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Signal Statistics in Fiber-Optical Channels With

Polarization Multiplexing and Self-Phase Modulation
Lotfollah Beygi, Erik Agrell, Magnus Karlsson, and Pontus Johannisson

Abstract—In this paper, the statistics of received signals in a

single-channel dispersion-managed dual-polarization fiber-optical

channel are derived in the limit of low dispersion. The joint

probability density function (pdf) of the received amplitudes and

phases of such a system is derived for both lumped and distributed

amplification. The new pdf expressions are used to numerically

evaluate the performance of modulation formats over channels

with nonlinear phase noise. For example, a sensitivity gain of

up to 2 dB is calculated for a specific system using polariza-

tion-multiplexed 8-ary phase-shift keying compared with a similar

single-polarization system at the same spectral efficiency and a

symbol error rate of . Moreover, the accuracy of the

derived pdf is evaluated for some single-channel dispersion-man-

aged fiber-optical links with different dispersion maps using the

split-step Fourier transform method.

Index Terms—Dual polarization, nonlinear optics, optical fiber

communication, optical Kerr effect, phase noise, polarization

multiplexing, probability density function (pdf), self-phase modu-

lation, signal statistics.

I. INTRODUCTION

T HE HIGH demand for increasing the data rate of fiber-

optical channels imposes utilizing all resources in these

channels. Recently, extensive efforts see, e.g., [1]–[4] have been

devoted to utilizing both polarizations of an optical signal in a

fiber channel to convey information. The dual polarization (DP)

scheme makes it possible to exploit all degrees of freedom in a

fiber-optical channel to boost the data rate [5], [6]. A DP signal

can be modeled in a 4-D signal space [7], [8], which yields a

more power-efficient scheme for a fixed spectral efficiency by

exploiting dense sphere packing constellations.

In a long-haul dispersion-managed (DM) fiber-optical

channel, the nonlinear phase noise (NLPN) (see [9] ch. 4) is

a major impairment for phase-modulated signals. NLPN is

generated by the interaction of a signal and amplified sponta-

neous emission (ASE) noise from the optical amplifiers, due

to the nonlinear Kerr effect. Gordon and Mollenauer [10] first

showed this phenomenon in a fiber link with many spans, in

which optical amplifiers are used to periodically compensate

for fiber loss. This effect is known as self-phase modulation
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and causes a major degradation in the performance of coherent

single-channel data transmission systems.

Bononi et al. [11] studied the resilience of ON–OFF keying,

incoherent differential binary and quadrature phase-shift keying

(D(Q)PSK), and DSP-based coherent polarization multiplexed

QPSK (PDM-QPSK) to NLPN in a DM fiber link. They pro-

vided a quantitative understanding of the system parameters for

which NLPN sets the nonlinear performance of these modula-

tion formats.

The characteristic function (i.e., the Fourier transform of

pdf) of NLPN for a single-polarization (SP) system has been

studied analytically in [12]–[15] by taking into account the

correlation of the NLPN and the intensity of the received

signal. Moreover, the statistics of NLPN have been evaluated

experimentally in [16]. It was shown in [13], [14], and [17] that

the NLPN distribution cannot be approximated by a Gaussian

distribution.

In [18], a technique based on Gauss–Hermite basis functions

was used to calculate the variance of phase noise in a coherent

system based on phase-shift keying (PSK). A comprehensive

methodology and computational techniques for the analysis

and characterization of NLPN phenomena and their impact on

system performance have been presented in [19], based on a

linear perturbation/noise theory.

In order to evaluate the performance of a phase-modulated

signal, knowledge of the probability density function (pdf) of

the received phase, consisting of both NLPN and linear phase, is

necessary. Due to the dependence between NLPN and the phase

of amplifier noise, the joint pdf of these two terms should be

computed. Mecozzi derived this joint pdf for distributed ampli-

fication in [12], [17] and Ho (see [20] ch. 5) developed this joint

pdf for both distributed and lumped amplifications. The exact

performance of PSK systems is computed exploiting this joint

pdf in ([20] ch. 6).

The joint pdf of the received amplitude and phase given the

initial phase of the transmitted signal and the signal-to-noise

ratio (SNR) was derived in ([20] ch. 5) for a fiber channel with

NLPN caused by distributed or lumped amplification. This joint

pdf was used to evaluate the performance of a quadrature am-

plitude modulated (QAM) signal in a fiber-optical channel with

NLPN. Although the statistics of the received signal provide a

possibility of designing a maximum-likelihood (ML) receiver

for QAM signals, the analytical computation of the exact per-

formance of these systems is still cumbersome. Moreover, the

compensation of the NLPN has been studied in [21] and [22]

based on the aforementioned pdf.

In this paper, we extend the statistics of the SP system to the

DP scheme for a fiber-optic channel with low dispersion. The
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joint pdf of the received amplitudes and phases of the orthog-

onal polarizations, denoted by x and y, is derived analytically.

These statistics are introduced for both types of amplification,

i.e., lumped and distributed. The derived statistics provide the

possibility of comparing the performance of SP and DP systems

for different system configurations. Some numerical results are

given for the symbol error rate (SER) of the DP system with an

8-ary phase-shift keying (8-PSK) signal set in each polarization.

According to these numerical results, the DP scheme is superior

to SP for a fixed spectral efficiency.

To verify the accuracy of the exploited fiber-optic model

with low dispersion (see Section II), a general model of a DM

fiber-optic link, consisting of a number of spans with optical

amplifiers, single-mode fiber (SMF), and dispersion-compen-

sation fibers (DCF) is considered. For a DM link, the pdf of

the received signal will converge to a Gaussian-like pdf at

high-enough symbol rates [11], [15]. Therefore, the derived

pdf is a good approximation at low symbol rates for a DM

fiber-optical link. The numerical results reveal that the ex-

ploited fiber-optic model with low dispersion (see [20], p. 154),

[10], [17], [21], [22] is not sufficiently accurate for increased

symbol rates in a DM fiber-optical link due to the high group

velocity dispersion.

This paper is organized as follows. In Section II, we describe

the system model for a DP fiber-optic channel with low disper-

sion. The derivation of statistics of this channel for NLPN alone

is described in Section III. The joint pdf of the received ampli-

tudes and phases of the received signal for a DP signal is per-

formed in Section IV.We exemplify the use of the derived pdf in

the SER evaluation of a particular systems with 8-PSK modula-

tion in Section V for a fiber-optic link with low dispersion and

then by using a general model based on the split-step Fourier

method (SSFM) (see[9], ch. 2), the accuracy of the simplified

model is studied for some DM links. Finally, Section VI con-

cludes this paper.

II. SYSTEM MODEL

We neglect the effect of chromatic dispersion in this paper,

which makes this analysis applicable to fiber-optic systems with

low dispersion, similarly as, e.g., [10], [17], [21], [22]. How-

ever, we will evaluate the effect of chromatic dispersion on the

validity of this model for a DM fiber-optical link by exploiting

some numerical simulations with the SSFM.

A. Fiber-Optic Channel With Low Dispersion

For a zero polarization mode and chromatic dispersion

fiber-optical channel, the nonlinear Schrödinger equation

which describes the light propagation in an optical fiber is (see

[9], ch. 6)

(1)

where is the dual polarized launched envelope

signal into the fiber channel, is the fiber nonlinear coefficient,

is the attenuation coefficient of the fiber, denotes the Her-

mitian conjugation, and is the distance from the beginning of

the fiber. The solution to (1) at time can be written as

(2)

where is the instantaneous

launched power into the fiber and is a

function that describes the power evolution.

Here, we assume a fiber link with total length spans

with lumped amplifiers, where the fiber loss is compensated

perfectly. Each amplifier adds complex circularly symmetric

Gaussian ASE noise and in the polariza-

tion x and y, respectively, with variance . Moreover, we con-

sider the noise within the optical signal bandwidth, i.e., ignoring

the Kerr effect induced from out-of-band signal and noise in a

same way as [10].

If a 4-D signal , consisting of 2-D components

from a signal set , is transmitted on the two orthogonal polar-

izations, x and y, of a fiber channel, it is readily seen that each

fiber span according to (2) contributes the overall NLPN [10]

to the transmitted signal, where

is the effective nonlinear length of each span and

is the input power of the th fiber

span. The transmitted 4-D signal experiences the total NLPN of
1. The terms and are generated by inter-

action of the signal and noise due to Kerr effect in the polariza-

tions x and y, respectively. This reveals the fact that signals in

both polarizations contribute to the generated NLPN . Due to

symmetry, we show the derivations for the polarization x only,

while one may easily find the results for the other polarization

by replacing x with y.

(3)

The received electric field can be written as2

(4)

where is the linear part of the electric field

and . One may consider the distributed amplifica-

tion as a discrete lumped amplification with an infinite number

of spans. This gives . In this case, a con-

tinuous amplifier noise vector is consid-

ered with elements as zero-mean complex-valued Wiener pro-

cesses with autocorrelation function ([20], p. 154)

1Here, we have used (6.2.5) of [9] with based on the Manakov model
[23].

2By definition, is a time-dependent electric field, not a vector
representation of the projected received electric field in a signal space. We nev-
ertheless use (4) to model the discrete-time system, where is a complex signal
vector. This is a standard approximation in the field and has been shown numer-
ically [24], [25] to be reasonably accurate, although the theoretical justification
is insufficient
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Fig. 1. DM fiber-optical link with N spans. Each span consists of an SMF, a
DCF, and an EDFA.

TABLE I
SIMULATED DM SYSTEMS

where . The NLPN can be computed for dis-

tributed amplification by

(5)

The ASE noise and generated by in-line am-

plifiers in polarization x and y, respectively, and accumulated

at the receiver have the variance

[21], where is the energy of a photon, is the sponta-

neous emission factor, and is the bandwidth of the optical

signal. The SNR vector is defined as where

is or for distributed or lumped

amplification, respectively.

B. DM Fiber-Optical Channel

We consider a general DM fiber link with spans in which

an SMF and a DCF is used according to a dispersion map (see

Table I). The dispersion of each span is fully compensated by a

DCF fiber and neither precompensation nor postcompensation

is used. An erbium doped fiber amplifier (EDFA) compensates

for the fiber loss in each span. The SSFM is used to simulate

a DM fiber-optical link shown in Fig. 1. The following channel

parameters are used for the numerical simulations: the nonlinear

coefficients and , the

optical frequency THz, the attenuation coef-

ficients and dB/km, the disper-

sion coefficient ps/nm/km, and the fiber lengths

km. The rest of the parameters are given in Table I

for the numerical simulations (see Section V).

III. NLPN

In this section, we extend the results of ([20] ch. 5) to DP sig-

nals. Due to the difficulty of computing the pdf of directly,

we first compute the characteristic function. Since and

are independent, and are also independent. There-

fore, the pdf of can be obtained by the convolution of the

pdfs of and , or the product of their characteristic func-

tions [26]

(6)

Fig. 2. Pdfs of the normalized NLPN for a fiber-optic link with low dispersion
and distributed and lumped ( , and 32) ampli-
fication ( dB, km, and Gbaud).

A. Distributed Amplification

For distributed amplification, the characteristic function of

is given in ([20], p. 157)3

(7)

One may interchange x and y in (7) to obtain and by sub-

stituting and into (6), we get

(8)

The pdf of the NLPN is illustrated in Fig. 2 for dB

by taking the inverse Fourier transform of (8). The mean and

the variance of the NLPN can be obtained as

(9)

(10)

where we used . As seen

in Fig. 2, the mean and the variance of the NLPN have been dou-

bled for the DP case compared with SP ([20] p. 157) provided

that the transmitted signals in both polarizations have the same

SNR.

B. Lumped Amplification

The characteristic function of NLPN for an SP system with

lumped amplification is given in ([20] ch. 5) by

(11)

3In contrast to [20], we have removed the normalization factor in (7)
and (11).
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where is the inner product of two

real vectors, and and are the eigenvalues and eigenvec-

tors, respectively, of the covariance matrix ([20] p. 149)

...
...

...
. . .

...

The characteristic function of the NLPN for a DP system with

lumped amplification can be derived by an analogous approach

as Section III-A and using (11) as

(12)

The mean and the variance of the NLPN for a DP system with

lumped amplification can be readily obtained exploiting the re-

sults for an SP system in ([20] sec. 6.2), as

(13)

(14)

Analogously, it can be shown using (13) and (14) that the mean

and the variance of NLPN of a DP system are twice of those

for an SP system, which was first shown in [27]. As seen in

Fig. 2, the pdf of NLPN for a lumped amplification will be over-

lapped with distributed one for . The pdf of the NLPN

is plotted by taking the inverse Fourier transform of the charac-

teristic functions (8) and (12). As seen in Fig. 2, the DP scheme

has larger mean and variance than the SP system.

IV. JOINT PDF OF THE RECEIVED AMPLITUDES AND PHASES

OF THE DP SIGNAL

In the SP case, the system transmits in only one polarization

and the joint pdf of the amplitude and the phase of the received

signal is ([20] p. 225)

(15)

where the normalized received amplitude is denoted by

and for distributed and lumped

amplifications, respectively. Here, the induced phase noise from

the noise of the orthogonal polarization and the out-of-band

noise is ignored. Moreover, is

the Ricean pdf and the coefficients of the polarization x for

both types of amplifications is obtained as

(16)

where denotes the th-order modified Bessel function of

the first kind. For distributed amplification

(17)

(18)

and is given in (7). In the case of lumped amplification

(19)

(20)

in which , and is given in (11).

Here, the statistics of a DP 4-D signal after propagation through

a DM fiber channel are derived for distributed and lumped am-

plification. Themotivation for deriving , i.e., the joint

pdf of the normalized received amplitudes and

phases , is to design an ML receiver for such sys-

tems. The joint pdf of the two normalized independent Ricean

random variables and can be written by ([28] p. 50)

(21)

According to the model (4), the received phase vector is

the sum of the transmitted phase vector, the phase vector of

the received linear part , and the NLPN vector

. Without loss of generality, we assume the transmitted

phase vector to be (0,0). Therefore, we have

(22)

Theorem 1: The joint pdf of the received phase vector and

the normalized amplitudes of a DM fiber channel with dis-

tributed amplification is

(23)

where

(24)

Here, is a vector with positive integer elements,

, and are given in

(17)–(18), and is given in (8).

Proof: See Appendix A.

Theorem 2: In the case of lumped amplification, the joint pdf

of the received phase vector and normalized amplitudes of a
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DM fiber channel is given by (23)–(24), where and

are given in (19) and (20), is given in (12), and the rest

of the parameters are the same as in Theorem 1.

Proof: The proof is analogous to Theorem 1, exploiting the

results of ([20] p. 185) for a finite number of spans with lumped

amplification.

Interestingly, the Fourier series coefficients for a DP

system are the product of the Fourier series coefficients of the

two polarizations x and y as

(25)

The coefficients of the polarization x for both types of

amplifications are

(26)

Hence, the coefficients of (16) for an SP system can be

obtained as a special case of (26) by setting .

The marginal joint pdf of the amplitude and the phase of the

received signal for solely polarization x can be obtained from

(23), (24), and (25) as

(27)

where

V. NUMERICAL RESULTS

In this section, we first compare the SER performance of an

SP and a DP fiber-optic link with low dispersion to evaluate

the SER degradation due to the NLPN contribution from the

two polarizations. Then, we check the accuracy of the exploited

model for DM fiber-optical links of Table I.

A. Fiber-Optic Channel With Low Dispersion

The performance of a polarization-multiplexed 8-PSK (PM-

8PSK) [29] modulation format is evaluated by simulations. The

approach proposed in [21] is implemented to attain a very low

complex ML detector based on the pdf derived in Theorem 1.

We compute the SER of PM-8PSK and compare it with SP

8-PSK for the same power per polarization. The exploited

symbol-by-symbol4 ML detector uses the derived pdf to detect

the received 4-D symbol by

(28)

where is the joint pdf of the differential received

phases and amplitudes of both polarizations in Theorem 1.

Here, is the initial phase vector (i.e., at the transmitter)

4We use an uncoded scheme and the detector is memoryless (not an ML se-
quence detector).

Fig. 3. SER of a fiber-optic link with zero dispersion, 10 Gbaud, and
for DP and SP 8-PSK constellation versus transmitted power per polariza-

tion .

of the transmitted symbols of both polarizations which was

assumed to be in Theorem 1. The signal set denotes the

4-D constellation, i.e., (8-PSK) in our numerical analysis.

This evaluation is done for distributed amplification with no

dispersion similarly to [21], [22] (system VI). In Fig. 3, the SER

performance is plotted versus transmitted power per polariza-

tion for the SP and DP systems with zero dispersion, 10 Gbaud,

, and 8-PSK constellation. As seen in this figure,

the DP scheme shows a negligible performance degradation

( dB) in the linear regime at the same symbol rate

and , while for a fixed spectral efficiency, one

may observe a dB performance improvement in ex-

ploiting the DP scheme rather than SP (to compare at the same

transmitted power, the DP curve in Fig. 3 should be shifted 3

dB to the right). This result has been demonstrated previously

in [30]. Moreover, the SP 8-PSK system with symbol rate

does not go below SER = for any power, while DP

8-PSK reaches a minimum of . As expected in the

nonlinear regime, the SP scheme is superior to the DP case at

the expense of losing half of the spectral efficiency.

Another interesting point is the convergence of DP- and

SP- at low and the convergence of DP- and SP-

at high , as seen in Fig. 3. The convergence at low is due

to disappearing nonlinear effects in this regime. At high , the

major impairment is NLPN, which is a function of the trans-

mitted signal power and the added noise power in both polar-

izations. In the DP system, the total transmitted power is twice

the power in the SP system. On the other hand, doubling the

symbol rate will boost the noise power by a factor of 2 for the

SP system. Therefore, the high-power SER performance will be

the same for the DP- and SP- systems.

B. DM Channel

To verify the accuracy of the theoretical pdf derived in The-

orem 1 for different scenarios, we compare it with the numerical

pdf estimated from extensive numerical simulations. The SSFM

([9] ch. 2) is exploited to implement the fiber-optical channel for

the systems given in Table I. In this table, we have considered
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Fig. 4. SERs of systems (a) I–III, (b) V–VII with two different detectors versus transmitted power per polarization .

systems with dispersion coefficients of 3 and 16.5 ps/nm/km for

a range of symbol rates that the pdf changes from a shape close

to our theoretical result to a Gaussian-like pdf. One may use a

measure of similarity between the two pdfs, i.e., the numerical

pdf of a DM link, extracted based on the NLSE and the theoret-

ical pdf for a fiber-optic channel with low dispersion, derived

in Theorem 1. Since the numerical calculation of the pdf tails

is cumbersome, applying such measures of similarity like the

Kullback–Leibler distance ([31] p. 251) are not feasible.

Instead, we only measure the advantage of using the theoret-

ical pdf rather than theGaussian pdf quantitatively by computing

the SER using two different detectors: The detector based on

(28) and a standard DP receiver with ideal polarization demul-

tiplexing and phase synchronization. Since the decision bound-

aries in the standard receiver are assumed to be straight lines, its

performance is optimal for Gaussian-like pdf. On the other hand,

a new detector based on (28) outperforms the standard receiver

for a non-Gaussian (bean-like) pdf. Moreover, we perform the

SER comparison for two different types of fibers. In low-dis-

persion fibers, e.g., systems I–III as seen in Fig. 4(a), the new

detector shows better results for 6 Gbaud, while at 15 Gbaud, the

standard receiver outperforms the new detector. Therefore, the

theoretical pdf is not accurate for symbol rates above 10 Gbaud.

An analogous interpretation from Fig. 4(b) reveals that this

threshold is even smaller for ps/nm/km (systems

V–VII). Moreover, we plotted the numerical marginal pdf of the

received signal in one polarization, e.g., x, of the received signal

for four different systems. Fig. 5(a)–(d) shows the pdf plots for

(a) a systemwithout dispersion (the same system as Fig. 3), (b) I,

(c) system II, and (d) system IV, at dB m. The numerical

pdf is close to the theoretical one for system without dispersion

and I, but as seen in system II and, particularly, in system IV

by increasing symbol rate, the pdf converges to a Gaussian-like

pdf, as was previously reported in [11], [15]. Hence, this pdf can

be approximated very well by a Gaussian pdf for symbol rates

higher 7 and 20 Gbaud for systems with dispersion coefficients

of 3 and 16.5 ps/nm/km, respectively. A Gaussian pulse shape

filtering and itsmatchedfilter are considered for all simulations at

Fig. 5. Marginal joint pdf of the received phase and amplitude in one polariza-
tion, e.g., x at transmit power dB m for (a) system without dispersion
(the same system as Fig. 3), (b) system I, (c) system II, and (d) system IV. The
corresponding values of the contours are the same for all subfigures.

the transmitter and the receiver, respectively. The corresponding

numberof spans inTable Iwere chosen such that theperformance

of the given systems can be evaluated with reasonable Monte

Carlo complexity.

VI. CONCLUSION

The signal statistics of a DP fiber channel including the pdf of

the NLPN and the joint probability of the received amplitudes

and phases given the SNR of both polarizations have been de-

rived. This makes it possible, for the first time, to analytically

evaluate the performance of data transmission systems over DP

fiber channels with phase noise and low enough symbol rate,

and to optimize the performance of such systems. Moreover, a

quantitive approach is proposed to measure the accuracy of the

analytically derived pdf for a specific DM fiber-optical link.
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APPENDIX

PROOF OF THEOREM 1

Before going into the detail of the proof of Theorem 1, we

define the partial characteristic function by

where denotes the inverse Fourier transform with re-

spect to and the characteristic function is given

by

(29)

Moreover, we introduce the following lemma, which will be

used later.

Lemma 1: The 2-D Fourier series coefficient5 of the

joint pdf with respect to and over

is obtained by

where is a vector with integer elements.

Proof: According to the definition of the partial character-

istic function

(30)

Exploiting (30), the definition of the Fourier series coefficients

and (29), the proof is complete.

Proof of Theorem 1: Since and are independent of

and , the joint characteristic function of the normalized

NLPN and the linear part of the electric field with polar

coordinates can be written as

(31)

5Although the joint pdf is not a periodic function of , in order to use
the Fourier series expansion, we assume this pdf function is equivalent to a
periodic function only in its one period where and are confined to the
range of .

where and . Hence, by taking the

inverse Fourier transform, we get

(32)

On the other hand, using the results in ([20] p. 225), we have

(33)

One may replace xwith y in (33) to obtain

and then, by substituting it and (33) into (32), we get

(34)

The partial characteristic function (see Definition 1) of the re-

ceived phase vector and amplitude vector of the received

signal can be computed by

(35)

Now, one may use (35) to find the coefficients of the 2-D Fourier

series expansion of

(36)

with respect to for a given and . Therefore, using (22),

(35), and Lemma 1, these Fourier series coefficients are ob-

tained as

(37)

Substituting (34) into (37), one can get (24). On the other hand,

exploiting , where denotes the complex conjugate,

, and some algebraic manipulations on (36), one

can obtain (23).
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