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Signal Recovery from Random Measurements via
Extended Orthogonal Matching Pursuit

Sujit Kumar Sahoo, Member, IEEE and Anamitra Makur, Senior Member, IEEE

Abstract—Orthogonal Matching Pursuit (OMP) and Basis Pur-
suit (BP) are two well-known recovery algorithms in compressed
sensing. To recover a d-dimensional m-sparse signal with high
probability, OMP needs O (m ln d) number of measurements,
whereas BP needs only O

(
m ln d

m

)
number of measurements.

In contrary, OMP is a practically more appealing algorithm
due to its superior execution speed. In this piece of work, we
have proposed a scheme that brings the required number of
measurements for OMP closer to BP. We have termed this scheme
as OMPα, which runs OMP for (m + �αm�)-iterations instead
of m-iterations, by choosing a value of α ∈ [0, 1]. It is shown
that OMPα guarantees a high probability signal recovery with
O
(
m ln d

�αm�+1

)
number of measurements. Another limitation

of OMP unlike BP is that it requires the knowledge of m. In
order to overcome this limitation, we have extended the idea
of OMPα to illustrate another recovery scheme called OMP∞,
which runs OMP until the signal residue vanishes. It is shown
that OMP∞ can achieve a close to �0-norm recovery without any
knowledge of m like BP.

I. INTRODUCTION

Compressed sensing (CS) means acquiring/measuring the

sparse signals from a limited number of linear projections at a

subNyquist rate. It is a growing field of interest for researchers

[1]. Through N linear projections v ∈ R
N , CS measures a d-

dimensional real valued sparse signal s ∈ R
d, where d � N .

CS stacks N projection vectors to form a measurement matrix

Φ ∈ R
N×d, and that makes

v = Φs.

The core idea of CS relies on the fact that the measured

signal s is sparse, i.e. ‖s‖0 � d. CS can also be extended to

those signals which are sparse (compressible) in some basis

or frame.

There are two basic problems in CS. The first one is to

find a Φ that ensures every m-sparse signal (i.e. ‖s‖0 = m)

has unique measurements, so that their unique reconstruction

is possible. The following theorem gives an example of an

admissible Φ.

Theorem 1 (Theorem 1 of [2]). Let N ≥ C1m ln d
m , and

Φ has N × d Gaussian i.i.d entries. The following statement
is true with probability exceeding 1 − e−c1N . It is possible
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to reconstruct every m-sparse signals s ∈ R
d from the data

v = Φs.

Here C1 and c1 are positive constants. In order to bring gen-

erality, Φ is usually quantified using the Restricted Isometry

Property (RIP) [3]. Any matrix Φ satisfies RIP of order m, if

there exists a constant 0 ≤ δm < 1 for which the following

statement holds ∀‖s‖0 ≤ m.

(1 + δm)‖s‖22 ≥ ‖Φs‖22 ≥ (1− δm)‖s‖22 (RIP)

In other words, any combination of m or less columns from Φ
will form a well conditioned submatrix. Therefore, Φ needs to

satisfying a RIP of order 2m to have the unique measurements

for an m-sparse signal. Theorem 1 implies, N = O
(
m ln d

m

)
ensures RIP of order 2m for Gaussian measurement matrix.

The second problem in CS is to find a suitable algorithm

that can exactly recover any sparse signal from its unique

measurements,

(�0) ŝ = argmin
s

‖s‖0 such that v = Φs.

Our paper focuses on the second problem, where typically two

major questions need to be answered.

1) Knowing that the measured signal s is sparse, i.e. ‖s‖0 � d,

can an algorithm reconstruct it exactly?

2) How many measurements are necessary for the algorithm

to work?

Solution to (�0) is combinatorial in nature, where we have

to find a sparse solution to an undetermined linear system

of equations. Instead of exhaustively searching for the spars-

est solution among all possible solutions, there exist many

efficient techniques to solve (�0). Two broad classes of such

techniques are iterative greedy pursuit [4], [5], [6], and convex

relaxation [7], [8]. The convex relaxation technique has gained

more importance in comparison to greedy pursuit because

of two reasons. First, its theoretical recovery performance is

much better than greedy pursuits. Second, it does not need the

knowledge of sparsity m unlike greedy pursuit.

The greedy pursuits iteratively identify the nonzero indices

of s. One of the fundamental greedy pursuit techniques is

Orthogonal Matching Pursuit (OMP) [5]. It minimizes the �2
norm of the residue by selecting one atom in each iteration,

where atoms refer to the columns of the measurement matrix

Φ (i.e. ϕj ∈ R
N ). Therefore, for CS recovery of m-sparse

signals, the usual scheme is to run OMP for m iterations.

Some impressive theoretical guarantees for the OMP scheme

have been established in [9], [10], [11]. The best among them

shows, OMP can recover m-sparse signals exactly with high

probability, when N = O (m ln d) [2].
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In contrast, the convex relaxation technique works by relax-

ing the problem (�0) as follows.

(�1) ŝ = argmin
s

‖s‖1 such that v = Φs,

which is well know as Basis Pursuit (BP). It has been

demonstrated that BP can recover any m-sparse signal if the

measurements are unique [12], [13], [14]. This implies, BP

only requires N = O
(
m ln d

m

)
for signal recovery in the case

of Gaussian measurement matrices (Theorem 1).
However, in practice, BP is a computationally demanding

technique, which requires O
(
N2d3/2

)
number of floating

point operations [15]. In contrast, OMP requires O (mNd)
number of floating point operations [16]. The greedy pursuits

are faster, and can be useful for large scale CS problems.

Therefore, many variants of OMP have been proposed in

recent years to achieve the benchmark performance of BP,

e.g. regularized OMP [17], stagewise OMP [18], backtracking

based adaptive OMP [19], etc. However, a well known behav-

ior of standard OMP still remains unexplored. Experiments

suggest OMP can produce superior result by going beyond m-

iterations [20, chapter 8, footnote 6]. Some theoretical works

on uniform signal recovery using OMP advocate going beyond

m-iterations [21], [22], [23]. Using RIP, [21] analytically

shows that any m-sparse signal can exactly be recovered in

O
(
m1.2

)
iterations of OMP, if N = O

(
m1.6 log d

)
. Along

the same line of analysis, [22] shows that any m-sparse

signal can exactly be recovered in 30m iterations of OMP,

if N = O (m log d). An improvement is claimed in [23],

which shows any m-sparse signal can exactly be recovered

in 	2.8m
 iterations of OMP, if N = O (m log d). All these

papers converge to a common conclusion that a minimum of

N = O (m log d) is needed for CS recovery using OMP.
The aim of this article is to reduce the required N by OMP

from O (m ln d) to O
(
m ln d

m

)
with few additional iterations

beyond m. Therefore, we propose to run OMP for m+ �αm�
iterations, where α ∈ [0, 1]. We refer this extended run of OMP

as OMPα, and we analyze its recovery performance for noise

free measurements. The result of our analysis is the following

theorem.

Theorem 2 (OMP with Admissible Measurements). Fix α ∈
[0, 1], and choose N ≥ C0m ln d

�αm�+1 . Suppose that s is
an arbitrary m-sparse signal in R

d, and draw a random
N × d admissible measurement matrix Φ independent from
the signal. Given the data v = Φs, OMP can reconstruct the
signal with probability exceeding 1 − e−c0

N
m (�αm�+1) in at

most m+ �αm� iterations.

Here C0 and c0 are positive constants, and the admissible

measurement matrix is defined in section IV.A. The proof of

the theorem is in Section IV of the paper. Going further with

the analysis of OMPα, we have illustrated another recovery

scheme called OMP∞, which runs OMP until the signal

residue vanishes. It is shown that OMP∞ can achieve a close

to �0-norm recovery without any knowledge of m like BP.

OMP∞ can be considered as the first OMP scheme for CS

recovery that works without the knowledge of sparsity m.
Outline of the paper: The standard scheme of OMP for

CS recovery is discussed in section II. The proposed scheme

of extended OMP (OMPα) for CS recovery is elaborated in

section III. The recovery performance of OMPα is analyzed

in section IV. The scheme of sparsity unaware OMP (OMP∞)

for CS recovery is demonstrated in section V. The theoretical

CS recovery performances of OMP, OMPα, and OMP∞ are

experimentally validated in section VI. The paper ends with a

brief discussion in section VII.

Notations: Let Φ, s are as defined, and I ⊂ {1, 2, . . . , d}.

The matrix ΦI ∈ R
N×|I| consists of the columns of Φ with

indices i ∈ I , and sI ∈ R
|I| consists of the components of s

indexed by i ∈ I . We also denote (.)T and (.)† for transpose

and Moore-Penrose pseudo-inverse respectively.

II. OMP FOR CS RECOVERY

In the problem of CS recovery using OMP, it is known a

priori that the measured signal s is m-sparse, which means s
has non-zero entries only at m unknown indices. Let’s define

the unknown support of s as I , and ‖s‖0 = |I| = m. We

refer to the atoms ϕj corresponding to these indices j ∈ I
as correct atoms, and rest ϕj : j /∈ I as wrong atoms. OMP

identifies I by selecting one candidate index in each iteration.

The detailed steps are describe in the following algorithm.

Algorithm 1 (OMP for CS Recovery).
Input:

• measurement matrix Φ ∈ R
N×d

• measurement v ∈ R
N

• maximum iterations tmax = m

Output:

• signal estimation ŝ
• index set Λt containing elements from {1, . . . , d}
• approximation at ∈ R

N of measurement v
• residual rt ∈ R

N

Procedure:

1) Initialize: residual r0 = v, index set Λ0 = ∅ and
iteration counter t = 0;

2) Increment t = t+ 1;
3) choose the atom λt = arg max

j=1,...,d
|〈ϕj , rt−1〉|;

4) Update Λt = Λt−1 ∪ {λt};
5) Update xt = Φ†

Λt
v;

6) Update at = ΦΛtxt, rt = v − at;
7) Go to Step.2 if t < tmax = m, else terminate;
8) The estimation ŝ for the signal s has nonzero

elements at Λt and rest zeros, i.e. ŝΛt
= xt.

OMP begins by initializing the residual to the input mea-

surement vector r0 = v, selected index set to empty set Λ0 = ∅
and initial approximation to a null vector a0 = 0. At iteration

t, OMP chooses a new index λt by finding the best atom

matching with the residual, λt = arg max
j=1,...,d

|〈ϕj , rt−1〉|, and

updates the selected index set Λt = Λt−1 ∪{λt}. Then, OMP

obtains the best t-term approximation at by a least-squares

(LS) minimization. That is,

xt = argmin
x

‖v −ΦΛtx‖,
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which has a close form solution xt = Φ†
Λt

v, where Φ†
Λt

=(
ΦT

Λt
ΦΛt

)−1
ΦT

Λt
. LS procedure in OMP [5] brings a signif-

icant improvement in comparison to its parent algorithm, the

matching pursuit (MP) [4].

In OMP, the residue rt−1 is always orthogonal to all the

selected atoms ΦΛt−1 . That means the non-zero correlation

〈ϕj , rt−1〉 �= 0 will only occur for those atoms, which are not

linear combinations of atoms in ΦΛt−1 . Thus at iteration t,
OMP will select an atom ϕλt which is linearly independent

from the previously selected atoms ΦΛt−1 , i.e. λt ∈ {j : ϕj �=
ΦΛt−1x}. Therefore, the obvious choice for m-sparse signal

recovery is to identify m correct atoms in m iterations of OMP

[2]. The following proposition provides the recovery scenarios.

Proposition 1. Take an arbitrary m-sparse signal s in R
d, and

let Φ be any N × d measurement ensemble with the property
that any 2m atoms are linearly independent. Given the data
vector v = Φs,

• OMP for tmax < m will result in rtmax
�= 0;

• OMP for tmax = m will result in rtmax
�= 0, if ŝ �= s;

• OMP for tmax = m will result in rtmax
= 0, if ŝ = s.

Proof. It can easily be proved by contradiction. If signal

residue vanishes i.e. rtmax
= 0 after any tmax iterations, that

means we have a tmax-sparse solution v = Φŝ. As there exists a

generating m-sparse solution s, it can be stated as Φ(ŝ−s) = 0,

where the signal (ŝ − s) can have a maximum of tmax + m
nonzero coefficients i.e. ‖ŝ − s‖0 ≤ tmax +m. For tmax ≤ m
it becomes contradictory, if Φ has a property that any 2m
columns of it are linearly independent. Hence it is proved that

for such Φ, the signal residue of OMP will not vanish for

tmax < m, or tmax = m and ŝ �= s.

Note 1. Proposition 7 of [2] considers random Φ case with
tmax = m, whereas proposition 1 is a more general version.

• Note that since RIP of order 2m ensures that any 2m
columns of Φ are linearly independent, any Φ satisfying

RIP of order 2m will satisfy the above proposition.

• Note that since Gaussian or Bernoulli measurement en-

semble of any 2m columns are linearly independent with

probability close to one for N ≥ 2m [24], [25], any Φ
made out of these random ensemble will satisfy the above

proposition with a very high probability.

RIP of order 2m requires N = O
(
m ln d

m

)
in the case

of random measurement matrices. It could be inferred from

Proposition 1 that a RIP of order 2m is necessary for a unique

solution s at tmax = m. However, it can not guarantee that

OMP will obtain a solution at tmax = m. In order for that to

happen with high probability, OMP needs N = O(m ln d) >
O
(
m ln d

m

)
measurements. This is because, in addition to RIP

of order 2m, the probability of selecting m correct atoms in

m iterations decides the required N for OMP.

III. EXTENDED OMP (OMPα) FOR CS RECOVERY

Identifying a m-sparse signal in only m selections is a sheer

restriction to OMP, which has motivated many backtracking

based greedy algorithms. These algorithms work with the main

strategy of selecting more atoms and then tracking back to m
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Fig. 1. The percentage of signal recovered in 1000 trials with increasing α,
for various m-sparse signals in dimension d = 1024, from their N = 256
random measurements.

atoms. However, we are more interested in the fundamental

behavior of OMP when it selects more atoms.

It can be observed that, when OMP has failed to pick m
correct atoms out of ΦI in m iterations, it has not reached

a solution and rm �= 0. However, if we extend the iteration

beyond m, then the chances of selecting m correct atoms will

increase. Even though there are no published experimental

results, this scenario is well known to the researchers working

on greedy pursuits [20, chapter 8, footnote 6]. Recent attempts

of OMP with extended run can be found in [21], [22], [23].

As discussed in the introduction, all of them have converged

to a common conclusion that a minimum of N = O (m log d)
is needed for CS recovery using OMP.

However, we are aiming at recovery of a m-sparse signal

from O
(
m ln d

m

)
noise free measurements, by running few

additional iterations of OMP beyond m. We have linearly

extended the run of OMP beyond m iterations, and ana-

lyze it along the line of [2]. We propose to run OMP for

tmax = m+ �αm� iterations, which is referred as OMPα here

onwards, where α ∈ [0, 1]. This extended run may increase

the computational cost of OMP only by a factor 1 + α, but it

will still be of order O(mNd). The proposed extended OMP

algorithm is the following.

Algorithm 2 (OMPα for CS Recovery). This algorithm
is same as Algorithm 1 (OMP for CS recovery) except the
following change in step 7:

7) Go to Step.2 if t < m+ �αm�, else terminate;

By allowing an additional selection of �αm� atoms, we have

increased the chance of acquiring m correct atoms. Thus, the

conventional use of OMP for CS recovery can be viewed

as a limiting case of OMPα where α = 0. By using its

orthogonality property, and RIP of the sensing matrix, the

following proposition shows how OMPα can identify the m
correct atoms from the m+ �αm� selections.

Proposition 2. Take an arbitrary m-sparse signal s ∈ R
d,
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and let Φ be an N × d measurement ensemble satisfying RIP
of order m+ �αm�. Given the data vector v = Φs;
(S) OMPα will successfully identify any m-sparse signal s,

and rm+�αm� = 0, if I ⊆ Λm+�αm�,
(F) OMPα will fail to identify any m-sparse signal s, irre-

spective of rm+�αm�, if I �⊆ Λm+�αm�.

Proof. At tth iteration, OMPα will find a t-term least square

approximation ŝΛt = Φ†
Λt

v. The best least square approxi-

mation for any linear system is the exact solution, leading to

at = Φŝ = v =⇒ rt = 0, which can only be possible if v
lies in the column space R(ΦΛt

). Since I ⊆ Λm+�αm� and

v ∈ R(ΦI), which implies v ∈ R(ΦΛm+�αm�), the obtained

(m + �αm�)-term solution is exact, i.e. v = Φŝ. However,

this makes Φ(ŝ − s) = 0, which implies that Φ may contain

m+�αm� or less number of linearly dependent atoms, because

‖ŝ − s‖0 ≤ m + �αm�. It becomes contradictory since Φ
satisfies RIP of order m + �αm�. Therefore, Φ(ŝ − s) = 0
implies ŝ = s, and OMPα successfully identifies the s-sparse

signal.

Conversely, I �⊆ Λm+�αm� =⇒ R(ΦI) �⊆ R(ΦΛm+�αm�),
then ŝΛm+�αm� will either produce a (m+ �αm�)-term least

square solution leading to signal residue rm+�αm� = 0, or

a (m+ �αm�)-term least square approximation with signal

residue rm+�αm� �= 0. In either case OMPα has failed to

identify the exact m-term solution using columns of ΦI .

The event (S) stands for successful recovery in Proposi-

tion 2, which is a super set to the event of success in standard

OMP. It is intuitive that the occurrence of event (S) has a

higher probability for α > 0 than for α = 0. In order to

see the behavior of event (S), we have shown an empirical

observation of probability vs α in Fig. 1, which shows the

increase in probability of recovery with α. In the next section

Theorem 2 is proved by deriving the probability of event (F).

IV. ANALYSIS OF OMPα

In this section, we want to find the condition on N to

recover a m-sparse signal with high probability using OMPα.

In other words, we want to arrive at Theorem 2. The unique-

ness of the measurement is a prerequisite for any recovery

algorithm. Therefore Φ is required to satisfy RIP of order

2m for m ∈ (0, d/2). Since OMPα requires RIP of order

m + �αm� to function as a recovery algorithm for a m-

sparse signal, we restrict α to the range [0, 1]. It is because

α may be as large as 1 without requiring higher order of

RIP than the unique measurement condition. In the following

subsection, we define the Admissible Measurements which is

the prerequisite for Theorem 2. In the succeeding subsection,

we brief the approach to the proof of Theorem 2. Then we

detail the events of OMPα, proof of the Theorem 2, and OMP

as a special case in the subsequent subsections.

A. Admissible Measurements

The properties of admissible measurement matrices are

based on Gaussian/Bernoulli sensing matrices. We will use the

properties of these admissible matrices to compute OMPα’s

probabilities of failure.

Matrices Φ ∈ R
N×d with entries Φ(i, j) as i.i.d. Gaussian

random variable N(0, 1√
N
) or i.i.d. Bernoulli random variable

with sample space{ 1√
N
,− 1√

N
} are considered to be good

choices for measurement matrix. These matrices are known

to satisfy RIP of order 2m [3]. Apart from this, four other

useful properties of Φ are the following.

(P0) Independence: Columns of Φ are statistically indepen-

dent.

(P1) Normalized: ∀j E[‖ϕj‖22] = 1
(P2) Correlation: Let u be a vector whose �2 norm ‖u‖2 = 1,

and ϕ be a column of Φ independent of u. Then, for any

ε > 0, the probability

P {|〈ϕ, u〉| ≥ ε} ≤ 2e−c2ε
2N .

The above inequality can easily be verified from the

tail bound of any probability distribution (Gaussian and

Bernoulli).

(P3) Bounded singular value: For a given N × m submatrix

ΦI from Φ, the singular values σ(ΦI) satisfy,

P {σ(ΦI) ≥ (1− δm)} ≥ 1− e−c1N

where 0 ≤ δm < 1. This is equivalent to stating that for

any vector x,

P
{‖ΦIx‖22 ≥ (1− δm)‖x‖22

} ≥ 1− e−c1N ,

which is based on the RIP property of Gaussian and

Bernoulli measurement matrices.1

B. Approach to the proof of Theorem 2

The requirement of N for OMPα is decided by the proba-

bility of achieving the condition (S) of Proposition 1, which

is further to RIP of order 2m. Basically, the condition (S)

stands for the success scenario of OMPα. Therefore, we need

to derive the expression for probability of success in terms of

N,m and d. Instead of analyzing the set of all possible events

of success (Esucc) as in [2], we analyze the set of all possible

events of failure (Efail).

The success probability can be expressed as P (Esucc) =
P (Esucc,Σ) + P (Esucc,Σ

c), where the conditional event Σ
means, Φ satisfies RIP of order 2m. For Gaussian and

Bernoulli measurement matrices

P (Σ) ≥ 1− e−c1N ,

when N ≥ C1m ln d
m [3]. It can be stated that

P (Esucc) ≥ P (Esucc,Σ)= P (Σ) (Esucc|Σ)
= P (Σ) (1− P (Efail|Σ)) . (1)

Thus, a lesser value of P (Efail|Σ) means a better chance

of success. RIP of order m is sufficient for the analysis of

P (Efail|Σ). However, Σ is taken as RIP of order 2m to have

the uniqueness of the measurement. This is also essential for

OMPα to function (see Proposition 2).

1Theorem 1 can be considered as an example of such RIP obeying
measurement matrix.
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C. Events of OMPα

OMPα works by selecting the candidate atoms ϕj one after

another based on their correlation with the residue rt−1. Let’s

partition the measurement matrix into two sets of atoms, i.e.

Φ = [ΦI ,ΦIc ], where ΦI
def
= {ϕj : j ∈ I} is the set of correct

atoms, and ΦIc
def
= {ϕj : j ∈ Ic} is set of the remaining

atoms (also termed as wrong atoms). Using correlation of the

partitioned Φ it can be classified whether OMPα will reliably

select a correct atom from ΦI or a wrong atom from ΦIc .

Correct atom: ⇐⇒ max
j∈Ic

|〈ϕj , rt−1〉| < ‖ΦT
I rt−1‖∞.

Wrong atom: ⇐⇒ ∃
j∈Ic

|〈ϕj , rt−1〉| ≥ ‖ΦT
I rt−1‖∞.

It is important to note that when we have |〈ϕj , rt−1〉| =
‖ΦT

I rt−1‖∞, selections of both wrong and correct atoms

are possible. In order to keep the analysis simple, we have

classified this tie scenario as selection of wrong atoms.

In order to analyze the events, let’s specify the outcome of a

run of OMPα as Λm+�αm� = {λ1, λ2, . . . , λm+�αm�}, where

λt ∈ {1, 2, . . . , d} denotes the index of the atom chosen in

iteration t. Since the exact sequence of appearance of these

atoms are not important in determining the success or failure,

we only consider the set of indices {λt}. Let’s define the

set of correct selections as JC = {λt : λt ∈ I}, which

means for these iterations max
j∈Ic

|〈ϕj , rt−1〉| < ‖ΦT
I rt−1‖∞.

Let’s also define JW = {λt : λt ∈ Ic}, which in turn means

that max
j∈Ic

|〈ϕj , rt−1〉| = |〈ϕλt , rt−1〉| ≥ ‖ΦT
I rt−1‖∞ denoting

selection of a wrong atom. Using these sets we can explain

the Success (S) and Failure (F) of the OMPα algorithm.

(S) After m+ �αm� steps if we have |JC| = m and |JW| =
�αm�, then certainly I ⊆ Λm+�αm�. Note that α = 0
implies success in conventional OMP, while 1

m < α ≤ 1
implies success in OMPα.

(F) After m+�αm� steps if we have |JC| < m, �αm�+1 ≤
|JW| ≤ �αm� + m, Then I �⊂ Λm+�αm� (excluding tie

scenario) and OMPα has failed.

With our conservative definition of failure as described earlier,

the event of all possible failures is defined as

Efail
def
=

�αm�+m⋃
k=�αm�+1

⎧⎨
⎩

⋃
|JW|=k

JW

⎫⎬
⎭ (2)

and the complementary event of success is defined as Esucc.

D. Proof of Theorem 2

Let’s now estimate the failure probability from equation (2)

using union bound,

P (Efail) ≤
�αm�+m∑

k=�αm�+1

P

⎧⎨
⎩

⋃
|JW|=k

JW

⎫⎬
⎭

≤
�αm�+m∑

k=�αm�+1

(
d−m

k

)
P

{
JW

∣∣
|JW|=k

}
(3)

where
⋃

|JW|=k JW denotes all possible JW having size k, and

JW

∣∣
|JW|=k

denotes one such JW. Due to the property (P0),

P

{
JW

∣∣
|JW|=k

}
is same for any JW having size k, and does

not depend on the specific atomic indices in it.
|JW| = k means, OMPα has selected k wrong atoms, i.e.⋂
λt∈JW

|〈ϕλt
, rt−1〉| ≥ ‖ΦT

I rt−1‖∞ irrespective of iteration

of occurrence t. Property (P0) states that ϕλt are independent,

and we make a pessimistic assumption that each event of

unreliable selection is independent of each other. Thus using

(P1) it can be stated that

P

{
JW

∣∣
|JW|=k

}
= P

{ ⋂
λt∈JW

|〈ϕλt
, rt−1〉| ≥ ‖ΦT

I rt−1‖∞
}

� P
k
{|〈ϕλt

, rt−1〉| ≥ ‖ΦT
I rt−1‖∞

}
= P

k
{|〈ϕ, rt−1〉| ≥ ‖ΦT

I rt−1‖∞
}

since the probability on the right hand side is same for any

ϕ ∈ ΦIc .
In order to simplify the derivation let’s normalize the

residue vector to u = rt−1

‖rt−1‖2
, which makes ‖u‖2 = 1.

Normalizing rt−1 on both sides of the equation will not affect

the probability estimation, thus

P

{
JW

∣∣
|JW|=k

}
= P

k
{|〈ϕ, u〉| ≥ ‖ΦT

Iu‖∞
}
.

It is known that ∀x ∈ R
m, ‖x‖∞ ≥ ‖x‖2√

m
. As ΦT

Iu is a m-

dimensional vector, it is true that ‖ΦT
Iu‖∞ ≥ ‖ΦT

Iu‖2√
m

. Thus it

can be stated that

P

{
JW

∣∣
|JW|=k

}
≤ P

k

{
|〈ϕ, u〉| ≥ ‖ΦT

Iu‖2√
m

}
.

Since the left hand side event is a subset of the right hand side

event, the upper bound on its probability will remain true for

any given condition. By taking the conditional event as Σ and

using property (P3), we have ‖ΦT
Iu‖2 ≥ √

(1− δm)‖u‖2, or

P

{
JW

∣∣
|JW|=k

∣∣Σ} ≤ P
k

{
|〈ϕ, u〉| ≥

√
(1− δm)

m

∣∣∣∣Σ
}
.

Thus by using the property (P2) of sensing matrices, i.e. the

Gaussian tail probability, it can be written that

P

{
JW

∣∣
|JW|=k

∣∣Σ} ≤
[
2e−c2

(1−δm)
m N

]k
. (4)

Using this bound of the conditional failure probability of

equation (4), the combination inequality

(
A
B

)
≤ (

eA
B

)B
, and

equation (3), it can be written that

P (Efail|Σ) ≤
�αm�+m∑

k=�αm�+1

[
e(d−m)

k
.2e−c2

(1−δm)
m N

]k

=

�αm�+m∑
k=�αm�+1

e[ln
2e(d−m)

k −c2
(1−δm)

m N]k.

Changing the variable i = k − �αm� and c3 = c2(1− δm),

P (Efail|Σ) ≤
m∑
i=1

e[ln
2e(d−m)
�αm�+i

−c3
N
m ](�αm�+i)

≤ me[ln
2e(d−m)
�αm�+1

−c3
N
m ](�αm�+1)

= e[ln
2e(d−m)
�αm�+1

+ lnm
�αm�+1

−c3
N
m ](�αm�+1). (5)
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It can be found from the appendix of this paper that lnm
�αm�+1 ≤

ln 2m
�αm�+1 , when m ≥ 1 and 0 ≤ α ≤ 1. Thus, the above

upper bound can be expressed as

P (Efail|Σ) ≤ e

[
ln

4e(d−m)m

(�αm�+1)2
−c3

N
m

]
(�αm�+1)

.

Using the fact (d−m)m ≤ d2/4, it can be stated that

P (Efail|Σ) ≤ e

[
ln ed2

(�αm�+1)2
−c3

N
m

]
(�αm�+1)

. (6)

The dominant variable term absorbs the constant, hence it can

be stated that 2 ln d
�αm�+1 + 1 ≤ C4 ln

d
�αm�+1 . This gives

P (Efail|Σ) ≤ e[C4 ln d
�αm�+1

−c3
N
m ](�αm�+1).

Using (1) along with the upper bound for P (Σ), it can be said

that OMPα will succeed with probability

P (Esucc) ≥ 1− e[C4 ln d
�αm�+1

−c3
N
m ](�αm�+1) − e−c1N .

The third term can be absorbed into the second term, by

increasing C4 and decreasing c3 if necessary.

P (Esucc) ≥ 1− e[C4 ln d
�αm�+1

−c3
N
m ](�αm�+1)

By taking N ≥ C0m ln d
�αm�+1 for C0 ≥ C4

c3
, we can ensure

that OMPα will succeed with probability P (Esucc) ≥ 1 −
e−c0

N
m (�αm�+1), where c0 ≥ c3 − C4

C0
. This proves Theorem 2.

The above result brings the number of measurements for

BP and OMP to the same order, when α → 1. Our result is

mostly inspired by Tropp and Gilbert’s analysis of OMP for

m-iterations [2], and it simplifies to their result when α = 0.

Similar to [2], our result also is valid for random independent

atoms. In contrast, the result for BP shows uniform recovery

of all sparse signals over a single set of random measurement

vectors. Nevertheless, OMP remains a valuable tool along

with its inherent advantages, which makes Theorem 2 more

attractive.

E. Cross-validating OMPα

Algorithm 1 (OMP for CS recovery) can be viewed as a

limiting case of OMPα, where the extended run factor α = 0.

Therefore, analysis of OMPα at α = 0 should converge to the

analysis of OMP in [2]. In order to verify that let’s evaluate

P (Efail|Σ) at α = 0. It can be obtained by substituting α = 0
in equation (5),

P (Efail|Σ) ≤ e[ln{2e(d−m)}+lnm−c3
N
m ]

≤ e[ln{2e(d−m)m}−c3
N
m ].

Using the fact (d−m)m ≤ d2/4, it can be stated that

P (Efail|Σ) ≤ e

[
ln ed2

2 −c3
N
m

]
.

The dominant variable term can absorb the constant, hence

2 ln d+ ln e
2 ≤ C4 ln d. This gives

P (Efail|Σ) ≤ e[C4 ln d−c3
N
m ].

Using (1) along with the upper bound for P (Σ), it can be said

that OMPα will succeed with probability

P (Esucc) ≥ 1− e[C4 ln d−c3
N
m ] − e−c1N .

The third term can be absorbed into the second term, by

increasing C4 and decreasing c3 if necessary.

P (Esucc) ≥ 1− e[C4 ln d−c3
N
m ]

By taking N ≥ C0m ln d for C0 ≥ C4

c3
, we can ensure that

OMP will succeed with probability P (Esucc) ≥ 1− e−c0
N
m ,

where c0 ≥ c3 − C4

C0
.

It serves as another validation of OMPα, because the

limiting result for α = 0 coincides with the result of OMP

in [2]. It again proves that OMPα would require a reduced

number of measurements for the same success probability.

F. OMPα with less computation

While Algorithm 2 (OMPα for CS Recovery) uses the loop-

ing condition as iteration t < m+ �αm�, some computations

may be saved by using condition t < m + �αm� & rt �= 0.

The advantage is obvious under the success scenario (S),

I ⊆ Λt, resulting in rt = 0. However, since other sparse

solutions may exist, rt may become 0 with I �⊆ Λt. With the

rt = 0 based termination, the iterations will stop with this

wrong solution. One may wonder if continuing the iterations

might have allowed OMPα to obtain the correct solution, or

I ⊆ Λm+�αm�. The following proposition shows that, once

a wrong solution is found, we can never reach the correct

solution by completing the m + �αm� iterations, since too

many wrong atoms have already been selected.

Proposition 3. Take an arbitrary m-sparse signal s in R
d, let

Φ be an N×d measurement ensemble satisfying RIP of order
m+�αm�, and execute OMPα with the data v = Φs. If OMPα

arrives at rt = 0 : m < t < m + �αm�, and I �⊆ Λt, then it
has already selected more than �αm� wrong atoms. Thus, by
completing m+�αm� selections it will never achieve I ⊆ Λt.

Proof. When the signal residue vanishes after t iterations (i.e.

rt = 0), it means that we have obtained a t-sparse solution v =
Φŝ. Let’s assume that in this t-sparse solutions we have p such

atoms which are not from ΦI . As there exists a generating

m-sparse solution s using atoms of ΦI , it can be stated that

Φ(ŝ − s) = 0, where the signal (ŝ − s) has p + m nonzero

coefficients i.e. ‖ŝ − s‖0 = p + m. It implies, Φ contains

p + m linearly dependent atoms, which is only possible if

p > �αm�. It is because Φ obeys RIP of order m + �αm�.

Hence it is proved that OMPα has already selected more than

�αm� wrong atoms. Thus, by completing m+�αm� selections

it will never achieve I ⊆ Λt.

We now argue that early termination does not affect the

results in Theorem 2. The failure event analysis in equation

(2) covers all possible events of wrong selection from �αm�+1
to �αm�+m wrong atoms. With early termination, one may

argue that the algorithm selects only upto �αm�+m′ wrong

atoms, where m′ < m. Even then, the proof of Theorem 2 will

remain unaltered, because replacing lnm
�αm�+1 with lnm′

�αm�+1 in

equation (5) will not affect the upper bound in equation (6).

V. SPARSITY UNAWARE OMP (OMP∞) FOR CS RECOVERY

The superior execution speed of OMP comes with two draw-

backs in its present form of CS recovery. First, it needs more
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number of measurements in comparison to BP for recovering

the same signal. Second, it requires prior knowledge of the

sparsity m, whereas no such information is needed for BP.

Through the scheme of OMPα, we have brought down the gap

between OMP and BP in terms of required N both in theory

and practice. However, the requirement of prior knowledge of

the sparsity in OMP still remains.

Since OMPα runs for more than m iterations unlike OMP,

if we get rid of the bound on the number of iterations in

OMPα, prior knowledge of m is no longer required. The bound

of m + αm iterations is only required to prove Theorem 2.

More iterations may only improve the performance of OMP.

Removing the iteration based termination condition from step

7 of Algorithm 2, we obtain the modified algorithm referred

as OMP∞.

Algorithm 3 (OMP∞ for CS Recovery). This algorithm
is the same as Algorithm 2 (OMPα for CS recovery)
except the following change in step 7:

7) Go to Step.2 if rt �= 0, else terminate;

Contrary to its name, the worst case scenario of OMP∞ is

not infinite iterations but when it selects N linearly indepen-

dent vectors that spans the whole R
N space to reach rN = 0.

Thus, its worst case complexity is of order O(N2d), which

is still less than BP. Also, the probability bounds of Theorem

1 are equally applicable for OMP∞ based reconstruction for

not only Gaussian but other admissible measurement matrices.

Choosing N ≥ C1m ln d
m , supposing that s is an arbitrary

m-sparse signal in R
d, drawing a random N ×m admissible

measurement matrix Φ independent from the signal, and given

the data v = Φs, OMP∞ can reconstruct the signal with

probability exceeding 1−e−c1N , where C1 and c1 are positive

constants. Due to its restriction of m iteration, the same is not

true for earlier OMP based reconstruction.

In the following we present an analysis of OMP∞ per-

formance. OMP∞ can be viewed as running lim
α→∞OMPα.

Consider an inadequate number of measurementsN0 for some

sparsity m0, and lets interpret the outcome with increasing

α. It can be observed from equation (6) that the conditional

failure probability P (Efail|Σ) ≈ 1, till α reaches

1

2

(
c3

N0

m0
− 1

)
> ln

d

�αm0�+ 1
.

Thereafter, it will start decaying exponentially with α, which

can be continuously approximated as

P (Efail|Σ) ≤ e
−c5

(
α+ 1

m0

)
N0 .

Here c5 = c3 − m0

N0

(
2 ln d

�αm0�+1 + 1
)

. However, since

P(Esucc,Σ
c) → 0 and may be ignored, the final probability

of successful recovery of a sparse vector can be expressed as

P (Esucc) � P (Esucc,Σ) = P (Σ) (1− P (Efail|Σ)) .
While increasing α, we will achieve a point where

P (Efail|Σ) → 0, and the final success probability

P (Esucc) � P (Σ) .

It shows that P (Esucc) will increase with α and it will meet

P (Σ) asymptotically. Fig.1 is a nice illustration of this behav-

ior, where percentage of signal recovered represents P (Esucc).
In other words, success of OMP∞ depends on P (Σ), the

probability that Φ obeys a RIP of order 2m. In the case of

Gaussian and Bernoulli random matrices, RIP of order 2m
holds for entire range of m ∈ (0, d/2) with high probability

exceeding 1− e−c1N , if N ≥ C1m ln d
m .

VI. EXPERIMENTS

The proposed extension of OMP is validated in this sec-

tion. It is experimentally illustrated that OMPα has not only

improved the performance of OMP but also it has been

competitive to BP. As per Theorem 2, we validate the algo-

rithm on random sensing matrices. The obtained results for

Bernoulli ensemble are strikingly indifferent to Gaussian, thus

we have only presented the results on Gaussian ensemble. The

practical question is to determine how many measurements N
are needed to recover an m-sparse signal in R

d with high

probability. Thus the experimental set up is the following.

The probability of success is viewed as the percent of

a m-sparse signal recovered successfully out of 1000 tri-

als. Successful recovery implies that the distance between

the original and recovered sparse signal is insignificant, i.e.

‖ŝ − s‖2 ≤ 10−6. For each trial the m-sparse signal s is

generated by setting nonzero values at m random locations

of a d-dimensional null vector. The measurement matrix Φ is

constructed by generating N × d Gaussian random variables

of parameters (0, 1/
√
N). The recovered signal ŝ is obtained

performing BP, OMP, OMPα and OMP∞ on the measurement

v = Φs. Although it is possible to obtain different set of results

in OMPα by varying the extended run factor 0 < α ≤ 1, the

results presented here are for α = 0.25.

The nonzero coefficients in s play an important role in

the performance of matching based greedy algorithms from a

practical point of view. The measurement matrix Φ is obtained

using zero mean random variables. Thus, when all the nonzero

coefficients become equal, the measurement v = Φs becomes

the scaled sample mean of the random variables making it

very close to zero i.e. v → 0. This scenario degrades the

performance of the matching step of OMP depending on the

precision of the device. Hence, all the results are obtained

for this extreme scenario, when the sparse coefficients are set

equal i.e. sI = 1 (same as the experimental setup in [2]).

Signal dimension is taken as d = 256 and each m-sparse signal

is recovered from the number of measurements starting with

N = 4 to N = 256 in steps of 4. The percentage of successful

trials is plotted against the number of measurements (N ) in

plot (A) of Fig.2.

With the same philosophy we might be interested to know,

for a given sparsity level how many measurements will be

needed to ensure a recovery with certain probability of success

(for example 0.95 or 95%). Since the %-success vs. N is

monotonically increasing, the N at which we first achieved

success rate of 95% can be obtained empirically. Plot (B)

of Fig.2 shows the plot N vs. m for 95% success. In

order to study the characteristic of N vs. m data points, a
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Fig. 2. (A) The percentage of 1000 input signals correctly recovered as a function of the sparsity level m for different numbers N of measurements in
dimension d = 256. (B) The number N of measurements necessary to recover an m-sparse signal in dimension d = 256 at least 95% of the time.

curve fitting is done using Matlab toolbox. The results are

tabulated in Table.I, which shows O(m ln d) nature of OMP

and O(m ln d
αm+1 ) nature of OMPα, but O(m ln d

m ) nature

of OMP∞ and BP.

In order to validate Theorem 2, we obtained the curve fitting

result for OMPα for α = 0, 1/16, 1/8, 1/4, 1/2 in similar

manner. However, we have increased the signal dimension to

d = 1024 to acquire more integer points for better curve fitting.

Fig. 3 shows a tight fitting of the curve C0m ln d
αm+1 + C6

with the obtained data points, and the values of C0 and C6 for

various α are tabulated in Table. II.

VII. DISCUSSIONS

Greedy pursuit is advantageous in terms of computational

cost, which interests researchers to improve its performance

towards the benchmark of convex relaxation (BP). The pro-

posed OMPα uses the orthogonality property of OMP and

the probabilistic linear independences of random ensemble to

enhance its performance. Its required number of measurements

for high probability signal recovery follows a logarithmic trend

like BP, instead of following a linear trend as OMP. Further,

the proposed OMP∞ shows an overwhelming improvement in

OMP by bringing it close to BP in terms of both required

order of measurements and no prior knowledge of sparsity.

The theoretical guarantee of OMPα along with the obtained

empirical results make OMPα a more compelling algorithm.

Convex relaxation has rich varieties of results including the

cases when the measured signal is not exactly sparse or is

contaminated by noise. The results presented for OMPα and

OMP∞ are focused on strictly sparse signals. How these pro-

posed schemes of OMP behave recovering the measurements

contaminated by noise is an interesting direction to pursue.
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APPENDIX

For an appropriate c7,

lnm

�αm�+ 1
≤ ln

c7m

�αm�+ 1
, (7)

where sparsity m ≥ 1 and 0 ≤ α ≤ 1.

A. For m = 1

Let’s substitute the limiting value m = 1 in inequality (7).

0 ≤ ln
c7

�α�+ 1
=⇒ c7 ≥ �α�+ 1.

As α ≤ 1, inequality (7) will be true for c7 ≥ 2.

B. For m ≥ 2

The inequality (7) can be rearranged as the following.

ln
�αm�+ 1

c7
≤
(
1− 1

�αm�+ 1

)
lnm

=⇒ logm
�αm�+ 1

c7
≤
(
1− 1

�αm�+ 1

)

=⇒ �αm�+ 1

c7
≤ m

m
1

�αm�+1

=⇒ c7 ≥ (�αm�+ 1)m
1

�αm�+1

m
(8)

Interestingly, the condition on c7 is a function of α and m,

f(m,α) = (αm+1)m
1

αm+1

m . For any give m, if we set

c7 ≥ max
0≤α≤1

f(m,α) (9)

inequality (7) would be valid for all range of α ∈ [0, 1]. It can

be seen that

∂f(m,α)

∂α
= m

1
αm+1

[
1− lnm

αm+ 1

]

< 0 for α <
lnm− 1

m

= 0 at α =
lnm− 1

m

> 0 for α >
lnm− 1

m
.

This implies, f(m,α) decreases with α until α = lnm−1
m ,

and then increases. However, f(m,α) is a monotonically

increasing function of α for m < e, because lnm < 1 makes
∂f(m,α)

∂α > 0 unconditionally. Hence,

c7 ≥ max {f(m, 0), f(m, 1)} = f(m, 1) (10)

since

f(m, 1) =

(
1 +

1

m

)
m

1
m+1 ≥ 1 = f(m, 0).

If we set

c7 ≥ max
2≤m

f(m, 1) (11)

inequality (7) would be valid for all m ≥ 2. The derivative

∂f(m, 1)

∂m
=

(m+ 1)m
1

m+1

m

[ − lnm

(m+ 1)2

]
< 0
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shows that f(m, 1) is a decreasing function of m. Hence,

c7 ≥ max
2≤m

f(m, 1) = f(2, 1) =
3

2
2

1
3 .

However, the previously obtained condition c7 ≥ 2 for the
case of m = 1, is higher than 3

22
1
3 . Therefore, it is proved

that at c7 = 2 the inequality (7) holds for the entire range of
m and α.
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