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Signal Reconstruction From Two Close Fractional
Fourier Power Spectra

Tatiana Alieva, Martin J. Bastiaans, Senior Member, IEEE, and LJubiša Stanković, Senior Member, IEEE

Abstract—Based on the definition of the instantaneous fre-
quency (signal phase derivative) as a local moment of the Wigner
distribution, we derive the relationship between the instantaneous
frequency and the derivative of the squared modulus of the
fractional Fourier transform (fractional Fourier transform power
spectrum) with respect to the angle parameter. We show that the
angular derivative of the fractional power spectrum can be found
from the knowledge of two close fractional power spectra. It per-
mits us to find the instantaneous frequency and to solve the phase
retrieval problem up to a constant phase term, if only two close
fractional power spectra are known. The proposed technique is
noniterative and noninterferometric. The efficiency of the method
is demonstrated on several examples including monocomponent,
multicomponent, and noisy signals. It is shown that the proposed
method works well for signal-to-noise ratios (SNRs) higher than
about 3 dB. The appropriate angular difference of the fractional
power spectra used for phase retrieval depends on the complexity
of the signal and can usually reach several degrees. Other applica-
tions of the angular derivative of the fractional power spectra for
signal analysis are discussed briefly. The proposed technique can
be applied for phase retrieval in optics, where only the fractional
power spectra associated with intensity distributions can be easily
measured.

Index Terms—Fractional Fourier transform, phase reconstruc-
tion, time–frequency signal analysis, Wigner distribution.

I. INTRODUCTION

PHASE retrieval and instantaneous frequency estimation

from the distributions associated with the instantaneous

power of the signal, its Fourier power spectrum, or, more

generally, its fractional power spectra, are important prob-

lems in signal processing, radio location, optics, quantum

mechanics, etc. In spite of the existence of several successful

iterative algorithms for phase reconstruction from the squared

modulus of the signal and its power spectrum, or its Fresnel

spectrum, that were proposed recently [1]–[4], the development

of noniterative procedures remains an attractive research topic.

Fractional power spectra, which are the squared moduli of the

fractional Fourier transform (FT) [5], are now a popular tool in

optics and signal processing [5]–[13]. As it is known, they are

equal to the projections of the Wigner distribution of the signal
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under consideration [13], [14]. Thus, by using a tomographic

approach and the inverse Radon transform, the Wigner distri-

bution—and therefore the signal itself, up to a constant phase

term—can be reconstructed if all its projections are known [6],

[9]. The method is based on the rotation in the time–frequency

plane of the Wigner distribution under fractional FT. It demands

the measurements of the fractional FT spectra in the wide an-

gular region , which is sometimes impossible or very cost

consuming [6].

A different approach for phase retrieval, based on the

so-called transport-of-intensity equation in optics, was pro-

posed by Teague [15] and then further developed in [16]–[18].

It was shown that the longitudinal derivative of the Fresnel

spectrum is proportional to the transversal derivative of the

product of the instantaneous power and the instantaneous

frequency of the signal.

In this paper, we show that a relationship similar to the trans-

port-of-intensityequationforFresneldiffractionalsoholdsforthe

fractional FT system. We derive that the instantaneous frequency,

or the first derivative of the signal’s phase, at any fractional do-

main is determined by the convolution of the angular derivative

of the corresponding fractional power spectrum and the signum

function. Based on this, we propose a new method for the recon-

struction of the signal’s phase from only two close fractional FT

spectra, i.e., only two Wigner distribution projections. Some pre-

liminaryresultson this topicwerepublished in [19]and[20]. This

approach significantly reduces the need for projections measure-

mentsandcalculations.Moreover, it isdirectanddoesnotuseiter-

ative procedures. Note that the Gerchberg–Saxton algorithm ap-

plied in the fractionalFourier domain for phase retrieval fromtwo

fractionalFTpowerspectra forangles and becomesun-

stable and does not converge if [1], while our method

works especially for small .

We show that this technique can also be applied for signal

reconstruction from certain projections of other time–frequency

distributions from the Cohen class [21]. The application of

the angular derivative of the fractional power spectrum for

signal/image processing is discussed.

The efficiency of the proposed method is illustrated on sev-

eral examples. In particular, the reconstruction of monocompo-

nent and multicomponent PM signals from several pairs of close

fractional FT power spectra is considered. The influence of noise

and angle difference to the estimation of the angular derivative of

the fractional power spectrum, and to the reconstruction quality,

is investigated. Note that the noise robustness was not considered

in [1]–[4]. These papers were devoted to the recursive algorithms

forphaseretrieval fromthefractionalFTpowerspectra.Signal re-

construction from fractional power spectra taken in the fractional

1053-587X/03$17.00 © 2003 IEEE
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Fourier domain, where the instantaneouspower ofa signal signif-

icantly changes, is considered. We discuss the reconstruction of

the signal with zero-amplitude region.

The paper is organized as follows. In Section II, we present a

review of the definition of the fractional FT as well as the rela-

tionship between the fractional FT power spectra and the ambi-

guity function of a signal. In Section III, the connection between

the instantaneous frequency in a fractional domain and the an-

gular derivative of the fractional FT power spectra is established.

Similar relationships between the projections of Cohen’s class

distributions and the instantaneous frequency are briefly dis-

cussed. Some practical issues with respect to phase retrieval

from two close fractional FT power spectra are discussed in

Section IV. Useful relationships for signal/image analysis, in-

cluding the derivatives of fractional spectra, are given in Sec-

tion V. In Section VI, we discuss the discrete version of the

proposed phase retrieval method. Section VII is devoted to the

demonstration of its efficiency on several examples. The advan-

tages of the new algorithm and its possible applications are dis-

cussed in the conclusions.

II. FRACTIONAL POWER SPECTRA AND AMBIGUITY FUNCTION

The fractional FT of a function can be written in the form

[5]

(1)

where the kernel , which is a generalized function, is

given by

(2)

Thus, for and , the kernel reduces to

the Dirac delta functions and , respectively;

therefore, , and . The fractional

FT can be considered as a generalization of the ordinary FT: For

the parameter values and , the transforms

and correspond to the ordinary forward and

inverse FT, respectively. The fractional FT is additive in the pa-

rameter and periodic with a period . Due to the fact that the

fractional FT corresponds to a rotation of the Wigner distribu-

tion [21]

(3)

and the ambiguity function

(4)

of the function , the parameter can be interpreted as a

rotation angle in the phase plane.

It is well known that the fractional power spectra ,

i.e., the squared moduli of the fractional FT, are equal to the

projections of the Wigner distribution of the signal

(5)

The set of fractional power spectra in the angular region

is also called the Radon–Wigner transform. The implementation

of the inverse Radon transform permits the reconstruction of the

Wigner distribution from this set.

Since the ambiguity function is the two-dimen-

sional (2-D) FT of the Wigner distribution , the

values of the ambiguity function along the line defined by

are—according to the Radon transform properties—equal to

the FT of the Wigner distribution projection for the same [7],

[9]:

(6)

We can also say that the fractional power spectrum is

the FT with respect to the radius variable of the ambiguity

function represented in polar coordinates.

III. WIGNER DISTRIBUTION PROJECTIONS

AND INSTANTANEOUS FREQUENCIES

In this section, we derive that the well-known expression for

the instantaneous frequency at the time moment [21]

(7)

can be written in terms of the fractional power spectra. Indeed,

using the relationship [19]

(8)

and taking into account that assumes real values, we get

(9)

Supposing that the derivative of the fractional power spectra is

a continuous function of , we change the order of integration.

Then, we obtain that

sgn (10)
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where sgn is the signum function

sgn

for

for

for

(11)

We thus get for the signal that its

phase derivative is determined

by the intensity and the convolution of the signum

function with the angular derivative of the fractional power

spectrum at the angle .

Note that for a real-valued signal, the angular derivative of

its fractional power spectra equals zero for . This is in

accordance with the fact that the fractional FT of a real-valued

signal satisfies the symmetry relation ,

and thus, .

Because of the properties of the fractional FT, (10) can easily

be generalized for an arbitrary angle to [19]

sgn

(12)

where and are the instantaneous power and the

instantaneous frequency of the signal in the fractional FT do-

main corresponding to the angle . We notice that in general

the reconstruction of the instantaneous frequency has sense if

the amplitude is nonzero. Therefore, in general, we suppose that

does not take zero values. Nevertheless, as we will

show in Section VII (Example 2), the instantaneous frequency

can be successfully reconstructed in the intervals limited by the

zero-crossings of the amplitude.

The instantaneous frequency of the signal can

also be found from close projections of other time–fre-

quency distributions from the Cohen class [21]

satisfying the generalized marginal property. A Cohen class

distribution is a 2-D FT of the generalized ambiguity function

, where the choice of the function

depends on the particular application. According to the

Radon transform properties, we then get [cf. (6)]

(13)

where

(14)

cf. (5). For distributions satisfying the generalized marginal

property for a certain angle [9],

we get . Hence, for these Cohen class

distributions, we can expect that [cf. (12)]

sgn (15)

A special and important member of the Cohen class is the

pseudo Wigner distribution, which, as well as the Wigner

distribution itself, is often used in numerical implementa-

tions. For this distribution, we have , where

is an appropriately chosen window function

with . For , we get

. Therefore, this lag window does not

significantly influence the quality of the signal reconstruction

as long as is small.

IV. PHASE RETRIEVAL FROM TWO CLOSE FRACTIONAL FT

POWER SPECTRA

In general, the complex-valued fractional FT

, and, in particular, the signal

, can be completely reconstructed (except

for a constant phase shift) from its intensity distribution

and its instantaneous frequency . Since

, the phase

can be reconstructed up to a constant term. The constant

produces a phase uncertainty. Since the instantaneous fre-

quency is determined by the angular derivative of the fractional

power spectra (see (10) and (12)), this implies that only two

fractional power spectra for close angles suffice to solve the

signal retrieval problem, up to the constant phase term. Indeed,

as it follows from the Taylor expansion of the fractional power

spectrum in the region where the linear approximation with

respect to the parameter is valid, we can represent its angular

derivative as

(16)

The accuracy of this approximation is

. Moreover, from the knowledge of two fractional

power spectra and , the fractional

power spectrum can be found as

(17)

Because is related to through the inverse fractional

FT, we can conclude that the signal phase can be reconstructed

up to a constant term—in a noniterative way—from any two

fractional power spectra taken for close angles. The choice of

the appropriate angular difference depends on the complexity

of the signal.

Beside the general importance of the noniterative and non-

interferometric phase reconstruction from intensity information

only, this technique can be applied to filtering operations. It has

been shown that in some cases, filtering is more effective in the

fractional FT domain than in the Fourier domain [22]. Thus, for

example, filtering of the linear-PM signal can be

successfully performed in the fractional domain for which the

angle parameter satisfies the condition

[5]; see Case 1 of Section V. Another example [22] is related to

the signal–noise separation in a certain fractional domain.

Often, for example, in optics, only information about the

fractional FT spectra is available. Before applying the pro-

posed signal reconstruction technique, an appropriate filtering

(modification) of the corresponding fractional FT spectra can

be carried out. Certainly, after this operation, the fractional

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 19,2010 at 13:14:49 UTC from IEEE Xplore.  Restrictions apply. 
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FT spectra have to remain positive valued. The simplest

modifications of two close fractional FT spectra are related to

the elimination of the undesirable peaks associated with con-

centration of linear-PM components or of noise-only regions.

V. SIGNAL ANALYSIS AND FRACTIONAL FT

POWER SPECTRA DERIVATIVES

In this section, we briefly discuss other problems that can be

solved from the analysis of the derivatives of the fractional FT

power spectrum. This topic becomes especially important if the

signal itself is not known, and only its close fractional FT power

spectra (Wigner distribution projections) are available. Such a

situation occurs in optics, for example, where only intensity dis-

tributions related to the fractional power spectra can easily be

measured.

As we have seen, the instantaneous frequency (or normalized

first derivative of the phase) of a signal in the fractional

domain is related to the angular derivative of the fractional

power spectrum by (12). Then, by using the relationship

sgn , we obtain the expression for the

second derivative of the phase

(18)

which can be written in the more compact form

(19)

Note that (18) and (19) can be obtained by a direct differen-

tiation of the fractional power spectrum or from the nonsta-

tionary Schrödinger equation for a harmonic oscillator, whose

propagator is the fractional FT kernel. This result resembles the

so-called transport-of-intensity equation, which deals with the

Fresnel transformation [15]–[17]. This is not surprising since

both the fractional FT and the Fresnel transform belong to the

class of canonical integral transforms, and the properties of any

member of this class are related as well.

Although, in this paper, we consider one-dimensional signals,

the main results can be extended to the multidimensional case.

In particular, the application of the 2-D, anamorphic fractional

FT allows one to obtain information about the partial derivatives

of the phase. Thus, (19) can be generalized as

(20)

Below, we assume that at the fractional ( )-domain,

some a priori knowledge about the signal behavior is available.

In particular, phase- and amplitude-modulated signals will be

considered.

Case 1) Phase-Modulated Signal—Polynomial Phase Esti-

mation: For phase-modulated signals ,

where is a constant, (18) reduces to

(21)

and the th derivative of the phase for can be written as

(22)

In many applications, such as radar, sonar, and communica-

tions, polynomial phase signals

(23)

with constant or slowly varying amplitude are used as a

model. Then, the angular derivative of the fractional FT spectra

can also be represented as a polynomial function

(24)

In this case, the coefficients for can be found as

the best fitting to the angular derivative of the fractional power

spectrum or as

(25)

where the first method is more noise robust. This re-

sult can easily be checked for the quadratic chirp signal

for which the fractional power spec-

trum takes the form , cf. [5];

note that is independent of . Finally, we obtain

, and thus, .

Although this method does not permit to reconstruct the co-

efficients and in the decomposition (23), it can be useful

for the estimation of the higher order coefficients because of its

relative simplicity. Otherwise, the full algorithm, which is de-

scribed in Sections III and IV, has to be applied.

Case 2) Phase-Modulated Signal—Edge Detection: The ap-

plication of high-resolution phase spatial light modulators in

optics, which permits the phase of the optical field to be

proportional to an image , makes optical image processing

more flexible. One of the important problems of image anal-

ysis is the localization of its edges. In spite of the fact that in

digital image processing the diverse algorithms for edge de-

tection are successfully implemented, not all of them are ap-

propriated for optical image processing. Similar to the method

proposed in [23], which is based on Fresnel diffraction, the

positions of the edges can be found as the zero-crossings of

the angular derivative of the fractional power spectrum. Indeed,

for the 2-D, phase-modulated signal

, where controls the depth of the phase modu-

lation, (21) can be generalized as

(26)
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Fig. 1. Monocomponent signal with monotonic instantaneous frequency and its reconstruction from two close fractional power spectra. (a) Original pseudo

Wigner distribution. (b) Projections of the pseudo Wigner distribution (Radon–Wigner transform). (c) Derivative approximation: difference of two close projections
calculated at 1 and�1 and divided by the angle step. (d) Reconstructed (dash-dot) and original (solid line) instantaneous frequency of the signal. (e) Reconstructed
(dash-dot) and original (solid line) phase of the signal. (f) Reconstructed pseudo Wigner distribution.

where stands for the Laplacian operator. The zero-crossings

of the fractional power spectra , thus

correspond to the zero crossings of and, therefore, de-

termine the positions of the image edges.

Case 3) Amplitude-Modulated Signals—Extremum Point De-

tection: Let us consider a 2-D signal

, where is a constant vector, and . This

type of signals in particular arises after propagation of a plane

wave through an amplitude screen with transmittance function

. In this case, it follows from (19) that the angular derivative

of the fractional power spectrum is proportional to the positional

derivative of the signal’s intensity

(27)

and its zero crossings thus correspond to the extremum points

of and . We believe that this relationship can be

helpful for modeling of early vision systems where the scratch

of the image, i.e., the maxima of , can be obtained from

the knowledge of two close defocused images associated with

.

VI. DISCRETIZATION OF THE ALGORITHM

In this section, we will discuss the discrete version of

the phase retrieval technique proposed in Section III. We

suppose that two fractional power spectra and

(corresponding to two Wigner distribution

projections) at the close angles and , where is

small (for example ), are known for a set of equidistant

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 19,2010 at 13:14:49 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Monocomponent signal with nonmonotonic instantaneous frequency and zero-amplitude in its central part and its reconstruction from two close fractional
power spectra. (a) Original pseudo Wigner distribution. (b) Projections of the pseudo Wigner distribution (Radon–Wigner transform). (c) Derivative approximation:
difference of two close projections calculated at 1 and �1 and divided by the angle step. (d) Reconstructed (dash-dot) and original (solid line) instantaneous
frequency of the signal. (e) Reconstructed phase of the signal. (f) Reconstructed pseudo Wigner distribution.

sensor points. The fractional power spectra and

can be obtained in several ways:

i) measured in experiments (a simple optical setup for the

measurements of the fractional power spectra was de-

scribed in [24]);

ii) calculated as the squared moduli of the corresponding

fractional FT of ;

iii) calculated as the Radon transform of the Wigner distri-

bution of for two angles .

The discrete version of (12) for the estimation of the instanta-

neous frequency in the fractional domain can then be written

in the form

sgn
(28)

where is the discretization step, and denotes a dis-

crete-time convolution. In order to avoid a separate estimation

of , the denominator can, at least for

small , be approximated by .
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Fig. 3. Multicomponent signal and its reconstruction from two close fractional power spectra. (a) Original pseudo Wigner distribution. (b) Projections of the
pseudo Wigner distribution (Radon–Wigner transform). (c) Derivative approximation: difference of two close projections calculated at 1 and �1 and divided
by the angle step. (d) Reconstructed pseudo Wigner distribution.

The reconstructed signal at the fractional domain can, up

to the constant phase term, be found as

(29)

where is chosen such that for . In the

case when two fractional FT spectra are taken around the angle

, corresponds to the reconstructed

version of the original signal. For , a subsequent discrete

version of the fractional FT for the angle has to be applied

to in order to reconstruct the original signal. Several

algorithms for the calculation of the fractional FT have been

proposed in [25]–[27].

Inwhatfollows,wewillillustrateinseveralnumericalexamples

how the signal, up to a constant phase term, can be reconstructed

fromtwoclosefractionalpowerspectraonly,i.e.,fromtwoWigner

distribution projections. In order to emphasize the quality of the

reconstruction, we will also show the pseudo Wigner distribution

of the original and the reconstructed signal. The pseudo Wigner

distribution is calculated according to its definition

(30)

where is an appropriately chosen window function, and

the value of is chosen such that for .

Note that by choosing an appropriate window function, the

signal reconstruction can also be achieved from two close pro-

jections of the pseudo Wigner distribution as long as the angle

is small; see Section III.

VII. EXAMPLES

In this section, we demonstrate the efficiency of the proposed

algorithm on various examples.

Example 1—Monocomponent Signal With Monotonic In-

stantaneous Frequency: We start with the reconstruction of a

monocomponent signal, whose instantaneous frequency is a

monotonic function. A signal of the form

is considered inside the time interval , with

. Its pseudo Wigner distribution is calculated, by using

a Hanning window having a width . After the

Wigner distribution has been obtained, we assume that only two

of its projections, for angles and sampled

at points are known. Note that these two frac-

tional power spectra and ( ) can

be measured in an optical system. In our case , these two pro-

jections are simulated by using the MATLAB Radon function,

taking the pseudo Wigner distribution matrix as the argument.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 19,2010 at 13:14:49 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Monocomponent signal with monotonic instantaneous frequency and its reconstruction from two close fractional power spectra around the angle � =

�45 . (a) Original Wigner distribution. (b) Derivative approximation: difference of two close projections calculated at 1 and�1 and divided by the angle step.
(c) Reconstructed instantaneous frequency of the signal. (d) Reconstructed Wigner distribution.

The described procedure [cf. (28)] is then used for the recon-

struction of the signal’s instantaneous frequency, its phase, and

the signal itself [(29)] from these two projections only.

The original pseudo Wigner distribution is given in

Fig. 1(a). Its Radon–Wigner transform for angles

[cf. (5)] is presented in Fig. 1(b). The difference

of the two projections, for

is shown in Fig. 1(c). The reconstructed instantaneous

frequency and the reconstructed phase are given in Fig. 1(d)

and (e), respectively, by a dash-dot line, whereas the original,

exact values are represented by solid lines. We can see that the

agreement between the reconstructed and the original instanta-

neous frequency is very high. The phase has a constant shift,

as expected. In order to demonstrate the quality of the signal

reconstruction, the reconstructed pseudo Wigner distribution

calculated according to (30) is given in Fig. 1(f).

Example 2—Monocomponent Signal With Nonmonotonic In-

stantaneous Frequency: Next, we consider a signal with a non-

monotonic instantaneous frequency

sgn

The peculiarity of this signal is that it has a region with almost

zero amplitude. The discretization parameters are the same as

in Example 1. Fig. 2 shows the original pseudo Wigner distribu-

tion, its Radon transform, the difference of two projections, and

the reconstructed instantaneous frequency, phase, and pseudo

Wigner distribution. As in the previous example, a high-quality

reconstruction of the instantaneous frequency and phase, out-

side the zero amplitude region, is observed. Certainly, the phase

reconstruction inside the region of zero amplitude has no sense.

Since this signal can be considered as the concatenation of two

different parts, the reconstructed phase of both parts is in good

agreement with the original one, up to different constant terms.

Example 3—Multicomponent Signal: The reconstruction of

a multicomponent signal

is considered in this example. Note that the instantaneous fre-

quency of this signal shows a rather complex form. Neverthe-

less, for this multicomponent signal, we are still able to obtain a

satisfactory reconstruction of the phase and the pseudo Wigner
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Fig. 5. Monocomponent signal with monotonic instantaneous frequency and its reconstruction from two close fractional power spectra for various angle
differences in the derivative approximation. Reconstructed instantaneous frequency and reconstructed Wigner distribution for (a) � = 1 . (b) � = 10 . (c)
� = 20 .

distribution, using only two close fractional power spectra (see

Fig. 3). The discretization parameters are the same as in Ex-

ample 1 ( , ).

Example 4—Reconstruction of a Monocomponent Signal

From Projections Around a Nonzero Angle: In this example,

we consider the reconstruction of a signal that is similar to that

in Example 1

but from two close projections around the angle where the in-

stantaneous power of the signal changes significantly. Now, we

use a wide lag window function, extending over the entire con-

sidered time interval , corresponding to

points. This window produces a distribution which is close to

the pure Wigner distribution, without the attribute pseudo. The

signal discretization parameters and the window size in this ex-

ample are such that the number of points along the time and the

frequency axes is the same; i.e., the Wigner distribution in dis-

crete form is a square matrix. We now reconstruct the signal in

the fractional domain for the angle , with ,

which implies that the reconstructed signal is the fractional FT

of the original signal for . The original signal can

easily be obtained as an inverse fractional FT for the same angle.

Comparing Fig. 4(a) and (d), one can observe a high quality of

the signal reconstruction. Indeed, Fig. 4(d) is the rotated version

of the WD reconstructed from two close projections around the

angle .
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Fig. 6. Noisy signal (SNR = 10 dB) and its reconstruction from two close fractional power spectra. (a) Original Wigner distribution. (b) Projections of the
Wigner distribution (Radon–Wigner transform). (c) Derivative approximation: difference of two close projections calculated at 1 and �1 and divided by the
angle step. (d) Reconstructed (dash-dot) and original (solid line) instantaneous frequency of the signal. (e) Reconstructed (dash-dot) and original (solid line) phase
of the signal. (f) Reconstructed Wigner distribution.

Example 5—Influence of the Angle Difference on the Recon-

struction Quality: The signal from the previous example is

used for the numerical illustration of the influence of the angle

difference in (28). The reconstructions are performed from

the projections around for three values of : ,

, and (see Fig. 5). We can see that near

the end points, a deviation in the reconstructed distribution

and the instantaneous frequency exists for and that

this deviation is very emphatic for . The accuracy of

reconstruction also depends on the complexity of the fractional

amplitude in (28). From this illustration and

other similar numerical experiments with various signals, we

have concluded that values of in the order of , up to a few

degrees, produce satisfactory numerical results.

Example 6—Noisy Signal: The reconstruction algorithm is

tested for noisy cases as well. The signal from Example 1, con-

taminated by Gaussian, complex-valued, white noise

is considered. Various values of the local SNR

have been used in simulations. Fig. 6 presents the reconstruction

result for a SNR dB. Small deviations of the reconstructed

distribution can be seen in this case. From numerous calcula-

tions, we have concluded that the reconstruction threshold is at

about SNR dB. Below this value, the degradation of the
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reconstructed distribution is significant. Nevertheless, it seems

that for signal reconstruction in a very high noise, the knowl-

edge of several pairs of close projections would improve the re-

sults. In that case, we can calculate the differences of the frac-

tional power spectra for several small angles and then average

them. Furthermore, using other discrete differentiators that are

different from the simple one given by a mere difference would

also improve noisy case results. However, since the original al-

gorithm produces a satisfactory reconstruction, even for as low

a SNR as a few decibels, we have not implemented this varia-

tion of the algorithm, for now.

Note that the original noisydistribution Fig. 6(a) and the recon-

structed distribution Fig. 6(f) differ slightly. The noise in the orig-

inal distribution is additive, whereas the reconstructed distribu-

tion isobtained fromtheestimatednoisy instantaneous frequency

and reconstructed noisy amplitude. Due to extremely fast varia-

tionsof thenoise,somemismatchingbetweenthevariations in the

amplitude and the instantaneous frequency can exist and cause a

slightly different behavior of these distributions. It is exhibited

more and more for lower SNR values, and below about 3 dB, the

algorithm stops to produce satisfactory results.

VIII. CONCLUSIONS

In this paper, we have established the relation between the

angular derivative of the fractional power spectra and the instan-

taneous frequency, and we have proposed a method of phase

reconstruction from only two close projections of the Wigner

distribution. The numerical simulations show that the discussed

phase retrieval algorithm produces good results for several

types of signals. The reconstruction technique works well for a

signal-to-noise ratio as low as about 3 dB. The main advantages

of the proposed method are that it is noniterative and demands a

minimum number of initial data—only two close fractional FT

power spectra—which are related to easily measurable power

distributions. In optics and quantum mechanics, for instance, the

fractional FT spectrum corresponds to the intensity distribution

and the probability distribution, respectively.

We have also briefly discussed the possible applications of

the angular derivatives of the fractional FT power spectra for

signal processing, time-varying filtering, edge detection, etc. It

becomes especially attractive if only the fractional spectra of a

signal are known.

REFERENCES

[1] Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg–Saxton al-
gorithm applied in the fractional Fourier or the Fresnel domain,” Opt.

Lett., vol. 21, pp. 842–844, 1996.
[2] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier

Transform. New York: Wiley, 2001.
[3] W. X. Cong, N. X. Chen, and B. Y. Gu, “Recursive algorithm for phase

retrieval in the fractional Fourier-transform domain,” Appl. Opt., vol. 37,
pp. 6906–6910, 1998.

[4] , “Phase retrieval in the Fresnel transform system—A recursive al-
gorithm,” J. Opt. Soc. Amer. A, vol. 16, pp. 1827–1830, 1999.

[5] L. B. Almeida, “The fractional Fourier transform and time-fre-
quency representations,” IEEE Trans. Signal Processing, vol. 42, pp.
3084–3091, Nov. 1994.

[6] M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field re-
construction using phase-space tomography,” Phys. Rev. Lett., vol. 72,
pp. 1137–1140, 1994.

[7] J. Tu and S. Tamura, “Analytic relation for recovering the mutual inten-
sity by means of intensity information,” J. Opt. Soc. Amer. A, vol. 15,
pp. 202–206, 1998.

[8] H. M. Ozaktas, N. Erkaya, and M. A. Kutay, “Effect of fractional Fourier
transformation on time-frequency distributions belonging to the Cohen
class,” IEEE Signal Process. Lett., vol. 3, pp. 40–41, Feb. 1996.

[9] X.-G. Xia, Y. Owechko, B. H. Soffer, and R. M. Matic, “Generalized-
marginal time-frequency distributions,” in Proc. IEEE-SP Int. Symp.
Time-Freq. Time-Scale Anal., 1996, pp. 509–512.

[10] O. Akay and G. F. Boudreaux-Bartels, “Joint fractional representations,”
in Proc. IEEE-SP Int. Symp. Time-Freq. Time-Scale Anal., 1998, pp.
417–420.

[11] B. Ristic and B. Boashash, “Kernel design for time-frequency signal
analysis using the Radon transform,” IEEE Trans. Signal Processing,
vol. 41, pp. 1996–2008, May 1993.

[12] J. C. Wood and D. T. Barry, “Tomographic time-frequency analysis and
its application toward time-varying filtering and adaptive kernel design
for multicomponent linear-FM signals,” IEEE Trans. Signal Processing,
vol. 42, pp. 2094–2104, Aug. 1994.

[13] , “Radon transformation of time-frequency distributions for anal-
ysis of multicomponent signals,” IEEE Trans. Signal Processing, vol.
42, pp. 3166–3177, Nov. 1994.

[14] A. W. Lohmann and B. H. Soffer, “Relationships between the
Radon–Wigner and fractional Fourier transforms,” J. Opt. Soc. Amer.
A, vol. 11, pp. 1798–1801, 1994.

[15] M. R. Teague, “Deterministic phase retrieval: A Green function solu-
tion,” J. Opt. Soc. Amer., vol. 73, pp. 1434–1441, 1983.

[16] N. Streibl, “Phase imaging by the transport equation of intensity,” Opt.
Commun., vol. 49, pp. 6–10, 1984.

[17] K. Ichikawa, A. W. Lohmann, and M. Takeda, “Phase retrieval based
on the Fourier transport method: Experiments,” Appl. Opt., vol. 27, pp.
3433–3436, 1988.

[18] T. E. Gureev, A. Roberts, and K. A. Nugent, “Partially coherent fields,
the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc.
Amer. A, vol. 12, pp. 1942–1946, 1995.

[19] T. Alieva and M. J. Bastiaans, “On fractional Fourier transform mo-
ments,” IEEE Signal Process. Lett., vol. 7, pp. 320–323, Nov. 2000.

[20] T. Alieva, M. J. Bastiaans, and LJ. Stanković, “Wigner distribution
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