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Abstract. This technical report demonstrates theoretically and empirically that a greedy algo-
rithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero
entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive
improvement over previous results for OMP, which require O(m2) measurements. The new results
for OMP are comparable with recent results for another algorithm called Basis Pursuit (BP). The
OMP algorithm is faster and easier to implement, which makes it an attractive alternative to BP
for signal recovery problems.

1. Introduction

Let s be a d-dimensional real signal with at most m nonzero components. This type of signal
is called m-sparse. Let {x1, . . . ,xN} be a sequence of measurement vectors in Rd that does not
depend on the signal. We use these vectors to collect N linear measurements of the signal:

〈s, x1〉 , 〈s, x2〉 , . . . , 〈s, xN 〉
where 〈·, ·〉 denotes the usual inner product. The problem of signal recovery asks two distinct
questions:

(1) How many measurements are necessary to reconstruct the signal?
(2) Given these measurements, what algorithms can perform the reconstruction task?

As we will see, signal recovery is dual to sparse approximation, a problem of significant interest
[MZ93, CDS01, RKD99, Mil02, Tem02].

To the first question, we can immediately respond that no fewer than m measurements will do.
Even if the measurements were adapted to the signal, it would still take m pieces of information
to determine all the components of an m-sparse signal. In the other direction, d nonadaptive
measurements always suffice because we could simply list the d components of the signal. Although
it is not obvious, sparse signals can be reconstructed with far less information.

The method for doing so has its origins during World War II. The US Army had a natural interest
in screening soldiers for syphilis. But syphilis tests were expensive, and the Army realized that it
was wasteful to perform individual assays to detect an occasional case. Their solution was to pool
blood from groups of soldiers and test the pooled blood. If a batch checked positive, further tests
could be performed. This method, called group testing, was subsequently studied in the computer
science and statistics literatures. See [DH93] for a survey.

Very recently, a specific type of group testing has been proposed by the computational harmonic
analysis community. The idea is that, by randomly combining the entries of a sparse signal, it
is possible to generate a small set of summary statistics that allow us to identify the nonzero
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entries of the signal. The following theorem, drawn from papers of Candès–Tao [CT05] and of
Rudelson–Vershynin [RV05], describes one example of this remarkable phenomenon.

Theorem 1. Let N ≥ Km ln(d/m), and choose N vectors x1, . . . ,xN independently from the
standard Gaussian distribution on Rd. The following statement is true with probability exceeding
(1 − e−kN ). It is possible to reconstruct every m-sparse signal s in Rd from the data {〈s, xn〉}.
The numbers K and k are universal constants.

An important detail is that a particular choice of the Gaussian measurement vectors succeeds
for every m-sparse signal with high probability. This theorem extends earlier results of Candès–
Romberg–Tao [CRT06], Donoho [Don06a], and Candès–Tao [CT04].

All five of the papers [CRT06, Don06a, CT04, RV05, CT05] offer constructive demonstrations of
the recovery phenomenon by proving that the original signal s is the unique solution to the linear
program

minf ‖f‖1 subject to 〈f , xn〉 = 〈s, xn〉 for n = 1, 2, . . . , N. (BP)
This optimization problem provides an answer to our second question about how to reconstruct
the sparse signal. Note that this formulation requires knowledge of the measurement vectors.

When we talk about (BP), we often say that the linear program can be solved in polynomial
time with standard scientific software, and we cite books on convex programming such as [BV04].
This line of talk is misleading because it may take a long time to solve the linear program, even for
signals of moderate length.1 Furthermore, when off-the-shelf optimization software is not available,
the implementation of optimization algorithms may demand serious effort.2 Both these concerns
are receiving attention from researchers. In the meantime, one might wish to consider alternate
methods for reconstructing sparse signals from random measurements.

To that end, we adapted a sparse approximation algorithm called Orthogonal Matching Pursuit
(OMP) [PRK93, DMA97] to handle the signal recovery problem. The major advantages of this
algorithm are its ease of implementation and its speed. On the other hand, conventional wisdom
on OMP has been pessimistic about its performance outside the simplest régimes. This complaint
dates to a 1996 paper of DeVore and Temlyakov [DT96]. Pursuing their reasoning leads to an
example of a nonrandom ensemble of measurement vectors and a sparse signal that OMP cannot
identify without d measurements [CDS01, Sec. 2.3.2]. Other negative results, such as Theorem 3.10
of [Tro04] and Theorem 5 of [Don06b], echo this concern.

But these negative results about OMP are very deceptive. Indeed, the empirical evidence suggests
that OMP can recover an m-sparse signal when the number of measurements N is a constant
multiple of m. The goal of this work is to present a rigorous proof that OMP can perform this feat.
This technical report establishes the following theorem in detail.

Theorem 2 (OMP with Gaussian Measurements). Fix δ ∈ (0, 1), and choose N ≥ Km ln(d/δ).
Suppose that s is an arbitrary m-sparse signal in Rd, and choose N measurement vectors x1, . . . ,xN

independently from the standard Gaussian distribution on Rd. Given the data {〈s, xn〉} and the
measurement vectors, Orthogonal Matching Pursuit can reconstruct the signal with probability ex-
ceeding (1 − δ). For this theoretical result, it suffices that K = 16. When m is large, it suffices to
take K ≈ 4.

In comparison, previous positive results, such as Theorem 3.6 from [Tro04], only demonstrate that
Orthogonal Matching Pursuit can recover m-sparse signals when the number of measurements N
is on the order of m2. Theorem 2 improves massively on this earlier work.

Theorem 2 is weaker than Theorem 1 for several reasons. First, our result requires somewhat more
measurements than the result for (BP). Second, the quantifiers are ordered differently. Whereas we

1Although this claim qualifies as folklore, the literature does not currently offer a refutation that we find convincing.
2The paper [GMS05] discusses the software engineering problems that arise in optimization.
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prove that OMP can recover any sparse signal given random measurements independent from the
signal, the result for (BP) shows that a single set of random measurement vectors can be used to
recover all sparse signals. In Section ??, we argue that these formal distinctions may be irrelevant
in practice. Indeed, we believe that the large advantages of Orthogonal Matching Pursuit make
Theorem 2 extremely compelling.

2. Orthogonal Matching Pursuit for Signal Recovery

This section describes a greedy algorithm for signal recovery. This method is analogous with
Orthogonal Matching Pursuit, an algorithm for sparse approximation. First, let us motivate the
computational technique.

Suppose that s is an arbitrary m-sparse signal in Rd, and let {x1, . . . ,xN} be a family of N
measurement vectors. Form an N × d matrix Φ whose rows are the measurement vectors, and
observe that the N measurements of the signal can be collected in an N -dimensional data vector
v = Φs. We refer to Φ as the measurement matrix and denote its columns by ϕ1, . . . ,ϕd.

As we mentioned, it is natural to think of signal recovery as a problem dual to sparse approxi-
mation. Since s has only m nonzero components, the data vector v = Φs is a linear combination
of m columns from Φ. In the language of sparse approximation, we say that v has an m-term
representation over the dictionary Φ. This perspective allows us to transport results on sparse
approximation to the signal recovery problem.

In particular, sparse approximation algorithms can be used for signal recovery. To identify the
ideal signal s, we need to determine which columns of Φ participate in the measurement vector
v. The idea behind the algorithm is to pick columns in a greedy fashion. At each iteration, we
choose the column of Φ that is most strongly correlated with the remaining part of v. Then we
subtract off its contribution to v and iterate on the residual. One hopes that, after m iterations,
the algorithm will have identified the correct set of columns.

Algorithm 3 (OMP for Signal Recovery).
Input:

• An N × d measurement matrix Φ
• An N -dimensional data vector v
• The sparsity level m of the ideal signal

Output:

• An estimate ŝ in Rd for the ideal signal
• A set Λm containing m elements from {1, . . . , d}
• An N -dimensional approximation am of the data vector v
• An N -dimensional residual rm = v − am

Procedure:

(1) Initialize the residual r0 = v, the index set Λ0 = ∅, and the iteration counter t = 1.
(2) Find the index λt that solves the easy optimization problem

λt = arg maxj=1,...,d |〈rt−1, ϕj〉| .

If the maximum occurs for multiple indices, break the tie deterministically.
(3) Augment the index set Λt = Λt−1∪{λt} and the matrix of chosen atoms Φt =

[
Φt−1 ϕλt

]
.

We use the convention that Φ0 is an empty matrix.
(4) Solve a least-squares problem to obtain a new signal estimate:

xt = arg minx ‖Φt x− v‖2 .
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(5) Calculate the new approximation of the data and the new residual:

at = Φt xt

rt = v − at.

(6) Increment t, and return to Step 2 if t < m.
(7) The estimate ŝ for the ideal signal has nonzero indices at the components listed in Λm. The

value of the estimate ŝ in component λj equals the jth component of xt.

Steps 4, 5, and 7 have been written to emphasize the conceptual structure of the algorithm; they
can be implemented more efficiently. It is important to recognize that the residual rt is always
orthogonal to the columns of Φt. Therefore, the algorithm always selects a new atom at each step,
and Φt has full column rank.

The running time of the OMP algorithm is dominated by Step 2, whose total cost is O(mNd).
At iteration t, the least-squares problem can be solved with marginal cost O(tN). To do so, we
maintain a QR factorization of Φt. Our implementation uses the Modified Gram–Schmidt (MGS)
algorithm because the measurement matrix is unstructured and dense. The book [Bjö96] provides
extensive details and a survey of alternate approaches. When the measurement matrix is structured,
more efficient implementations of OMP are possible; see the paper [KR06] for one example.

According to [NN94], there are algorithms that can solve (BP) with a dense, unstructured mea-
surement matrix in time O(N2d3/2). We are focused on the case where d is much larger than m or
N , so there is a substantial gap between the cost of OMP and the cost of BP.

A prototype of the OMP algorithm first appeared in the statistics community at some point
in the 1950s, where it was called stagewise regression. The algorithm later developed a life of its
own in the signal processing [MZ93, PRK93, DMA97] and approximation theory [DeV98, Tem02]
literatures. Our adaptation for the signal recovery problem seems to be new.

3. Gaussian Measurement Ensembles

In this report, we are concerned with Gaussian measurements only. In this section, we identify
the properties of this measurement ensemble that are used to prove that the algorithm succeeds.
Since Gaussian matrices are so well studied, we can make much more precise claims about them
than other types of random matrices.

A Gaussian measurement ensemble for m-sparse signals in Rd is a d×N matrix Φ, whose entries
are drawn independently from the normal(0, N−1) distribution. For reference, the density function
of this distribution is

p(x) def=
1√

2πN
e−x2N/2.

As we will see, this matrix has the following four properties:
(G0) Independence: The columns of Φ are stochastically independent.
(G1) Normalization: E ‖ϕj‖2

2 = 1 for j = 1, . . . , d.
(G2) Joint correlation: Let {ut} be a sequence of m vectors whose `2 norms do not exceed one.

Let ϕ be a column of Φ that is independent from this sequence. Then

P {maxt |〈ϕ, ut〉| ≤ ε} ≥
(
1− e−ε2N/2

)m
.

(G3) Smallest singular value: Given an N × m submatrix Z from Φ, the mth largest singular
value σmin(Z) satisfies

P
{

σmin(Z) ≥ 1−
√

m/N − ε
}

≥ 1− e−ε2N/2

for any positive ε.
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3.1. Joint Correlation. The joint correlation property (G2) is essentially a large deviation bound
for sums of random variables. For the Gaussian measurement ensemble, we can leverage classical
techniques to establish this property.

Proposition 4. Let {ut} be a sequence of m vectors whose `2 norms do not exceed one. Indepen-
dently, choose z to be a random vector with i.i.d. normal(0, N−1) entries. Then

P {maxt |〈z, ut〉| ≤ ε} ≥
(
1− e−ε2N/2

)m
.

Proof. Let z be a random vector whose entries are i.i.d. normal(0, 1). Define the event

E
def= {z : maxt |〈z, ut〉| ≤ ε

√
N},

which is identical with the event that interests us. We will develop a lower bound on P (E). Observe
that this probability decreases if we replace each vector ut by a unit vector pointing in the same
direction. Therefore, we may assume that ‖ut‖2 = 1 for each t.

Geometrically, we can view P (E) as the Gaussian measure of m intersecting symmetric slabs.
Sidak’s Lemma [Bal02, Lemma 2] shows that the Gaussian measure of this intersection is no smaller
than the product of the measures of the slabs. In probabilistic language,

P (E) ≥
m∏

t=1

P
{
|〈z, ut〉| ≤ ε

√
N

}
.

Since each ut is a unit vector, each of the random variables 〈z, ut〉 has a normal(0, 1) distribution
on the real line. It follows that each of the m probabilities can be calculated as

P
{
|〈z, ut〉| ≤ ε

√
N

}
=

1√
2π

∫ ε

−ε
e−x2/2 dx

≤ 1− e−ε2N/2.

The final estimate is a well-known Gaussian tail bound. See [Bal02, p. 118], for example. �

3.2. Smallest Singular Value. The singular value property (G3) follows directly from a theorem
of Davidson and Szarek [DS02].

Proposition 5 (Davidson–Szarek). Suppose that Z is a tall N × m matrix whose entries are iid
normal(0, N−1). Then its smallest singular value σmin satisfies

P
{

σmin(Z) ≥ 1−
√

m/N − ε
}

≥ 1− e−ε2N/2.

It is a standard consequence of measure concentration that the minimum singular value of a Gauss-
ian matrix clusters around its expected value (see [Led01], for example). Calculating the expec-
tation, however, involves much more ingenuity. Davidson and Szarek produce their result with a
clever application of the Slepian–Gordon lemma.

4. Signal Recovery with Orthogonal Matching Pursuit

If we take random measurements of a sparse signal using an admissible measurement matrix,
then OMP can be used to recover the original signal with high probability.

Theorem 6. Suppose that s is an arbitrary m-sparse signal in Rd, and draw a random N × d
Gaussian measurement matrix independent from the signal. Given the data v = Φs, Orthogonal
Matching Pursuit can reconstruct the signal with probability exceeding

sup
ε∈(0,

√
N/m−1)

[
1− e−(

√
N/m−1−ε)2/2

]m(d−m) [
1− e−ε2m/2

]
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The success probability here is best calculated numerically. Some analysis yields a slightly weaker
but more serviceable corollary.

Corollary 7. Fix δ ∈ (0, 1), and choose N ≥ Km log(d/δ) where K is an absolute constant. Suppose
that s is an arbitrary m-sparse signal in Rd, and draw a random N × d Gaussian measurement
matrix Φ independent from the signal. Given the data v = Φs, Orthogonal Matching Pursuit can
reconstruct the signal with probability exceeding (1− δ).

The preceding theorem holds with K = 16 for any m ≥ 1. As the number m of nonzero
components approaches infinity, it is possible to take K = 4 + ε for any positive number ε. These
facts will emerge during the proof.

4.1. Proof of Theorem 6. Most of the argument follows the approach developed in [Tro04]. The
main difficulty here is to deal with the nasty independence issues that arise in the stochastic setting.
The primary novelty is a route to avoid these perils.

We begin with some notation and simplifying assumptions. Without loss of generality, assume
that the first m entries of the original signal s are nonzero, while the remaining (d − m) entries
equal zero. Therefore, the measurement vector v is a linear combination of the first m columns
from the matrix Φ. Partition the matrix as Φ = [Φopt | Ψ] so that Φopt has m columns and Ψ has
(d−m) columns. Note that v is stochastically independent from the random matrix Ψ.

For a vector r in RN , define the greedy selection ratio

ρ(r) def=

∥∥ΨT r
∥∥
∞∥∥ΦT

opt r
∥∥
∞

=
maxψ |〈ψ, r〉|∥∥ΦT

opt r
∥∥
∞

where the maximization takes place over the columns of Ψ. If r is the residual vector that arises in
Step 2 of OMP, the algorithm picks a column from Φopt if and only if ρ(r) < 1. In case ρ(r) = 1,
an optimal and a nonoptimal column both achieve the maximum inner product. The algorithm has
no provision for choosing one instead of the other, so we assume that the algorithm always fails.
The greedy selection ratio was first identified and studied in [Tro04].

Imagine that we could execute m iterations of OMP with the input signal s and the restricted
measurement matrix Φopt to obtain a sequence of residuals q0, q1, . . . , qm−1 and a sequence of
column indices ω1, ω2, . . . , ωm. The algorithm is deterministic, so these sequences are both functions
of s and Φopt. In particular, the residuals are stochastically independent from Ψ. It is also evident
that each residual lies in the column span of Φopt.

Execute OMP with the input signal s and the full matrix Φ to obtain the actual sequence of
residuals r0, r1, . . . , rm−1 and the actual sequence of column indices λ1, λ2, . . . , λm. Observe that
OMP succeeds in reconstructing s after m iterations if and only if the algorithm selects the first
m columns of Φ in some order. We will use induction to prove that success occurs if and only if
ρ(qt) < 1 for each t = 0, 1, . . . ,m− 1.

In the first iteration, OMP chooses one of the optimal columns if and only if ρ(r0) < 1. The
algorithm sets the initial residual equal to the input signal, so q0 = r0. Therefore, the success
criterion is identical with ρ(q0) < 1. It remains to check that λ1, the actual column chosen,
matches ω1, the column chosen in our thought experiment. Because ρ(r0) < 1, the algorithm
selects the index λ1 of the column from Φopt whose inner product with r0 is largest (ties being
broken deterministically). Meanwhile, ω1 is defined as the column of Φopt whose inner product
with q0 is largest. This completes the base case.

Suppose that, during the first k iterations, the actual execution of OMP chooses the same columns
as our imaginary invocation of OMP. That is, λj = ωj for j = 1, 2, . . . , k. Since the residuals are
calculated using only the original signal and the chosen columns, it follows that rk = qk. Repeating
the argument in the last paragraph, we conclude that the algorithm identifies an optimal column
if and only if ρ(qk) < 1. Moreover, it must select λk+1 = ωk+1.
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In consequence, the event on which the algorithm succeeds is

Esucc
def= {maxt ρ(qt) < 1}

where {qt} is a sequence of m random vectors that fall in the column span of Φopt and that are
stochastically independent from Ψ. We can decrease the probability of success by placing the
additional requirement that the smallest singular value of Φopt meet a lower bound:

P (Esucc) ≥ P {maxt ρ(qt) < 1 and σmin(Φopt) ≥ σ} .

We will use Σ to abbreviate the event {σmin(Φopt) ≥ σ}. Applying the definition of conditional
probability, we reach

P (Esucc) ≥ P {maxt ρ(qt) < 1 | Σ} · P (Σ) . (4.1)
Property (M3) controls P (Σ), so it remains to develop a lower bound on the conditional probability.

Assume that Σ occurs. For each index t = 0, 1, . . . ,m− 1, we have

ρ(qt) =
maxψ |〈ψ, qt〉|∥∥ΦT

opt qt

∥∥
∞

.

Since ΦT
opt qt is an m-dimensional vector,

ρ(qt) ≤
√

m maxψ |〈ψ, qt〉|∥∥ΦT
opt qt

∥∥
2

.

To simplify this expression, define the vector

ut
def=

σ qt∥∥ΦT
opt qt

∥∥
2

.

The basic properties of singular values furnish the inequality∥∥ΦT
opt q

∥∥
2

‖q‖2

≥ σmin(Φopt) ≥ σ

for any vector q in the range of Φopt. The vector qt falls in this subspace, so ‖ut‖2 ≤ 1. In
summary,

ρ(qt) ≤
√

m

σ
maxψ |〈ψ, ut〉|

for each index t. On account of this fact,

P {maxt ρ(qt) < 1 | Σ} ≥ P
{

maxt maxψ |〈ψ, ut〉| <
σ√
m

∣∣∣∣ Σ
}

.

Exchange the two maxima and use the independence of the columns of Ψ to obtain

P {maxt ρ(qt) < 1 | Σ} ≥
∏

ψ
P

{
maxt |〈ψ, ut〉| <

σ√
m

∣∣∣∣ Σ
}

.

Since every column of Ψ is independent from {ut} and from Σ, Property (G2) of the measurement
matrix yields a lower bound on each of the (d − m) terms appearing in the product. It emerges
that

P {maxt ρ(qt) < 1 | Σ} ≥
(
1− e−σ2N/2m

)m(d−m)
.

We may choose the parameter
σ = 1−

√
m/N − ε

√
m/N

where ε ranges between zero and
√

N/m− 1. This substitution delivers

P {maxt ρ(qt) < 1 | Σ} ≥
(
1− e−(

√
N/m−1−ε)2/2

)m(d−m)
.
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With the foregoing choice of σ, Property (G3) furnishes

P {σmin(Φopt) ≥ σ} ≥ 1− e−ε2m/2.

Introduce this fact and (4.1) into the inequality (4.1). This action yields

P (Esucc) ≥
[
1− e−(

√
N/m−1−ε)2/2

]m(d−m) [
1− e−ε2m/2

]
(4.2)

for ε ∈ (0,
√

N/m− 1). The optimal value of this probability estimate is best determined numeri-
cally.

4.2. Proof of Corollary 7. We need to show that it possible to choose the number of measure-
ments on the order of m ln d while maintaining an error as small as we like. Note that we may
assume m ≥ 1. We begin with (4.2), in which we apply the inequality (1− x)k ≥ 1− kx, valid for
k ≥ 1 and x ≤ 1. Then invoke the bound m(d−m) ≤ d2/4 to reach

P (Esucc) ≥ 1−m(d−m) e−(
√

N/m−1−ε)2/2 − e−ε2m/2. (4.3)

where we have also discarded a positive term of higher order. We will bound the two terms on the
right-hand side separately.

Fix a number δ ∈ (0, 1), and select N ≥ Km ln d, where the constant K = Km will be determined
in a moment. Choose

ε = 1 +
(

2 ln(d/δ)
m

)1/2

.

Clearly, ε is positive. By definition of N and ε, we have√
N/m− 1− ε ≥

(
K1/2 − 2m−1/2

)
ln(d/δ).

Our choice of K will ensure that the parenthesis is nonnegative, which in turn ensures that ε is not
too large. The last displayed equation implies

d2 e−(
√

N/m−1−ε)2/2 ≤ d2−(K1/2−2m−1/2) δK1/2−2m−1/2
.

To cancel the exponent two, we select K = 4(1 + m−1/2)2. With these choices, the second term on
the right-hand side of (4.3) is no larger than δ2/4.

Let us move to the remaining term. We can bound ε below using the inequality
√

a+
√

b ≥
√

a + b.

ε = (ln ε)1/2 +
(

2 ln(d/δ)
m

)1/2

≥
[
ln(e (d/δ)2/m)

]1/2
.

It follows immediately that

e−ε2m/2 ≤
(
e(d/δ)2/m)−m/2

)
= e−m/2 d−1 δ.

Since m ≥ 1, we may conclude that the last term of (4.3) is no larger than e−1/2 δ. Note that,
when δ ≥ d−1, the last term is actually smaller than e−1/2 δ2.

In view of these bounds,

P (Esucc) ≥ 1− (0.25 + e−1/2)δ > 1− δ.

Assuming that δ ≥ d−1, the success probability actually satisfies a stronger estimate:

P (Esucc) > 1− δ2.

Moreover, the argument provides a sufficient choice of the constant:

K ≥ 4(1 + m−1/2)2

When m = 1, we can take K = 16. It is also evident that we may select K = 4 + ε for any positive
ε, provided that m is large enough.
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