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VIA ORTHOGONAL MATCHING PURSUIT:

THE GAUSSIAN CASE

JOEL A. TROPP AND ANNA C. GILBERT

Abstract. This report demonstrates theoretically and empirically that a greedy algorithm called
Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimen-
sion d given O(m ln d) random linear measurements of that signal. This is a massive improvement
over previous results, which require O(m2) measurements. The new results for OMP are com-
parable with recent results for another approach called Basis Pursuit (BP). In some settings, the
OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal
recovery problems.

1. Introduction

Lets be a d-dimensional real signal with at most m nonzero components. This type of signal
is called m-sparse. Let {x1, . . . ,xN} be a sequence of measurement vectors in Rd that does not
depend on the signal. We use these vectors to collect N linear measurements of the signal:

〈s, x1〉 , 〈s, x2〉 , . . . , 〈s, xN 〉

where 〈·, ·〉 denotes the usual inner product. The problem of signal recovery asks two distinct
questions:

(1) How many measurements are necessary to reconstruct the signal?
(2) Given these measurements, what algorithms can perform the reconstruction task?

As we will see, signal recovery is dual to sparse approximation, a problem of significant inter-
est [MZ93, RKD99, CDS01, Mil02, Tem02].

To the first question, we can immediately respond that no fewer than m measurements will do.
Even if the measurements were adapted to the signal, it would still take m pieces of information
to determine the nonzero components of an m-sparse signal. In the other direction, d nonadaptive
measurements always suffice because we could simply list the d components of the signal. Although
it is not obvious, sparse signals can be reconstructed with far less information.

The method for doing so has its origins during World War II. The US Army had a natural interest
in screening soldiers for syphilis. But syphilis tests were expensive, and the Army realized that it
was wasteful to perform individual assays to detect an occasional case. Their solution was to pool
blood from groups of soldiers and test the pooled blood. If a batch checked positive, further tests
could be performed. This method, called group testing, was subsequently studied in the computer
science and statistics literatures. See [DH93] for a survey.
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Recently, a specific type of group testing has been proposed by the computational harmonic
analysis community. The idea is that, by randomly combining the entries of a sparse signal, it
is possible to generate a small set of summary statistics that allow us to identify the nonzero
entries of the signal. The following theorem, drawn from the papers of Candès–Tao [CT05] and
Rudelson–Vershynin [RV05], describes one example of this remarkable phenomenon.

Theorem 1. Let N ≥ Km ln(d/m), and draw N vectors x1,x2, . . . ,xN independently from the
standard Gaussian distribution on Rd. The following statement is true with probability exceeding
1− e−kN . It is possible to reconstruct every m-sparse signal s in Rd from the data {〈s, xn〉 : n =
1, 2, . . . , N}.

We follow the analysts’ convention that upright letters (c,C,K, etc.) indicate positive, universal
constants that may vary at each appearance.

An important detail is that a particular choice of the Gaussian measurement vectors succeeds
for every m-sparse signal with high probability. This theorem extends earlier results of Candès–
Romberg–Tao [CRT06], Donoho [Don06a], and Candès–Tao [CT06].

All five of the papers [CRT06, Don06a, CT06, RV05, CT05] offer constructive demonstrations
of the recovery phenomenon by proving that the original signal s is the unique solution to the
mathematical program

minf ‖f‖1 subject to 〈f , xn〉 = 〈s, xn〉 for n = 1, 2, . . . , N. (BP)

This optimization can be recast as an ordinary linear program using standard transformations, and
it suggests an answer to our second question about algorithms for reconstructing the sparse signal.
Note that this formulation requires knowledge of the measurement vectors.

When researchers talk about (BP), we often say that the linear program can be solved in poly-
nomial time with standard scientific software. In reality, commercial optimization packages tend
not to work very well for sparse signal recovery because the solution vector is sparse and the
measurement matrix is dense. Instead it is necessary to apply specialized techniques.

The literature describes a bewildering variety of algorithms that perform signal recovery by
solving (BP) or a related problem. These methods include [CDS01, EHJT04, DDM04, MÇW05,
KKL+07, FNW07]. The algorithms range widely in effectiveness, (empirical) computational cost,
and implementation complexity. Unfortunately, there is little guidance available on choosing a good
technique for a given parameter regime.

As a result, it seems valuable to explore alternative approaches that are not based on optimiza-
tion. Thus, we adapted a sparse approximation algorithm called Orthogonal Matching Pursuit
(OMP) [PRK93, DMA97] to handle the signal recovery problem. The major advantages of this
algorithm are its speed and its ease of implementation. On the other hand, conventional wisdom on
OMP has been pessimistic about its performance outside the simplest settings. A notable instance
of this complaint appears in a 1996 paper of DeVore and Temlyakov [DT96]. Pursuing their rea-
soning leads to an example of a nonrandom ensemble of measurement vectors and a sparse signal
that OMP cannot identify without d measurements [CDS01, Sec. 2.3.2]. Other negative results,
such as Theorem 3.10 of [Tro04] and Theorem 5 of [Don06b], echo this concern.

But these negative results about OMP are deceptive. Indeed, the empirical evidence suggests that
OMP can recover an m-sparse signal when the number of measurements N is nearly proportional
to m. The goal of this technical report is to establish the following theorem in detail.

Theorem 2 (OMP with Gaussian Measurements). Fix δ ∈ (0, 0.36), and choose N ≥ Km ln(d/δ).
Suppose that s is an arbitrary m-sparse signal in Rd. Draw N measurement vectors x1,x2, . . . ,xN
independently from the standard Gaussian distribution on Rd. Given the data {〈s, xn〉 : n =
1, 2, . . . , N}, Orthogonal Matching Pursuit can reconstruct the signal with probability exceeding
1− 2δ. The constant satisfies K ≤ 20. For large values of m, it can be reduced to K ≈ 4.
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In comparison, earlier positive results, such as Theorem 3.6 from [Tro04], only demonstrate that
Orthogonal Matching Pursuit can recover m-sparse signals when the number of measurements N
is roughly m2. Theorem 2 improves massively on this earlier work.

Theorem 2 is weaker than Theorem 1 for several reasons. First, our result requires somewhat more
measurements than the result for (BP). Second, the quantifiers are ordered differently. Whereas
we prove that OMP can recover any sparse signal given random measurements independent from
the signal, the result for (BP) shows that a single set of random measurement vectors can be used
to recover all sparse signals. Nevertheless, we believe that the advantages of Orthogonal Matching
Pursuit make Theorem 2 extremely compelling.

This section describes how to apply a fundamental algorithm from sparse approximation to the
signal recovery problem. Suppose that s is an arbitrary m-sparse signal in Rd, and let {x1, . . . ,xN}
be a family of N measurement vectors. Form an N × d matrix Φ whose rows are the measurement
vectors, and observe that the N measurements of the signal can be collected in an N -dimensional
data vector v = Φs. We refer to Φ as the measurement matrix and denote its columns by
ϕ1, . . . ,ϕd.

As we mentioned, it is natural to think of signal recovery as a problem dual to sparse approxi-
mation. Since s has only m nonzero components, the data vector v = Φs is a linear combination
of m columns from Φ. In the language of sparse approximation, we say that v has an m-term
representation over the dictionary Φ.

Therefore, sparse approximation algorithms can be used for recovering sparse signals. To identify
the ideal signal s, we need to determine which columns of Φ participate in the measurement vector
v. The idea behind the algorithm is to pick columns in a greedy fashion. At each iteration, we
choose the column of Φ that is most strongly correlated with the remaining part of v. Then we
subtract off its contribution to v and iterate on the residual. One hopes that, after m iterations,
the algorithm will have identified the correct set of columns.

Algorithm 3 (OMP for Signal Recovery).
Input:

• An N × d measurement matrix Φ
• An N -dimensional data vector v
• The sparsity level m of the ideal signal

Output:

• An estimate ŝ in Rd for the ideal signal
• A set Λm containing m elements from {1, . . . , d}
• An N -dimensional approximation am of the data v
• An N -dimensional residual rm = v − am

Procedure:

(1) Initialize the residual r0 = v, the index set Λ0 = ∅, and the iteration counter t = 1.
(2) Find the index λt that solves the easy optimization problem

λt = arg maxj=1,...,d |〈rt−1, ϕj〉| .

If the maximum occurs for multiple indices, break the tie deterministically.
(3) Augment the index set and the matrix of chosen atoms: Λt = Λt−1 ∪ {λt} and Φt =[

Φt−1 ϕλt

]
. We use the convention that Φ0 is an empty matrix.

(4) Solve a least-squares problem to obtain a new signal estimate:

xt = arg minx ‖v −Φt x‖2 .
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(5) Calculate the new approximation of the data and the new residual:

at = Φt xt

rt = v − at.
(6) Increment t, and return to Step 2 if t < m.
(7) The estimate ŝ for the ideal signal has nonzero indices at the components listed in Λm. The

value of the estimate ŝ in component λj equals the jth component of xt.

Steps 4, 5, and 7 have been written to emphasize the conceptual structure of the algorithm; they
can be implemented more efficiently. It is important to recognize that the residual rt is always
orthogonal to the columns of Φt. Provided that the residual rt−1 is nonzero, the algorithm selects
a new atom at iteration t and the matrix Φt has full column rank. In which case the solution xt
to the least-squares problem in Step 4 is unique. (It should be noted that the approximation and
residual calculated in Step 5 are always uniquely determined.)

The running time of the OMP algorithm is dominated by Step 2, whose total cost is O(mNd).
At iteration t, the least-squares problem can be solved with marginal cost O(tN). To do so, we
maintain a QR factorization of Φt. Our implementation uses the Modified Gram–Schmidt (MGS)
algorithm because the measurement matrix is unstructured and dense. The book [Bjö96] provides
extensive details and a survey of alternate approaches. When the measurement matrix is structured,
more efficient implementations of OMP are possible; see the paper [KR07] for one example.

According to [NN94], there are algorithms that can solve (BP) with a dense, unstructured mea-
surement matrix in time O(N2d3/2). We focus on the case where d is much larger than m or N , so
there is a substantial gap between the theoretical cost of OMP and the cost of BP.

A prototype of the OMP algorithm first appeared in the statistics community at some point
in the 1950s, where it was called stagewise regression. The algorithm later developed a life of its
own in the signal processing [MZ93, PRK93, DMA97] and approximation theory [DeV98, Tem02]
literatures.

2. Gaussian Measurement Ensembles

In this report, we are concerned with Gaussian measurements only. In this section, we identify
the properties of this measurement ensemble that are used to prove that the algorithm succeeds.
Since Gaussian matrices are so well studied, we can make much more precise claims about them
than other types of random matrices.

A Gaussian measurement ensemble for m-sparse signals in Rd is a d×N matrix Φ, whose entries
are drawn independently from the normal(0, N−1) distribution. For reference, the density function
p of this distribution is

p(x) =
1√

2πN
e−x

2N/2 for x ∈ R.

As we will see, this matrix has the following four properties:
(G0) Independence: The columns of Φ are statistically independent.
(G1) Normalization: E ‖ϕj‖22 = 1 for j = 1, . . . , d.
(G2) Joint correlation: Let {ut} be a sequence of m vectors whose `2 norms do not exceed one.

Let ϕ be a column of Φ that is independent from this sequence. Then

P {maxt |〈ϕ, ut〉| ≤ ε} ≥
(

1− e−ε
2N/2

)m
.

(G3) Smallest singular value: Given an N ×m submatrix Z from Φ, the mth largest singular
value σm(Z) satisfies

P
{
σm(Z) ≥ 1−

√
m/N − ε

}
≥ 1− e−ε

2N/2

for any positive ε.
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2.1. Joint Correlation. The joint correlation property (G2) is essentially a large deviation bound
for sums of random variables. For the Gaussian measurement ensemble, we can leverage classical
techniques to establish this property.

Proposition 4. Let {ut} be a sequence of m vectors whose `2 norms do not exceed one. Indepen-
dently, choose z to be a random vector with i.i.d. normal(0, N−1) entries. Then

P {maxt |〈z, ut〉| ≤ ε} ≥
(

1− e−ε
2N/2

)m
.

Proof. Let z be a random vector whose entries are i.i.d. normal(0, 1). Define the event

E
def= {z : maxt |〈z, ut〉| ≤ ε

√
N},

which is identical with the event that interests us. We will develop a lower bound on P (E). Observe
that this probability decreases if we replace each vector ut by a unit vector pointing in the same
direction. Therefore, we may assume that ‖ut‖2 = 1 for each t.

Geometrically, we can view P (E) as the Gaussian measure of m intersecting symmetric slabs.
Sidak’s Lemma [Bal02, Lemma 2] shows that the Gaussian measure of this intersection is no smaller
than the product of the measures of the slabs. In probabilistic language,

P (E) ≥
∏m

t=1
P
{
|〈z, ut〉| ≤ ε

√
N
}
.

Since each ut is a unit vector, each of the random variables 〈z, ut〉 has a normal(0, 1) distribution
on the real line. It follows that each of the m probabilities can be calculated as

P
{
|〈z, ut〉| ≤ ε

√
N
}

=
1√
2π

∫ ε

−ε
e−x

2/2 dx

≤ 1− e−ε
2N/2.

The final estimate is a well-known Gaussian tail bound. See [Bal02, p. 118], for example. �

2.2. Smallest Singular Value. The singular value property (G3) follows directly from a theorem
of Davidson and Szarek [DS02].

Proposition 5 (Davidson–Szarek). Suppose that Z is a tall N ×m matrix whose entries are i.i.d.
normal(0, N−1). Then its smallest singular value σm satisfies

P
{
σm(Z) ≥ 1−

√
m/N − ε

}
≥ 1− e−ε

2N/2.

It is a standard consequence of measure concentration that the minimum singular value of a Gauss-
ian matrix clusters around its expected value (see [Led01], for example). Calculating the expec-
tation, however, involves much more ingenuity. Davidson and Szarek produce their result with a
clever application of the Slepian–Gordon lemma.

3. Signal Recovery with Orthogonal Matching Pursuit

If we take random measurements of a sparse signal using a Gaussian measurement matrix, then
OMP can be used to recover the original signal with high probability.

Theorem 6. Suppose that s is an arbitrary m-sparse signal in Rd, and draw a random N × d
Gaussian measurement matrix independent from the signal. Given the data v = Φs, Orthogonal
Matching Pursuit can reconstruct the signal with probability exceeding

sup
ε∈(0,
√
N/m−1)

[
1− e−(

√
N/m−1−ε)2/2

]m(d−m) [
1− e−ε

2m/2
]

The success probability here is best calculated numerically. Some analysis yields a slightly weaker
but more serviceable corollary.
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Corollary 7. Fix δ ∈ (0, 0.36), and choose N ≥ Km log(d/δ) where K is an absolute constant.
Suppose that s is an arbitrary m-sparse signal in Rd, and draw a random N ×d Gaussian measure-
ment matrix Φ independent from the signal. Given the data v = Φs, Orthogonal Matching Pursuit
can reconstruct the signal with probability exceeding 1− 2δ.

The preceding theorem holds with K ≤ 20 for any m ≥ 1. When the number m of nonzero
signal components approaches infinity, it is possible to take K ≤ 4 + η for any positive number η.
If δ ≥ d−1, the success probability can also be improved to 1− 2δ2. These facts will emerge during
the proof.

3.1. Proof of Theorem 6. Most of the argument follows the approach developed in [Tro04]. The
main difficulty here is to deal with the nasty independence issues that arise in the random setting.
The primary novelty is a route to avoid these perils.

We begin with some notation and simplifying assumptions. Without loss of generality, assume
that the first m entries of the original signal s are nonzero, while the remaining d−m entries equal
zero. Therefore, the data vector v is a linear combination of the first m columns from the matrix
Φ. Partition the matrix as Φ = [Φopt | Ψ] so that Φopt has m columns and Ψ has d−m columns.
Note that the vector v = Φs is statistically independent from the random matrix Ψ.

Consider the event Esucc where the algorithm correctly identifies the signal s after m iterations.
We only decrease the probability of success if we impose the additional requirement that the smallest
singular value of Φopt meet a lower bound. To that end, define the event

Σ def= {σm(Φopt) ≥ σ}.

Applying the definition of conditional probability, we reach

P (Esucc) ≥ P (Esucc ∩ Σ) = P (Esucc | Σ) · P (Σ) . (3.1)

Property (G3) controls P (Σ), so it remains to develop a lower bound on the conditional probability.
To prove that Esucc occurs conditional on Σ, it suffices to check that the algorithm correctly

identifies the columns of Φopt. These columns determine which entries of the signal are nonzero.
The values of the nonzero entries are determined by solving a least-squares problem, which has a
unique solution because the event Σ implies that Φopt has full column rank. In other words, there
is just one explanation for the signal s using the columns in Φopt.

Now we may concentrate on showing that the algorithm locates the columns of Φopt. For a
vector r in RN , define the greedy selection ratio

ρ(r) def=

∥∥ΨT r
∥∥
∞∥∥ΦT

opt r
∥∥
∞

=
maxψ |〈ψ, r〉|∥∥ΦT

opt r
∥∥
∞

where the maximization takes place over the columns of Ψ. If r is the residual vector that arises
in Step 2 of OMP, the algorithm picks a column from Φopt whenever ρ(r) < 1. In case ρ(r) = 1,
an optimal and a nonoptimal column both achieve the maximum inner product. The algorithm
has no cause to prefer one over the other, so we cannot be sure it chooses correctly. The greedy
selection ratio was first isolated and studied in [Tro04].

Imagine that we could execute m iterations of OMP with the input signal s and the restricted
measurement matrix Φopt to obtain a sequence of residuals q0, q1, . . . , qm−1 and a sequence of
column indices ω1, ω2, . . . , ωm. The algorithm is deterministic, so these sequences are both functions
of s and Φopt. In particular, the residuals are statistically independent from Ψ. It is also evident
that each residual lies in the column span of Φopt.

Execute OMP with the input signal s and the full matrix Φ to obtain the actual sequence of
residuals r0, r1, . . . , rm−1 and the actual sequence of column indices λ1, λ2, . . . , λm. Conditional on
Σ, OMP succeeds in reconstructing s after m iterations if and only if the algorithm selects the m
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columns of Φopt in some order. We use induction to prove that this situation occurs when ρ(qt) < 1
for each t = 0, 1, . . . ,m− 1.

The statement of the algorithm ensures that the initial residuals satisfy q0 = r0. Clearly, the
condition ρ(q0) < 1 ensures ρ(r0) < 1. It follows that the actual invocation chooses the column λ1

from Φopt whose inner product with r0 has the largest magnitude (ties broken deterministically).
Meanwhile, the imaginary invocation chooses the column ω1 from Φopt whose inner product with
q0 has largest magnitude. Evidently, λ1 = ω1. This observation completes the base case.

Suppose that, during the first k iterations, the actual execution of OMP chooses the same
columns as the imaginary execution. That is, λj = ωj for j = 1, 2, . . . , k. Since the algorithm
calculates the new residual as the (unique) best approximation of the signal s from the span of the
chosen columns, the actual and imaginary residuals must be identical at the beginning of iteration
k. In symbols, rk = qk. An obvious consequence is that ρ(qk) < 1 implies ρ(rk) < 1. Repeat the
argument of the last paragraph to establish that λk+1 = ωk+1.

We conclude that the conditional probability satisfies

P (Esucc | Σ) ≥ P {maxt ρ(qt) < 1 | Σ} (3.2)

where {qt} is a sequence of m random vectors that fall in the column span of Φopt and that are
statistically independent from Ψ.

Assume that Σ occurs. For each index t = 0, 1, . . . ,m− 1, we have

ρ(qt) =
maxψ |〈ψ, qt〉|∥∥ΦT

opt qt
∥∥
∞

.

Since ΦT
opt qt is an m-dimensional vector,

ρ(qt) ≤
√
m maxψ |〈ψ, qt〉|∥∥ΦT

opt qt
∥∥

2

.

To simplify this expression, define the vector

ut
def=

σ qt∥∥ΦT
opt qt

∥∥
2

.

The basic properties of singular values furnish the inequality∥∥ΦT
opt q

∥∥
2

‖q‖2
≥ σm(Φopt) ≥ σ

for any vector q in the range of Φopt. The vector qt falls in this subspace, so ‖ut‖2 ≤ 1. In
summary,

ρ(qt) ≤
√
m

σ
maxψ |〈ψ, ut〉|

for each index t. On account of this fact,

P {maxt ρ(qt) < 1 | Σ} ≥ P
{

maxt maxψ |〈ψ, ut〉| <
σ√
m

∣∣∣∣ Σ
}
.

Exchange the two maxima and use the independence of the columns of Ψ to obtain

P {maxt ρ(qt) < 1 | Σ} ≥
∏

ψ
P
{

maxt |〈ψ, ut〉| <
σ√
m

∣∣∣∣ Σ
}
.

Since every column of Ψ is independent from {ut} and from Σ, Property (G2) of the measurement
matrix yields a lower bound on each of the d−m terms appearing in the product. It emerges that

P {maxt ρ(qt) < 1 | Σ} ≥
(

1− e−σ
2N/2m

)m(d−m)
.
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We may choose the parameter
σ = 1−

√
m/N − ε

√
m/N

where ε ranges between zero and
√
N/m− 1. This substitution delivers

P {maxt ρ(qt) < 1 | Σ} ≥
(

1− e−(
√
N/m−1−ε)2/2

)m(d−m)
.

With the foregoing choice of σ, Property (G3) furnishes

P {σm(Φopt) ≥ σ} ≥ 1− e−ε
2m/2.

Introduce the last two facts into (3.2) and substitute the result into (3.1). This action yields

P (Esucc) ≥
[
1− e−(

√
N/m−1−ε)2/2

]m(d−m) [
1− e−ε

2m/2
]

(3.3)

for ε ∈ (0,
√
N/m− 1). The optimal value of this probability estimate is best determined numeri-

cally.

3.2. Proof of Corollary 7. We need to show that it possible to choose the number of measure-
ments on the order of m ln d while maintaining an error as small as we like. We begin with (3.3),
in which we apply the inequality (1 − x)k ≥ 1 − kx, valid for k ≥ 1 and x ≤ 1. Then invoke the
bound m(d−m) ≤ d2/4 to reach

P (Esucc) ≥ 1− d2

4
exp

{
−(
√
N/m− 1− ε)2/2

}
− exp{−ε2m/2}. (3.4)

where we have also discarded a positive term of higher order. We will bound the two terms on the
right-hand side separately.

Fix a number δ ∈ (0, 0.36). Select N ≥ Km ln(d/δ), where the constant K = K(m) will be
determined in a moment. Now, we set

ε =
(

2 ln(d/δ)
m

)1/2

.

Clearly, ε is positive; our choice of K will also ensure that ε is not too large. Substituting the value
of ε into the last term on the right-hand side of (3.4), we find that

exp{−ε2m/2} = δ/d.

Evidently, this term does not exceed δ. In fact, when δ ≥ d−1, it is smaller than δ2.
Next, we consider the second term on the right-hand side of (3.4). By construction of N and ε,

we have (√
N/m− 1− ε

)2
≥
(√

K−
√

2/m− u
)2

ln(d/δ)

where u−2 = ln(d/δ). The last displayed equation implies

d2

4
exp

{
−(
√
N/m− 1− ε)2/2

}
≤ 1

4
d2−(

√
K−
√

2/m−u)2/2 · δ(
√

K−
√

2/m−u)2/2.

We set K = (2 + u +
√

2/m)2 to zero the exponent on d. It follows that the second term on the
right-hand side of (3.4) is no larger than δ2/4.

In view of these bounds,

P (Esucc) ≥ 1− (0.25 + 1) δ > 1− 2δ.

When δ ≥ d−1, we can improve the success probability to 1−2δ2. Moreover, the argument provides
a sufficient choice for the constant:

K ≤

(
2 +

1√
ln(d/δ)

+

√
2
m

)2



SIGNAL RECOVERY VIA OMP 9

For the worst-case values m = 1, d = 1, and δ = 0.36, it suffices to take K ≤ 20. On the other
hand, as m tends to infinity (hence also d→∞), we may select K ≤ 4 + η for any positive η.
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