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ABSTRACT
Sensor localization bounds have been derived assuming that
received signal strength (RSS) measurements are performed
with perfectly known sensor transmit powers. In this paper
the Bayesian Cramér-Rao bound is derived assuming trans-
mit powers are random with known prior distribution. Fur-
ther, both directional measurements on each link, from i to
j and from j to i, and their correlation, are explicitly con-
sidered. Results show that random transmit powers have
a small (5-13%) impact on coordinate estimation bounds.
However, using only the average of the directional measure-
ments can significantly increase these bounds.

1. INTRODUCTION

As part of the self-organizing nature of wireless sensor net-
works, sensors will perform cooperative localization to es-
timate their own coordinates. In cooperative localization,
a small fraction of nodes will have a priori known coor-
dinates, either because they are fixed and have been given
their coordinate by a human moderator, or because they
are capable of estimating their coordinate using an indepen-
dent method, such as GPS. This paper addresses the case in
which sensors measure the received signal strength (RSS) of
messages sent by nearby neighbors in the network. The RSS
measurements and prior coordinate information are used to
estimate the coordinates of all sensors. Measurement of
RSS also plays an important part in acoustic and RF source
localization in networks of asynchronous sensors.

A system designer bears the burden of ensuring that the
accuracy of the coordinate estimates will meet the require-
ments of the application. Applications such as geographic-
based routing, inventory management and logistics, envi-
ronmental monitoring, and source localization, will all re-
quire sensor localization, at certain degrees of accuracy.

The Cramér-Rao bound (CRB) [1, 2, 3, 4, 5] and the
Bayesian CRB [6] have been used to provide a tool to aid in
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the design of cooperative localization systems. Such bounds
help us know what accuracies cannot be achieved by a sen-
sor network with a particular design. This paper extends
the analysis of cooperative localization from RSS measure-
ments in two aspects:

1. Both directional measurements (from i to j, and from
j to i) and their correlation are considered explicitly,

2. The transmit power is not assumed to be perfectly
known.

Both represent realistic representations of RSS measurements
in wireless sensor networks. Item (1.) helps quantify the
benefit in measuring RSS in both directions of a link be-
tween two sensors. Item (2.) helps to quantify the loss in
accuracy when the transmit powers of each sensor is not
known exactly. In realistic sensor networks, due to the cost
of device calibration, sensors do not know their precise trans-
mit power level. While they may report that they are trans-
mitting at a nominal power level, their actual transmit power
may vary by a few dB because of device manufacturing vari-
ations, because of battery level, or because of the position
of and objects near the antenna.

Further, joint source and sensor localization bounds will
benefit from these extensions. In passive source localiza-
tion, a sensor measures the RSS of a source signal whose
source energy is largely unknown.

2. PROBLEM STATEMENT AND MODELS

The cooperative localization problem is the estimation of
sensor coordinates zi = [xi, yi]T for sensors i = 1 . . . n
(where T indicates transpose), given the a priori known co-
ordinates zi for i = n + 1 . . . N , where N = n + m. This
paper assumes 2D coordinates, although the analysis could
be readily extended to the 3D case.

It is assumed that measurements of received signal strength
are made between many pairs of sensors. In particular, Pi,j ,
the received signal strength measured at i of the signal trans-
mitted by j, is measured for each pair (i, j) in a measure-



ment set H . This set H is a subset of {1, . . . , N}2, since
not all pairs may be in range, or limited bandwidth may
preclude full measurements. Also, (i, i) is not in H since
self-RSS measurement is not done.

2.1. Pair Measurement Correlation

Two measurements can be made between each pair of sen-
sors (i, j): one with i as the transmitter and j as the receiver,
and the other with them switched. The measurements tend
to be very correlated, due to the multipath shadowing chan-
nel which affects both directional links identically. Past re-
search has assumed, as a simplification, that the two mea-
surements were perfectly correlated [2].

This paper extends the analysis by considering that the
two directional measurements are not perfectly correlated.
These differences come from: additive noise, movement in
the channel in the time between the two measurements, and
differences in the transmitter and receiver characteristics of
the two devices. We assume that Pi,j and Pj,i are correlated
with coefficient 0 ≤ ρ ≤ 1, as specified in Section 2.3.
We also consider in Section 4.1.3 the effect of estimating
coordinates using only the average, 1

2 (Pi,j + Pj,i), ∀ i, j.

2.2. Random Transmit Power

This paper also avoids the assumption that the transmit power
is known. In particular, we consider Π0i, the signal power
(dBm) at a distance of ∆0 = 1m from the antenna of sensor
i. By considering the power slightly away from the trans-
mitter antenna, we effectively consider both the device and
battery variation and the variation in the antenna and the en-
vironment immediately around the antenna. In an idealized
environment, Π0i is given by the Friis transmission equa-
tion, and in a real channel, the near-field environment af-
fects the antenna impedance and thus the antenna radiation
efficiency [7].

We also assume that Π0i is constant across many mea-
surements. While battery levels and the near-field environ-
ment may change over time, we assume that these effects
are constant during short periods of RSS measurements.

2.3. Combined Channel Model

In particular, we model the vector pij = [Pi,j , Pj,i]T as bi-
variate Gaussian with mean µij and covariance Cij , where

µij =


 Π0j − 10np log10

‖zi−zj‖2
∆2

0

Π0i − 10np log10
‖zi−zj‖2

∆2
0


 ,

Cij = σ2
dB

[
1 ρ
ρ 1

]
, (1)

where np is the path loss exponent of the environment of
interest, and ρ is the correlation coefficient, 0 ≤ ρ ≤ 1. To

provide an intuitive feel for practical values of the param-
eters in (1), from the RSS measurements reported in [2],
we can calculate that σdB = 4.25 dB, np = 2.30, and
ρ = 0.704. We further assume that {pij}i,j are statistically
independent. The independence assumption is for simpli-
fication; future work should address the effects of correla-
tions between different links in the network.

3. BOUNDS ANALYSIS

The unknown parameters defined in Section 2 are θ,

θ = [xT ,yT ,ΠT ]T (2)
x = [x1, . . . , xn]T

y = [y1, . . . , yn]T

Π = [Π01, . . . , Π0N ]T

There are 2n + N parameters since none of the N sensors
have perfect knowledge of their transmit power, and n of
the sensors have no prior coordinate knowledge. We as-
sume perfect prior coordinate information for sensors n + 1
through N , and an i.i.d. Gaussian prior on Π0i for all sen-
sors i, with variance σ2

Π and mean Π̄0.
The Bayesian Cramér-Rao Bound [8, pp. 72-73] (also

called the van Trees inequality or posterior CRB) states that
any estimator, θ̂, must have error correlation matrix Rε sat-
isfying

Rε ≥ F−1 , [Fθ + FP ]−1
, (3)

where Rε , E[(θ̂ − θ)(θ̂ − θ)T ], (4)

Fθ is the Fisher information matrix, and FP is the prior
information matrix,

Fθ = −E
[∇θ(∇θ ln f ({pij}i,j |θ))T

]
,

FP = −E
[∇θ(∇θ ln f(θ))T

]
, (5)

where E[·] indicates expected value, and ∇θ is the gradient
operator w.r.t. θ.

3.1. Average and Difference of Measurement Pairs

Before calculating the Fisher information, we transform the
two directional measurements pij for the purposes of dis-
cussion. It can be seen both intuitively and from (11) that
a full-rank transformation of the measurements does not
change their Fisher information. We choose to transform
each pair of measurements pij by orthogonal matrix A,

p̃ij = Apij , A =
1
2

[
1 1
1 −1

]
. (6)

For notational purposes, we denote p̃ij = [p̄ij , p
∆
ij ]

T . The
top element p̄ij is the average of the two measurements Pi,j



and Pj,i, and the bottom element, p∆
ij is half of their dif-

ference. These two random variables are still Gaussian, but
they are independent, since

R̃ij = AT CijA =
σ2

dB

2

[
1 + ρ 0

0 1− ρ

]
. (7)

where ρ is the correlation coefficient from (1). Because of
(6), p̄ij and p∆

ij have means µ̄ij and µ∆
ij , respectively, where

µ̄ij =
Π0j + Π0i

2
− 10np log10

‖zi − zj‖2
∆2

0

µ∆
ij =

1
2
(Π0j −Π0i). (8)

We define µ̄ and µ∆ as the mean for all measured pairs,

µ̄ = [µ̄i1j1 , . . . , µ̄iSjS ]T

µ∆ = [µ∆
i1j1 , . . . , µ

∆
iSjS

]T (9)

where i1j1, . . . , iSjS is a listing of each unique pair which
makes measurements, and S is the number of unique pairs
measured (taken from set H defined in Section 2).

3.2. Derivation of Fisher Information

As a result of their independence, we split the Fisher infor-
mation into two matrices, F̄θ for the average measurements
{p̄ij}, and F∆

θ for the difference measurements {p∆
ij},

Fθ = F∆
θ + F̄θ. (10)

We know that for a vector of multivariate Gaussian mea-
surements with mean µ(θ) and covariance C (for C not a
function of θ), that the Fisher information matrix is given
by [9],

Fθ = [∇θµ(θ)]T C−1 [∇θµ(θ)] (11)

Thus, for the two terms of (10),

F̄θ = [∇θµ̄]T C̄−1 [∇θµ̄]

F∆
θ =

[∇θµ∆
]T

(C∆)−1
[∇θµ∆

]
(12)

where µ̄ and µ∆ are from (9) and the covariances are,

C̄ =
(1 + ρ)σ2

dB

2
I2n+N , C∆ =

(1− ρ)σ2
dB

2
I2n+N ,

and I2n+N is the 2n + N × 2n + N identity matrix. The
elements of ∇θµ̄ are given as,

∂µ̄ij

∂xk
=




−α(xk − xj)/‖zk − zj‖2, if k = i
−α(xk − xi)/‖zk − zi‖2, if k = j
0, otherwise

∂µ̄ij

∂yk
=




−α(yk − yj)/‖zk − zj‖2, if k = i
−α(yk − yi)/‖zk − zi‖2, if k = j
0, otherwise

∂µ̄ij

∂Π0k
=





1/2, if k = i
1/2, if k = j
0, otherwise

(13)

where α = 10np/(log 10). Basically, there are six non-zero
elements of ∇θµ̄ij for each pair (i, j).

For ∇θµ∆, we have simply that
∂µ∆

ij

∂xk
= ∂µ∆

ij

∂yk
= 0,

∀i, j, k, and that

∂µ∆
ij

∂Π0k
=




−1/2, if k = i
1/2, if k = j
0, otherwise

(14)

3.3. Prior Information

As stated at the start of this section, we assume an i.i.d. Gaus-
sian prior on Π0i for all sensors i, with variance σ2

Π and
mean Π̄0. We assume no prior exists for the coordinates of
sensors 1 through n, although this analysis could be readily
modified to include such effects, as reported in [6]. Because
of these assumptions, the prior information matrix FP is,

FP = diag
{[

0T
n ,0T

n ,1T
N/σ2

Π

]}
(15)

where 0n is an n-length vector of zeros, and 1N is an N -
length vector of ones.

4. NUMERICAL RESULTS

Given the analysis of Section 2, in this section, we compute
the Bayesian CRB F−1 from (3) for a number of examples.
In particular, we summarize each lower bound example by
reporting the lower bound on RMS localization error σ̄z and
RMS transmit power estimation error σ̄Π,

σ̄z =
1
n

tr F−1
z , σ̄Π =

1
N

tr F−1
Π (16)

where F−1
z and F−1

Π are defined as the upper left 2n × 2n
and the lower right N×N submatrices of F−1, respectively.

4.1. Deployment Examples

In the following three examples, plotted in Fig. 1, we calcu-
late the bound for different sensor network geometries. We
plot in the figures the lower bound on the 1-σ uncertainty
ellipse for ẑi, the estimate of the ith sensor coordinate, for
each sensor i = 1 . . . n. In each example, we use the pa-
rameters σdB = 4.25, np = 2.30, and ρ = 0.704, which
were calculated using the measurement data set reported in
Section IV of [2]. Also in each example, we use the a radius
of connectivity r = 5m, to determine which sensors make
measurements. A pair (i, j) is in the measurement set H if
and only if ‖zi − zj‖ < r. This use of r is an easy way to
represent a realistic (not fully-connected) connection graph
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Fig. 1. Comparison of Bayesian CRB on 1-σ uncertainty ellipses when transmit powers are perfectly known (——) or random
with σΠ = 5 dB (- - - -), with unknown (•) and known (x) sensor coordinates shown, for a (a) 4×4 grid network, (b) random
deployment with N = 16, and (c) 5×5 grid showing case when {p∆

ij}i,j are ignored (· · · · · · ).

for a multi-hop network. Finally, in these three examples,
the prior standard deviation σΠ is set at 5 dB. In the first
two examples, we also show the results for the case of per-
fect prior knowledge of transmit powers, i.e., σΠ = 0 dB.

We also use a 10m by 10m square deployment area in
each example. These bound results scale with the size of
the deployment area and r – double the length of each side
and r, and the standard deviation bound will double. Thus,
these results can be extrapolated to an arbitrarily sized area.

4.1.1. Grid Geometry

For this example, we test a 4×4 grid of sensors, spaced reg-
ularly across the 10m by 10m area. The results are shown
in Fig. 1(a). If the transmit powers were known exactly,
the lower bound on the 1-σ uncertainty ellipses would be as
shown in Fig. 1(a) by the solid lines (—–), and σ̄z = 1.71m.
In the case in which transmit powers are random, the lower
bound on the 1-σ uncertainty ellipses increases slightly, as
shown in Fig. 1(a) by the dashed lines (– – – –), and σ̄z has
increased by 4.8% to 1.79m. Note that σ̄Π = 1.58 dB, thus,
actual powers can be estimated with considerably more ac-
curacy than σΠ.

4.1.2. Random Deployment

Instead of the grid geometry, we now test an N = 16 sen-
sor network in which sensor coordinates were chosen from
a uniform distribution on [0, 10]2. The m = 4 sensors clos-
est to the corners of the square are chosen to have known-
location. All other parameters are kept the same as in the
previous example, and the results are shown in Fig. 1(b).
Here, for the cases of known and random transmit power,
σ̄z = 1.22m and 1.37m, respectively, a difference of 13%.
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Fig. 2. Bayesian CRB bounds for (a) σ̄z and (b) σ̄Π, for the
5×5 grid example for four values of σΠ and a range of ρ.



Typically, for random deployments, we see that the locally
higher densities of sensors helps to reduce the lower bound
for most sensors. However, with limited range, other ran-
dom deployments may run into situations in which the least-
connected sensor might make no measurements, or the net-
work as a whole will be disconnected, and as a result, there
may not be a finite lower bound. The radius r for randomly
deployed sensors may need to be higher to avoid such cases.

4.1.3. Using Only the Averages {p̄ij}

It may seem natural to use only the link average RSS p̄ij

and to discard p∆
ij in order to reduce by half the measured

data in the sensor network. We analyze the effects in this
section by replacing (10) with Fθ = F̄θ , eliminating the
information contained within the measurements {p∆

ij}i,j .
In this example, we use a 5×5 grid of devices. Other

parameters are kept as in the previous examples. The re-
sults, as shown in Fig 1(c), show the lower bound for the
case when only link averages are considered (· · · · · · ), and
we have that σ̄z = 1.63. Compared to the case when all in-
formation is used, σ̄z has increased 25% – for the case when
all measurements are used (- - - -), σ̄z = 1.30. In particular,
the nodes at the edge of the network see their lower bounds
expand dramatically along their major axis.

Note that σ̄Π = 3.40 in the average-only case, compared
to σ̄Π = 1.24 in the all-information case. When difference
measurements are ignored, it becomes difficult to estimate
transmit power. As a result, there is less information about
the size or extent of the network, and nodes at the edges are
affected most strongly by this lack of knowledge.

4.2. Performance as a Function of ρ and σΠ

Finally, we calculate the bound over a range of correlation
coefficient ρ and standard deviation of transmit powers σΠ.
We use the 5×5 grid of sensors, with the m = 4 corner sen-
sors having known-location. The parameters σdB = 4.25,
np = 2.30, and r = 5m are constant through these calcula-
tions. We plot σ̄z in Fig 2(a) and σ̄Π in Fig 2(b).

Note that as ρ → 1, the measurement p∆
ij becomes ex-

actly the difference (Π0j − Π0i)/2. Since the differences
are known perfectly in this case, the only unknown is the
absolute, which represents only one degree of freedom. As
a result, lower bounds (for localization or transmit power
estimation) are not strongly impacted in this case.

Another limiting case is for σΠ → ∞. Although it is
not shown explicitly, the σΠ = 10 dB case in Fig 2 ap-
proximates the asymptotic bound very well. As the prior in-
formation on {Π0i}i goes to zero, their estimation remains
possible, because each sensor has redundancy in the form
of many neighbors measuring the RSS of its transmissions.

5. CONCLUSION

The Bayesian CRB presents a means to bound the perfor-
mance of sensor location estimation when two real-world
factors are present in the measurements: correlation between
the two measurements made on one link, and random sensor
transmit powers. This paper presents this bound and com-
pares it to the bound for the ideal case. These factors, for
several numerical examples, are shown to increase the lower
bound from 5-13%. In particular, when transmit powers are
random, the bound shows the importance of preserving RSS
measurements for both directions on each link, instead of
summarizing them by their average.

Future work will apply this bound to the joint source
and sensor localization problem. It is also possible to derive
the lower bound explicitly for the case when σΠ → ∞. Fi-
nally, it will be critical to develop algorithms robust to ran-
dom sensor transmit powers, and to test them against these
bounds.
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