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Abstract

Quantum logic gates with many control qubits are essential in many quantum algorithms, but
remain challenging to perform in current experiments. Trapped ion quantum computers natively
feature the Mølmer–Sørensen (MS) entangling operation, which effectively applies an Ising
interaction to all pairs of qubits at the same time. We consider a sequence of equal all-to-all MS
operations, interleaved with single-qubit gates that act only on one special qubit. Using a
connection with quantum signal processing techniques, we find that it is possible to perform an
arbitray SU(2) rotation on the special qubit if and only if all other qubits are in the state |1〉. Such
controlled rotation gates with N − 1 control qubits require 2N applications of the MS gate, and can
be mapped to a conventional Toffoli gate by demoting a single qubit to ancilla.

1. Introduction

Multiple-control gates arise in various quantum information processing tasks, ranging from basic

arithmetic [1] to Grover’s search method [2], which famously requires a gate that performs an inversion

around just a single specific state. The prototypical example is the ToffoliN gate, which performs a bitflip

(Pauli-X) on the target qubit if and only if N − 1 control qubits are in the state |1〉.
Albeit conceptually simple, gates with many control qubits remain challenging to implement in current

experimental quantum computers. Because single-qubit gates are typically more accurate than entangling

operations, an important challenge is to decompose multiqubit operations into circuits with as few as

possible two-qubit gates. To indicate, the Toffoli3 requires at least 5 two-qubit gates [3], or when the

CNOT gate is the only available entangling gate, then at least 6 CNOTs are needed [4]. For a larger number of

qubits, the required number of basic operations or ancilla qubits grows steeply. The ToffoliN on N

qubits can be constructed through a circuit of depth O(log(N)), requiring O(N) ancilla bits. With just a

single ancilla, the best known circuits require O(N) two-qubit gates [5–7]. If no ancillas may be used, then

a quadratic number of CNOTs are required [8]. The size of these circuits has been prohibitive in scaling up

quantum algorithms on current quantum computer prototypes: even though various systems with a few

tens of qubits have been reported, the largest multiple-controlled gate ever performed is, to our best

knowledge, the Toffoli4 [9].

A possible workaround is to replace operations by interactions between multiple qubits that natively

arise in a quantum comptuter [10–14]. Quantum computers based on trapped ions typically deal most

naturally with the Mølmer–Sørensen gate (MS) as basic entangling gate, which effectively applies an Ising

interaction to all pairs of qubits for a specific amount of time [15–18]. For a small number of qubits,

fidelities of over 99% have been reported [19–21], and a large body of scientific work focuses on optimizing

quantum circuits for this gate [22–27]. To compare to the numbers of the ToffoliN gate, the best result

we are aware of decomposes this operation into 3N − 9 MS operations interleaved with single-qubit

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ab8830
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-9474-2130
https://orcid.org/0000-0002-3731-4455
https://orcid.org/0000-0002-4159-877X
https://orcid.org/0000-0002-3466-5719
mailto:koen.groenland@gmail.com


New J. Phys. 22 (2020) 063006 K Groenland et al

rotations [26], requiring N−2
2

ancillary qubits and assuming that each operation may act on a different

subset of qubits.

1.1. Overview of results

In this work, we consider a gate set consisting of an all-to-all MS gate that always acts on all N qubits,

together with arbitrary single-qubit rotations on just a single special qubit. Our main result is that this

formalism allows one to perform rotations on the special qubit that depend on the state of the other qubits.

We pay particular attention to the controlled rotation gate, which performs a single-qubit rotation on the

special qubit if and only if all other qubits are in the state |1〉.
More precisely, we define the Mølmer–Sørensen gate acting on all N qubits in the system as

MS(τ) = exp

⎛
⎝−iτ

4

N∑

j,k=1

XjXk

⎞
⎠ , (1)

where Xj, Yj, Zj denote the Pauli matrices acting on qubit j. In our case, τ is fixed for a given number of

qubits N. Moreover, we denote the conventional single-qubit rotations as

Rx(α) = exp
(
−iX

α

2

)
, Ry(α) = exp

(
−iY

α

2

)
, Rz(α) = exp

(
−iZ

α

2

)
. (2)

Then, the following circuit implements the operation Rz(α) on a target qubit when all other qubits (the

controls) are in the state |1〉:

(3)

Here, the top 3 lines represent N − 1 control qubits, and a total of L applications of the MS gate occur.

H = 1√
2
(X + Z) represents the Hadamard gate. The parameters τ , h are always +π/N and −π/N

respectively, and the number of MS pulses needed is, in this case, L = 2N. The remaining unknown

parameters, φj, are discussed below. We call the resultant controlled rotation CN−1Rz(α). Note that using a

local basis transformation on the target qubit, this can be turned into any controlled-SU(2) operation. More

generally, a similar circuit can implement any rotation Rz(αq) on the target, where the rotation angle αq

depends on the number of control qubits in the state |1〉. Such operations cost L = 4N applications of the MS

gate.

There is an important difference between CN−1Rx(±π) (a controlled ∓iX rotation), and the

conventional ToffoliN gate, because the factor of i is not a global phase. In equation (13), we describe

how the conventional ToffoliN−1 can be retrieved by demoting one of the qubits to ancilla, following

[14].

The main body of this paper is devoted to linking the above circuit to the theory of equiangular

composite gates, as introduced by Low, Yoder and Chuang [28]. This framework allows the construction of

a single-qubit unitary operation U(θ) that depends in a complicated way on some parameter θ, using a

sequence of elementary gates consisting of Rx(θ) and arbitrary θ-independent gates. The technique to

efficiently calculate the appropriate gate sequence is often called signal processing. It proved useful in many

recent breakthroughs in the design of quantum algorithms, such as quantum singular value transformations

[29, 30], linear combinations of unitaries [31], and efficient Hamiltonian simulation [32, 33].

In this paper, we use signal processing in a very different context. Our core result is that the action of the

MS gate can be interpreted as Rx(θq) on a special qubit, where θq depends on the number of ones among the

other qubits. With this interpretation we can readily apply a known algorithm to efficiently compute the

angles {φ0,φ1, . . . ,φL} that implement the required gate, depending on N and α.

The theory and implementation of quantum signal processing is rather involved, and to lower the

barrier to apply our results in practice, we provide Python code that calculates these parameters in reference

[34]. In particular, the function crot_angles (N, α) returns precisely the list of angles φj, which can be

readily plugged into the circuit in equation (3). Moreover, in appendix A, we list an explicit circuit for

C2Rz(π) and tabulate values of the angles Φ for N = 3, 4, 5, 6. This should allow anyone to use our results

without the need to understand all the details of this paper.
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2. Composite gate techniques

This section reviews the theory of quantum signal processing and composite gates. We follow the notation

from Low, Yoder and Chuang [28], with some adjustments to make it consistent with the algorithm by

Haah [35] and our own notation of the MS gate.

Let Φ = {φ0,φ1, . . . ,φL} be a list of angles (i.e. real numbers that we interpret to be periodic with

period 4π)5 of length L + 1. We can then define a single-qubit rotation of the form

FΦ(θ) = Rz(φ0)

⎡

⎣
L∏

j=1

Rz(−φj)Rx(θ)Rz(φj)

⎤

⎦ . (4)

In other words, the function FΦ maps an angle θ ∈ [0, 4π) to an element of SU(2), a unitary matrix with

determinant 1. Each of the θ-dependent steps Rz(−φj)Rx(θ)Rz(φj) corresponds to a rotation around a

vector pointing along the equator of the Bloch sphere, where this vector is given by

cos(φj/2)X − sin(φj/2)Y.

Any such matrix FΦ(θ) can also be decomposed in a basis of Pauli matrices6,

FΦ(θ) = A(θ)�+ iB(θ)X + iC(θ)Y + iD(θ)Z. (5)

Here, A, B, C, D are real functions of θ. They have to be 4π periodic in θ, and by unitarity, they satisfy the

normalization condition A(θ)2 + B(θ)2 + C(θ)2 + D(θ)2 = 1. Moreover, it was found that A and D are

symmetric functions of θ, whilst B, C are anti-symmetric in θ (i.e. A(θ) = +A(−θ) and C(θ) = −C(−θ))

[35].

With the above properties, it is convenient to express A, B, C, D in their cosine or sine series. As a

technical detail, an expansion over 4π periodic function takes the form A =
∑M

k=0 ãk cos(kθ/2), but due to

the structure of SU(2), only frequencies of k odd (when L is odd) or k even (when L is even) can have

nonzero coefficients ãk (and likewise for B, C, D).7 We choose to work only with the simpler case of L even,

where all functions become 2π periodic in θ:

A(θ) =

L/2∑

k=0

ak cos(kθ), B(θ) =

L/2∑

k=1

bk sin(kθ)

C(θ) =

L/2∑

k=1

ck sin(kθ), D(θ) =

L/2∑

k=0

dk cos(kθ)

(6)

In this notation, the degree of the series L/2 turns out to be half of the number of θ-dependent steps in

equation (4) [28].

The reverse is also true: for any set of series A, B, C, D that is properly normalized and has largest degree

L/2, there exists a sequence of angles Φ of length L + 1 such that equation (4) holds. Retrieving these angles

Φ from known series A, B, C, D can be done efficiently on a classical computer using the algorithm by Haah

[35], which is implemented in Python in reference [36]. During the completion of this manuscript, two

alternative approaches to retrieve Φ were announced [37, 38].

This backwards-engineering step is precisely what we will exploit. In section 3 we indicate how MS

pulses can be interpreted as a single-qubit rotation of the form Rx(θq) on the target qubit, where θq depends

on the state of the control qubits. Then, in section 4, we find achievable cosine and sine series A, B, C, D that

correspond precisely to the gate we aim to obtain, with degrees as low as possible. In fact, we only have to

supply the algorithm with A and B, as it determines a suitable C and D by itself using the normalization and

even/oddness.

The remainder of this section consists of technical notes that one might want to skip on a first read.

Firstly, we note that Haah’s algorithm is slightly more general, allowing A to be chosen either even or odd,

and similar (independently) for B. The downside is that in such cases, the θ-dependent single-qubit gates

Rz(−φj)Rx(θ)Rz(φj) have to be replaced by θ-rotations around an arbitrary vector on the Bloch sphere.

5 Note that the rotations in equation (2) have periodicity 4π and not 2π. To indicate, on input α = 2π each rotation becomes −�. This

makes a difference because we consider controlled operations.
6 Note that there exist two different conventions for expanding FΦ(θ) into Pauli matrices: we follow the notation by Haah [35], whereas

Low et al work with slightly different labeling ABCD → ACDB [28, 32, 33]. This is equivalent to a change of basis on the Pauli matrices.
7 To indicate, Rx(θ+ 2π) = −Rx(θ). Therefore, for sequences with an even number of applications of Rx(θ), the functions A, B, C, D are

symmetric under a 2π shift in θ. An odd number of applications require basis functions to be anti-symmetric under a 2π shift.

3
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Because we did not find more efficient results in this formalism, we choose to stick with the simpler

notation introduced above. Still, future work might exploit these extensions to improve on our results.

We will later see that, to obtain the advertised CN−1Rz(α) gate, it is essential that we have control over

the function D, which does not directly serve as input. However, we will ensure that D is non-zero only at

the special points θ = 0 or θ = π, where the anti-symmetric functions B, C are always 0. Exploiting

D2 = 1 − A2 at these points, we can produce Rz(α) by only pinning A to a specific value.

3. Mølmer–Sørensen in the context of single-qubit composite gates

In this section, we argue how the rotation Rx(θ) (acting on a single qubit, but having θ as free parameter)

can be related to the MS operation (acting on N qubits). We will see that a circuit of the form equation (3)

can be broken down into invariant two-dimensional subspaces. The operation on each subspace can be

described by FΦ(θq), where θq depends on the state of the control qubits.

We consider a set of N qubits, which we label by [N] = {0, 1, . . . , N − 1}. The MS(τ) operation is

interpreted as the evolution of a certain Ising model under Schrödinger’s equation for a time τ . For now, let

us analyze the Ising model in the Z-basis rather than the X-basis, and allow for arbitrary interaction

strength wjk between any pair j, k ∈ [N] of qubits. The corresponding Hamiltonian reads

HIsing =
J

2

∑

j,k∈[N]
j<k

wjkZjZk. (7)

The variable J sets an energy scale. Interactions of this form have been experimentally observed between

N = 53 atoms in a Paul trap [39]. In our case, we refer to qubit 0 as our special target qubit, and the other

qubits will be called control qubits. We denote our quantum states in the computational basis as |b0,�b〉,
where b0 ∈ {0, 1} represents the state of the target, and �b ∈ {0, 1}N−1 denotes the states of the control

qubits. The states |b0,�b〉 are the eigenstates of HIsing, whose energies we denote by E
b0,�b.

When we include arbitrary rotations on the target qubit, the Hilbert space decomposes into conserved

subspaces, each of which can be labeled by the state �b of the control qubits:

H�b = span(|0,�b〉, |1,�b〉). (8)

Within each of these subspaces, the Ising Hamiltonian HIsing acts as

H�b =

(
E

0,�b 0

0 E
1,�b

)

=

(
∆�b/2 0

0 −∆�b/2

)
+ Ē�b �, (9)

where we defined the energy gap ∆�b = E
0,�b − E

1,�b and the mean energy Ē�b =
E

0,�b
+E

1,�b
2

.

Now, consider the special configuration of couplings

w0,k = 1 ∀ k ∈ {1, . . . , N − 1} (Star couplings)

wj,k = 0 ∀ j � 1.
(10)

This gives rise to a star-shaped connectivity, where all control qubits are coupled to the target, but not

among each other. Now, HIsing has a spectrum as indicated in figure 1: the ground energy is

E = −J(N − 1)/2 when all control qubits are different from the target, and +J energy is added for each

control qubit that is the same. The complete eigensystem is

{|0,�b〉 : |�b| = q} E
0,�b = J

(
N − 1

2
− q

)
(Star couplings)

{|1,�b〉 : |�b| = q} E
1,�b

= −J

(
N − 1

2
− q

)

where |�b| = q ∈ {0, . . . , N − 1} denotes the Hamming weight (i.e. the number of ones) of the bitstring
�b ∈ {0, 1}N−1. For this configuration, H�b takes a particularly simple form, as the gap ∆�b is given by

∆�b = J(N − 1 − 2q), (11)

4
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Figure 1. The left image sketches the star connectivity for a system of size n = 3. The right-hand side displays the energy
spectrum of HIsing of such a system, in units of E/J.

hence is the same for all subspaces corresponding to the same Hamming weight q. Moreover, the mean

energy vanishes for all subspaces, i.e. Ē�b = 0.

Now, let us turn on the couplings wjk between the control qubits, leaving the couplings connected to the

target fixed at w0,k = 1. The energy difference compared to the star coupling case can now only depend on

the state �b of the controls, not on the state of the target. Hence, the energy gap ∆�b = E
0,�b − E

1,�b will not

change as a response to this. In fact, the only parameter of H�b
that changes is Ē�b, leading to a

subspace-dependent overall shift in energy.

The link between HIsing and the MS gate is as follows. Choosing uniform all-to-all couplings (wjk = 1)

and unitarily evolving for a time t = τ/J precisely implements the MS(τ) gate, up to a rotation between the

X and Z eigenbases:

MS(τ) = H⊗N · exp(−iHIsingτ/J) · H⊗N

Here, H denotes the Hadamard gate. Within the conserved subspace H�b, up to an overall phase, this

operation can be written as

MS(τ) ∼ Rx(∆�b τ/J) e−iĒ�bτ/J

For later convenience, after8 each MS gate we allow a single-qubit rotation Rx(h) to be applied on the target

qubit. The combined rotation takes the form

MS(τ)Rx(h) ∼ Rx(θq) e−iĒ�bτ/J where θq =
∆�b τ

J
+ h = (N − 1 − 2q)τ + h.

We collect the rotation angles θq using the set notation Θ = {θq}N−1
q=0 , representing all the rotation angles θq

that can occur due to a combination of MS(τ) and Rx(h). The free parameters τ , h allow us to spread and

shift these relevant angles over the unit circle.

This approach connects the circuit in equation (3) with the composite gate defined in equation (4): the

function FΦ(θ) can be implemented by a sequence of MS gates (that effectively perform Rx(θ)) interleaved

with Rz(φj) rotations. The angles θ that can occur are precisely those in Θ, which depend on the state of the

control qubits. Pinning the rotation FΦ(θq) that takes place on the target qubit whenever the control qubits

have Hamming weight q is equivalent to pinning the values A(θq), B(θq), C(θq), D(θq).

A last detail is the subspace-dependent phase due to Ē�b, which can be straightforwardly tracked in the

case of equal all-to-all interaction (wjk = 1∀j, k), as is the case in our definition of the MS gate. The

permutation symmetry among qubits makes it straightforward to calculate the N unique values of Ē�b.

However, in the context of the circuit in equation (3), we follow a more intuitive approach. We observe that

all the terms XjXk in the MS gate commute. Moreover, for the control qubits, each subsequent XjXk pulse is

not interleaved with single-qubit gates, hence rotation angles are additive. Each of these terms associates a

phase to a pair of qubits (j, k). When τ and L are chosen such that τL = 2π, each of these phases reset

regardless of the qubit state. Thus, with τ = π/N, any choice of L that is a multiple of 2N guarantees that

subspace-dependent phases Ē�b reset in our circuit.

8 Because MS(τ) and Rx(h) commute, they can be performed in any order, or even simultaneously.

5
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Figure 2. An indication of the composite gate parameters for the case N = 7 and α = π. Left: our choice of τ , h spreads the
values θq uniformly over the unit circle, with the special point θn = −π. Right: the cosine and sine series A, B, C, D which were
obtained using our fitting strategy.

4. The full composite gate

Let us now consider the functions A, B, C, D that implement a controlled rotation. The gate CN−1Rz(α)

corresponds to the choice

if q 
= N − 1: A(θq) = 1,

if q = N − 1: A(θq) = cos(α/2), D(θq) = sin(α/2).
(12)

We first choose convenient values values for τ and h. We aim to have all relevant angles θq spread out in the

interval [0, 2π] as much as possible, as in figure 2, such as to obtain series with the lowest possible degree

and to allow more leeway in experimental control. Moreover, we choose θq=N−1 = π to be at a symmetric

point of the even functions A and D, such that the function value D(θq=N−1) is never repeated within the

function’s period. Therefore, we choose9

θq = π − 2π

N
(q + 1).

This set of angles is obtained by setting

h = − π

N
, τ =

π

N
.

4.1. Fitting A and B

Our next step is to find low-degree cosine/sine series for A and B that satisfy equation (12). We choose to

work only with even functions and set B = 0. The coefficients of ak as in equation (6) can be solved using

the N constraints on A given in equation (12). In fact, due to symmetry we need only enforce these values

for10 q = ⌊N
2
⌋ up to q = N − 1.

Unfortunately, such fits would generally not respect the normalization condition

A2 + B2 + C2 + D2 = 1. To enforce |A(θ)| � 1, we restrict the derivatives A′(θq) = 0. This way, whenever

A(θq) = 1, this corresponds to a maximum of the function A. An additional advantage is that slight over- or

under-rotations of θ due to an inaccurate MS gate do not affect the resulting operation, to first order in θ.

Exploiting again the symmetries of A, the only values of q for which these derivatives are relevant are ⌈N
2
⌉

up to N − 2, because the cosine series already has zero derivative at the points θ = 0,π. All in all, we have N

constraints on the function A(θ), hence we can parametrize it as a series of degree N − 1 (because the series

starts counting at k = 0).

With this choice of A(θ), any choice of B, C, D that respects the normalization condition is automatically

a valid choice for the CN−1Rz(α) gate. Firstly, at the points θq for q 
= N − 1, we have set A = 1 and hence at

those points, B = C = D = 0. Moreover, the point θN−1 = π is a zero for any sine series, so normalization

9 Note that other choices, such as setting θq=N−1 = 0 would work equally well.
10 We use ⌊a⌋ to denote that a is rounded down to the nearest integer. Similarly, ⌈a⌉ denotes rounding up.

6
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requires |D(θN−1)| = sin(α/2).11 The behavior of B, C, D at points other than θq is irrelevant for our

purposes.

4.2. From cosine series to composite gate

Having found the series representation of A and B, we can input these in the algorithm by Haah [35]. It

finds the angles Φ that allow us to form the circuit in equation (3) with L = 2N − 2.

4.3. On relative phases due to Ē�b
In its current form, the circuit in equation (3) that uses a sequence of length L = 2N − 2 will also introduce

subspace-dependent phases due to Ē�b. The simplest solution is to round L up to L = 2N by adding two

addition steps with φ2N−1 = 0 and φ2N = π. These two extra steps have no net effect on the target qubit,

but make sure that the MS gate performs a full 2π rotation on all pairs of control qubits.

4.4. Turning the C
N−1

Rz(α) into a conventional Toffoli

The rotation of the form CN−1Rz(π) fundamentally differs from a conventional ToffoliN or controlled-Z

operation due to the additional phase i that appears if and only if the target qubit is rotated. To get rid of

this extra factor in the subspace where q = N − 1, we propose the following circuit, as inspired by reference

[14]:

(13)

The philosophy here is that the CN−1Rz(2π) gate applies the operation −� if all control qubits are |1〉 and

the operation � otherwise. Hence, this is the same as a controlled-Z gate acting only on the control qubits.

A conjugation by the Hadamard H on a single qubit maps this into a conventional ToffoliN−1, with the

respective qubit taking the role of target.

5. Discussion and possible extensions

The number of Ising pulses L = 2N needed to implement the CN−1Rz(α) is very modest and does not

depend on α. Still, for small N, there exist highly optimized decompositions that are more optimal than our

results. For example, references [24, 26] find decompositions of, respectively, the N = 3 and N = 4

Toffoli gates into a mere 3 MS(τ) pulses (albeit with τ not equal for all pulses). Moreover, the C2Rx(π)

operation can be implemented in just 4 CNOT operations12.

Our results are of main interest thanks to the favourable scaling with increasing N. The best similar

result we are aware of is reference [26]. It describes circuits for the ToffoliN gate that use 3N − 9 MS

gates and N−2
2

ancillae for even N, and 3N − 6 MS gates and N−1
2

ancillae when N is odd, both of which

were major improvements over previously known results. Each of these MS gates has to act on varying

subsets of qubits, and the rotation angle τ can differ per step. Using the circuit in equation (13), our

proposal implements the ToffoliN using 2(N + 1) MS gates, significantly improving the scaling with N

and requiring a mere 1 ancilla. Moreover, our proposal has the added advantage that all MS gates are equal:

they act equally on all pairs of qubits, and require the same rotation angle τ in each gate. This simplicity is

an experimental advantage, putting less constraints on control hardware and requiring fewer unique MS

pulses to be optimized [41].

Our proposal is particularly suitable for the trapped ion quantum information processor described in

reference [41]. Here, the MS interactions are equal between all ions since they are mediated by longitudinal

center-of-mass motion in the linear ion crystal. Furthermore, single ion addressing is possible with a

focused laser beam allowing the implementation of the single-qubit rotations. In this experimental setup,

high fidelity MS gates have been implemented with up to 14 ions [42, 43]. Our scheme remains viable in

11 In our case, where we rely on Haah’s algorithm to choose the precise form of D(θ), we may end up with the ‘negative’ branch where

D(θN−1) = −sin(α/2). In general, it is straightforward to map our circuit into its inverse: the circuit in equation (3) should be ran

backwards, and the X and XX operations should be conjugated by setting φj → φj + π.
12 The circuit can be obtained from the textbook [40], p 182, figure 4.9, when discarding the last six gates on the top two qubits. Thanks

to an anonymous referee for pointing this out to us.

7
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future array-based trapped ion computers based on ion shuttling and crystal merging [44]. In such a

system, MS gates can remain confined to small sub-crystals.

Alternatively, much longer crystals containing > 50 ions could be considered such as in reference [39].

However, in these systems the interactions are mediated by transverse phonons, resulting in couplings of the

form wjk ∼ |j − k|−α with 0 � α � 3 in theory, but 0.5 � α � 1.8 in practice.

In general, a non-uniform Ising model would lead to two types of issues. Firstly, we consider

non-uniform couplings wjk only between the control qubits. The resultant operation would look like a

normal controlled rotation, perturbed by additional XX interactions among the controls. These phases can

in principle be undone by a single Ising evolution that affects only the controls and has connection strengths

−wjk, i.e. the negative values of the previous operation. However, there is no straightforward method of

inverting the sign of the interactions for interactions mediated by transverse phonons [17]. Alternatively,

one may keep applying non-uniform operations with weights wjk until all the relative phases reset. The

problem then reduces to finding multiples of wjk which are all integer multiples of some base strength. It

seems likely that newly developed techniques for finding robust gate operations based on multiple laser

frequencies could be successfully applied to find such interaction matrices [45, 46].

A second type of issue arises when the connection strengths w0k to the target qubit are no longer equal,

which causes a larger set of possible values θq. This results in series A, B, C, D with a larger degree, and

hence sequences of more MS pulses.

We conclude that our proposal should be within experimental reach on devices that rely on longitudinal

phonon interactions, whereas for transversal interactions further optimizations are needed.

From a theoretical perspective, many further optimizations and extensions of our protocol should be

possible. For example, much can be learned from combining the intuition in reference [26] and our results.

In particular, making τ , h different per step, and adding single-qubit rotations on the control qubits, might

greatly extend the possibilities of our framework. Moreover, in the large-N limit, one might consider

functions A, B, C, D that merely approximately implement a required gate, in exchange for a reduction of the

number of steps L.

From a computer science perspective, we would be very interested to see lower bounds on the number of

MS gates needed for certain operations. Moreover, it seems unclear to us how the gates ToffoliN and

CN−1Rz(α) compare when used in algorithms in practice, and we hope that future research will find how

many of each are required in realistic cases. Some results in this direction can be found in reference [6].

As another possible extension of our protocol, assuming again uniform weights wjk = 1, one can make

controlled rotation gates that depend in a more general way on the Hamming weight of the controls. That is,

one could try to implement different functions A(θ), B(θ), C(θ), D(θ) that act differently for each θq ∈ Θ

corresponding to a specific Hamming weight. For example, it should be possible to make a gate that

performs Rx(α0) on the target whenever all controls are 0, and Rx(α1) whenever the controls have weight

q = 1, etc, by pinning the values A(θq) = cos(αq) and B(θq) = sin(αq). More generally, one could try to

solve for any weight-dependent operation mixing X, Y and Z operators, under the constraint that the

functions A, B, C, D are properly normalized. This can be a challenging problem and is very similar to filter

design problems in discrete time signal processing [47] and as also suggested by [28], one can take

advantage of the wealth of existing techniques from this domain to search appropriate solutions.

Lastly, we note that our results may also be of interest for the engineering of related many-body

interactions in trapped ion quantum simulators [48, 49] and may be a starting point for implementing

more general many-body interactions decomposed out of native quantum gates [50, 51].

6. Conclusion

We make a connection between the all-to-all Mølmer–Sørensen gate and signal processing techniques. Our

main result is that controlled rotations of the form CN−1Rz(α) can be formed by a circuit consisting of 2N

MS gates plus single-qubit gates that act only on the target qubit. This operation is easily mapped to a

ToffoliN−1 gate. Each of the required building blocks has been performed at high fidelity in recent

experiments, indicating that our formalism can be realistically applied on near-term quantum computers.

We also identify various extensions that may lead to further improvements and generalizations of our

protocol.
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Figure A1. The circuit for the C2Rz(−π) operation derived using the method presented in this paper. Note that adjacent Rz(φj)
operations have been merged, leading to a more compact form than equation (3). Generalization to larger a larger number of
qubits N is straightforward using the numbers in table A1.

Table A1. The rotation angles φ̃j that implement a controlled-iZ operation with N − 1 controls, in the way indicated

figure A1. Note that we chose the angle numbered 2N to be zero, such that it can be omitted.

τ = −h φ̃0 φ̃1 φ̃2 φ̃3 φ̃4 φ̃5 φ̃6 φ̃7 φ̃8 φ̃9 φ̃10 φ̃11

N = 3 π/3 −1.855 −2.118 −0.525 −2.118 −1.855 −π 0

N = 4 π/4 −2.366 −1.564 1.577 1.55 1.577 −1.564 −2.366 −π 0

N = 5 π/5 −2.61 −1.098 1.417 −1.116 −2.041 −1.116 1.417 −1.098 −2.61 −π 0

N = 6 π/6 −2.745 −0.79 1.146 −1.155 0.81 2.312 0.81 −1.155 1.146 −0.79 −2.745 −π

Appendix A. An example circuit

Figure A1 shows an explicit circuit for the operation C2Rz(−π), i.e. the double-controlled iZ gate. Here, we

combined consecutive rotations of the form Rz(φj)Rz(−φj−1) into a new rotation Rz(φ̃j) to shorten the

circuit. For other system sizes N = 3, 4, 5, 6, the related angles φ̃0, . . . , φ̃L for the CN−1Rz(−π) operation can

be foud in table A1, where again the tilde indicates that adjacent rotations with angles φj,−φj−1 have been

combined.
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