolic FM signal
in impulsive noise; (a) spectrogram of a clean signal, (b) spectrogram of a
corrupted signal, (c) robust spectrogram of a corrupted signal and (d) reassigned
robust spectrogram of a corrupted signal.
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(a) (b)

(c) (d)

Figure 6.10: The LPP-related representations of the parabolic FM signal in
impulsive noise; (a) LPP, (b) robust LPP, (c) reassigned robust LPP, and (d)
reassigned robust LPP along the frequency direction.

Figure 6.9(a) shows the standard spectrogram of a clean signal x(t) and Fig-

ure 6.9(b) gives the standard spectrogram of the signal corrupted by impulsive

noise. The robust spectrogram of the corrupted signal is given in Figure 6.9(c)

to show the improvement on signal concentration compared with that in Figure

6.9(b). Finally, Figure 6.9(d) gives the reassigned robust spectrogram of the

signal in the same noise environment. Although better visual representation

on the signal component is achieved by applying the reassignment and robust

operations to the spectrogram, further improvements on signal concentration

and resolution in the time-frequency domain are still desired for practical ap-
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(a) SP (b) RSP

(c) Robust SP (d) RrSP

Figure 6.11: The spectrogram-related representations of the parabolic FM signal
in AWGN.

plications.

We now consider the LPP-related representations for the same corrupted

signal, as shown in Figure 6.10. The comparison between Figure 6.9(b) and

Figure 6.10(a) shows that the latter achieves an obvious improvement on signal

concentration, which is expected because the LPP uses the parameter ω1 to more

accurately describe the change of the signal frequencies. It is also observed that

in Figure 6.10(b) the robust LPP achieves a substantial improvement on signal

representation in the time-frequency domain. Furthermore, Figures 6.10(c) and

(d) show that the reassignment operations on the robust LPP are effective to
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improve the concentration in the time-frequency domain. The RfrLPP in Figure

6.10(d) appears to be more concentrated than the RrLPP in Figure 6.10(c).

Both Figure 6.9 and Figure 6.10 show that, compared with the standard

methods, the robust SP and robust LPP using median filtering are effective to

remove the effects of impulsive noise. Then with the reassignment operations,

the concentration of the signal component can be further improved.

Figure 6.11 and Figure 6.12 show the representations based on the SP and

LPP, respectively, for signal x(t) embedded in AWGN n(t) = 0.75[w3(t) +

jw4(t)], where w3(t) and w4(t) are independent Gaussian random variables with

unit variances. Again, it is seen that the LPP-related representations achieve

better performances than their spectrogram-related counterparts. It is also

observed that the RrLPP in Figure 6.12(d) achieves slightly degraded represen-

tation than the RLPP in Figure 6.12(b). It is because that although the median

filtering used in robust methods is effective to reduce the effects of impulsive

noise, it is not useful for minimizing the effects of AWGN. This observation

is consistent with the conclusion in [74]. Meanwhile, Figure 6.11 and Figure

6.12 show that all the reassigned representations achieve improvement on signal

concentration compared with their counterparts without the reassignment. In

particular, both the RfLPP in Figure 6.12(e) and the RfrLPP in Figure 6.12(f)

achieve sufficiently concentrated representations.
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(a) LPP (b) RLPP

(c) Robust LPP (d) RrLPP

(e) RfLPP (f) RfrLPP

Figure 6.12: The LPP-related representations of the parabolic FM signal in
AWGN.

B. Computational complexity

For the spectrogram-related methods that are used for Figure 6.9 and Figure

6.11, the maximum overlap between adjacent segments is necessary to achieve

good signal representations. The maximum overlap is accomplished by sliding

the window by one data point to obtain each succeeding signal segment. It was

reported in [48] that even without any overlap between adjacent segments, a

good approximation to the signal components can be achieved by the LPFT as
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(a) LPP (b) RLPP

Figure 6.13: The LPP and RLPP of the parabolic FM signal, with the maximum
overlap between signal segments.

long as the window is short enough, as demonstrated in Figure 6.10 and Figure

6.12. For the sake of comparison, Figure 6.13 gives the LPP and RLPP that are

computed with the maximum overlap. Visual inspections show that the LPP

and RLPP in Figure 6.13(a) and (b) are not obviously better than those without

any overlap in Figure 6.12(a) and (b). However the process without any overlap

greatly reduces the computational complexity, which is shown later in Table 6.1.

In the LPP without overlap, each segment within the small window is assumed

to be a chirp having the same parameter ω1. When the chirp rates of the

consecutive segments are sufficiently different, smearing in the time-frequency

domain may occur between the segments.

A window of length M is used to segment the signal, and therefore, each

segment needs an M -point Fourier transform whose computational complexity,

in terms of the number of complex multiplications, is in the order of M log2 M .

For the spectrogram of an N -point signal sequence, where N >> M and the

maximum overlap is used, the computational complexity is in the order of

NM log2 M . The LPP computation for each data segment needs to estimate the
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parameter ω1 by using the PTFT, which requires a computational complexity

in the order of MM1 [44], where M and M1, being the number of points related

to ω and ω1, respectively, are the dimensional sizes of the PTFT. According to

the result reported in [39], M1 should be larger than M to achieve a satisfactory

accuracy. Since the LPP, with an estimated ω1, is performed in the same way

as the spectrogram, the total numbers of complex multiplications for the LPP

of an N -point sequence are in the orders of NM(log2 M + M1) for the maxi-

mum overlap, and N(M log2 M + M1) for non-overlap between the segments,

respectively.

For the reassigned methods such as the RLPP and RSP, most of the compu-

tational complexity is for the reassignment process. Therefore, the RLPP does

not need much more computational complexity than the RSP. Since the com-

putational complexity of the sorting procedure, i.e., the quick sorting algorithm

[182], for the robust methods is in the order of M log2 M , the computational

complexity of the robust spectrogram is in the order of N2M log2 M . Therefore

using the robust PTFT to estimate the parameter ω1, the computational com-

plexity of the robust LPP without overlap is in the order of NM(N+M1) log2 M .

The main computational complexity for the RrLPP is for the sorting procedure

of the median filtering. The computational complexity of the RrLPP is about

three times of that needed by the robust LPP since the reassignment computa-

tion needs about three times of that for the sorting procedure compared to the

robust LPP.

The computation times required by various methods for the specific signal

x(t) are listed in Table 6.1. The signal is corrupted by either AWGN or im-

pulsive noise when the robust operation is applied in the processing methods.
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The computations are under the Window XP operating system and the pro-

gramming environment of MATLAB 7.1. The computer is Pentium 4 with a

clock rate of 2.66 GHz and a RAM size of 512 MBytes. The numerical values

in Table 6.1 are the average of 50 measurements of the computation times. The

computation times of LPP and RLPP with the maximum overlap are 38.86

and 41.57 seconds, respectively, compared with 0.81 and 3.74 seconds for those

without any overlap. Therefore, the computational complexity is significantly

reduced, i.e., achieving about 47 and 10 times of savings in computation time.

In Table 6.1, the computation times for the LPP-related representations are

measured on the processing without any overlap between the signal segments,

while the computation times for the spectrogram-related representations in Ta-

ble 6.1 are measured on the processing with the maximum overlap to achieve

the best possible performance.

Table 6.1: Comparison on computation time required by various computa-
tion methods. The AWGN is 0.75[w3(t) + jw4(t)] and the impulsive noise is
0.5[w3

1(t) + jw3
2(t)].

Methods Computation time (s)
spectrogram 0.1641
reassigned spectrogram 3.8730
robust spectrogram 122.9487
reassigned robust spectrogram 370.3964
LPP 0.8087
reassigned LPP 3.7418
reassigned LPP along the frequency direction 2.9340
robust LPP 123.7826
reassigned robust LPP 364.0574
reassigned robust LPP along the frequency direction 252.0833

In Table 6.1, the computation time needed by the LPP is about 5 times of
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that needed by the SP. However, it is observed that the robust methods with

median filtering, i.e., robust SP and robust LPP, or the reassignment methods,

i.e., RSP and RLPP, require about the same computation time. It means that

as far as the median filtering or reassignment method is involved, the improve-

ments made by the LPPs do not require extra computation time compared with

the spectrograms with median filtering or reassignment method. Furthermore,

it is also noted that compared to the RLPP and RrLPP, the RfLPP and RfrLPP

can reduce the computation times by about 20% and 30%, respectively. It will

be shown in the following subsections that the RfLPP and RfrLPP can provide

better distribution concentrations and smaller MSEs. Therefore by using these

two methods we can achieve significant performance improvements with savings

in computation time.

C. Distribution concentration

Next we will evaluate the performances in terms of the distribution con-

centration with the signal x(t) embedded in impulsive noise n(t) = α[w1(t)
3 +

jw2(t)
3], AWGN n(t) = w3(t) + jw4(t), and mixture of these noises n(t) =

α[w1(t)
3 + jw2(t)

3] + [w3(t) + jw4(t)], where α ∈ [0, 1.5]. For each value of SNR

or α, measurements of 100 trials are averaged. Similar to the concept of the

distribution concentration used in [72], we define the distribution concentration

as

B = 10 log10

E1

E2

,

= 10 log10

average(TFT(t, ω)(t,ω)∈R)

average(TFT(t, ω)(t,ω)/∈R)
(6.5.2)

where region R corresponds to the instantaneous frequency lines of the signal

components, which are determined by the peak values in the TFTs, E1 is the
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(a) Concentration ratios in impulsive noise
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(c) Concentration ratios in mixture noise

Figure 6.14: Distribution concentration ratios of various LPP-related represen-
tations for the parabolic FM signal in impulsive noise, AWGN, and mixed noise.
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average energy along the instantaneous frequency region R, E2 is the average

energy outside the instantaneous frequency region R.

For the signal in (6.5.1) corrupted by impulsive noise, Figure 6.14(a) shows

that the robust LPP-related methods with the median filtering are able to im-

prove the distribution concentration. However, the median filtering is not effec-

tive to improve the concentration of the signals corrupted by AWGN, as shown

in Figure 6.14(b). In contrast, the reassigned LPP-related methods are effective

to improve the concentration for signals in AWGN or impulsive noise. It also

confirms that both the median filtering and reassignment operation are neces-

sary to achieve the best distribution concentration for signals in the mixed noise

environment, as shown in Figure 6.14(c). It is also noted that, the RfrLPP in

Figure 6.14(a) and the RfLPP in Figure 6.14(b) obtain better concentrations,

which are consistent with the observations from Figure 6.10 and Figure 6.12,

respectively.

D. Mean Squared Errors (MSEs)

We will compare the MSEs of instantaneous frequency estimation achieved by

using various LPP-related methods for the signal S(t) embedded in different

noise environments. The instantaneous frequency estimation is obtained ac-

cording to the curve peak positions in the time-frequency transforms, defined

as [60]

ω̂(t) = arg max
ω

TFT(t, ω).

The MSE of the estimator is defined as

∫

[ω(t) − ω̂(t)]2dt,

where ω(t) is the true instantaneous frequency and ω̂(t) is the estimated instan-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.5. Performance Comparisons 176

0 0.5 1 1.5
−60

−50

−40

−30

−20

−10

0

α

1
0

lo
g

1
0
M

S
E

 (
d

B
)

 

 

rLPP	

RrLPP

RfrLPP

LPP

RLPP

RfLPP

(a) MSE in impulsive noise

0 5 10 15
−60

−55

−50

−45

−40

−35

−30

SNR (dB)

1
0

lo
g

1
0
M

S
E

 (
d

B
)

 

 

rLPP

RrLPP

RfrLPP

LPP

RLPP

RfLPP

(b) MSE in Gauss noise

0 0.5 1 1.5
−60

−50

−40

−30

−20

−10

0

α

1
0

lo
g

1
0
M

S
E

 (
d

B
)

 

 

rLPP

RrLPP

RfrLPP

LPP

RLPP

RfLPP

(c) MSE in mixed noise

Figure 6.15: MSEs of instantaneous frequency estimation achieved by using
various LPP-related methods for the parabolic FM signal in impulsive noise,
AWGN, and mixed noise.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.5. Performance Comparisons 177

taneous frequency.

In general, median filtering is useful for minimizing the MSEs when the signal

is in impulsive noise environment, as seen in Figure 6.15(a) in which larger MSEs

are obtained by the LPPs without using median filtering. However, the median

filtering has side effects on minimizing the MSEs for signals in Gaussian noise

environments, which can be seen from Figure 6.15(b) that the representations

with median filtering achieve larger MSEs than their counterparts. Meanwhile

the reassignment operations also have adverse effects on minimizing the MSEs

for signals in AWGN or impulsive noise. This can be seen obviously from, for

example, Figure 6.15(a) and Figure 6.15(b) that the RrLPP and RLPP achieve

much larger MSEs than the robust LPP and LPP, respectively. However, it is

interesting to see that in Figure 6.15(a), the RfrLPP has almost the same MSEs

as the robust LPP, and in Figure 6.15(b), the RfLPP has almost the same MSEs

as the LPP. It means that the RfLPP and the RfrLPP have little side effects

on minimizing the MSEs in AWGN and impulsive noise, respectively.

It should be noted that in this simulation, the testing signal with a parabolic

frequency modulation law is given as an example. Similar results can be achieved

with other kind of frequency modulation law such as the LFM signals and the

sinusoidal FM signals.

It is also worth mentioning that in this chapter the impulsive noise is mod-

elled as α[w3
1 + jw3

2]. For impulsive noise belonging to Middleton class A model

[183], or the standard Cauchy distributed complex noise v1(n) + jv2(n) [184],

where v1(n) and v2(n) are mutually independent with the standard Cauchy

distribution fv(x) =
1

π(1 + x2)
, similar performance comparisons can also be

achieved.
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6.6 Conclusion

This chapter defines the reassignment method based on the second-order LPP

to improve the signal concentration performance for signals with time-varying

frequencies. Properties of the RLPP are studied and theoretically proved. Sim-

ulation results are also presented to verify some properties of the RLPP, RtLPP

and RfLPP. The improvements on signal concentration show that these proposed

reassigned methods are better analysis tools than the RSP and RSPWVD for

the chirp signals, as well as for higher-order signals with time-varying frequen-

cies. The reassignment method is also extended to the robust LPP, therefore

achieving the RrLPP, to provide concentrated performance for signals corrupted

by the impulsive noise.

Moreover, performances achieved by various LPP-related methods are com-

pared in different noise environments such as AWGN, impulsive noise, and the

mixture of AWGN and impulsive noises. Based on the simulated results, it

is observed that with the reassignment, the LPP-related methods can improve

the concentration in both noise environments, although the reassignment may

not be useful to minimize the MSEs of the instantaneous frequency estimation.

While the median filtering in the robust LPP-related methods is useful to min-

imize the MSEs for signal in impulsive noise, it has side effects for signals in

AWGN. Therefore for LPP-related methods, robust operation with median fil-

tering, reassignment operation, or both of them, should be adequately selected

for signals in a given noise environment to achieve the performance objectives.

Furthermore, the RfLPP and the RfrLPP are better choices for signals in AWGN

and impulsive noise, respectively, because they can achieve good distribution

concentrations and small mean square errors with reduced computational com-
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plexities. The information revealed from the comparisons is particularly useful

for selecting a suitable combination of the processing techniques to achieve the

desired performance objective.

6.7 Appendix

6.7.1 Expressions of the Reassignment Operators for RLPP

We will first prove an equality:

LPFTg(x; t, ω) LPFT∗
h(x; t, ω) (6.7.1)

=

∫ ∫

WVD
(

h · g; u,−ω1

2
u + Ω

)

WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ.

where the subscripts g and h indicate the real and even window functions that

are used by the associated LPFTs. This equation will be used to prove the time

and frequency operators for the RLPP.

Proof: The right-hand side of (6.7.1) is expanded into:

∫ ∫ ∫ ∫

h
(

u +
τ

2

)

g∗
(

u − τ

2

)

e−j(−ω1
2

u+Ω)τdτ

·x
(

t − u +
α

2

)

x∗
(

t − u − α

2

)

e−j(ω−ω1
2

u−Ω)αdαdudΩ

=

∫ ∫

h
(

u +
τ

2

)

g∗
(

u − τ

2

)

x
(

t − u +
τ

2

)

·x∗
(

t − u − τ

2

)

ejω1uτe−jωτdτdu. (6.7.2)

Let a = u+ τ
2

and b = u− τ
2
, then u = a+b

2
and τ = a−b. With dτdu = |J |dadb,

where the Jacobian determinant is

J =

∣

∣

∣

∣

∣

∣

∣

∂u
∂a

∂u
∂b

∂τ
∂a

∂τ
∂b

∣

∣

∣

∣

∣

∣

∣

= −1,
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(6.7.2) becomes

∫ ∫

h(a)g∗(b)x(t − b)x∗(t − a)ejω1
a2

−b2

2 e−jω(a−b)dadb

= LPFTg(x; t, ω) LPFT∗
h(x; t, ω).

Based on (6.7.1), (6.3.2) and (6.3.3) can be proved as follows. We first consider

the time operator given in (6.3.2).

Proof: Since

Re
{

WVD
(

h · Th; u,−ω1

2
u + Ω

)}

= Re

{∫

h
(

u +
τ

2

)(

u − τ

2

)

h∗
(

u − τ

2

)

e−j(−ω1
2

u+Ω)τdτ
}

= Re
{

uWVD
(

h; u,−ω1

2
u + Ω

)

−
∫

τ

2
h

(

u +
τ

2

)

h∗
(

u − τ

2

)

e−j(−ω1
2

u+Ω)τdτ

}

= uWVD
(

h; u,−ω1

2
u + Ω

)

.

Thus

Re {LPFTTh(x; t, ω) LPFT∗
h(x; t, ω)} (6.7.3)

= Re

{∫ ∫

WVD
(

h · Th; u,−ω1

2
u + Ω

)

· WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ
}

=

∫ ∫

uWVD
(

h; u,−ω1

2
u + Ω

)

WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ,

where Th indicates a time ramped window t ·h(t) and the subscripts, for exam-

ple, Th and h mean the types of the windows used in the LPFTs.

Next let us prove the frequency operator given in (6.3.3).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.7. Appendix 181

Proof: Since

Im
{

WVD
(

h · Dh; u,−ω1

2
u + Ω

)}

= Im

{∫

H

(

−ω1

2
u + Ω +

ξ

2

) [

−j

(

−ω1

2
u + Ω − ξ

2

)]

· H∗
(

−ω1

2
u + Ω − ξ

2

)

ejξudξ

}

= Im
{

−j
(

−ω1

2
u + Ω

)

WVD
(

h; u,−ω1

2
u + Ω

)

+
∫

j
ξ

2
H

(

−ω1

2
u + Ω +

ξ

2

)

H∗
(

−ω1

2
u + Ω − ξ

2

)

ejξudξ
}

= −(Ω − ω1

2
u)WVD

(

h; u,−ω1

2
u + Ω

)

.

Thus

Im {LPFTDh(x; t, ω)LPFT∗
h(x; t, ω)}

= Im

{∫ ∫

WVD
(

h · Dh; u,−ω1

2
u + Ω

)

· WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ
}

= −
∫ ∫

(

Ω − ω1

2
u
)

WVD
(

h; u,−ω1

2
u + Ω

)

·WVD
(

x; t − u, ω − ω1

2
u − Ω

)

dudΩ, (6.7.4)

where Dh means a window which is the first derivative of h(t), and LPFTDh is

the LPFT using the window of Dh.
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6.7.2 Properties of the RLPP

Some properties of the RLPP presented in Section 6.3 are proved as follows.

(a). Time and frequency shift invariance

Let us consider y(t) = x(t − t0) expjω0t . From the time and frequency shift

properties of the WVD [34], it is known that

WVD(y; t, ω) = WVD(x; t − t0, ω − ω0).

From (6.3.2), we achieve

t̂(y; t, ω)

= t − (6.7.5)
∫ ∫

u WVD
(

h; u,−ω1

2
u + Ω

)

WVD
(

x; t − t0 − u, ω − ω0 −
ω1

2
u − Ω

)

dudΩ
∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

WVD
(

x; t − t0 − u, ω − ω0 −
ω1

2
u − Ω

)

dudΩ

= t̂(x; t − t0, ω − ω0) + t0. (6.7.6)

Similarly from (6.3.3) and following the similar procedure, we have

ω̂(y; t, ω) = ω̂(x; t − t0, ω − ω0) + ω0,

so that

RLPP(y; t′, ω′) = RLPP(x; t′ − t0, ω
′ − ω0).

(b) Energy conservation
∫ ∫

RLPP (x; t′, ω′) dt′dω′

=

∫ ∫ ∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

∫

x
(

t − u +
τ

2

)

x∗
(

t − u − τ

2

)

· exp−j(ω−ω1
2

u−Ω)τ dτdudΩdtdω

=

∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

∫

x(t − u)x∗(t − u)dudΩdt.
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If

∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

dudΩ = 1, the above equation becomes

∫

|x(t)|2dt.

(c) Perfectly localizing chirp and impulse signals

For a chirp signal x(t) = Aej(ω0t+αt2/2), we have

WVD(x; t, ω) = A2δ(ω − ω0 − αt),

therefore

ω̂(x; t, ω) = ω −

∫ ∫











(

Ω − ω1

2
u
)

WVD
(

h; u,−ω1

2
u + Ω

)

· A2δ
(

ω − ω1

2
u − Ω − ω0 − α(t − u)

)











dudΩ

∫ ∫











WVD
(

h; u,−ω1

2
u + Ω

)

· A2δ
(

ω − ω1

2
u − Ω − ω0 − α(t − u)

)











dudΩ

.

Since Ω = ω − ω1

2
u − ω0 − α(t − u),

ω̂(x; t, ω) = ω0 + αt + (ω1 − α)

∫

u WVD (h; u, ω − ω1u − ω0 − α(t − u)) du
∫

WVD (h; u, ω − ω1u − ω0 − α(t − u)) du

.

When the parameter ω1 is estimated exactly, we have ω1 = α, and thus

ω̂(x; t, ω) = ω0 + αt,

which is exactly the IF of the chirp signal. Thus

RLPP(x; t′, ω′) =

∫ ∫

LPP(x; t, ω)δ(t′ − t̂(x; t, ω))δ(ω′ − ω0 − αt)dtdω.

For the impulse signal x(t) = Aδ(t − t0), we have

WVD(x; t, ω) = A2δ(t − t0).
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Thus

t̂(x; t, ω) = t −

∫ ∫

u WVD
(

h; u,−ω1

2
u + Ω

)

A2δ(t − u − t0)dudΩ
∫ ∫

WVD
(

h; u,−ω1

2
u + Ω

)

A2δ(t − u − t0)dudΩ

= t0,

and

RLPP(x; t′, ω′) = δ(t′ − t0)

∫ ∫

LPP(x; t, ω)δ(ω′ − ω̂(x; t, ω))dtdω.
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Chapter 7

Conclusion and Future work

In this chapter, we conclude the studies presented in this thesis and propose

some suggestions for the future work.

7.1 Conclusions

Chapter 3 presents the uncertainty principle of the LPFT. It shows that the

uncertainty product of the LPFT of an arbitrary order is related to the param-

eters of the signal and the window function, as well as the errors of estimating

the polynomial coefficients. Important factors, such as the window width, the

length of overlap between signal segments, order mismatch and estimation er-

rors of polynomial coefficients, are also discussed in terms of the uncertainty

principles. The effects of minimizing computational complexities by reducing

the order of the transform and the overlap length between signal segments are

also examined. In terms of the signal concentration, comparisons among the

FT, the STFT, the WVD and the second-order LPFT are presented. Simula-
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tions for speech signal and bat sound are also given to show that the LPFT is

an excellent candidate providing better representations for signals having time

varying frequencies.

Chapter 4 is dedicated to the quantitative SNR analysis for the LPFT. To

better judge the possibility of detecting the narrowband signals in the frequency

domain and the time-varying signal in the time-frequency domain, the definition

of the 3dB SNR as in communications is employed. This 3dB SNR definition

is transform-domain dependent and directly relates to the bandwidth of the

signal. Therefore it is suitable for signals in the time-frequency domain as well

as in the time and frequency domains, respectively. Based on the relationship

between the LPFT and the WVD, theoretical analysis on the 3dB SNR of the

LPFT is carried out. The quantitative 3dB SNR analysis of the pseudo WVD

(PWVD) in continuous-time form is presented as well. Comparisons on the

3dB SNR performances achieved by using the LPFT, the FT, the STFT and

the WVD are presented with simulations to illustrate the advantage of using

the LPFT.

In Chapter 5, application examples in ISAR imaging and LFM signal de-

tection are presented to verify the advantage of the LPFT. In ISAR imaging

applications, simulations on radar imaging using the LPFT, STFT and FT are

presented to show the performance improvements achieved by using the LPFT.

Measures are also taken to minimize the required computational complexity by

reducing the overlap length between adjacent segments of input data. For LFM

signal detection, the LPFT is employed to achieve significant increase of noise

margins in the signal parameter domain, which leads to a new method based

on the combination of the local polynomial periodogram (LPP) and the Hough
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transform. Simulation results for the detection of mono- and multi-component

LFM signals corrupted by additive white Gaussian noise and impulsive noise

show that the proposed method achieves significant performance improvement

on detecting the LFM signals in very low SNR environments. It is also found

that by using the time-frequency filtering, the computational complexity of the

detection can be substantially reduced.

In Chapter 6, the reassignment method is extended to the second-order lo-

cal polynomial periodogram (LPP) to get the reassigned LPP (RLPP). The

RLPP is defined and its interesting properties are investigated with mathemat-

ical proofs. Based on simulation results with various signals, comparisons with

the reassigned spectrogram and smoothed pseudo WVD are made to show the

desirable ability of the RLPP for improvement on the signal concentration in

the time-frequency domain. Furthermore, the reassignment method is com-

bined with the robust methods, such as the robust spectrogram and the robust

LPP, to process signals in impulsive noise. Performance using various LPP-

related methods are compared for signals embedded in additive white Gaussian

noise, impulsive noise, and the mixture of additive white Gaussian noise and

impulsive noises. Compared with the counterparts without reassignments, the

reassigned methods can help to improve the distribution concentration. How-

ever, it is not capable of minimizing the mean squared errors of instantaneous

frequency estimation. Furthermore, the reassigned LPP along the frequency

direction (RfLPP) and the reassigned robust LPP along the frequency direction

(RfrLPP) are preferred because they can achieve good distribution concentra-

tions and small mean square errors with reduced computational complexities.
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7.2 Recommendations for Further Research

Based on the studies in this thesis, the following recommendations are made for

possible research directions in the future.

7.2.1 Properties of PTFT

More details on properties of the PTFT are needed to be analyzed. For example,

sidelobes of the PTFT, which are the peaks other than the peaks corresponding

to desired signal components, are to be further explored. Since the PTFT

includes the multi-dimensional calculation, the properties of its sidelobes are

more complicated than those of one-dimensional DFT.

7.2.2 Uncertainty Principles of the LPFTs

In this thesis, the uncertainty product is obtained by multiplying the duration

and bandwidth of the local signal, which places limits on the processing tech-

niques of the windowed transforms. Other kinds of uncertainty principles, such

as the global uncertainty principle, are discussed in [59]. It will be interesting

to investigate these kinds of uncertainty principles for the LPFTs.

Furthermore, it will be interesting to explore how the uncertainty principle

can be used in signal design such as for optimization of the distribution.

7.2.3 LPP-Hough Transform

Statistical performances of the Wigner-Hough transform (WHT), pseudo Wigner-

Hough transform (PWHT) and Radon-ambiguity function have been given in
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the literature. It will be desirable to give the statistical analysis for the LPP-

Hough transform (LHT) to evaluate this new transform and compare it with

other transforms.

The Hough transform has been generalized to detect and estimate the non-

linear FM signals embedded in additive white Gaussian noise [185], where the

reassigned smoothed pseudo WVD is employed because of its good localization

and interference suppression properties. Therefore, another possible extension

of the LHT is for the detection of nonlinear FM signals, with the help of the

generalized Hough transform [150].

In this thesis, the time-frequency filtering, which is performed in the time-

frequency domain through masking, is subject to the prerequisite that esti-

mation of the instantaneous frequency can be achieved. Therefore it becomes

unsuitable when the SNR is too low. An alternative filtering method such as

the time-frequency peak filtering (TFPF) [186] can be employed under this sit-

uation. The TFPF encodes the noisy signal as the instantaneous frequency of

an FM analytic signal, and then the instantaneous frequency estimation is per-

formed on the analytic signal using the peak of a TFR to recover the filtered

signal. It has been shown in [186] that the TFPF can work with better per-

formance in very noisy environments where the time-frequency filtering fails to

work.
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7.2.4 Applications of the LPFT for Signals with Time-

varying Frequencies

Applications of the LPFT in radar imaging and LFM signal detection, as well

as speech and bat sound analysis, have been presented in this thesis. More

applications using the LPFT are preferred. Since the LPFT is a generalized

form of the STFT, in the areas in which the STFT is used, there exists the

potential for generalization and improvement by using the LPFT. For instance,

to analyze the patterns of time-frequency structures within a musical passage,

the STFT is usually employed due to its simplicity. Despite of its low resolution

the STFT has been widely used to process the music signals [29, 30, 187], the

musical instruments [31], the music of bird song [66], and the musical rhythm

[188]. It is obvious that better results can be obtained by using TFRs which

can provide higher resolution with reduced or free cross terms, and the LPFT

is an appropriate choice.

Furthermore, the synthesis algorithm for the LPFT is also desired, which is

important for other potential applications such as audio and speech synthesis.

7.2.5 Applications of the Reassigned LPP

Applications of the reassigned LPP is highly appreciated, based on its prop-

erty of perfectly localizing the LFM signals. For example, in communications,

the adaptive wavelet transform [189], the adaptive STFT [28] and the WVD

[190] have been used for the excision of the second-order polynomial phase in-

terference (PPI). All these transforms, except the WVD, do not have optimal

concentration property for the second-order PPI, which is the linear chirp inter-
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ference. However, the undesirable influence of cross terms prevents the WVD

from being used for the multi-component interference excision. Therefore the

RLPP can be the proper candidate to achieve better results in this case.

Moreover, it would be interesting to know whether perfect localization can

be achieved for higher-order PPSs by choosing a corresponding higher-order

polynomial in the reassigned LPP.
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[52] L. Stanković and S. Djukanović, “Order adaptive local polynomial FT

based interference rejection in spread spectrum communication systems,”

IEEE Trans. Instrum. Meas., vol. 54, no. 6, pp. 2156–2162, 2005.
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