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Abstract—Faithful short-time acquisition of a sparse signal is
still a challenging issue. Instead of an idealized sampling, one has
only access to an altered version of it through a measurement
system. This paper proposes a reconstruction method for the
original sparse signal when the measurement degradation is
composed of a nonlinearity, an additive noise, and a sub-sampling
scheme. A rational criterion based on a least-squares fitting
penalized with a suitable approximation of l0 is minimized
using a recent approach guaranteeing global optimality for
rational optimization. We provide a complexity analysis and
show that the sub-sampling offers a significant gain in terms of
computational time. This allows us to tackle practical problems
such as chromatography. Finally, experimental results illustrate
that our method compares very favorably to existing methods in
terms of accuracy in the signal reconstruction.

I. INTRODUCTION

Accurate data acquisition of sparse signals from real-world

measurements remains an open challenge. Our present moti-

vation can be illustrated by an actual situation, encountered

in analytical chemistry, especially in chromatography. Let us

consider a mixture of chemical compounds in different concen-

trations. An optimal measurement would produce a set of iso-

lated peaks whose locations and amplitudes characterize each

compound and its relative concentration. A discrete version is

illustrated with the three-sample parsimonious black-dot signal

modeled in Figure 1. Usually, such a sparse information is

subject to undesirable fluctuations and degradations, requiring

to employ restoration methods from observed responses. Here,

the linear part of the system assumes the convolution by a

limited-support kernel. In Figure 1, the kernel is a five-sample

discrete approximation of a binomial filter. Such models are

commonly used in physico-chemical data processing [1]–[3].

The resulting peak signal is further affected by a nonlin-

ear distortion, representing a saturation, that flattens higher

amplitudes. This is depicted on the blue-cross signal. Those

smoothed data are further degraded by an additive Gaussian

noise as shown in solid red lines.

This paper extends results in [4]–[6] and provides a novel

recovery method for sparse signals from sub-sampled obser-

vations obtained through a nonlinear and noisy model. This

stands in contrast with the vast majority of available methods,
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Fig. 1. Example of chromatography signals

which only apply in a linear context [7]–[9]. Among the few

methods that have tried to weaken the linearity assumption,

one can mention [10]–[12].

Our method builds on the minimization of a sum of rational

functions, for which recent methodologies can be applied.

Here, we specifically focus on the possibility to acquire the

data at a reduced rate. This feature is important in applicative

areas, since it permits faster acquisitions for high-throughput

experiments and analysis. In addition, the structure induced

by the sub-sampled acquisition reduces the overall complexity,

which was a major difficulty in the previous work in [6]. We

provide an analysis of the benefit of the sub-sampling on the

complexity of the problem.

Our paper is organized as follows: Section II introduces our

model for the observed signal. Section III explains how our

method recovers the target signal. It also provides a study of

the computational difficulties encountered. Simulation results

can be found in Section IV and Section V concludes our work.

We introduce the following notation: for any nonnegative

integers n and p, Sn+ is the cone of n× n real positive semi-

definite matrices,
(
n
p

)
is the binomial coefficient “among n

choose p” and ⌊·⌋ (resp. ⌈·⌉) is the greatest (resp. smallest)



integer lower (resp. bigger) than its argument.

II. PROBLEM STATEMENT

A. Observation model

We consider the reconstruction from sub-sampled measure-

ments of an unknown sparse discrete-time signal x of length T ,

comprising few peaks. The measurement process deteriorates

x in the following way: peak enlargement, nonlinear distortion

due to sensor saturation, and noise. Finally, the measured

signal is sub-sampled during the acquisition. This is modelled

by a convolution with a finite impulse response filter given

by vector h followed by a nonlinear function Φ, the addition

of a noise w with samples drawn from an i.i.d. zero-mean

Gaussian distribution, and a decimation operator D. Defining

the observation vector y of size U after sub-sampling, the

corresponding modelling equation reads

y = D
(
Φ(h ∗ x) +w

)
.

We will be mainly interested in regular decimations Dα

where all the elements indexed with a multiple of α are

deleted, namely Dα

(
(vt)1≤t≤T

)
= (v∆(u,α))1≤u≤U where ∆

is defined as ∆(u, α) = u + ⌊ u−1
α−1⌋. We denote by D∞ the

identity operator that preserves the entire signal.

B. Signal recovery criterion

To estimate the original signal x, we minimize a criterion

J composed of two terms. The first one is a fit measure

between the recorded measurements y and the output of

the noiseless model for a given estimate x of the original

signal x. The second term is a sparsity-promoting penalization

approximating the ℓ0 pseudo-norm weighted by a positive

parameter λ, i.e.

J (x) = ‖y −Dα(Φ(h ∗ x))‖22
︸ ︷︷ ︸

data fidelity

+λ

T∑

t=1

Ψ(xt)

︸ ︷︷ ︸

penalization

.

In the following, we choose Φ and Ψ as rational functions

and Φ acts component-wise. To simplify our notation, we set

the components of x with nonpositive index to be identically

zero. Then J can be written as a sum of rational functions

J (x) =

U∑

u=1

(

yu − Φ
( L∑

l=1

hlx∆(u,α)−l+1

)
)2

+ λ

T∑

t=1

Ψ(xt)

=
U∑

u=1

pu(x∆(u,α)−L+1, . . . , x∆(u,α))

qu(x∆(u,α)−L+1, . . . , x∆(u,α))
+

T∑

t=1

r(xt)

s(xt)
.

The polynomials (pu)1≤u≤U and (qu)1≤u≤U are functions

of L variables whereas the polynomials r and s depend on

one variable. We define also

dq =

⌈
degree(qu)

2

⌉

and ds =

⌈
degree(s)

2

⌉

.

III. METHOD

A. Lasserre’s relaxation

We here extend the methodology developed in [6] to the

case of decimated observations. Using a recent approach

introduced by Lasserre [13] and related to the sum of squares

relaxation, the solution to the rational optimization problem

J ∗ = min
x∈RT

J (x) , (1)

can be found by solving a hierarchy of convex semi-definite

programming (SDP) problems in their standard dual form.

Defining a vector z whose components are related to the

monomials up to degree 2k in the variables of Problem (1),

the relaxation of order k takes the following form

P∗
k = min

z∈Rm
b⊤z (2)

subject to C−

m∑

i=1

ziAi ∈ S
n
+ (3)

f −G⊤z = 0 , (4)

where C and (Ai)1≤i≤m are symmetric matrices, b ∈ R
m,

f ∈ R
nl , and G is a matrix of Rm×nl .

The size of the SDP, expressed by the integers n, m and nl,

is related to Problem (1) and to the order k of the relaxation.

This is detailed in Section III-B, where it will appear that

the size of the SDP grows tremendously as k increases. In

addition, it has been proved [13], [14] that the SDP relaxations

P∗
k converge to the optimum J ∗ of the rational optimization

problem when the relaxation order goes to infinity, that is

limk→∞ P∗
k = J ∗. Fortunately, low relaxation orders suffice

in practice to provide correct solutions. The order of relaxation

yet needs to be at least equal to half of the maximal degree

of the polynomials involved in the criterion to allow all the

polynomials in the original problem to be represented. Finally,

the convergence results require the original variables to belong

to a compact subset of R
T . We thereby restrict the domain

of our problem to a closed bounded box chosen such that a

solution to Problem (1) belongs to it.

B. Structure and complexity of the relaxation

This section studies the structure and the size of the SDP

relaxation. For simplicity, we do not take into account here

that some variables in the expression of J are set identically

to zero. The SDP size presented here will hence be slightly

overestimated.

In the SDP relaxation, each rational fraction in J is

associated with a measure and the components of the variable

z are moments (truncated to the order 2k) of these measures.

To ensure that each sub-sequence corresponding to a given

rational term is a valid moment sequence for a set of say

p variables, 1 + 2p positive semi-definite constraints must be

enforced (one for the whole set of variables, and 2p for the two

bound constraints coming from the lower and upper bounds

imposed to each variable). Since our criterion is a sum of

U rational functions over L variables and T rational functions



over 1 variable, the total number of such semi-definite positive

constraints is equal to

ns = U(1 + 2L) + 3T .

These constraints can be expressed more concisely under the

form (3) provided that matrices (Ai)1≤i≤m and C have a

block diagonal structure involving ns blocks.

In addition, since any given variable xt may appear in

multiple rational functions, many moments must be identical in

z. These moment equality constraints correspond to the linear

equality constraints in (4). Let us denote by θu the overlap

parameter, defined as the number of variables in common

between
pu+1

qu+1
and pu

qu
when u ∈ {1, . . . , U − 1}. θu depends

on u, but also on L and α.

According to the general methodology [15], we have to

consider the equality of the moments of all monomials of these

θu overlapping variables up to degree 2(k − dq).

As a consequence, this gives
(
θu+2(k−dq)

2(k−dq)

)
equality con-

straints for every u ∈ {1, . . . , U − 1}. Similar arguments hold

for the T rational functions r
s

appearing in J , but since it

depends on one variable only, the above binomial coefficient

reduces to 2(k− ds) equality constraints on moments. Hence,

nl =
U−1∑

u=1

(
θu + 2(k − dq)

2(k − dq)

)

+ 2(k − ds)T .

Concerning the size m of the vector z, it is given by the

sum of the number of monomials up to degree 2k for all

rational terms in J . A total of U of these terms depend on

L variables, and T terms depend on one variable. Noting that
(
1+2k
2k

)
= 1 + 2k, it follows that

m = U

(
L+ 2k

2k

)

+ T (1 + 2k) .

Furthermore, n is the sum of the block sizes in (Ai)1≤i≤m

and C. The blocks can be viewed as matrices whose rows

and columns are indexed by monomials. Each of their entries

is a sum of moments whose maximal degree is the product

of the row index, the column index and, if any, a polynomial

defining a bound constraint. For a maximal degree 2k, and for

the first U terms in J the block sizes are thus
(
L+k
k

)
for the

whole set of variables and
(
L+k−1
k−1

)
for the upper and lower

bound constraints. The last T terms in J can be considered

similarly. Finally, we obtain

n = U

((
L+ k

k

)

+ 2L

(
L+ k − 1

k − 1

))

+ T (1 + 3k).

The order of relaxation k appears as a binomial coefficient

in both SDP size variables n and m, so that increasing k

quickly blows up the size of the SDP. The previous remark

can be extended to L. Actually, for a given order of relaxation

k, the size of the SDP asymptotically becomes of the order:

m = O(UL2k), n = O(ULk) . (5)

In our context, decimation yet reduces efficiently the size

of the SDP relaxation since it decreases U and (θu)1≤u≤U−1.

Both play a prominent role in the values of n, m, ns,

and nl which determine the complexity of the optimization

problem. Table I compares the size of SDP relaxations without

decimation (D∞) and with the two-fold D2 decimation. As

discussed above, the size variables n and m increase quickly

with the order of relaxation k and the length of the filter L.

In the decimated case, the variables n and m are decreased

about one half while ns and nl are respectively reduced about

one third and two thirds.

TABLE I
SIZE OF SDP RELAXATION FOR DIFFERENT DECIMATIONS —

CONSIDERING VARIABLES WITH NEGATIVE INDEX AS IDENTICALLY ZERO

m n ns nl

T L k D∞ D2 D∞ D2 D∞ D2 D∞ D2

50 3 3 4417 2373 4384 2430 494 321 976 366

100 3 3 8497 4823 8884 4930 994 646 1976 741

50 4 3 10339 5271 7909 4155 588 367 1916 596

100 4 3 21189 10871 16159 8530 1188 742 3916 1221

50 3 4 8424 4419 8158 4383 494 321 1702 512

100 3 4 17124 8994 16558 8908 994 646 3452 1037

100 4 4 49134 24834 35473 18268 1188 742 8884 2045

100 5 3 45381 22967 26815 13858 1380 838 7276 2181

C. Exact relaxation of ℓ0

In this section, we show how to theoretically address an

exact ℓ0 penalty with our relaxation. We explain why this

relaxation is intractable in practice by relying on our previous

complexity estimation. This justifies our choice of a rational

approximation of ℓ0 as a regularization.

An equivalent form of the minimization of J , where Ψ is

replaced by the exact ℓ0 penalization is as follows

minimize
(x,ξ)∈(RT )2

‖y −Dα(Φ(h ∗ (x⊙ ξ)))‖2 + λ

T∑

i=1

ξi

subject to (∀i ∈ {1, . . . , T}) ξi = ξ2i ,

where the operator ⊙ denotes the element-wise Hadamard

product and λ is a nonnegative regularization parameter.

Unfortunately, in the above formulation, the introduction of the

ξi necessary to formulate the ℓ0 penalization in a polynomial

form results in twice more variables than in the original

problem. As a consequence, the variables n and m defining the

size of the SDP relaxation become much higher. A rough and

underestimated idea of the SDP size is obtained by replacing

L with 2L. Our method may then become intractable.

The substantial increase in the computation time has been

confirmed in our experiments. Even for a signal of length

50 with a filter of length 2, we needed about three hours of

computations to reconstruct the solution compared to a few

seconds using our rational approximation of the ℓ0 penalty.

IV. SIMULATIONS AND RESULTS

A. Simulation setup

We have run our simulations for nonnegative signals x

with 50, 100 and 200 samples and for filters of length 3,

4 and 5 whose coefficients are binomial coefficients on the



corresponding line of Pascal’s triangle. These specific filter

coefficients as well as the nonegativity of input signals are

of practical importance for chemistry problems, especially in

chromatography. Indeed the concentrations of compounds are

always positive and the coefficients of the filters correspond

to peak enlargement.

We have set the approximation Ψ of ℓ0 to the following

Geman-McClure-like potential [4]

(∀t ∈ R) Ψ(t) =
|t|

δ + |t|
,

where the parameter δ controls the quality of the ℓ0 approxi-

mation. Smaller δ leads to better approximation, but also to a

harder optimization problem. We have set δ to 0.01. Note that

this approximation of ℓ0 is well-chosen because it is rational

with low degree, which allows a low order of relaxation k.

The saturation function Φ acts component-wise and is defined

as (∀t ∈ R) Φ(t) = t
χ+|t| where the parameter χ has been set

to 0.3 and controls the level of the saturation.

For each test, we have run 100 simulations and we show

here the average results. We have set the order of relaxation to

3 and have used GloptiPoly [16] coupled with the SDP solver

SDPT3-4 [17] to solve the optimization problem. We have run

the simulations on a standard computer with an Intel I7 CPU

running at 3.60 GHz and 32 GB of RAM.

We have compared our method to an improved LASSO

approach (named iLASSO). It consists of applying first the

least absolute shrinkage and selection operator (LASSO) [7]

using a linearization of Φ. More precisely

xlasso = argmin
x∈[0,+∞[T

‖y −Dα(χ
−1(h ∗ x))‖2 + λ‖x‖1 .

The solution xlasso is then used to initialize a proximal

gradient algorithm based on iterative hard thresholding (IHT)

[8] extended to the nonlinear model.

The value of the relaxation parameter λ has been optimized

empirically and set to 0.10 for our method and 0.05 for LASSO

and IHT. Decimation D∞ represents the case when the signal

is not sub-sampled and the corresponding results are provided

for comparison with results discussed in [6].

B. Results

In this section, we study the effect of the different decima-

tion patterns first on the reconstructed signal quality and then

on the computational time.

1) Reconstruction quality: Figure 2 illustrates, from top to

bottom, a sub-sampled observed signal y, the corresponding

original signal x, the signal reconstructed with our method and

the signal reconstructed using iLASSO. Within the framework

of our nonlinear model, iLASSO performs poorly whereas our

estimation of x is close to the original signal.

To assess peak detection, we introduce a varying threshold

on the estimated amplitude of x. Figure 3 shows the Receiver

Operating Characteristic (ROC) for D∞, D4 and D2 decima-

tions respectively. ROC curves are drawn in solid red for our

method and in dashed blue for iLASSO. iLASSO detects more
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Fig. 2. Comparison between iLASSO and our method using D2 decimation

peaks but is also more prone to false detection. Conversely,

our method detects a high number of true peaks for the

different thresholds and make few mistakes. In accordance

with our observations in Figure 2, our method has a very low

false positive rate which maintains its ROC curve close to

the ordinate axis. Moreover, the amplitudes of the peaks are

sensibly closer to the real ones with our method than with

iLASSO. Amplitudes are highly important in chromatography

since they generally correspond to the concentration of the

different compounds that we are analyzing.

Comparing the ROC of our method for the different dec-

imation patterns in Figure 3, we notice that the higher the

decimation is, the fewer peaks detected in the true position.

We observe that our model keeps a very low false positive rate

which is related to the fact that very few peaks are detected

at a shifted position. Decimation mainly causes the system to

miss some peaks and weakly affect their positions.

2) Computational load: Table II shows the computational

time corresponding to the different test cases for the three

decimation operators D∞, D4 and D2.

The computational time explodes when the length of the

filter increases. This is due to the presence of L in the

binomial coefficients of the expressions of n and especially

of m in (5). Indeed, state-of-the-art SDP solvers exhibit high

computational time when the dimension m is large.

However, the higher the decimation, the lower the com-

putational cost. The effect is especially beneficial for high

values of L and it allows us to deal with filter lengths that

are intractable without decimation. This is of high practical

interest, because filter lengths from 5 to 7 can be sufficient

for dedicated chemistry needs.

V. CONCLUSION

We have considered the challenging problem of reconstruct-

ing sparse signals degraded by a decimated non-linear model.

We have defined a least-squares fitting criterion penalized with

an ℓ0 approximation that can be written as a sum of rational



0 0.02 0.04 0.06 0.08 0.1

False Positive Rate

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Our method

iLASSO

(a) D∞ decimation

0 0.02 0.04 0.06 0.08 0.1

False Positive Rate

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Our method

iLASSO

(b) D4 decimation

0 0.02 0.04 0.06 0.08 0.1

False Positive Rate

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Our method

iLASSO

(c) D2 decimation

Fig. 3. Comparison of ROC between our method and iLASSO

TABLE II
COMPUTATIONAL TIME DEPENDING ON DECIMATION OPERATOR

Time (s)

T L D∞ D4 D2

50 3 18 12 8

100 3 45 30 18

200 3 88 65 42

50 4 1285 522 219

100 4 9871 4468 1356

50 5 5559 2269 620

100 5 Overload 22354 5105

functions. Thereby we have applied a recent methodology for

rational minimization and relaxed the original problem into

a hierarchical sequence of convex SDP. One of the main

advantages of the proposed approach is that the SDP size

is significantly reduced when the decimation factor increases,

which may be of high interest in applications such as chro-

matography. The reduction of the computation time also allows

us to consider filters with a larger length as encountered in

signal processing applications. Finally, we have shown that

our method compares favorably to LASSO followed by IHT.
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[17] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Math. Programm., vol. 95,
no. 2, pp. 189–217, Feb. 2003.




