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Abstract

This thesis focus on the theory
 analysis and algorithm aspects of signal subspace methods used
for speech enhancement in digital speech processing	

The problem is approached by initially performing an analysis of subspace principles applied
to speech signals in order to characterize the usefulness of dening a signal subspace for this
application	 The theory is formulated by means of the singular value decomposition �or the
eigendecomposition�
 and subspace methods are linked to ltering in the frequency domain	

Nonparametric speech enhancement using linear signal subspace based estimation of the
clean signal from the noisy signal is reviewed
 and connections between existing algorithms and
litterature are explored	 An analysis of the practical behavior of the estimators is given
 and
aspects regarding their performance in the case with prewhitening is covered	 The relation to
the popular spectral subtraction approach is discussed
 and the origin of the musical noise is
pointed out	 A possible way to reduce the latter is devised	

In the noisy case
 model based estimation is a nonlinear problem
 which is normally solved
by iterative techniques	 However
 a new idea based on multi�microphone inverse ltering is
presented
 where the solution is obtained by subspace methods	

The algorithm aspects of signal subspace methods are discussed in terms of the rank�revealing
ULV�ULLV decompositions
 which are numerically stable and can be cheaply updated
 when
a new data sample is present	 The potential of the decompositions when applied to speech
problems are analyzed
 and di�erent estimation strategies are suggested	 Again
 the practical
behavior of the estimators are analyzed	

A recursive ULLV algorithm for a so called sliding window estimation is presented
 which is
new in its complete treatment and implementation	 Many aspects of the algorithm are discussed
in details
 and important considerations are pointed out	 Both the ULV�ULLV algorithms and
the subspace based enhancement algorithms are implemented in a Matlab toolbox	

Throughout the thesis
 the speech enhancement application illustrates the power and ro�
bustness of the subspace approach
 and a number of illustrative examples are given	
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Resum�e �In Danish�

Emnet for denne ph	d	 afhandling er underrums �subspace� baserede metoder anvendt til st�j�
reduktion af talesignaler inden for digital signalbehandling	 Der er fokuseret p�a teori
 analyse
samt algoritme overvejelser	

Indledningsvis foretages en analyse af underrumsmetoder anvendt p�a talesignaler for at
karakterisere muligheder og begr�nsninger	 Teorien er formuleret ved hj�lp af singul�r v�rdi
dekomposition eller egenv�rdi dekomposition
 og underrumsprincippet er relateret til ltrering
i frekvensdom�net	

St�jreduktion baseret p�a ikke�parametrisk line�r estimering af talesignalet ud fra det st�j�
fyldte signal er opsummeret
 og sammenh�ngen mellem eksisterende metoder er belyst	 Estima�
torernes praktiske egenskaber er unders�gt
 og aspekter vedr�rende forhvidtning �prewhitening�
er behandlet	 Underrumsmetoders relation til spektral subtraktion samt den introducerede
�musical� st�j komponent er diskuteret
 og en oplagt metode til at reducere den sidstn�vnte er
angivet	

Modelbaseret estimation af tale er i det st�jfyldte tilf�lde et ikke�line�rt problem
 som
normalt l�ses ved hj�lp af iterative teknikker	 En alternativ ide baseret p�a invers ltrering er
angivet
 hvor l�sningen opn�as ved hj�lp af underrumsmetoder	

Algoritme overvejelserne tager udgangspunkt i de rangbestemmende ULV�ULLV dekompo�
sitioner
 som er numerisk stabile
 og hvor beregningskompleksiteten med hensyn til opdatering
er rimelig	 Dekompositionerne er analyseret i forbindelse med st�jreduktionsproblemet
 og en
formulering af forskellige estimationsstrategier er angivet	 Igen er esimatorernes praktiske egen�
skaber analyseret	

Endelig er en rekursiv ULLV algoritme baseret p�a et s�akaldt glidende vindue �sliding win�
dow� pr�senteret	 Algoritmen er en komplet implementering
 og en r�kke vigtige detaljer er
fremh�vet	 B�ade ULV�ULLV algoritmerne og de underrums baserede st�jreduktionsalgoritmer
er implementeret i Matlab programpakker	

Et gennemg�aende tr�k i afhandlingen er
 at styrken og robustheden af underrums baserede
metoder illustreres ved anvendelse inden for st�jreduktion af talesignaler	
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Chapter �

Introduction

At a noisy site
 speech communication is a�ected by the presence of acoustic noise
 and reduction
of noise in degraded speech is an important classical problem of signal processing	 The objective
of achieving higher quality and�or intelligibility of noisy speech may also contribute to improved
performance in other speech applications
 such as speech compression and speech recognition	

The scope of this thesis is to examine the potential of using signal subspace approaches for
speech enhancement
 when the noise is broad�banded	 This includes development and analysis
of new algorithms originating in the area of numerical linear algebra	 Note that the study
will focus on the theoretical aspects
 so little attention is paid to issues concerning a practical
implementation of a real�time noise reduction system	

This chapter provides a brief introduction to noise reduction methods
 and an overview of
the litterature on subspace based speech enhancement	 Then
 an application is proposed in
order to motivate the improvement of existing algorithms	 Finally
 the outline of the work is
described
 followed by the notational conventions	

��� Basic Aspects of Speech Enhancement

Over the past two decades
 the developments in digital signal processing have resulted in a wide
variety of techniques for removal of noise in degraded speech
 depending on the type of the
application and the characteristics of the noise	 A good source of references for enhancement of
noisy speech can be found in ����	

The adaptive noise cancelling method ����� has often been proposed for enhancement of
noisy speech ��
 ��
 ��
 ��
 ���	 The dual�microphone concept can be applied successfully if
there is a high coherence of the noise in the two channels while the speech is only represented
in one channel	 However
 in a large number of practical environments both requirements can
not be obtained simultaneously	 If also the speech signal is presented in both �all� microphones

inverse �ltering� techniques can be used to separate the speech and noise signals ����	 A more
general noise reduction approach based on several microphones is beamforming 
 where the array
of microphones respond to the speech signal coming from a desired direction while discriminating
against noises coming from other directions ���
 ��
 ��
 ��
 ��
 ���
 ����	 Again
 a satisfactory
performance of the last two methods is based on a high correlation between the noise signals in
di�erent channels	

The above mentioned multi�microphone noise reduction methods are characterized by being
independent of the speech statistics
 but rely on the spatial coherence of the noise eld	 In
single�microphone techniques
 the noise reduction is obtained by speech dependent ltering


�Also referred to as the blind signal separation problem�
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i	e	
 the remaining noise is nonstationary and has an annoying noticeable tonal characteristics
referred to as musical noise �����	 Furthermore
 the noise statistics must often be known or
estimated during periods of silence between utterances	 It follows that a stationary assumption
of the noise is necessary	 In spite of these drawbacks
 speech enhancement methods based on a
single microphone are very popular due to their simplicity and robustness
 i	e	
 they can be used
in most noise scenarios	

Many single�microphone speech enhancement techniques are accomplished in the frequency
domain
 such as spectral subtraction ���
 ��
 ��
 ��
 ��
 ��
 ��
 �
 ���� to attenuate the noise
outside the band of perceptual importance	 These methods generally eliminate the noise in the
frequency domain and then recover the speech in the time domain	 However
 the transformation
of the signal from the frequency domain to the time domain usually causes additional degradation
of the enhanced speech	

Another class of noise reduction techniques are based upon modelling of the speech by some
parameters and using the estimated parameters to synthesize the speech ���
 ��
 ���	 It is well�
known
 from many practical applications
 that the clean speech can be successfully represented
by an autoregressive �AR� model �����	 Thus
 if the parameters of the AR model for the
speech can be estimated from the noisy signal
 it is possible to generate the speech by using
the estimated parameters	 Even though these types of procedures remove the noise
 the natural
sound of speech is degraded signicantly during the synthesis procedure	

The speech enhancement concepts introduced here are among the most popular methods
today
 and a more detailed discussion of some of them will be given in the next chapter
 since
they are either related to the signal subspace methods adressed in this thesis
 or can be combined
with them	

��� Subspace�based Speech Enhancement

Noise reduction of speech signals based on subspace decomposition has been proposed in the
following references ���
 ��
 ���	

The noise reduction algorithm in ���� is based on the Singular Value Decomposition �SVD�

which is a robust and widely used computational tool in noise suppression techniques	 From
the SVD of a Toeplitz structured data matrix
 the Least Squares �LS� estimate of the signal�
only matrix can be obtained by neglecting the smallest singular values and nally the Toeplitz
structure of the estimate is restored to identify the time samples	 The problem is that the
method deals only with white noise and the LS estimate is sensitive to the number of retained
singular values	

In ����
 a noise reduction method based on the Quotient Singular Value Decomposition
�QSVD� is presented
 where a prewhitening is an integral part of the algorithm	 Moreover
 by
using a Minimum Variance �MV� estimate ���� of the signal�only matrix
 the algorithm is less
sensitive to the choice of retained singular values	

In ����
 the proposed estimators attempt to improve both the quality of the noisy signal while
minimizing any loss in its intelligibility	 The focus is on the Linear Minimum Mean Square Error
�LMMSE� estimation criterion
 which minimizes the error between the enhanced and the clean
signal	 The optimal estimator in this sense is the well�known Wiener lter	 However
 the error
signal represents both signal distortion and residual noise
 which can not be simultaneously
minimized	 Thus
 the proposed estimators ���� control the level of the perceptually harmful
residual noise �musical noise�
 while minimizing the signal distortion	

All the referred methods are used in a single microphone system and therefore introduce
both audible musical noise and signal distortion in the enhanced signal	 Furthermore
 they are
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characterized by having a high computational complexity	 Thus
 it is necessary to improve such
algorithms before use in any practical noise reduction application	

��� Motivation

One application for speech enhancement is digital mobile radio�communication systems
 e	g	

the Pan�European GSM system
 which is a cellular system operating in the ��� MHz band	

Figure �	� shows the transmit side of the GSM system �see ���� for details�	 The input to
the speech encoder is a ���bit uniform pulse code modulation �PCM� signal from either the
audio part of the mobile station or the network side	 The sampling rate is � kHz
 and the speech
encoder operates on input frames of ��� samples ��� ms�	 The voice activity detector determines
the presence of speech
 and can also be used to distinguish between speech and noise frames in
a speech enhancement method	

The noise reduction algorithm can be inserted right after sampling of the microphone signal
�node ��
 and more than one microphone can be used as long as the interface to the speech
encoder is one signal satisfying the above mentioned requirements	

Network side only

Mobile side only

SID
frame

VAD

info. bits

SP flag

A/DLPF
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        to
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Comfort
  noise

TX functions

Speech
encoder
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6
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3
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1
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Figure ��� Transmit side of the GSM system�

The need for noise reduction in the GSM system is
 e	g	
 encountered in hands�free operation�

of mobile telephones in cars
 where the microphone and loudspeaker are located remotely	 The
large distance between speaker and microphone implies a requirement for increased sensitivity
of the microphone and the speech communication will be a�ected by the presence of acoustic
noise in the car cabin	

The ambient noise is mainly due to the engine
 tra�c and wind and the Signal�to�Noise
Ratio �SNR� is low	 As discussed later
 the broad�banded component of the noise is spatial
uncorrelated
 i	e	
 noise reduction methods based on a single microphone like the subspace
approaches may be used successfully	 However
 note that this is only one possible application
and the work presented is more general	

�Required by safety regulations in some country�s�
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��� Contents and Outline

The thesis is organized as follows	 In Chapter �
 fundamental concepts in speech processing are
introduced
 and the most popular noise reduction methods are discussed in order to evaluate
the subspace approaches addressed in this thesis	

Chapter � covers basic aspects of subspace principles with focus on speech enhancement
applications
 i	e	
 the theory is illustrated by speech related examples	 The most important
assumption in signal subspace methods is that the correlation matrix of the clean speech signal
is rank decient	 However
 even if this is not satised the analysis
 performed here
 of subspace
principles applied to speech signals conrm that it is still meaningful to dene a signal subspace
for speech	 The argument is that projection onto the signal subspace can be interpreted as
lter oprations
 removing the spectral components of the noisy spectrum having the lowest
Signal�to�Noise Ratio �SNR�	

In Chapter �
 nonparametric speech enhancement using signal subspace methods are con�
sidered	 The focus is on linear estimation of the clean speech from the noisy signal under the
assumption that the noise is additive and uncorrelated with the speech signal
 i	e	
 the approach
is based on some ltering techniques in the time domain	

The contribution here
 is a unied presentation of the discussed estimation methods
 for�
mulated by means of both the eigendecomposition of correlation matrices and the SVD of data
matrices	 Relations between the di�erent estimation methods are pointed out
 and comparisons
provide information on the improvement in the enhanced speech quality that can be gained with
each estimator	 Finally
 the practical behavior of the estimators are analyzed and compared with
the optimal ones	

As mentioned previously
 the main problem in single�microphone techniques is the introduced
musical noise	 Thus
 the origin of the musical noise is pointed out
 and assuming an incoherent
noise eld
 the introduction of noise reduction methods based on a single microphone in each
channel of a simple delay�and�sum beamformer is shown here to be an e�cient way to reduce
�eliminate� the musical noise	

Model based estimation is discussed in Chapter �
 where the nonlinear problem is normally
solved by iterative techniques	 However
 a new idea based on multi�microphone inverse ltering
is presented
 where the solution is obtained by subspace methods	

Subspace algorithms are normally implemented by means of the SVD�QSVD
 which are
computationally expensive and resists updating	 In Chapter �
 subspace based algorithms are
discussed in terms of the rank�revealing ULV�ULLV decompositions
 which are numerically
stable and can be updated cheaply	 The potential of the decompositions when applied to speech
problems are analyzed
 and proposed formulations of di�erent estimation strategies are given	
Again
 the practical behavior of the estimators are analyzed and compared with the optimal
ones	

In Chapter �
 a recursive ULLV algorithm for a sliding window is presented
 which is new
in its complete treatment and implementation	 Many aspects of the algorithm are discussed in
details
 and important considerations are pointed out	

Chapter � covers speech enhancement experiments
 which illustrates the power and robust�
ness of the subspace approach
 and concluding remarks are given in Chapter �	 Finally
 Appen�
dices contains software packages and papers related to the Ph	D	 study	

List of Figures and Tables
 Bibliography and Index are included at the end of the thesis	
All publications referred to in the text are linked to the Bibliography by a number n and will
appear as �n�
 sometimes after the name�s� of the author�s�	
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��� Notation and Terminology

Symbols and operators used in the text are �at least� introduced the rst time they appear	
However
 the basic style conventions are only presented here	

The set of real and complex numbers will be designated IR and CI 
 respectively	 The space
of all m�dimensional column vectors with elements in IR will be denoted by IRm
 and the set
of all m� n matrices with elements in IR will be denoted by IRm�n	 Lowercase and uppercase
boldface letters are used to indicate vectors and matrices
 respectively

x � IRm and X � IRm�n ��	��

where xi refers to the ith component of vector x
 and xij refers to the �i� j�th entry of matrix
X	 Furthermore
 the ith column of X will be denoted xi and its jth component xi�j	

The zero vector or matrix will be written �	 The identity matrix will be written I and its
ith column ei	 The transpose of a matrix X will be written XT and its inverse X��	 In the
complex case
 conjugate transposition �Hermite transposition� will be written XH 	

The following operators are assumed known� j � j denotes the magnitude of the scalar enclosed
within
 k � kn denotes the n�norm of the vector or matrix enclosed within
 �n��� denotes the n�
norm condition number of the matrix enclosed
 the statistical expectation operator is designated
by Ef�g
 the span of vectors is denoted by either spanf�g or h�i
 a diagonal matrix is denoted
diag���
 and the trace
 rank
 determinant
 range and null space of a matrix are denoted by tr���

rank��� 
 det���
 range��� and null���
 respectively	

The estimate of a scalar
 vector
 or matrix is designated by the use of a hat ��� placed over
the pertinent symbol
 and underscoring is used to distinguish a quantity as random�
 but only
when it is not clear from the context wether it is random or not	 Fourier transform pairs are
marked as �� � ��
 and convolutions are denoted by the ��� operator	

Finally
 all numerical experiments have been performed in Matlab
 i	e	
 the machine preci�
sion denoted by � is ���� � ����� 	

�In this text� the words �random� and �stochastic� are synonyms�
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Chapter �

Speech Signals and Noise Reduction

In this chapter
 some important concepts in digital speech processing are considered with focus
on noise reduction methods	 The review is intended to serve as a convenient reference for later
chapters and to establish the notation that will be used throughout this thesis	
First
 discrete time representation and sampling of speech signals is considered
 followed by a

summary of stochastic process theory
 which is the basis for analytical techniques used in speech
processing	
Then a presentation of the fundamentals of speech production is given in order to analyze

and model speech
 i	e	
 the anatomy of the speech production system can be used to explain
time and frequency characteristics of short�time speech segments	
At a noisy site
 speech communication is a�ected by the presence of acoustic noise
 and speech

enhancement methods attempt to improve the quality of the speech by removing the noise	 It
is often necessary to make assumptions about the noise mainly based on the application	 The
noise can
 e	g	
 be a broadbanded stochastic signal or a harmonic component	 The former is
considered here
 where a possible application is hands�free microphone systems inside cars	
At the end of the chapter
 the performance and limitations of several noise reduction methods

are discussed in order to evaluate the subspace methods addressed in this thesis	

��� Sampling

A discrete time signal
 e	g	
 noisy speech
 consisting of K data points will be indexed by integers
as given by the vector

x  
�

x� x� � � � xK
�T

��	��

and it represents samples of an analog waveform xa�t� at some sample period Ts
 i	e	


xk  xa�kTs�  xa�t�jt�kTs � k  �� �� � � � �K ��	��

The reciprocal of Ts is referred to as the sampling frequency fs
 and the bandwidth of the signal
should be below the Nyquist frequency fs�� in order to avoid aliasing	 If this is not the case

preltering with an analog anti�aliasing lter is required	
Such a situation occurs in processing speech signals
 where only the low�frequency band up

to about ��� kHz is required for intelligibility
 even though the speech signal may have signi�
cant frequency content in the ��� kHz range	 Also even if the signal is naturally bandlimited

wideband additive noise may ll in the higher�frequency range
 and as a result of sampling
 these
noise components will be aliased into the low�frequency band	 In
 e	g	
 telephone applications as
considered here
 the standard sampling frequency is � kHz and the speech bandwidth is usually
�	� kHz	
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� Chapter �� Speech Signals and Noise Reduction

��� Stochastic Processes

As explained in Section �	�
 there are two basic classes of speech sounds
 voiced and unvoiced	
The former is characterized by deterministic acoustic waveforms
 while the latter corresponds
to stochastic waveforms	 Although random process theory will be necessary to analyze un�
voiced signals only
 it will in general be very useful to employ analytical techniques which are
fundamentally motivated by stochastic process theory
 e	g	
 the autocorrelation function	
A discrete random
 or stochastic
 process x �notice the underline notation� is dened as a

collection of random variables
 each indexed by a point in discrete time	 For an observation
interval of K samples
 the following ordered random vector is obtained

x  
�
x� x� � � � xK

�T
��	��

where each random variable xk represents a model for the generation of values at its correspond�
ing time k	 The outcome from one experiment
 i	e	
 a signal x as dened by ��	��
 is called a
realization of the random process
 and the collection of all realizations is called an ensemble	
The Probability Density Function �PDF� associated with a random vector is simply the joint

PDF among its component random variables

fx�x�  fx��x������xK �x�� x�� � � � � xK� ��	��

and the associated stochastic process is strictly stationary 
 if the joint PDF is invariant to a shift
in time	 Two random vectors x  �x�� x�� � � � � xK�T and y  �y�� y�� � � � � yL�T are statistically

independent if
 for any times k � ��!K� and l � ��!L�
 the random variabels xk are independent
of y

l

 i	e	


fxy�x�y�  fx�x�fy�y� ��	��

This is a very strong condition
 where x and y may not be related in any functional way	 When
there is a linear dependency
 the associated stochastic processes are always correlated	 Thus
 if
they are uncorrelated
 there is no linear dependence between them	

����� Expectation and Moments

Quite often
 it is not possible to determine the joint PDF for a stochastic process
 but it can be
partially characterized by specifying the rst and second moments	 The autocorrelation function
for the random process x is dened as

rx�k�� k��  Efxk�xk�g ��	��

where Ef�g denotes the expectation operator	 Normally
 it is assumed that the considered
stochastic process x is Wide Sense Stationary �WSS� meaning that its autocorrelation is a
function of time di�erence
 or lag 
 � only
 and its ensemble average
 or mean
 is constant
 i	e	

for any k

rx���  Efxkxk��g and �x  Efxkg ��	��

For the case of two stochastic processes x and y
 the cross�correlation function is dened as

rxy�k�� k��  Efxk�yk�g ��	��

and for x and y to be jointly WSS
 also the cross�correlation must be a function of time di�erence
� only

rxy���  Efxkyk��g ��	��
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That these statistical properties of the processes are invariant with time
 is often su�cient to
allow many useful analyses	 Now consider an observation interval of K samples
 i	e	
 the two
random vectors x and y
 then the expectation of the outer products

Rx  EfxxT g and Rxy  EfxyT g ��	���

are called the �auto�correlation matrix and cross�correlation matrix 
 respectively
 and the el�
ements are given by ��	�� and ��	��	 The correlation matrix plays a key role in the statistical
analysis of subspace methods
 and it is therefore important to understand its various properties�

Properties� The correlation matrix of a real�valued wide sense stationary stochastic process is

� Symmetric RT
x  Rx�

� Toeplitz� i�e�� all the elements on any 	sub
diagonal are equal�

� Positive semide�nite� i�e�� qTRxq � � for all q 	 �� Positive de�nite if the matrix is

nonsingular�

Note
 that the eigenanalysis in Section �	� is based on these facts	
In most practical experimental situations
 only one realization x of the process is available	

However
 assuming the random process x to be wide sense stationary
 it is possible to estimate
�x and rx by computing temporal averages as

��x  
�

K

KX
k��

xk and �rx���  
�

K

KX
k��

xkxk�� ��	���

which are denoted the sample mean and sample correlation
 respectively	 The process is said to
be ergodic if the estimates converge to the true values as the number of samples K approaches
innity	 The last basic topic to summarize here is the Power Density Spectrum �PDS� of a WSS
stochastic process x dened as the Discrete Fourier Transform �DFT� of its autocorrelation
function

"x���  
�X

����

rx���e
�j�� � rx���  

�

�	

Z �

��
"x���e

j��d� ��	���

Related to this denition the power in the process is given by

Px  Efx�kg  rx��� ��	���

Notice that since signals in speech processing are assumed to have zero mean
 the correlation
functions are identical with the covariance functions and both notations are often used	

��� Speech Signals

A speech signal is very often thought of as a realization of a stochastic process
 where the un�
derlying process must be assumed to have the appropriate stationarity and ergodicity properties
to allow the computation of meaningful temporal statistics	 However
 speech is a very dynamic
phenomenon and cannot possibly comprise a stationary random process
 which mean that the
assumption is valid only in short temporal regions	 In the following
 descriptions of locally sta�
tionary speech segments or frames �of period in the order of �� ms� are denoted short�time
 or
short�term descriptions	
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Figure ��� Amplitude waveform of speech sentence sampled at � kHz�

Figure �	� shows a � second speech waveform ltered by a �	� kHz analog low�pass lter and
then sampled at � kHz	 The speech signal is the result of the phonetically balanced sentence
�The prices have gone up enormously in spite of the technological advances� spoken by a male
speaker
 and has also been used for simulations in ����	 It is obviously from the Figure that speech
is a series of steady�state sounds with intermediate transitions
 i	e	
 extremely nonstationary	
This speech signal will be used in examples throughout this thesis and is denoted the reference

sentence	

����� Fundamentals of Speech

In technical discussions
 the entire combination of all speech production cavities is referred to as
the vocal tract and comprises the main acoustic lter	 The lter is excited by the organs below
it �vocal cords
 lungs
 etc	� and loaded at its main output by a radiation impedance due to the
lips �see Figure �	��	

Lungs Vocal tract

Vocal cords Sound output

Muscle force

Figure ��� A simpli�ed block diagram of human speech production�

Speech segments can be divided into two broad categories depending on the manner of excitation�

� A voiced speech sound is generated from a quasi�periodic vocal�cord sound with a funda�

mental frequency or pitch usually found to be below a few hundred Hertz	

� An unvoiced speech sound is generated from a random sound produced by turbulent air�
�ow	

The latter involves a signicant air�ow restriction through the vocal tract and is therefore weaker
in amplitude	 A rough understanding of the two exitation types can be obtained by noting that
many vowels are voiced sounds and many consonants are unvoiced sounds	 However
 this is not
a general rule	
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Figure ��� 	a
 Amplitude waveform of voiced speech frame corresponding to the �Y�
sound in �prices�� 	b
 Amplitude waveform of unvoiced speech frame corresponding to the
�s� sound in �spite��

Two speech frames of �� ms ���� samples� representing each type of excitation are shown in
Figure �	�
 and the above mentioned characteristics are clearly observed	 The voiced frame is
the �Y� sound in �prices�
 and the unvoiced frame is the �s� sound in �spite�	 The frames are
taken from the reference sentence in Figure �	� �sample numbers ��������� and �����������

respectively�
 and will also be used in examples throughout the thesis	

The corresponding short�time magnitude spectra obtained by the discrete Fourier transform
of the Hanning windowed frames are shown in Figure �	�	 The short length of the frames and
the stochastic nature of the signals results in a large variance on the obtained spectra	 However

it is still possible to observe a number of resonant frequencies
 which depend upon the shape and
physical dimensions of the vocal tract	 These natural frequencies are referred to as formants

and there are typically between � and � formants in the Nyquist band after sampling	

Since speech signals are nonstationary
 the spectral properties vary with time	 It is possible
to exhibit these changes using a three�dimensional plot of magnitude spectra over time as shown
in Figure �	��a� for the rst part of the reference sentence	 The frame length is ��� samples
�Hanning windowed� with an �� sample overlap between adjacent frames	 A blowup of the vocal
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Figure ��� Short�time magnitude spectra for 	a
 the voiced and 	b
 the unvoiced speech
frame in Figure ���
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Figure ��� 	a
 Short�time magnitude spectra versus time for the �rst part of the speech
sentence in Figure ��� i�e�� �The prices have gone up enormously�� 	b
 A blowup of the
vocal system �gone up��

system �gone up� is shown in Figure �	��b�
 where the slowly variations of the formants can be
observed	 Notice that a majority of speech sounds are dominated by low frequencies	

����� Modeling Speech

The classical discrete�time model for the speech production process assumes that the sound�
generating excitation is linearly separable from the intelligence�modulating vocal tract lter �see

e	g	
 Flanagan ���� or Deller et al	 �����	 The vocal tract changes shape relatively slowly with
time
 and thus it can be modelled as a slowly time�varying lter which imposes its frequency�
response properties on the spectrum of the excitation	 Figure �	� shows a simplied block
diagram of the model
 where the wideband excitation depends on whether the speech sound is
voiced or unvoiced�

� A voiced speech sound can be modelled by a sequence of impulses 
k
 which are spaced
by a fundamental period equal to the pitch period	 This signal then excites a linear lter
whose impulse response equals the vocal�cord sound pulse	 For simplicity
 the linear lter
is not shown explicitly on the gure
 but is considered as a part of the vocal tract lter	

� An unvoiced speech sound is generated from an excitation which consists simply of a white
noise source wk	 The probability distribution of the noise samples does not appear to be
critical	

generator
White-noise

generator
Impulse train

Unvoiced

Voiced
Synthesized
speech

wk

Vocal-tract
filter H(z)

δk

Vocal-tract
parameters

Pitch
period

sk

Figure ��� Simpli�ed model for the speech production process�
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The frequency response of the vocal tract lter H�z� determines the short�time spectral
envelope of the speech signal sk and is characterized by its formants	 For a majority of speech
sounds
 the vocal tract can be described by the transfer function of an autoregressive �AR�
system

H�z�  
b�

A�z�
 

b�
� #
Pp

i�� aiz
�i

��	���

where the lter coe�cients ai are called the AR parameters or Linear Predictive Coe�cients

�LPC�
 p is the model order and b� is a gain parameter	 The form of exitation applied to the
AR�lter is either the sequence of delta pulses 
k or white noise wk corresponding to the voiced
or unvoiced speech sounds
 respectively

Voiced� sk  
k � hk ��	���

Unvoiced � sk  wk � hk ��	���

Thus in both cases
 the excitation �input� has a �at spectral envelope	 In this application the
input data are real valued
 hence the lter coe�cients ai are likewise real valued	
By estimating the AR parameters
 i	e	
 the model
 it is possible to exploit the short�time

spectral properties of speech frames as shown in Figure �	�
 where a ��th order model is used	
This model order is usually assumed to be satisfactory	 Notice
 that the formants are much
better determined by the LPC model than by the DFT method �due to di�erence in degrees of
freedom�	
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Figure ��	 ��th order LPC�based magnitude spectra for 	a
 the voiced and 	b
 the
unvoiced speech frame in Figure ���

��� Noise Signals

In a noisy environment
 the quality of speech is degraded
 and in order to improve the clarity and
intelligibility of the speech signal by a noise reduction method
 the noise has to be characterized	
Acoustic noise sources are normally distinguished as

� Narrow�banded
 spatial localized source	
� Broad�banded
 spatial localized source or di�use� noise eld	

�Spherically distributed set of uncorrelated wave fronts�
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Only the broadbanded case is considered here
 where the most important form of noise is
	discrete�time
 white noise
 dened as a stationary stochastic process n with uniform power
density spectrum "n�f� over the Nyquist range

rn���  ��noise
��� and "n�f�  ��noise ��	���

This is
 e	g	
 obtained when the noise is drawn from a sequence of independent
 identically
distributed �i	i	d	� random variables	 It is often assumed that the process is zero mean and
Gaussian distributed due to the Central Limit Theorem�
 i	e	
 for K samples the joint PDF is

fn�n�  ��	�
�K���detRn�

���� exp

�

�
�
nTR��n n

�
��	���

where n  �n�� n�� � � � � nK�T is the vector of arguments	
Colored noise is a more realistic assumption in most applications and is obtained when

white noise is ltered by an autoregressive moving average �ARMA� system	 However
 if the
correlation function of the noise is assumed known
 then the colored noise can always be whitened
as discussed in Section �	�	

����� Acoustic Noise in Cars

One application for speech enhancement is hands�free operation of mobile telephones inside cars
as introduced in Section �	�	 In this section
 the acoustic noise in a moving car is addressed

and the results will be used in examples throughout this thesis	
In ��
 ��
 ��
 ��� a large number of measurements obtained in a car cabin under various

driving conditions have been analyzed with identical conclusions	 The examples given here is
based on the measurements made by Jensen ����
 where four omni�directional microphones were
distributed in the car� at the locations shown in Figure �	�	 The distance between the mouth of
the speaker and microphone � to � were �� cm
 �� cm
 �� cm and �� cm
 respectively	 The four
channels were recorded simultaneously in order to know the spatial sound eld
 and sampled in
accordance with the GSM specications �� kHz and �� bit�	

4

Speaker

1

3

2

Figure ��
 Locations of speaker and four
microphones in the car cabin�
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Figure ��� Noisy speech sentence recorded
at ��� km�h by microphone ��

�The Gaussian distribution is the limiting distribution for sums of random variables�
�Peugeot ����
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Figure ���� Noisy speech sentence recorded
at ��� km�h by microphone �
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Figure ���� Noisy speech sentence recorded
at ��� km�h by microphone ��

Figure �	���	�� shows a noisy speech sentence recorded at ��� km�h by microphone ���

respectively	 Notice
 that the speech amplitude depends on the distance between the mouth of
the speaker and the microphone
 while the noise level is independent of the location in the car	
In the following
 the noise will be described by its power spectrum whereas the noise eld will
be analysed by its coherence	

Power Spectral Density� Figure �	�� shows the power spectral density of the acoustic noise
picked up by microphone � when the car was driving ��� km�h	 The PSD is calculated for
a ���� sample noise signal using Welch$s method ���� sample segments
 Hanning window and
��� sample overlap between adjacent segments�	 The plot shows a peak around ��� Hz due to
the fundamental frequency of the engine
 however
 this noise component can easily be removed
by an analog bandpass lter
 since little speech information is represented at low frequencies	
The broadbanded noise results mainly from the road and wind friction
 and as indicated in the
Figure
 the noise can be modelled as a rst order autoregressive process with transfer function
dened as

AR��
��	��� H�z�  
�

� # az��
� a  
��� ��	���

Hence
 the acoustic noise in a car can be characterized as colored broadband noise	

Coherence� The Magnitude Squared Coherence �MSC� between two noise signals nk and n�k
is dened by

MSC���  j�nn����j�  j"nn����j�
"n���"n����

� � � MSC��� � � ��	���

where "nn���� is the cross spectral density
 and "n��� and "n���� are the power spectral densities	
Thus
 the MSC gives the percentage of signal energy coming from correlated sources for every
frequency	 Figure �	�� shows the MSC� between the noise measured by microphone � and �
��� cm distance� at ��� km�h	 There is only one peak close to one due to the engine frequency

i	e	
 the broadband noise is spatial uncorrelated	

�Calculated for noise signals consisting of ���� samples using Welch�s method 	�� sample segments� Hanning
window and �� sample overlap between adjacent segments
�
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Figure ���� MSC between the noise mea�
sured by microphone � and  	�� cm distance

at ��� km�h�

In ���� is shown that the noise generation mechanism inside a car can be modelled as a di�use
sound eld
 i	e	
 the coherence is given by

�nn����  
sin��	fd�c�

�	fd�c
��	���

where d is the distance between the microphones and c is the sound velocity	 For example
 a
MSC���  ��� in the frequency band up to around � kHz requires a microphone distance less
than � cm
 so in practice
 the acoustic noise in a car can be assumed spatial uncorrelated	

SNR� Finally
 consider the Signal�to�Noise Ratio �SNR� in voiced and unvoiced speech frames	
A reliable method is to add an AR��
��	�� noise signal to the clean speech sentence in Figure �	�
in order to obtain amplitude waveforms similar to the noisy speech signals shown in Figure �	�
and �	��	 The results for the voiced and unvoiced frames in Figure �	� are given in Table �	�	
Clearly
 the voiced frame has a much better segmental SNR than the unvoiced
 but notice that
the chosen voiced frame belongs to the part of the sentence with highest signal power
 so a
voiced frame will be assumed to have a segmental SNR around ���� dB	

Noise level Global SNR of Segmental SNR of Segmental SNR of
similar to reference sentence voiced frame unvoiced frame

Figure �	� � dB �� dB ��� dB

Figure �	�� � dB �� dB ��� dB

Table ��� SNR of speech sentence added an AR	������
 noise signal�

��� Speech Enhancement

The problem of enhancing speech degraded by additive broadband noise has received considerable
attention in the past two decades	 The objective is to achieve higher quality and�or intelligibility
of noisy speech prior to processing by the auditory system	 However
 it has also been shown
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that front�end speech enhancement can be useful for other speech processing applications
 such
as processing before coding or recognition	
There are a number of ways in which speech enhancement systems can be classied
 e	g	


whether the speech is modelled based on stochastic processes or perceptual aspects	 Only three
broad classes are considered here
 which cover the most popular methods today
 and have all
been applied to the problem of acoustic noise inside a car cabin
 i	e	


� Adaptive Noise Canceling
� Adaptive Beamforming
� Spectral Subtraction

In the following
 the performance and limitations of each class are discussed in order to evaluate
the subspace methods addressed in this thesis	 Thus
 adaptive noise canceling is used to demon�
strate a technique that completely fails if the noise assumptions are not satised
 while adaptive
beamforming and spectral subtraction are related to theory considered in the next chapters	

����� Adaptive Noise Cancelling

Adaptive Noise Cancelling �ANC� using a linear adaptive lter has often been proposed as a
method for the enhancement of noisy speech ����
 �
 ��
 ��
 ��
 ���	 The principle is illustrated
in Figure �	��
 where the speech signal spri at the primary input is corrupted by some noise
npri	 If the noise at the reference input nref is correlated with npri
 a properly designed adaptive
lter is able to approximate the linear transfer function between the two microphones	 Thus

the output of the adaptive lter is an estimate of the noise npri
 which is then subtracted from
the primary signal	 A high correlation of the two noise signals will result in a low residual noise
level at the output	 However
 the presence of speech in the reference input will cause a distortion
of the speech signal at the output	
A measure of performance of ANC is the ratio between the output and primary input SNR

as given by ����

����  
SNRout���

SNRpri���
 

�

�
MSCnprinref
���

��	���

The problem with speech in the reference input has been analyzed by Widrow ����� �optimal
lter coe�cients� giving the following relation between SNRs

SNRout���  
�

SNRref ���
��	���

Thus
 to provide successful noise reduction
 very high coherence with respect to the noise
signals is required �see Figure �	��� as well as su�cient decoupling with respect to the speech
signal	 An � dB noise reduction requires for example a MSC value near �	�	
In the car application
 this MSC value can only be obtained by a microphone distance of

less than � cm
 and the speech signal will therefore be represented in both inputs
 i	e	
 the ANC
scheme can not be applied successfully �see
 e	g	
 the results in ��
 ��
 ��
 ��
 ����	

����� Adaptive Beamforming

A more general noise reduction approach based on several microphones is beamforming
 where
the array of microphones respond to a signal coming from a desired direction while discriminating
against noises coming from other directions ���
 ��
 ��
 ��
 ��
 ���
 ����	

Peter S� K� Hansen ����



�� Chapter �� Speech Signals and Noise Reduction

Noise
source

Speech
source

Primary
sensor

Reference
sensor

Estimate
of noise

Σ

Adaptive
  filter

−

+
Output

Figure ���� Block diagram of Adaptive
Noise Canceller�

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Magnitude Squared Coherence

N
o
is

e 
R

ed
u
ct

io
n
  

[d
B

]

Figure ���� ANC based noise reduction
�	�
 as function of MSC�

Delay�and�Sum beamforming is the simples method
 where the output is just the sum of the
delay�compensated multi�channel data �see Figure �	���	 Since the time�delay steering elements
�i are adjusted so the desired speech signal will be coherently added
 while the noise components
will be incoherently added
 the output has a higher SNR than the output from any of the
individual microphones	 The SNR improvement is theoretically limited to

�  �� logL �dB� ��	���

with L the number of microphones	 Hence
 the SNR gain is not su�cient for the car application
as only a small number of microphones may be used for practical reasons
 e	g	
 four microphones
correspond to � dB improvement	

Another issue is the determination of the time�delay steering elements �i	 If the desired
signal is a plane wave impinging on a linear array
 delay�and�sum beamforming requires no prior
knowledge of the signal or noise statistics	 However
 for unknown array geometries
 alignment
of the desired signal generally involves the use of numerical search algorithms
 e	g	
 based on the
cross�correlation functions	

To obtain better results
 a Linearly Constrained Minimum Variance �LCMV� beamformer
���� can be used as illustrated in Figure �	�� for the direct�form implementation	 The constrained
algorithm is used to iteratively adapt the lter weights wi to minimize noise power in the array
output
 while the set of linear equality constraints maintains a chosen frequency characteristic
for the array in the direction of interest	 Note
 that an equivalent implementation of the LCMV
beamformer is the Generalized Sidelobe Canceller ����	

When the adaptive array operates in the presence of white noise only
 the resulting beam
pattern is referred to as the quiescent response	 However
 under conditions of correlated in�
terference
 the response changes so as to e�ectively steer nulls in the appropriate directions as
indicated in Figure �	��	

When used in a car cabin
 the LCMV beamformer has two drawbacks	 First
 if signal
components obtained outside the direction of interest are correlated with the desired signal

e	g	
 the reverberations in the car cabin
 then the speech output will be distorted	 Second
 the
di�use noise eld in the car cabin will result in a quiescent response similar to the Delay�and�Sum
beamformer	 These conclusions correspond to the results obtained in ���
 ���	
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����� Spectral Subtraction

The spectral subtraction approach has become almost standard in speech enhancement ���
 ��

��
 ��
 ��
 ��
 �
 ����
 and the name is originally motivated by the subtraction of the short�
term magnitude spectrum of the noise from the short�term magnitude spectrum of the noisy
signal ����	 Thus
 it is a single microphone noise reduction technique based on the assumption
that it is mainly the spectral magnitude rather than the phase that is important for speech
intelligibility and quality	 Fortunately
 for all practical purposes
 it is su�cient to use the noisy
phase spectrum as an estimate of the clean speech phase spectrum �����	
In spectral subtraction signal estimation
 the DFT is rst applied to a segment of noisy

speech	 Spectral components whose estimated variance is smaller than or equal to the one
obtained from the noise�only spectral component are nulled �half�wave rectication�	 The re�
maining spectral components are modied by a gain function and the inverse DFT is applied	
Let the matrix DH � CI K�K represent the DFT
 then the spectral components of the noisy

signal vector x � IRK are given by the vector DHx	 Assume that only p � K components of
DHx have variance greater than the noise level
 and that those components are denoted DH� x

then the spectral subtraction estimator can be written as

�sSPS  
�

K

�
D� D�

�� GSPS �
� �

��
DH�
DH�

�
x ��	���

where GSPS is an diagonal gain matrix
 and �D� D�� is obtained from D by rearranging the
columns	
Many approaches have been proposed for the evaluation of the short�time gain factor	 This

factor is adjusted individually on each frequency as a function of the local signal�to�noise esti�
mation	 Such methods include magnitude spectral subtraction ����
 power spectral subtraction

Wiener ltering ����
 soft�decision estimation ���� and Minimum Mean Square Error �MMSE�
estimation ����	
When the Wiener gain function is used
 the mth diagonal element of GSPS is given by

gSPS�m�  
�"x�m�
 �"n�m�

�"x�m�
��	���

where �"x�m�  jDHxj�m�K and �"n�m�  jDHnj�m�K estimates the variance of the mth spectral
component of the noisy signal and the noise process
 respectively
 i	e	
 they are estimates �peri�
odograms� of the power spectral densities	 Note that the noise PSD is found during nonspeech
activity	
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The gain function used in power spectral subtraction is obtained by taking the square root
of Equation ��	���
 while the MMSE estimator is based on soft�decisions aspects taking into
account the uncertainty of speech presence in the noisy observations
 i	e	
 speech distortion and
musical noises should be reduced	
The optimal and practical behavior of the MMSE and Wiener lter is analyzed in ����
 where

experiments indicate� that the MMSE suppression rule always gives an enhanced speech signal
which presents more distortion than the Wiener one	 The main reason for this is due to the
estimation of the lter parameters
 where assumptions in the MMSE model is not really satised	
The conclusion is that the Wiener lter can be used for most practical applications	

����� Speech Quality Assessment

All listeners have an intuitive understanding of speech quality
 however
 this is not easy to
quantify in most speech enhancement applications
 since it is based on subjective evaluation of
the processed signal	
Noise reduction is normally discussed in terms of Signal�to�Noise Ratio �SNR�
 but it is

important to note that this may not be the most appropriate performance criterion for speech
enhancement	 An overview of a large number of other speech quality measures can be found in
���
 Page ����	
In the evaluation of speech enhancement methods
 it is maybe even more important to

understand the theoretical and practical properties of the di�erent estimation principles	 Thus

from such analyzes together with a basic knowledge of the human auditory system
 it is possible
to design noise reduction systems capable of improving both the quality and intelligibility of the
noisy signal	
In this thesis
 the analysis approach combined with SNR measures will be used as quality

assessment tools	 The main reason is that the SNR measure is well�known by most readers

while the quantities obtained by other speech quality measures are harder to evaluate without
prior knowledge and experience	
In noise reduction systems
 the original speech signal is needed to determine SNR improve�

ments	 Let xk denote the noisy speech signal
 sk its noise�free equivalent
 and �sk the correspond�
ing enhanced signal
 then the resulting SNR measure �in dB� is obtained as

SNR  �� log

� P
k s

�
kP

k�sk 
 �sk��
�

�dB� ��	���

Several variations of SNRs will be used	 The global SNR denotes measures calculated from
longer signals like a sentence
 while segmental SNR is obtained from a single frame	 Finally

spectral SNR is obtained within a frequency band of a frame	

��� Summary

The non�stationarity of speech signals has been discussed
 and short�time speech segments have
been characterized in the time and frequency domain	 The properties have been illustrated by
means of a single phonetically balanced sentence
 and by use of one voiced and one unvoiced
segment	 The same examples will be used in simulations throughout the thesis to illustrate and
analyze the theory
 and it should be noted that the conclusions drawn from these few examples
are fairly general	 However
 other speech material has also been used to verify the results	

	Evaluated by cepstral and basilar distances�
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Speech signals are characterized as broad�banded
 so reduction of broad�banded
 acoustic
noise in speech signals is often a di�cult problem to solve	 One example
 considered here
 is
the noise� inside a car cabin
 which is colored
 spatial uncorrelated and has distributed origin	
Note
 that the global SNR is often low ����� dB�
 and that this type of noise is also found in
other environments	

Several speech enhancement principles have been summarized
 and the conclusion is that
noise reduction based on multi�microphone techniques typically requires spatial correlated noise	
Thus
 in the car application
 the approximately best enhancement is obtained by the simple
delay�and�sum beamformer
 which is not su�cient	

In the single�microphone case
 the popular spectral subtraction method has almost become
the standard today	 However
 it is a frequency domain approach and su�ers from the fact that
speech signals are extremely non�stationary	

The subspace methods addressed in this thesis can be considered as a time domain version of
the spectral subtraction approach	 Thus
 the obtained estimators can be expected to be closer
to the optimal solutions	


Resulting from road� and wind friction�
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Chapter �

Signal Subspace Methods

In the last two decades
 signal subspace methods have been used frequently in digital signal
processing in connection with
 e	g	
 spectrum estimation ���
 ����
 system identication ���
 ����
and direction of arrival problems ����
 �
 ���	 However
 the signal subspace approach has only
recently been used in digital speech processing ���
 ��
 ��
 ���	
The most important assumption in signal subspace methods for speech enhancement is that

the correlation matrices of vectors of the clean speech signal need not be positive denite
 i	e	

they have some eigenvalues which are practically zero	 This can be observed by either examining
the empirical correlation matrices of the speech signal or by studying the commonly used linear
model for that signal ���
 ���	 This fact indicates that the energy of the clean signal vector is
distributed among a subset of its coordinates
 and the signal is conned to a subspace	
If the correlation matrix of an additive noise is assumed positive denite
 i	e	
 all noise

eigenvalues are strictly positive
 then the noise vectors span the entire space	 Thus
 the noise
components in the subspace complementary to the signal subspace can be removed without
degrading the clean speech signal	
The decomposition of the vector space of the noisy signal can be performed by applying the

eigendecomposition to the correlation matrix	 However
 the second�order statistics are estimated
from a number of noisy vectors
 so a better approach is to organize the vectors in a data matrix
and use the singular value decomposition	
In this chapter
 the basic signal subspace principles are introduced with focus on speech

enhancement applications	 Thus
 whenever possible the theory will be illustrated by speech
related examples
 and general assumptions will be shown to be valid for this application	

��� Linear Model

A speech signal is nonstationary
 but can in a short�time window �typically �� to �� ms long�
be considered as a wide sense stationary stochastic process	 The speech signal can therefore be
represented by a linear stochastic model of the form

s  H�  
pX
i��

hi�i ��	��

where s  �s�� s�� � � � � sm�T is a sequence of signal random samples
H � IRm�p is a model matrix

and �  ���� ��� � � � � �p�T is a zero mean random coe�cient vector drawn from a multivariate
distribution	 The linear model ��	�� is fairly general	 It includes
 for example
 the damped

complex sinusoid model
 which has often been attributed to speech signals �see Section �	��	
However
 in this chapter
 the exact form of the linear model need not be specied	
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In the linear model the columns hi
 or modes
 of H

H  
�
h� h� � � � hp

�
��	��

span a signal subspace hHi  spanfh�� � � � �hpg	 Assuming that the columns of H are linearly
independent
 i	e	
 H has full rank
 then the dimension of the signal subspace is p � m	 Thus

when p � m the set of all possible signal vectors fsg is constrained to be in the signal subspace

which can be used for signal enhancement in the case of noise perturbations	 As discussed above

such representation is always possible for speech signals	

As an illustrative example
 consider the cosinusoid signal sk  A cos��kTs
��
 which can be
expanded as A cos��kTs� cos���#A sin��kTs� sin���	 Then a m�sample vector s may be written
as

s  

�BBBB�
� �

cos��Ts� sin��Ts�
			

			
cos���m
 ��Ts� sin���m
 ��Ts�

	CCCCA
�

A cos���
A sin���

�
 H� ��	��

Thus
 for random phase �
 a harmonic component lies in a real linear vector space of dimension
two	 For a sum of p�� cosinusoids with �i 	 �j
 the matrix H consists of linearly independent
sines and cosines which span a subspace of dimension p	

From the linearly independent modes that span the signal subspace hHi
 an orthogonal
complement subspace h�Hi of dimension m
 p can be constructed

�H  
�
�h� �h� � � � �hm�p

�
��	��

Taken together
 the subspaces hHi and h�Hi span the Euclidean m�space IRm	 The subspace
h�Hi is called the noise subspace
 but it should be emphasized that the noise typically lls in the
entire Euclidean space	 Thus
 the signal subspace contains vectors of the pure speech signal as
well as of the noise process	 The orthogonal subspace contains vectors of the noise process only	
In our context
 it is assumed that the noise process satisfy the following conditions

Assumption ��� �Basic Noise Assumptions


�� The noise is zero mean� additive and broadbanded 	positive de�nite correlation matrix
�

Consider now the noisy random vector x  �x�� x�� � � � � xm�T of dimension m
 such that

x  s# n � s  H� ��	��

where s contains the pure speech component that lies in the subspace hHi and n represents the
noise that lls up the Euclidean space	

Thus
 the speech signal is known to lie in a subspace of rank p
 however the subspace is
unknown	 The noise reduction problem is to estimate the subspace hHi
 i	e	
 its dimension and
a suitable basis
 determine how much of the measurements lies within it
 and use this information
in a signal processing procedure	 Note
 that it is in general not possible to nd the exact signal
subspace hHi	
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����� Data Matrix

The space spanned by the model matrix H can be exploited by considering a sequence of n
realizations of the random vector x as dened by ��	��	 The set of noisy signal vectors is used
to dene the data matrix X � IRm�n

X  S#N � S  H� ��	��

where �  ������� � � � ��n� � IRp�n is the coe�cient matrix and the signal matrices are given
by X  �x��x�� � � � �xn�
 S  �s�� s�� � � � � sn� and N  �n��n�� � � � �nn�	
In Equation ��	��
 the number of realizations should be much larger than the dimension

of the vectors
 i	e	
 n � m
 in order to reveal the subspace information	 However
 numerical
algorithms and notation normally assume n � m
 so whenever this is done
 the rows of the data
matrix are assumed to be realizations of the random vector x	
One way to construct the data matrix from a realization consisting of K samples

xK  
�
x� x� � � � xK

�
��	��

is to organize a set of time shifted vectors in a m� n data matrix with Toeplitz structure

X  Tn�xK�  

�BBBB�
xn xn�� � � � x�
xn	� xn � � � x�
			

			
			

xK xK�� � � � xK�n	�

	CCCCA  S#N ��	��

where the Toeplitz operator Tn has subscript n showing the number of columns and where the
matrix dimensions are constrained by K  m # n 
 �	 In the case of speech signals
 a good
choice of �m�n� is ����� ��� corresponding to K  ��� �see the discussion in Section �	�	��	 Note
that one can also choose to work with Hankel matrices instead of Toeplitz matrices	 There is
no fundamental di�erence between these two approaches	
Let n � m
 then rank�N�  n due to the broadband assumption and also rank�X�  n	

For the moment
 however
 no further statistical assumptions are made on N
 but it is simply
treated algebraically as a matrix of full rank	 Because the speech model is based upon p linearly
independent modes with p � n
 i	e	
 a low order model
 the matrix S will be rank decient

rank�S�  p � n � m ��	��

and the matrix has �n 
 p� zero singular values	 As discussed in Section �	�
 this observation
can be used to estimate the clean signal from the noisy data matrix using the singular value
decomposition	

����� Correlation Matrix

The discussed signal vectors are realizations of stochastic processes
 which mean that the analysis
of subspace methods is based on correlation matrices	
First
 consider the correlation matrix Rs � IRm�m of the noise�free random vector s dened

by the linear model ��	��
 i	e	


Rs  EfssT g  HR�H
T � R�  Ef��T g ��	���

Hence
 the rank of Rs is p
 and this matrix has �m 
 p� zero eigenvalues	 Similarly
 let the
correlation matrix of the noise vector be denoted by Rn  EfnnT g
 which has full rank	 When
considering second order statistics
 it is useful to assume
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Assumption ��� �Correlation Based Noise Assumptions


�� The elements of s and n are uncorrelated Rsn  Rns  ��

�� The noise is white with variance ��noise Rn  ��noiseIm�

The last assumption is based on the fact that the correlation matrix of the noise vector is
assumed known
 i	e	
 colored noise can always be whitened as discussed in Section �	�	 Thus

the correlation matrix of the noisy vector ��	�� is given by

Rx  EfxxT g  Rs #Rn  HR�H
T # ��noiseIm ��	���

Obviously
 the noise power is uniformly distributed in the entire Euclidean space
 while the
speech signal is constrained to p dimensions	

In practice
 the exact knowledge of the second�order statistics is not available
 but is esti�
mated from the noisy signal	 Assuming stationary and ergodic conditions
 the estimate �Rx of
the correlation matrix can be obtained from the Toeplitz data matrix X ��	�� as either

�Rx  
�

n
XXT � IRm�m or �Rx  

�

m
XTX � IRn�n ��	���

which converge to the true correlations

Rx  lim
n��

�

n
XXT or Rx  lim

m��

�

m
XTX ��	���

The estimate �Rx obtained from empirical data is also referred to as the sample correlation

matrix	

��� The Symmetric Eigenvalue Problem

Decomposition of the noisy Euclidean space into the signal subspace and noise subspace can be
performed by applying the eigendecomposition to the correlation matrix of the noisy signal	

Symmetry simplies the real eigenvalue problem Rq  �q in two ways	 It implies that all
of R$s eigenvalues �i are real and it implies that there is an orthonormal basis of eigenvectors
qi	 These properties are a consequence of ���
 page ����

Theorem ��� �Symmetric Real Schur Decomposition
 If R � IRm�m is a symmetric matrix�

then there exists a real orthogonal matrix of eigenvectors

Q  
�
q� � � � qm

�
� IRm�m ��	���

such that

R  Q�QT  
mX
i��

�iqiq
T
i ��	���

where � denotes a diagonal matrix of eigenvalues

�  diag���� � � � � �m� � IRm�m � �� � � � � � �m � � ��	���
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Sec� ��� The Symmetric Eigenvalue Problem ��

Proof� For the proof
 see ���
 page ����	 �

Equation ��	��� is called an Eigendecomposition of R or that R is orthogonal similar to the
diagonal matrix �	 The set of eigenvalues is called the eigenvalue spectrum	
Now
 let the eigendecomposition of the rank�p correlation matrix Rs ��	��� be given by

Rs  Q�sQ
T  

�
Q� Q�

�� �s� �
� �

��
QT

�

QT
�

�
��	���

where Q� � IRm�p and �s� � IRp�p	 The correlation matrix Rn  ��noiseIm of the additive white
noise process has a single degenerate eigenvalue equal to the variance ��noise with multiplicitym

so any vector qualies as the associated eigenvector
 i	e	
 the eigenvectors Q are una�ected by
the constant diagonal perturbation
 and the eigendecomposition of Rx ��	��� is obtained as

Rx  Q�xQ
T  

�
Q� Q�

�� �s� # ��noiseIp �
� ��noiseIm�p

��
QT

�

QT
�

�
��	���

Here
 the principal eigenvectors Q� associated with the p largest eigenvalues span the signal
subspace hHi and Q� span the noise subspace	 Note
 that the signal�only correlation matrix Rs

can be recovered consistently from this equation
 and the power in the process can be obtained
from the eigenvalues as

rx���  
�

m
tr�Rx�  

�

m
tr��x� ��	���

Thus
 the projection of the vector x onto the signal subspace
 i	e	
 Q�Q
T
� x
 improves the SNR

by a factor n�p
 and the concept is called Principal Component Analysis �PCA�	
This can be illustrated by a simple example
 where a sinusoid �p  �� with unit power is

contaminated by white noise �SNR  � dB�	 The eigenvalue spectrum of Rx � IR����� is shown
in Figure �	�
 and the power spectral densities� of the noisy signal and the projection onto the
signal subspace �p  �� is shown in Figure �	�	 Clearly
 the sinusoid is untouched
 while ��
percent of the noise has been removed	
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�� Chapter �� Signal Subspace Methods

��� Singular Value Decomposition

The eigenanalysis of the correlation matrix is closely related to the Singular Value Decomposition
�SVD� of the data matrix
 and in practice
 the last approach will be used	

The SVD is a robust and widely used computational tool in noise suppression techniques and
other signal processing applications	 It is the most reliable tool for detecting numerical rank�
deciency in a matrix ���
 page ���� and it also provides a basis for the fundamental subspaces
associated with this matrix	 The SVD of a matrix X is dened as follows �see
 e	g	
 Golub and
Van Loan ���
 page ����

Theorem ��� �Singular Value Decomposition
 If X � IRm�n then there exist orthogonal ma�

trices

U  
�
u� � � � um

�
� IRm�m ��	���

V  
�
v� � � � vn

�
� IRn�n ��	���

such that

X  U�VT  
qX

i��

ui�iv
T
i � q  minfm�ng ��	���

where

�  diag���� � � � � �q� � IRm�n � �� � � � � � �q � � ��	���

Proof� For the proof
 see ���
 page ���	 �

The vector ui is the ith left singular vector and the vector vi is the ith right singular vector	
The nonnegative diagonal elements of � are the singular values of X and their set is called the
singular spectrum �see Stewart ����� for a historical survey of the SVD�	

The SVD reveals much about the structure of a matrix	 If the SVD of a rank decient matrix
X � IRm�n is given by Theorem �	�
 and p is dened by

rank�X�  p � q  minfm�ng ��	���

then it is possible to partition the SVD of X as

X  U�VT  
�
U� U�

�� �� �
� �

��
VT
�

VT
�

�
��	���

where U�  �u� � � �up� � IRm�p
 V�  �v� � � � vp� � IRn�p and ��  diag���� � � � � �p� � IRp�p	
The submatrices span four fundamental spaces associated with X

hU�i  spanfu�� � � � �upg  range�X� � �Column space of X� ��	���

hU�i  spanfup	�� � � � �umg  range�X�� ��	���

hV�i  spanfv�� � � � �vpg  null�X�� � �Row space of X� ��	���

hV�i  spanfvp	�� � � � �vng  null�X� � �Null space of X� ��	���

which can be used to compute the orthogonal projections onto the column space and row space
of X
 i	e	


PU�  U�U
T
� and PV�  V�V

T
� ��	���
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Sec� ��� Singular Value Decomposition �	

The decomposed matrix

X  U���V
T
�  

pX
i��

ui�iv
T
i ��	���

can be used to dene the pseudoinverse of X as

X	  V��
��
� UT

� � IRn�m ��	���

which is also given by X	  �XTX���XT when X has full rank	
Finally
 both the ��norm �spectral norm� and the Frobenius norm �the sum of squares of all

elements� are neatly characterized in terms of the SVD

kXk�  max
kzk���

kXzk�  �� ��	���

kXk�F  tr
�
XTX

�
 ��� # � � �# ��p ��	���

The SVD of the data matrix ��	�� may be used to represent the eigendecomposition of the
sample correlation matrix �Rx

�Rx  
�

n
XXT  

�

n
UX�

�
XU

T
X ��	���

or
�Rx  

�

m
XTX  

�

m
VX�

�
XV

T
X ��	���

Thus
 the SVD simultaneously diagonalizes the inner productXTX and the outer productXXT 	
Obviously
 the eigendecomposition of �Rx can mathematically reveal the same information as the
SVD of the data matrix
 but the SVD approach reduces the condition numbers to their square
roots and increases numerical accuracy	 Note that the singular values are unique
 while the
singular vectors will be unique only when ��i is a simple eigenvalue of XTX	
Now
 consider the singular values of the Toeplitz signal matrix S � IR������ representing

a speech frame with ��� samples as shown in Figure �	� for the voiced and unvoiced case

respectively	 Obviously
 speech span the total space due to the stochastic nature of the signals
and there is no well dened gap in the singular spectra	 However
 the quality of the speech is
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Figure ��� Singular spectrum of S � IR������ representing a voiced 	a
 and unvoiced 	b

speech frame with ��� samples�
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�
 Chapter �� Signal Subspace Methods

mainly connected to the formants
 which is given by the pairs of singular values in the rst part
of the singular spectrum
 i	e	
 projection onto a signal subspace can be done without noticeably
degradation of the speech	
Another issue is the di�erence between voiced and unvoiced singular spectra	 The latter has

a smaller singular value spread and will require a larger signal subspace dimension	 That this
observation is fairly general can be seen in Figure �	�
 where amplitude waveform and singular
spectra� versus time are shown for the word �enormously�	 Note that each singular spectrum is
normalized with the largest singular value in order to compare frames with di�erent amplitude
levels	 The only unvoiced sound �s� around sample numbers ����������� can easily be identied
from the small singular value spreads	
A more detailed discussion of the rank decision problem for speech is postponed to Sec�

tion �	�
 however
 the result p  �� will be used in examples from now on	 In the following
subsections
 four SVD related topics important in subspace based noise reduction are considered	
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Figure ��� 	a
 Amplitude waveform of the word �enormously�� 	b
 Normalized singular
spectra S��S�� versus time�

����� Matrix Approximations

The SVD plays an important role when a matrix X is approximated by a matrix of lower rank
p � n in the least squares sense as given by the following theorem �originally due to Eckart and
Young �����

Theorem ��� �Low Rank Matrix Approximation
 Let the SVD of X � IRm�n be given by

X  
�
UX� UX�

�� �X� �
� �X�

��
VT
X�

VT
X�

�
��	���

where UX� � IRm�p� �X� � IRp�p and VX� � IRn�p� If

Xp  UX��X�V
T
X� ��	���

then

min
rank
Y��p

kX
Yk�F  kX
Xpk�F  ��X�p	� # � � �# ��X�n ��	���

where the solution is unique�

���� sample frames with �� sample overlap between adjacent frames�
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Sec� ��� Singular Value Decomposition ��

Proof� Since UT
X�X
Xp�VX  �X� it follows that kX
Xpk�F  ��X�p	� # � � �# ��X�n	 Now

suppose rank�Y�  p for some Y � IRm�n	 Let a matrix Z with orthonormal columns span
null�Y�

YZ  � where ZTZ  I ��	���

then

kX
Yk�F � k�X 
Y�Zk�F  kXZk�F  kUX�XV
T
XZk�F � ��X�p	� # � � �# ��X�n ��	���

�

The theorem is normally proved for the ��norm �see
 e	g	
 Golub and Van Loan ���
 page ����

where the minimum distance is

min
rank
Y��p

kX
Yk�  kX
Xpk�  �X�p	� ��	���

Hence
 in words
 Xp is the best least squares approximation of lower rank p to the given matrix
X
 and Xp will be an estimate of the projection of data onto the signal subspace due to the
relations ��	��� and ��	���	 Note that when X has a specic structure
 say
 Toeplitz
 the rank�p
approximation generally spoil the Toeplitz structure �see Section �	� for a detailed discussion�	

����� Numerical Rank

The rank�revealing property and the related subspace information are among the most valuable
aspects of the SVD	 The singular values can be considered as quantitative measures of the
qualitative notation of rank
 which algebraically is well�determined	 However
 in practice the
e�ects of rounding errors and noisy data typically results in a full rank matrix making numerical

rank determination of the underlying signal a nontrivial problem	
From the above considerations it follows that the numerical rank assigned to matrixX should

depend on a tolerance re�ecting the error level �see
 e	g	
 Bj%orck ��
 page ����

Definition ��� �Numerical Rank
 A matrix X is said to have numerical � �rank equal to p if

p  minfrank�Y� j kX
Yk� � �g ��	���

It follows from this denition
 using Equation ��	��� that a matrix X has numerical � �rank p if
and only if its singular values satisfy

�� � � � � � �p  � � �p	� � � � � � �n ��	���

The denition ��	��� is satisfactory only when there is a well�dened �relative� gap between �p	�
and �p
 i	e	
 if the ratio �p	���p � �	
A gap at p may re�ect a underlying rank degeneracy in a matrix of whichX is a perturbation


or p may simply be a convenient point from which to reduce the dimensionality of a problem	
Note that the numerical rank p is often chosen from the statement �p	���p � �	
The gap as function of p has been computed for a large number of speech frames each

consisting of ��� samples
 i	e	
 the SVD was applied to the signal�only matrix S � IR������	 The
frames were taken from the reference sentence with an ��� sample overlap between adjacent
frames	 In Figure �	�
 the distributions of the gap for each p are shown
 and in general
 they
look like the example plot of p  ��
 except for p  �
 � and perhaps � due to the separation of
the dominant formants	 The signal subspace dimension is normally chosen larger than ��
 so the
gap can be assumed to be negligible	 When �white� noise is added
 the gaps actually disappear
as shown in Figure �	� for a global SNR  �� dB	
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Figure ��� The gap �p����p of ��� speech frames 	S � IR������
 obtained from the
reference sentence by shifting a ��� sample window by �� samples� 	a
 p � �� 	b
 p � �
to ���
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Figure ��� As Figure ��� with white noise added to the reference sentence 	SNR���dB
�

����� Angles Between Subspaces

The angle between subspaces is the tool for validating subspace information
 e	g	
 compare the
signal subspace hVS�i given by the right singular vectors of the signal�only matrix S with the
corresponding subspace hVX�i obtained from the noisy data matrix X	
The relation between canonical angles�vectors and the SVD is given in the following theorem

due to Bj%orck and Golub ���

Theorem ��� �Canonical Angles Between Subspaces
 Assume that the columns of the matrices

VX� � IRn�pX and VS� � IRn�pS �pX � pS� form orthogonal bases for two subspaces� and let

the SVD of VT
X�VS� be

VT
X�VS�  YXCY

T
S � C  diag���� � � � � �pS � ��	���

where � � �� � �� � � � � � �pS � then the canonical angles �i � ��!	��� between range�VX�� and
range�VS�� and the associated canonical vectors wX�i and wS�i are given by

cos �i  �i � WX  VX�YX � WS  VS�YS ��	���
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Sec� ��� Singular Value Decomposition ��

Proof� Follows from the minimax characterization of singular values
 see ���	 �

The quantities cos �i are also denoted the canonical correlations
 and it is often convenient to
introduce ��hVX�i� hVS�i� � IRpS�pS as the diagonal matrix of canonical angles between the
two subspaces given by the arguments	 The columns ofWX andWS form orthogonal bases for
VX� and VS�
 respectively
 and it can be shown that

wT
X�iwS�j  � � i 	 j ��	���

so Theorem �	� can be used to compute an orthonormal basis for the q�dimensional intersection
of subspaces
 i	e	


�  cos ��  � � �  cos �q  cos �q	� � ��	���

range�VX�� � range�VS��  spanfwX��� � � � �wX�qg  spanfwS��� � � � �wS�qg

which follows from the observation that if cos �i  �
 then wX�i  wS�i	
For small angles
 �i is not well determined from cos �i
 so a better choice is to nd sin �i from

a complement based version of Equation ��	��� as shown in ���

�I
VX�V
T
X��VS�  ZXSY

T
S � S  sin� ��	���

The largest canonical angle is also related to the notion of distance between equidimensional
subspaces	 The following denition from ���
 page ��� quanties this notation	

Definition ��� �Distance Between Equidimensional Subspaces
 Let VX  �VX� VX�� and
VS  �VS� VS�� be orthogonal matrices where VX��VS� � IRn�p and VX��VS� � IRn�
n�p��

Then

dist�hVX�i� hVS�i�  kVX�V
T
X� 
VS�V

T
S�k� ��	���

 kVT
X�VS�k�

 kVT
X�VS�k�

 
q
�
 cos� �p

 sin �p

where �p is the largest canonical angle between hVX�i and hVS�i�

Note that the canonical vectors need not be uniquely dened
 but the canonical angles always
are	
In the speech enhancement application
 the noise perturbed data matrix X  S#N dened

by ��	�� is available
 but what is interesting is the projection onto the signal subspace spanned
by the pure signal matrix S	
To illustrate this problem
 consider the ���dimensional signal subspace hVS�i given by the

right singular vectors of the signal�only matrix S � IR������ representing the voiced speech frame
with ��� samples	 The canonical angles between this signal subspace and the one obtained
from the corresponding noisy data matrix using ��� independent white noise realizations and
SNR  � dB are shown in Figure �	��a�	
The distance is large �sin �max  �����
 which can be explained by the missing gab in the

singular spectrum of the clean signal
 i	e	
 the signal and noise subspace are blurred together
when noise is added �see Section �	�	��	 However
 this does not mean that the noisy signal
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subspace is useless
 since all directions vS�i for i close to p contains approximately the same
signal energi	 Another observation is that four angles are close to the machine precision arising
from the fact that two p�dimensional subspaces in a n�dimensional space must have a �p 
 n
dimensional intersection	 Thus
 a part of the noise�free space can be represented exactly	
In Figure �	��a�
 the distance sin �p between the two subspaces is shown as function of the

signal subspace dimension p	 Clearly
 the distance becomes close to one for p  � due to the fact
that this speech frame has four formants
 so there are �small� gaps in the signal�only singular
spectrum for p  �
 �
 � and � �see Figure �	��	
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Figure ��	 	a
 sin�	hVS�i� hVX�i
� where the p � � dimensional right singular sub�
spaces are obtained from S � IR������ representing a voiced speech frame with ��� samples�
and the corresponding noisy data matrix X 	SNR��dB
� Note that sin� is averaged over
��� independent white noise realizations� 	b
 The distance sin �p as function of the signal
subspace dimension p�

����� Perturbation Theory

A possible mix of signal and noise subspace was observed in the last section when the signal�only
matrix S was added noise
 i	e	
 X  S#N	 This can be quantied by the perturbation theory
for singular values�vectors	
First
 consider the perturbation bounds of the singular values �see
 e	g	
 Golub and Van Loan

���
 page �����

Theorem ��� �Perturbation Bounds for Singular Values
 Let X  S # N � IRm�n� m � n�
then

j�X�i 
 �S�ij � kNk� ��	���
nX
i��

j�X�i 
 �S�ij� � kNk�F ��	���

The theorem shows that the singular values of a matrix are well�conditioned with respect to
perturbations
 i	e	
 perturbations of the elements of a matrix produce perturbations of the same

or smaller
 magnitude in the singular values	
Perturbation results for singular vectors can be more or less general
 i	e	
 smaller upper

bounds is given by more complex expressions	 The following theorem taken from Bj%orck ��

page ��� is useful in our context
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Theorem ��	 �Perturbation Bounds for Singular Vectors
 Let X  S #N � IRm�n� m � n�
then

max �sin ��uX�i�uS�i�� sin ��vX�i�vS�i�� � kNk�
�i 
 kNk�  �i ��	���

where �i is the absolute gap between �S�i and the other singular values

�i  min
j ��i

j�S�i 
 �S�jj ��	���

Thus
 if the noise level kNk� is equal to half the gap in the signal�only singular spectrum
 then
the upper bound �i is

�
� 	 For higher noise levels
 the theory is no longer valid due to the possible

swap of signal�only singular vectors when noise is added �see also the analysis in ������	

��� Subspace Methods and the SVD

Bart De Moor has given a detailed derivation in ���� of the algebraic and geometric conditions
that allow us to derive the signal�only model from the SVD of the noisy data matrix	 This
framework is important for understanding subspace methods and is summarized in this section	
Let the data matrix X � IRm�n be dened by ��	�� and assume that the SVD of the rank

decient signal matrix S � IRm�n is given by

S  
�
US� US�

�� �S� �
� �

��
VT

S�

VT
S�

�
��	���

where US� � IRm�p
 �S� � IRp�p and VS� � IRn�p	 Then under the su�cient condition

VT
S��S

T #NT �NVS�  � ��	���

it is shown in ����
 that from the SVD of the noisy data matrix X
 the rank p and the subspaces
hVS�i and hVS�i can be obtained
 while the subspaces hUS�i and hUS�i cannot be recovered

not even asymptotically as m��	 Especially
 one more restrictive splitting of ��	��� is useful
in signal processing and can be formulated in the following three necessary conditions

Assumption ��� �Algebraic and Geometric Conditions


�� The signal is orthogonal to the noise in the sense STN  ��

�� The noise matrix N  �noiseQ� where Q has orthonormal columns NTN  ��noiseIn�

�� There is a distinct gap in the singular values of the matrix X �X�p  �X�p	��

In practice
 Assumption �	��� and �	��� are never satised exactly
 but the SVD is robust with
respect to mild violations of these conditions	 Assumption �	��� makes it possible to separate
hVX�i from hVX�i	 The SVD of X can now be written in terms of the SVD of S

X  S#N ��	���

 US��S�V
T
S� #NVS�V

T
S� #NVS�V

T
S�

 
�
�US��S� #NVS����

�
S� # ��noiseIp�

���� NVS��
��
noise

�
�
� q

��
S� # ��noiseIp �

� �noiseIn�p

��
VT

S�

VT
S�

�

 
�
UX� UX�

�� �X� �
� �X�

��
VT

X�

VT
X�

�
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where the orthogonality of UX depend on the above mentioned assumptions	 This equation is
the empirical counterpart to ��	���
 and from ��	���
 the following conclusions are drawn�

Singular values� There is a distinct gap in the singular spectrum of the matrix X

�X�p  
q
��S�p # ��noise  �X�p	�  �noise ��	���

where �S�p is the smallest value of �S�	 The n 
 p smallest singular values �X� are all equal
and can be interpreted as a noise threshold
 which permits estimating the noise variance and
the singular values of S from

��noise  
�

n
 p

nX
i�p	�

��X�i ��	���

�S�  
q
��

X� 
 ��noiseIp ��	���

This gives one possible denition of the signal�to�noise ratio related to the total space

SNR  

�
��S�� # � � �# ��S�p

n��noise

�
 

kSk�F
kNk�F

��	���

and the one related to the signal subspace

SNR�  

�
��S�� # � � �# ��S�p

p��noise

�
��	���

giving the previously mentioned improvement factor n�p in SNR	

Right singular vectors� The row and null space of S can be recovered exactly from
VS�  VX� and VS�  VX�	

Left singular vectors� It is impossible to recover the original noise�free column space
hUS�i of S since UX� 	 US�	 But the canonical angles f�gp� between hUS�i and hUX�i that
characterize the bias of the column space can be computed from the singular values C of the
product UT

S�UX� �see Section �	�	��

UT
S�UX�  UT

S��US��S� #NVS����
�
S� # ��noiseIp�

���� ��	���

 �S���
�
S� # ��noiseIp�

����

 �Ip # ��noise�
��
S� �

����

 �S���X�  C

where the cosines of the canonical angles are given by the diagonal elements of the diagonal
matrix C

C  diag �cos�� � � � cos�p� ��	���

cii  cos�i  
�r

� #
��noise
��
S�i

� i  �� � � � � p ��	���

Observe that the canonical angles depend on the gap in the singular spectrum ��	��� or equiv�
alently on the signal�to�noise ratio	 In the noise�free case all angles �i are zero	
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The bias of US� is given by the second term in �US��S� #NVS�� or equivalently by the
second term in the column norms of �US��S� #NVS��
 which are the diagonal elements ofq

��
S� # �

�
noiseIp ��	���

This equation is obtained from the orthogonality between the columns of US��S� and NVS�

and is a multivariate generalization of the Pythagorean lemma	 This is also the reason why
the original exact signal matrix S can not be recovered consistently when the exact data are
perturbated by additive noise	

����� Stochastic Signals

The analysis in the last section was based on the algebraic and geometrical assumptions on
S and N that are su�cient to recover the model information about S from the SVD of X	
Assumption �	� on Page �� is never exactly satised
 but it is shown in ���� that
 under some
mild conditions
 the requirements are achieved asymptotically
 as the row dimension m��	
Let the data matrixX � IRm�n be dened by ��	�� and assume that S is a xed deterministic

matrix
 then a statistical version of the algebraic and geometrical conditions are given by

Assumption ��� �Statistical Conditions


�� The elements of N and S are uncorrelated EfSTNg  ��

�� The elements of N are independently and identically distributed with possibly unknown

variance ��noise 	white noise
 EfNTNg  m��noiseIn�

Hence
 in this case

EfXTXg  STS#m��noiseIn ��	���

which satises Assumption �	� on Page ��	 Typically
 in practical experimental situations
 one
cannot average over several experiments with identical S matrix but with di�erent realizations
for N �ensemble average operator Ef�g�	 In one experiment
 however
 it is very well possible
to take a large number of measurements
 so instead consider the sample correlation matrix �see
Section �	�	��

�

m
XTX  

�

m
STS#

�

m
NTN#

�

m
�STN#NTS� ��	���

and extend Assumption �	� with

Assumption ��� �Additional Statistical Conditions


�� The signals si are quasi�stationary

lim
m��



�

m
sTi si

�
 nite and lim

m��



�

m�
sTi si

�
 �

�� The fourth�order moments of the noise are bounded EfN�
iig  nite�
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then it is shown in ���� that the following conditions are satised

plim
m��



�

m
STN

�
 � ��	���

plim
m��



�

m
NTN

�
 ��noiseIn ��	���

plim
m��

�i



�

m
XTX

�
 �i



�

m
STS

�
# ��noise ��	���

where plim is the probability limit �i	e	
 mean values with zero variance�
 and �i�M� is the ith
eigenvalue of the matrix M	 This means that as m�� we gradually approach the geometric
Assumption �	� on Page �� implying that the SVD of X also gradually approaches the SVD in
��	���	
Since the singular values are perfectly conditioned �see Section �	�	��
 it follows from the

perturbation theory for singular values that with this additive noise
 the noise threshold m�noise
will become more and more pronounced for increasingm	 This allows us to estimate the singular
values
 the signal�to�noise ratio
 and the canonical angles from Equations ��	�� � �	���	
In the case of Gaussian noise with zero mean and variance ��noise
 the fourth�order moments

are ���noise �bounded�
 which gives a more restrictive formulation of Assumption �	���

Assumption ��	 �Gaussian Assumption �����


�� The elements of N are Gaussian distributed�

The conclusion is that the strong consistency of estimates of the singular values and the right
singular vectors �short space� only depends on the convergence of the sample correlation matrix
with probability � to its expected value
 which is the case when the fourth�order moments are
bounded and the exact signal is quasi�stationary	
The bias of the left singular vectors �long space� also depends on the orthogonality between

the S and N	 However
 since the noise is uniformly distributed in the entire Euclidean space

the norm of the projected noise matrix kSTN�mk� goes to zero as �noise�

p
m	

This is veried by the example shown in Figure �	� where S � IRm��� represents a voiced
speech frame and N is obtained from a white noise realization �SNR  � dB�	

0 200 400 600 800 1000
0

0.005
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0.015

0.02
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Number of Rows, m

 ||
S

T
N

/m
|| 2

Figure ��
 kSTN�mk� as function of the row dimension m� where S � IRm��� represents
a voiced speech frame withm��� samples� andN is obtained from a white noise realization
	SNR��dB
�
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����� Data Matrix Dimensions

The speech signal can only be considered as a wide sense stationary stochastic process in a short
window
 which gives a limit on the number of data points K to construct the Toeplitz data
matrix X � IRm�n ��	��	 Typically
 this number equals ��� � ��� samples at � kHz sampling
rate ���� samples is used here due to the GSM specication�	
Now the problem is
 which choice of matrix dimension �m�n� is best subject to the constraints

K  m# n
 � and m � n  p	

� The statistical analysis in Section �	�	� suggests choosing m as large as possible to obtain
an isotropic noise spectrum and to make the signal data orthogonal to the noise	

� Another issue is to have a large n
 because the improvement in SNR obtained by the signal
subspace approach is proportional to n�p
 since the signal subspace dimension p is xed

and the noise is evenly distributed in the entire n�dimensional space �see Section �	��	

� Finally
 n should be chosen small to reduce computational complexity in performing SVD
of the data matrix	

Consider K  m # n 
 � as a constant
 then the number of elements in X is given by the
quadratic function

mn  
n� # �K # ��n ��	���

which has maximum �K # ����� for n  �K # ���� and decreases to K for n  �	 Thus
 as
n� p
 the signal energy

kSk�F  
pX

i��

��S�i  mn��s � ��s  Efs�kg ��	���

decreases quadratically
 i	e	
 the signal�only singular values �S�i decreases �see e	g	
 the related
problem in ������	 However
 as n decreases
 m and thereby the noise singular values ��noise 
m��noise increases	 This implies that the gap in the singular values ��	��� narrows enlarging the
bias ��	��� of the signal subspace estimate hUX�i
 so n should not be too small	
As a compromise the following dimensions are often chosen

n  �p � m  K 
 �p# � ��	���

As discussed in Section �	�
 a common order of the speech model is around �� giving the following
matrix dimensions

n  �� and m  ��� ��	���

In practice
 the speech signal matrix S has full rank
 but the above theory is still valid due
to the low signal energy in the noise subspace	 This can be observed in Figure �	��a�
 where
the rst �� singular values of S representing a voiced speech frame with ��� samples are shown
as function of the column dimension n	 Figure �	��b� shows the average singular values of the
corresponding noisy data matrix using ��� independent white noise realizations and SNR  ��
dB	 Clearly
 the smallest singular values are now dominated by noise for decreasing n
 and the
subspaces are more blurred together	 Another interesting thing that can be seen from these
gures is the pairing of the singular values
 each representing a formant
 i	e	
 for n  ��
 the ���
most important formants will typically be in the signal subspace	
For the chosen column dimension
 it is necessary to check whether the row dimension is large

enough to satisfy the conditions ��	�� � �	���	 As shown in Figure �	��
 this can be done by
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Figure ��� 	a
 The �rst � singular values of S representing a voiced speech frame with
��� samples� 	b
 The average singular values of the corresponding noisy data matrix using
��� independent white noise realizations and SNR���dB�

observing the canonical angles between the singular subspaces of the signal�only matrix S and
the noisy data matrix X as function of the row dimension m	 Here
 the matrix S � IRm���
represents a voiced speech frame with m # �� samples
 and a white noise realization is added
�SNR  � dB� to obtain the data matrix X	 The signal subspace dimension is p  ��	
If all assumptions are satised
 the right singular subspace based values sin��hVS�i� hVX�i�

should converge to zero
 and the left singular subspace based values cos��hUS�i� hUX�i� should
converge to the theoretical result ��	���	 From Figure �	�� is observed that both quantities have
converged satisfactory for m  ���
 and the error between the estimated and theoretical values
even for large m rely on the fact that S is not rank decient and that all the assumptions in
Section �	�	� are not exactly satised	
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Figure ���� Canonical angles between signal subspaces 	dimension p � ��
 obtained from
the signal�only matrix S � IRm��� representing the voiced speech frame with m��� samples
and the corresponding noisy data matrix X added white noise 	SNR��dB
� 	a
 The angles
between the right singular subspaces� i�e�� sin�	hVS�i� hVX�i
� which should converge to
zero� 	b
 	solid
 The angles between the left singular subspaces� i�e�� cos�	hUS�i� hUX�i
�
which should converge to the theoretical result 	����
� 	dashed
 The error jS��X� �
cos�j between estimated and theoretical values�
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��� Eigen	lters

The signal subspace approach can be interpreted as lter operations
 i	e	
 in the frequency
domain
 as an alternative to the standard linear algebra formulation	
A Finite Impulse Response �FIR� lter whose impulse response has coe�cients equal to the

elements of an eigenvector of the correlation matrix of the signal under consideration is called an
eigen�lter ����
 and as discussed in ���
 Page ����
 the eigenvalue problem is linked to an optimum
FIR lter
 with the optimization criterion being that of maximizing the output signal�to�noise
ratio �SNR�	
Consider a linear FIR lter with coe�cient vector w � IRn
 and assume that the input

sequence xk  sk # nk is a wide�sense stationary stochastic process with correlation matrix
Rx  EfxxT g � IRn�n as dened by ��	���	 Then the average power of the lter ouput can be
separated in a signal�only and noise part
 respectively

Ps  w
TRsw ��	���

Pn  ��noisew
Tw ��	���

giving the output signal�to�noise ratio

SNRout  
Ps

Pn
 

�
�

��noise

��
wTRsw

wTw

�
��	���

where the last factor is the Rayleigh quotient of the coe�cient vector w	 Thus
 the optimum
ltering problem may be stated as follows

max
w
SNRout subject to wTw  � ��	���

and the solution follows directly from the minimax eigenvalue theorem ���
 page ����
 i	e	


wo  qmax and SNRout�max  
�s�max

��noise
��	���

where qmax is the eigenvector associated with the largest eigenvalue �s�max of the correlation
matrix Rs	 Such a procedure represents an example of principal component analysis	
Moreover
 there is an interesting relation between the power spectral density "x��� of the

stochastic process x and the eigenvalues of Rx	 This can be seen by using the fact that the
correlation function is the inverse DFT of the power spectral density �PSD�
 i	e


rx�l 
 k�  
�

�	

Z �

��
"x���e

j�
l�k�d� ��	���

in the expanded form of the eigendecomposition

�x�i  q
T
i Rxqi ��	���

 
nX

k��

nX
l��

qi�k rx�l 
 k� qi�l

 
�

�	

Z �

��

�
nX

k��

qi�ke
�j�k

��
nX
l��

qi�le
j�l

�
"x���d�

 
�

�	

Z �

��
jQi���j�"x���d�
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where the discrete Fourier transform of qi is denoted by

Qi���  
nX

k��

qi�ke
�j�k ��	���

Thus
 the eigenvalue �x�i is just the power of the output of the eigenlter Qi���
 and ��	���
can be viewed as a frequency�domain expression of the eigendecomposition of Rx
 i	e	
 it is
possible to illustrate the ltering aspects of subspace methods by plotting the magnitude of
each eigenlter	 Note that since the n eigenlters are mutually orthogonal
 the n output signals
will be uncorrelated	
As an illustrative example
 consider the voiced speech frame with ��� samples organized in

the Toeplitz matrix S������
 then the eigenlters can be estimated by the right singular vectors
VS of S �see Section �	��	 The rst p  �� eigenlters corresponding to a chosen signal subspace
dimension are given by VS� and the magnitude spectra are shown in Figure �	��
 together with
the one obtained from the noisy matrix X using a single white noise realization and SNR  �
dB	
Clearly
 the bandpass characteristic of the eigenlters of the clean signal are concentrated

near the rst three formants �see Figure �	��a��
 where especially the mainlobes of the two rst
lters are centered around the rst formant ���� Hz�
 and the next two lters have mainlobes
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Figure ���� 	solid
 The �rst � eigen�lters VS� of S � IR������ representing a voiced
speech frame with ��� samples� 	dashed
 The corresponding eigen�lters obtained from the
noisy data matrix X using a white noise realization and SNR��dB� 	dotted
 The canonical
vectors 	�lters
 associated with the ��dimensional intersection of the clean and noisy signal
subspace�
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centered around the second formant ����� Hz�	 For the remaining eigenlters
 the magnitude
spectra are more complex	

The related example in Section �	�	�
 showing the subspace angles between the clean and
noisy signal subspace
 indicates that in the noisy case
 the eigenlters corresponding to the
dominant eigenvalues will be close to the true ones
 and that the last few eigenlters will be
totally di�erent	 This is conrmed by Figure �	��
 where
 e	g	
 lter number �� and �� have
mainlobes near the fourth formant	

On the rst four plots in the Figure
 the canonical vectors �lters� associated with the
��dimensional signal subspace intersection �see Figure �	��a�� are shown �without ordering�
 and
obviously the combined lters will match the one obtained from the four dominant eigenlters	
Thus� a subspace intersection means that the most important part of the noise�free space can be

represented exactly 	 Note that the canonical vectors form a basis for the intersection and will in
general not match the individual eigenlters	

If the noisy eigenlters are averaged over ��� independent white noise realizations as shown
in Figure �	��
 then all the mainlobes are close to the one obtained from the clean signal	
However
 since the eigenvectors have length one
 the average of the ith eigenlter �vX�i will in
general satisfy Efk�vX�ik�g � �	 This can be observed in the gure as a lower magnitude
 where
the level indicates the variance on the eigenlter estimate	
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Figure ���� 	solid
 The �rst � eigen�lters VS� of S � IR������ representing a voiced
speech frame with ��� samples� 	dashed
 The corresponding averaged eigen�lters ob�
tained from the noisy data matrix X using ��� independent white noise realizations and
SNR��dB�
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��� Colored Noise

In the discussed subspace techniques
 it has been assumed that the noise is white	 If the additive
noiseN � IRm�n is colored
 NTN 	 ��noiseIn
 then a prewhitening transformation can be applied
to the data matrix ���
 page ����	

Assuming the sample correlation matrix �Rn of the noise is known
 then the corresponding
Cholesky factorization or QR decomposition is given by

m�Rn  N
TN  RTR or N  QR ��	���

where R � IRn�n is the upper triangular Cholesky factor and Q � IRm�n has orthonormal
columns QTQ  In	 Thus
 assuming that N has full rank such that R is nonsingular
 the
signal and noise subspaces can still be recovered by considering the SVD of the prewhitened

data matrix

XR��  SR�� #NR��  SR�� #Q ��	���

which satises Assumption �	� in the previously analysis in Section �	�	 This transformation
corresponds to a ltering operation and does not change the nature of the linear model for the
speech signal ��	�� while it diagonalizes the correlation matrix of the noise �QTQ  In� such
that ��noise  �	 Note that in certain applications
 the correlation matrix of the noise is rank
decient	 However
 as shown in ����
 it is still possible to dene a correct prewhitener in this
case	

The consequence of prewhitening in signal subspace methods is illustrated with an example

where the reference sentence is contaminated by an AR��
��	�� noise process �SNR  � dB�	
The ��th order LPC�based magnitude spectra for clean speech frames consisting of ��� samples
and the one obtained after prewhitening with the rst noise frame are considered	 Figure �	��
shows an voiced and unvoiced frame together with the magnitude spectra of the noise process	
Obviously
 the magnitude of the prewhitened speech are rescaled in accordance with the noise
spectrum
 i	e	
 the lower part of the spectrum is attenuated compared to the upper part	 This
e�ect is even more clear in Figure �	��
 where magnitude spectra versus time for the rst part
of the reference sentence are shown before and after prewhitening	
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Figure ���� 	a
 LPC�based magnitude spectra for voiced speech frame 	solid
� AR	������

noise process 	dashed
 and the speech prewhitened with the noise frame 	dash�dot
� 	b

As 	a
 using unvoiced speech frame�
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Figure ���� 	a
 LPC�based magnitude spectra versus time for the �rst part of the reference
sentence� 	b
 As 	a
 after prewhitening with AR	������
 noise process 	SNR��dB
�

In signal subspace methods
 the dominant part of the magnitude spectrum is considered as
the low�rank clean signal contaminated by noise
 so in general
 the e�ect of prewhitening is a

	maybe large
 bias of the signal subspace	
In the speech enhancement application
 it is assumed that the noise matrix N can be esti�

mated in periods without speech
 so if the noise is stationary
 then estimation can be performed
from an initial segment of the noisy signal which was recorded before speech was present	 When
the noise is not stationary
 a speech�noise detector must be used
 and the correlation matrix of
the noise is estimated and updated from nonspeech frames of the noisy signal	 Thus
 the noise
reduction problem can always be converted to the case with uncorrelated or white noise	
The requirement of stationary noise for at least a sentence length �about � s� has been tested

for noise �unit power� measured in a car cabin �see Figure �	���	 Segments of noise is organized
in a data matrixN � IR������
 and the singular spectrum is found before and after prewhitening
with the rst noise frame as shown in Figure �	��	 All the singular values of the latter spectrum�

is close to the theoretical value �noise  �
 and independent of the time
 i	e	
 prewhitening can

be expected to work well in this environment 	 Note
 that before prewhitening
 the condition
numbers of N are less than ���� with mean value around ���	
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Figure ���� 	a
 Singular spectra versus time for noise measured in car cabin 	see Fig�
ure ��
 and normalized to have unit power� 	b
 The singular spectra after prewhitening
with the �rst noise frame�

�This result closely match a similar experiment using the random generator in Matlab�
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����� Quotient Singular Value Decomposition

One problem concerning the prewhitening transformation
 is the numerical computation of the
SVD of XR��	 An explicit formation of the inverse R�� followed by the explicit calculation of
the product XR�� may result in dramatic loss of numerical accuracy in the data	 This can be
avoided by using the quotient SVD
 which delivers the required factorizations without forming
the quotients and products	 Another issue
 which may be even more important in practice
 is
that it is very complicated to update the matrix XR�� when X and N are updated
 e	g	
 in a
recursive application	 Therefore
 it is better to use a decomposition of the matrix pair �X�N�
instead
 which allows each matrix to be updated individually	
One possible generalization of the SVD to any two matrices X � IRmX�n andN � IRmN�n is

the Quotient Singular Value Decomposition �QSVD�
 which is also called the generalized SVD
���
 page ����	 While the ordinary SVD was discovered more than ��� years ago
 the QSVD was
rst studied by Van Loan ����� and Paige and Saunders ����	 Thus
 the QSVD is much more
recent and is only one member of an innite set of generalizations of the SVD for any number
of matrices ����	

Theorem ��
 Quotient Singular Value Decomposition� If X � IRmX�n with mX � n and

N � IRmN�n� then matrices UX � IRmX�n and UN � IRmN�n exist with orthonormal columns

and an invertible Z � IRn�n such that

X  UXCZ
�� ��	���

N  UNSZ
�� ��	���

where

C  diag�c�� � � � � cn� � � � c� � � � � � cn � � ��	���

S  diag�s�� � � � � sq� � � � sq � � � � � s� � � � q  minfmN � ng ��	���

and

CTC# STS  In ��	���

Proof� For the proof
 see ���
 page ����	 �

The quotients 
i  ci�si are called the quotient singular values of the matrix pair �X�N�

�  CS��  diag

�
c�
s�
� � � � �

cq
sq

�
�

c�
s�

� � � � � cq
sq

� � ��	���

and the matrix Z is called the quotient singular matrix of the matrix pair �X�N�	 It is often
convenient to dene �T  Z��
 i	e	


�TZ  In ��	���

XTXZ  �CTC ��	���

NTNZ  �STS ��	���

If the QSVD of a rank decient matrix X � IRmX�n and a full rank matrix N � IRmN�n is
given by Theorem �	�
 and p is dened by

rank�X�  p � n ��	���
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Sec� ��� Colored Noise ��

then it is possible to partition the QSVD of �X�N� as follows

X  
�
UX� UX�

�� C� �
� �

��
�T
�

�T
�

�
��	���

N  
�
UN� UN�

�� S� �
� I

��
�T
�

�T
�

�

where UX� � IRmX�p
 UN� � IRmN�p
 C� � IRp�p
 S� � IRp�p and �� � IRn�p	 Thus
 like the
SVD
 the QSVD can reveal the rank but of the matrix XN	
 where N	 is the pseudoinverse of
N
 i	e	


XN	  
�
UX� UX�

�� C�S
��
� �
� �

��
UT
N�

UT
N�

�
��	���

Another useful formulation of the QSVD is obtained from the QR�decomposition of �
 i	e	


�T  LVT and

�
�T
�

�T
�

�
 

�
L��V

T
�

L��V
T
� # L��V

T
�

�
��	���

where L � IRn�n is lower triangular and V � IRn�n is orthogonal	 The partitioning of L and V
are similar to ��	���	

����� Subspace Methods and the QSVD

Now
 consider the situation where the data matrix X � IRm�n dened by ��	�� consists of the
low�rank signal matrix S � IRm�n added colored noise
 and assume that the noise�only matrix
N � IRm�n can be estimated in periods without speech	
Using the QR decomposition of N ��	��� and Theorem �	�
 it is observed that

XR��  XN	Q ��	���

 X�NTN���NTQ

 UXCZ
���Z�TSTUT

NUNSZ
�����Z�TSTUT

NQ

 UXCS
��UT

NQ

 UX��U
T
N

where the matrix �UN is orthogonal and can be rewritten by use of ��	��� and ��	��� as

�UT
N  U

T
NQ ��	����

 �S��ZTNT �Q

 �RZS���T

Hence
 working with the QSVD of �X�N� and the matrix Q is mathematically equivalent to
working with the SVD of the prewhitened data matrix XR��	 It is important to note that when
the rank of N is less than n
 then the SVD of XN	 does not always correspond to the QSVD
��
 page ����	
In the white�noise case withRTR  ��noiseIn
 the QSVD yields the ordinary SVD of X which

can be seen from ��	��� with R  �noiseIn
 i	e	


X  UX��U
T
N�noise ��	����

 UX���noise��S
���noiseZ

T �
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�� Chapter �� Signal Subspace Methods

Given the dimension p � n � m of the signal subspace
 a similar partitioning of the QSVD
as dened by ��	��� is

X  
�
UX� UX�

�� C� �
� C�

��
�T
�

�T
�

�
��	����

N  
�
UN� UN�

�� S� �
� S�

��
�T
�

�T
�

�

and the prewhited data matrix XR�� or equivalently the normalized data matrix XN	 is

XN	  
�
UX� UX�

�� C�S
��
� �

� C�S
��
�

��
UT
N�

UT
N�

�
��	����

Note
 that in the noise�only case with X  N
 all the quotient singular values are equal to one

i	e	
 
�noise  �
 so in general the n
p smallest quotient singular valuesC�S

��
� in Equation ��	����

will be close to one depending on the matrix dimensions and the statistical structure of the pure
signal matrix S	

��
 Summary

Basic subspace techniques have been introduced
 and the theory is illustrated by speech related
examples
 which brings its own surprises and insights	
It is shown that no gab can be expected in the singular spectrum of noisy�clean speech

frames
 i	e	
 there is a high probability of a subspace swap when noise is added	 However
 this
is not crucial for speech signals since the dimension of the signal subspace is chosen at a point
with almost equal singular values	
The conditions that allow us to derive the speech signal from the SVD of the noisy data

matrix has been discussed
 and the conclusion is that both matrix dimensions should approach
innity in order to obtain the best performance	 This is not possible due to the non�stationarity
of speech signals
 and considerations concerning a proper choice of dimensions are given	
The signal subspace approach has been interpreted as lter operations
 i	e	
 in the frequency

domain
 as an alternative to the standard linear algebra formulation	 This is very illustrative
and shows that subspace methods can be viewed as a number of bandpass lters	
It has been shown that for a prober choice of signal subspace dimension
 the signal subspaces

obtained from the clean signal and the corresponding noisy signal will have an intersection
 which
means that the most important part of the noise�free space can be represented exactly	
The case with colored broad�band noise have been considered
 and it is illustrated that the

e�ect of prewhitening is a noise dependent bias of the signal subspace	 Furthermore
 prewhiten�
ing is based on the assumption of stationary noise
 and it is shown that this is satised for
noise measured in a car cabin	 Finally
 it is discussed how combined prewhitening and subspace
decomposition can be formulated by means of the QSVD	
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Chapter �

Linear Signal Estimators

One approach for nonparametric speech enhancement is linear estimation of the clean signal
from the noisy signal using signal subspace methods	 Thus
 the vector space of the noisy
signal is decomposed into a signal subspace and a complementary orthogonal noise subspace

and estimation is performed from vectors in the signal subspace only
 since the orthogonal
noise subspace contains no �or in practice
 little� signal information	 Obviously
 strategies for
estimating the signal subspace dimension must be considered	

Since speech signals are nonstationary
 a time varying estimator must be used	 Such an
estimator provides nonstationary residual noise with annoying noticeable tonal characteristics
referred to as musical noise �����	 The most well known example for this situation is the musical
noise obtained in the spectral subtraction approach	 For this reason
 both the level and structure
of the residual noise must be taken into account
 when designing a noise reduction system	
Several estimators from the litterature are presented in a unied notation
 and practical

implementations based on the data matrix are given	 Comparisons between the di�erent es�
timators provide information on the improvement in the enhanced speech quality that can be
gained with each estimator
 and the practical behavior of the estimators are compared with
the optimal ones	 Finally
 a lter formulation and frame based implementation of the speech
enhancement methods are discussed
 where a number of practical aspects are considered	

��� Linear Signal Estimators

Di�erent estimators are summarized here
 and a detailed treatment of each one follows in the
next subsections	 Comparison and discussion of the estimators is postponed to the last two
subsections	

A straightforward and simple solution to the estimation problem is obtained by use of the
Least Squares �LS� criterion
 which minimizes the squared tting errors between the noisy mea�
surements x � IRm dened by Equation ��	�� and the linear low order speech model s  H�

dened by Equation ��	��

min
H��

�x
H��T �x
H�� ��	��

or the equivalent matrix formulation using the data matrixX � IRm�n dened by Equation ��	��

and a low rank�p model Sp representing the speech
 i	e	


min
rank
Sp��p

tr
�
�X
 Sp�T �X
 Sp�

�
��	��

The solution is easily obtained without any statistical knowledge about the signals	
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�
 Chapter �� Linear Signal Estimators

Assume now that the estimator �s � IRm of the pure signal vector s is constrained to be a
linear function of the measurement vector x � IRm

�s  Wx ��	��

whereW � IRm�m is a lter matrix
 then the Linear Minimum Mean�Squared Error �LMMSE�
estimation problem is to nd the matrixW that minimizes the mean�squared error between s
and the linear estimator �s

min
W
trEf�Wx 
 s��Wx
 s�T g ��	��

This theory produces the Wiener�Hopf equations as the fundamental design equations
 i	e	
 the
correlation �or second order� properties of the noisy signal and the noise process are required	
In practice
 this information is not available and has to be estimated from the noisy data	 Un�

der stationary and ergodic conditions
 the ensemble average operator Ef�g can be implemented
as the mean value of several time shifted vectors
 i	e	
 by use of the data matrix X � IRm�n and
the signal�only matrix S � IRm�n
 c	f	
 Equation ��	��	 This gives the Minimum Variance �MV�
estimator as dened in ����

min
W
tr
�
�XW 
 S�T �XW 
 S�

�
��	��

which converges asymptotically to the LMMSE estimator as the number of vectors m�� �see
Section �	�	��	 Note that �S  XW andW � IRn�n in this case	
The residual signal r  �s 
 s � IRm minimized in the above methods represents signal

distortion rs and residual noise rn

r  �s
 s ��	��

 �W 
 Im�s#Wn

 rs # rn

Since both terms can not be simultaneously minimized
 a Time Domain Constrained �TDC�
estimator is proposed by Y	 Ephraim and H	 L	 Van Trees in ����
 which keep the residual noise
energy ��n  trEfrnrTng below some threshold while minimizing the signal distortion energy
��s  trEfrsrTs g

min
W

��s subject to ��n � �m��noise ��	��

where � � � � � and ��noise is the noise power	 For speech signals
 this estimation criterion will
control the more perceptually harmful component
 i	e	
 the nonstationary residual noise �musical
noise� that is intolerable by the human auditory system
 while minimizing the signal distortion	
The optimal linear estimator in this sense is a Wiener lter with adjustable input noise level	
The Spectral Domain Constrained �SDC� estimator ���� is a generalization of the TDC es�

timator which minimizes the signal distortion while keeping the energy of the residual noise in
each spectral component
 dened by the eigenlters qi
 below some given threshold

min
W

��s subject to

�
EfjqTi rnj�g � �i�

�
noise � i  �� � � � � p

EfjqTi rnj�g  � � i  p# �� � � � �m
��	��

where p is the signal subspace dimension	 This strategy allows shaping of the spectrum of the
residual noise
 e	g	
 making it similar to that of the speech signal	 Thus
 more noise is permitted
to accompany high energy spectral components of the clean signal	 The optimal lter in this
sense has a structure that contains all the above methods	
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Sec� ��� Linear Signal Estimators ��

The empirical versions of the TDC and SDC estimators are obtained from the matrix for�
mulation of Equation ��	��
 i	e	


R  �S
 S ��	��

 S�W 
 In� #NW
 RS #RN

so in the TDC case
 the following denitions of the squared residual noise error e�n  tr�R
T
NRN �

and signal distortion error e�s  tr�R
T
SRS� are used in the constrained minimization

min
W

e�s subject to e�n � �n��noise ��	���

and similarly in the SDC case

min
W

e�s subject to

�
kRNvX�ik�� � �i�

�
noise � i  �� � � � � p

kRNvX�ik��  � � i  p# �� � � � � n
��	���

where fvX�ign� are the right singular vectors of X	
Furthermore
 if a known probability distribution of the involved signals is assumed
 the

theory of Maximum Likelihood �ML� can be used	 The
 in general
 non�linear optimization
problem of tting a model to noisy measurements turns out to be linear in the case of Gaussian
noise
 i	e	
 in the observation model x � N �H��R�	 However
 then the problem is equivalent to
the LS problem in the case of white noise
 or weighted LS in the case of colored noise	

����� Maximum Likelihood Estimator

A Maximum Likelihood �ML� principle to estimate the signal subspace and the clean signal
from the noisy data matrix is given in ���
 page ����
 when the noise vectors �the columns of
the noise�only matrix� are zero�mean
 independently and identically Gaussian distributed	 The
independence is not satised for the Toeplitz data matrix ��	�� due to the structure of time
shifted column vectors
 but the method is summarized to show the connection with the methods
in the next sections	 However
 in the array processing case where the columns in the data matrix
correspond to di�erent sensors
 the independence is typically satised	

Let X � IRm�n be the noisy data matrix dened by Equation ��	��
 where the columns
are a sequence of n measurement vectors fxign� of dimension m with observation noise vectors
fnign� drawn independently from an N ��� ��noiseI� distribution	 Then
 the probability density
function fxi�xi� of the ith vector xi is N �si� ��noiseI�
 and the joint distribution of fxign� has
density fx����xn�x�� � � � �xn� given by

fx����xn�x�� � � � �xn�  
nY
i��

fxi�xi� ��	���

 ��	��noise�
�mn�� exp

�

 �

���noise

nX
i��

�xi 
 si�T �xi 
 si�


The log�likelihood function for fxign� is

L  lnfx����xn�x�� � � � �xn�  
mn

�
ln��	��noise�


�

���noise

nX
i��

�xi 
 si�T �xi 
 si� ��	���
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�� Chapter �� Linear Signal Estimators

The maximum likelihood method for identifying the signal rst assumes that the p�dimensional
signal subspace hHi in the linear statistical model si  H�i is known	 Then the maximum
likelihood estimate �SML of the clean signal matrix will maximize the log�likelihood under the
constraint �HTS  �
 i	e	


max
S

L subject to �HTS  � ��	���

or equivalently
min
S
�
���noiseL� subject to ��HTS  � ��	���

The solution is found by forming the following Lagrangian

L  constant #
nX
i��

�xi 
 si�T �xi 
 si� # �
nX
i��

�Ti
�HT si ��	���

and minimize L with respect to si	 The gradient equation is
�L
�si

 
��xi 
 si� # ��H�i  � ��	���

which gives
si  xi 
 �H�i ��	���

where �i  ��i�� � � � � �i
n�p�� contains the Lagrangians for the columns of �H	 The constraints
are enforced by substitute ��	��� into ��	��� and solving for �i

�i  ��H
T �H��� �HTxi ��	���

Finally
 the maximum likelihood estimate �si is given by

�si  �I
 �H��HT �H��� �HT �xi  �I
P�H
�xi  PHxi ��	���

where PH is the projection onto the signal subspace hHi	
Now
 assume �H unknown
 then the likelihood must be further maximized with respect to �H


i	e	
 using the estimate �si in ��	��� and ignoring constants
 the resulting log�likelihood function
is

L  
 �

���noise

nX
i��

xTi P�H
xi  
 n

���noise
tr



�

n
XXTP�H

�
 
 n

���noise
tr
�
�RxP�H

�
��	���

If the eigendecomposition ��	��� of the sample correlation matrix �Rx � IRm�m is partitioned as

�Rx  
�

n
XXT  

�

n

�
UX� UX�

�� ��
X� �
� ��

X�

��
UT

X�

UT
X�

�
��	���

where UX� � IRm�p and �X� � IRp�p
 then L is bounded as follows

L  
 �

���noise
tr
�
UX�

�
XU

T
XP�H

�
� 
 �

���noise

mX
i�p	�

��X�i ��	���

for any rank �m 
 p� projector P�H
	 The maximum is achieved for a projector P�H

onto the
subspace hUX�i
 so the resulting maximum likelihood approximation of the signal subspace is
given by

�HML  UX� � �SML  UX�U
T
X�X ��	���

The maximum likelihood approximation of the signal subspace is based on statistical reasoning
of the noise distribution
 and the problem only has a simple solution in the case of �white�
Gaussian noise	 The obtained solution is identical to the least squares approximation discussed
in the next section
 indicating the intimate connection between the two principles when assuming
Gaussian errors	
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Sec� ��� Linear Signal Estimators ��

����� Least Squares Estimator

The idea behind Least Squares �LS� is to t a model to measurements in such a way that the
tting errors between the measurements and the model are minimized	 Least squares may be
used in linear or nonlinear modelling
 and unlike the maximum likelihood method no statistical

assumptions are made of the additive noise	

Suppose X � IRm�n is the measurement matrix dened by ��	��
 where the columns of S
are known to lie in the rank�p subspace hHi
 but the subspace is unknown	 The problem is to
estimate the signal subspace hHi and use it to estimate the desired signal S	 The squared tting
error between X and S  H� is dened as

e�  kX
H�k�F ��	���

 tr
�
�X
H��T �X
H��

�
 

nX
i��

�xi 
H�i�
T �xi 
H�i�

which is minimized to obtain the least squares approximation	 First assume that hHi is known

then the gradient of e� with respect to � is

�e�

��
 
�

	e�

	��
� � � 	e�

	�n

�
 
�

�HT �x� 
H��� � � � 
�HT �xn 
H�n�

�
��	���

The least squares estimate equates the gradient to zero to produce the solutions

��LS  �H
TH���HTX ��	���

�SLS  H��LS  H�H
TH���HTX ��	���

which of course satises the normal equations HTH�  HTX	 Therefore
 if H has full rank as
in our case
 there is a unique LS solution	 More generally
 whatever the rank of H
 the matrix
��LS  H	X is an LS solution
 and it is the solution of minimal F �norm	 Here
 H	 is the
pseudo�inverse of H �given by H	  �HTH���HT when H has full rank�	

Now assume H unknown
 then the squared error e� must be further minimized with respect
to H	 Using the estimate ��LS in ��	��� gives

e�  tr
�
�X
H�HTH���HTX��X
H�HTH���HTX�T

�
��	���

 tr
�
P�HXX

TP�H

�
where P�H is the projection onto the noise subspace h�Hi	 Let the eigendecomposition of the
sample correlation matrix �Rx � IRm�m be dened by Equation ��	���
 then e� is bounded as
follows

e�  tr
�
P�HUX�

�
XU

T
XP�H

�
�

mX
i�p	�

��X�i ��	���

for any rank �m 
 p� projector P�H	 The minimum is achieved for a projector P�H onto the
subspace hUX�i
 so the resulting least squares approximation of the signal subspace is

�HLS  UX� � �SLS  UX�U
T
X�X ��	���
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The relationship expressed in ��	��� shows that the parameters in the model matrix H
 e	g	

frequencies and damping factors
 need not be explicitly known in implementing the LS estimator	
An equivalent formulation of ��	��� is obtained by using the SVD of the measurement matrix X

�SLS  UX��X�V
T
X�  XVX�V

T
X� ��	���

This well�known result is also obtained without assuming a linear model for S
 when X is
approximated by a matrix of lower rank p � n in the least squares sense �see Section �	�	��	
The estimate is commonly referred as the truncated SVD approach and is
 e	g	
 used in the
SVD�based method for estimating the signal components of a noisy data vector proposed by
Tufts
 Kumarasan and Kirsteins in ����
 ���
 ��� and in the SVD�based method for speech
enhancement proposed by Dendrinos
 Bakamidis and Carayannis in ����	

����� Linear Minimum Mean�Squared Error Estimator

The Linear Minimum Mean�Squared Error �LMMSE� approach minimizes the mean�squared
error between the clean signal and a linear function of the measurements	
Let �s  Wx � IRm be a linear estimator of the pure signal vector s
 where x � IRm is dened

by Equation ��	�� andW � IRm�m is a lter matrix
 and let
��r  trEfrrT g ��	���

denote the energy of the residual signal r  �s
 s ��	��	 Then the LMMSE estimator is obtained
from

min
W

��r ��	���

which minimizes the mean�squared error between s and �s	 If Asumption �	� on Page �� is
satised
 i	e	
 the noise process is uncorrelated with the clean signal
 then the energy term is
given by

��r  trEf�Wx
 s��Wx 
 s�T g ��	���

 tr
�
WRxW

T #Rs 
WRs 
RsW
T
�

Thus
 the lter matrixW is a stationary feasible point of ��r if it satises the gradient equation

���r
�W

 �WRx 
 �Rs  � ��	���

which has the Wiener�Hopf equations as solution
 i	e	
 the optimal lter is a Wiener �lter

WLMMSE  RsR
��
x ��	���

 Rs�Rs # ��noiseIm�
��

 �Rx 
 ��noiseIm�R
��
x

where Equation ��	��� has been used	 Applying the eigendecompositions ��	��� and ��	��� to
��	���
 the optimal linear lter can be rewritten as

WLMMSE  Q��s���s� # ��noiseIp�
��QT

� ��	���

 Q��Ip 
 ��noise�
��
x� �Q

T
�

Hence
 the LMMSE estimator of s is given by �sLMMSE  WLMMSEx	 Note
 that the method
requires the correlation function of the noisy signal and the noise variance ��noise	
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����� Minimum Variance Estimator

One empirical version of the LMMSE approach is the Minimum Variance �MV� estimate as
dened by Bart De Moor in ����	 It is the best estimate of the noise�free matrix that can be
obtained by making linear combinations of the elements in the noisy data matrix
 i	e	
 the MV
estimate is the center of a matrix ball of equivalent signal reconstructions	 This set of matrices
represents the uncertainty in the estimation of the original signal due to the bias of the left
singular matrix �see Section �	��	
Suppose X � IRm�n is a measurement matrix dened by ��	��
 with S satisfying ��	��
 then

the minimum variance problem is to nd the lter matrixW � IRn�n that minimizes
min
W

kXW 
 Sk�F ��	���

Assume that S is known
 then the minimum is obtained by zero the derivatives of the squared
error

e�r  kXW 
 Sk�F ��	���

 tr
�
�XW 
 S�T �XW 
 S�

�
 tr

�
WTXTXW # STS
WTXTS
 STXW

�
with respect to the elements ofW	 The solution is given by

WMV  �X
TX���XTS ��	���

Hence
 the MV estimate of S is given by

�SMV  XWMV  X�X
TX���XTS ��	���

or by means of the SVD of X  UX�XV
T
X

�SMV  UXU
T
XS ��	���

which is the orthogonal projection of S onto the column space of the data matrix X	 Observe
that rank��SMV �  rank�S�  p	
In spite of the fact that S is not known
 it is possible to compute the MV estimate from the

SVD of X if Assumption �	� on Page �� is satised	 Substituting ��	��� and ��	��� into ��	���
yields the desired MV estimate

�SMV  
�
UX� UX�

�� UT
X�

UT
X�

��
US� US�

�� �S� �
� �

��
VT
S�

VT
S�

�
��	���

 
�
UX� UX�

�� ���
S� # ��noiseIp�

������T
S�U

T
S� #V

T
S�N

T �

���noiseV
T
S�N

T

�

�
�
US� US�

�� �S� �
� �

��
VT
X�

VT
X�

�
 UX��

�
S���

�
S� # ��noiseIp�

����VT
X�

 UX��X��Ip 
 ��noise�
��
X��V

T
X�

which is a singular value decomposition	 This equation can be reformulated to avoid an explicit
computation of UX

�SMV  XVX��Ip 
 ��noise�
��
X��V

T
X� ��	���
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The left and right singular vectors of this minimum variance estimate are the same as those of
the least squares estimate ��	��� but the singular values are di�erent

���
X� 
 ��noiseIp��

��
X�  �

�
S��

��
X�  C�S� ��	���

where C are the cosines of the canonical angles as dened by ��	���	

Notice that the MV estimate requires the quantity ��noise
 which can be estimated as the
average of the diagonal elements of �X� �if no signal is present in the noise subspace�

��noise  
�

n
 p

nX
i�p	�

��X�i ��	���

or it can be obtained from the noise variance ��noise estimated in periods without speech

��noise  m��noise ��	���

Note also that under stationary and ergodic conditions
 then the MV estimator converges with
probability � to the LMMSE estimator as m � �	 The MV approach is used successfully for
speech enhancement by Jensen in ����	

����� Time Domain Constrained Estimator

Based on the optimal LMMSE approach
 Ephraim and Van Trees have proposed two perceptually
more meaningful estimation criterias in ����
 which are summarized in this and the next section

respectively	

Let �s  Wx � IRm be the linear estimator of the pure signal vector s
 then the residual
signal r  �s
 s � IRm minimized in the above LMMSE method
 represents signal distortion rs
and residual noise �musical noise� rn

r  �s
 s ��	���

 �W 
 Im�s#Wn

 rs # rn

Since both terms can not be simultaneously minimized
 a Time Domain Constrained �TDC�
estimator is proposed in ����
 which keeps the residual noise energy

��n  trEfrnrTng  ��noisetr
�
WWT

�
��	���

below some threshold while minimizing the signal distortion energy denoted by

��s  trEfrsrTs g  tr
�
�W 
 Im�Rs�W 
 Im�T

�
��	���

The linear estimator with TDC on the residual noise is obtained from

min
W

��s subject to ��n � �m��noise ��	���

where � � � � � controls the permissible segmental noise level and ��noise is the noise power	 The
value of � is restricted to one
 since for � � �
 the optimal lter which satises the constraint
and results in minimum �zero� signal distortion isW  Im	
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Given Assumption �	� on Page �� is satised in the following
 the optimal estimator in the
sense of ��	��� can be found from the Lagrangian

L�W� ��  ��s # �
�
��n 
 �m��noise

�
��	���

 tr
�
�W 
 Im�Rs�W 
 Im�T

�
# �

�
��noisetr�WWT �
 �m��noise

�
where � � � is the Lagrange multiplier	 Thus
 the lter matrixW is a stationary feasible point
if it satises the gradient equation

�L�W� ��

�W
 ��W 
 Im�Rs # ���

�
noiseW  � ��	���

which has the solution

WTDC  Rs�Rs # ���noiseIm�
�� ��	���

 �Rx 
 ��noiseIm��Rx 
 ��noise��
 ��Im�
��

Hence
 the optimal lter is a Wiener lter with adjustable input noise level ���noise	 Applying
the eigendecompositions ��	��� and ��	��� to Equation ��	���
 the optimal linear lter can be
rewritten as

WTDC  Q��s���s� # ���noiseIp�
��QT

� ��	���

 Q��Ip 
 ��noise�
��
x� ��Ip 
 ��noise��
 �����x� �

��QT
�

The TDC estimator of s is then given by�sTDC  WTDCx
 and the Lagrange multiplier constraint
is obtained by substitutingWTDC in ��	���
 i	e	


��n  ��noisetr
�
WTDCW

T
TDC

�
 �m��noise ��	���

Thus
 it is found that � is given by

�  
�

m
tr
�
��
s���s� # ���noiseIp�

��
�

��	���

Equation ��	��� has a single solution since � is a monotonically decreasing continuous function
of �
 and in a practical implementation
 � is actually used as the parameter	 Note
 that the
estimator provides zero signal distortion when

�  �max  
p

m
� �  � ��	���

and that

�  �min  �� �  � ��	���

For speech signals
 the TDC estimation criterion will control the nonstationary residual noise
referred to as musical noise 
 since this noise component decreases as � ��	

����� Spectral Domain Constrained Estimator

The Spectral Domain Constrained �SDC� estimator ���� is a generalization of the TDC estimator

which minimizes the signal distortion energy ��s ��	���
 while keeping the energy of the residual
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noise rn ��	��� in each spectral component
 dened by the eigenlters qi of the correlation matrix
Rx � IRm�m
 below some given threshold

min
W

��s subject to

�
EfjqTi rnj�g � �i�

�
noise � i  �� � � � � p

EfjqTi rnj�g  � � i  p# �� � � � �m
��	���

where � � �i � � controls the permissible spectral noise levels in the signal subspace
 and ��noise
is the noise power	 For i  �p# �� � � � �m�
 �i  � is chosen since the signal energy in the noise
subspace is zero	
This strategy allows shaping of the spectrum of the residual noise
 i	e	
 it can be masked by

the speech signal	 Thus
 more noise is permitted to accompany high energy spectral components
of the clean signal	
Again
 given Assumption �	� on Page �� is satised in the following
 the optimal estimator

in the sense of ��	��� can be found from the Lagrangian

L�W���  ��s #
mX
i��

�i�
�
noise

�
qTi WWTqi 
 �i

�
��	���

 tr
�
�W 
 Im�Rs�W 
 Im�T

�
# ��noisetr

�
�QTWWTQ

�

 ��noise�

T�

where �  ���� � � � � �m�T 
 �  diag��� and �  ���� � � � � �m�	 The latter is the vector of
Lagrange multipliers	 Thus
 the lter matrixW is a stationary feasible point if it satises the
gradient equation

�L�W���

�W
 ��W 
 Im�Rs # ��

�
noiseQ�Q

TW  � ��	���

Applying the eigendecomposition ��	��� of Rs to Equation ��	��� gives

��W 
 Im�Q�sQ
T # ���noiseQ�Q

TW  � �
�QTWQ
 Im��s # ��noise�Q

TWQ  � �
�G
 Im��s # ��noise�G  � ��	���

where G  QTWQ	 Hence
 using the solution of the gradient matrix equation ��	���
 the
optimal lter is

WSDC  QGQT ��	���

and the SDC estimator of s is then given by �sSDC  WSDCx	 The Lagrange multiplier constraint
is obtained by substitutingWSDC in ��	���
 i	e	


EfjqTi rnj�g  ��noiseq
T
i WSDCW

T
SDCqi ��	���

 ��noisee
T
i GG

Tei

 �i�
�
noise � i  �� � � � �m

A possible solution to ��	��� and ��	��� is obtained when G is diagonal

G  

�
G� �
� �

�
��	���

G�  diag�
p
��� � � � �

p
�p�  �s���s� # ��noise���

�� ��	���

WSDC  Q�G�Q
T
� ��	���

Peter S� K� Hansen ����



Sec� ��� Linear Signal Estimators �	

where the necessary conditions for the constrained minimization
 i	e	
 �i � �
 are satised
p
�i  

�s�i
�s�i # ��noise�i

� ��	���

�i  
�s�i
��noise

�
�p
�i

 �

�
� � � �i � ��! �� and i  �� � � � � p ��	���

Thus
 in the diagonal case
 the choice of f�igp� completely species the matrix G�
 and it can be
chosen independently of the signals	 This fact can be explained by the linear estimation method
and the known spectra ��noise and �i�

�
noise of the input and output residual noise
 respectively	

However
 f�igp� are normally chosen as functions of the statistics of the signal and noise
 and
the optimal lter in this sense has a structure that contains all the above methods as discussed
in Section �	�	�	

����	 Empirical TDC and SDC Estimators

First assume that Assumption �	� on Page �� is satised in the following
 then the empirical

version of the TDC method �ETDC� is obtained from the matrix formulation of Equation ��	���

i	e	


R  XW
 S ��	���

 S�W 
 In� #NW
 RS #RN

where R
 RS and RN � IRm�n are denoted the residual matrix
 the signal distortion matrix
and the residual noise matrix
 respectively	 The squared signal distortion error e�s and residual
noise error e�n can then be dened as

e�s  tr
�
RT
SRS

�
 tr

�
�W 
 In�TSTS�W 
 In�

�
��	���

e�n  tr
�
RT
NRN

�
 ��

noisetr
�
WTW

�
��	���

Using these equations in the constrained minimization

min
W

e�s subject to e�n � �n��
noise ��	���

gives the following Lagrangian

L�W� ��  tr
�
�W 
 In�TSTS�W 
 In�

�
# �

�
��
noisetr�W

TW�
 �n��
noise

�
��	���

and the corresponding gradient equation

�L�W� ��

�W
 �STS�W 
 In� # ����

noiseW  � ��	���

which has the solution
WETDC  �S

TS# ���
noiseIn�

��STS ��	���

Applying the SVD ��	��� and ��	��� to ��	���
 the optimal lter can be rewritten as

WETDC  VS���
�
S� # ���

noiseIp�
����

S�V
T
S� ��	���

 VX��Ip 
 ��
noise��
 �����X��

���Ip 
 ��
noise�

��
X��V

T
X�

Peter S� K� Hansen ����



�
 Chapter �� Linear Signal Estimators

Similarly
 the empirical version of the SDC method �ESDC� can be obtained by using the
following equation based on the right singular vectors vX�i of the data matrix X

kRNvX�ik��  vTX�iR
T
NRNvX�i  ��noisev

T
X�iW

TWvX�i ��	���

together with Equation ��	��� in the constrained minimization

min
W

e�s subject to

�
kRNvX�ik�� � �i�

�
noise � i  �� � � � � p

kRNvX�ik��  � � i  p# �� � � � � n
��	���

This gives the Lagrangian

L�W���  e�s #
nX
i��

�i�
�
noise

�
vTX�iW

TWvX�i 
 �i
�

��	���

 tr
�
�W 
 In�TSTS�W 
 In�

�
# ��noisetr

�
�VT

XW
TWVX

�

 ��noise�

T�

dened along the lines in ��	���
 and the corresponding gradient equation

�L�W���

�W
 �STS�W 
 In� # ���noiseWVX�V

T
X  � ��	���

Applying the SVD of S ��	��� to Equation ��	��� and using the fact that VX  VS 
 c	f	

Equation ��	���
 results in

VX�
�
SV

T
X�W 
 In� # ��noiseWVX�V

T
X  � � ��	���

��
S�V

T
XWVX 
 In� # ��noiseV

T
XWVX�  � �

��
S�G
 In� # ��noiseG�  �

where the optimal lter solution is determined by G � IRn�n

WESDC  VXGV
T
X ��	���

The Lagrange multiplier constraint is equivalent to ��	���
 so a possible solution for G is given
by ��	��� with

G�  diag�
p
��� � � � �

p
�p�  �

�
S���

�
S� # ��noise���

�� ��	���

Obviously
 under stationary and ergodic conditions
 the empirical versions of the TDC and SDC
estimators will converge to true ones as m��	

����
 A Uni�ed Notation

All the discussed linear signal subspace based estimates are formulated by means of two orthog�
onal transformations and a diagonal matrix containing weights
 so it is appropriate to introduce
a unied notation	
Let the eigendecomposition of the correlation matrix Rx be dened by Q�xQ

T 
 then the
eigenvector based transformation y  QTx is called a Karhunen�Loeve transform �KLT� �see

e	g	
 ���
 Page ����� and it simply diagonalizes the correlation matrix Ry  QTRxQ  �x

i	e	
 the components of y are independent	 In the empirical case
 the KLT is estimated by
y  VTx
 where V is the right singular vectors
 and it operates on the data matrix X or the
sample correlation matrix �Rx ��	���	 Hence
 all the linear signal estimates are obtained by the
following steps �see Figure �	���
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Loeve

Transform

Karhunen

Loeve

Transform

Karhunen

Inverse

g p

g 1

sx

Figure ��� General model for signal subspace based linear signal estimator�

� KLT of the noisy signal onto the signal subspace	
� Modify the independent components of the KLT by a diagonal gain function G�	

� Inverse KLT of the modied components to reconstruct the signal in the signal subspace	
This scheme results in a generalized formulation of the optimal linear signal estimators

�s  Wx  QGQTx  Q�G�Q
T
� x � G  

�
G� �
� �

�
��	���

or the empirical version based on the data matrix

�S  XW  XVXGV
T
X  XVX�G�V

T
X�  UX��X�G�V

T
X� ��	���

where the gain matrix G�  diag�g� � � � gp� � IRp�p depends on the estimation method �see
Table �	��	

Method Gain matrix G�

LS Ip Ip

LMMSE �s���s�  ��noiseIp�
�� �Ip � ��noise�

��
x� �

MV ��
S���

�
S�  ��noiseIp�

�� �Ip � ��noise�
��

X�
�

TDC �s���s�  ���noiseIp�
�� �Ip � ��noise�

��

x� ��Ip � ��noise��� �����x� �
��

ETDC ��
S���

�
S�  ���noiseIp�

�� �Ip � ��noise�
��

X�
��Ip � ��noise��� �����X�

���

SDC
ESDC diag�
p
��� � � � �

p
�p� diag�

p
��� � � � �

p
�p�

Table ��� Diagonal gain matrix for di�erent estimation methods formulated in terms of
the clean signal 	�rst column
 or the noisy signal 	second column
�

Obviously
 the relations between the TDC estimator and the LMMSE and LS estimators are

GLS  GTDC j
�� ��	���

GLMMSE  GTDC j
�� ��	���

Note
 that the LS estimator only projects the noisy signal onto the signal subspace
 i	e	
 this
estimator results in the lowest possible �zero� signal distortion and in the highest possible residual
noise level �p�m���noise
 and that GLMMSE is denoted the Wiener gain function	
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In implementing the TDC estimator
 the permissible noise level coe�cient � should be signal
dependent with value chosen according to the masking threshold of the auditory system
 i	e	

the residual noise becomes inaudible	 Unfortunately
 the masking threshold in the time domain
is not fully understood	 An alternative method is to specify �
 since increasing � from zero to
innity
 the level of the residual noise decreases while the level of signal distortion increases	 A
useful approach for choosing � is to make it dependent on the SNR in each frame of the noisy
signal ����

�  � #
�

� # SNR
��	���

where SNR
 e	g	
 could be given by ��	���	 In this case
 � � � � �
 and the TDC estimator
acts similarly to the LMMSE estimator at high SNR
 while at low SNR it further reduces the
residual noise	 A simpler approach is to set � to a xed value which is greater than �
 e	g	
 in
the neighborhood of �	
For the SDC estimator
 two signal dependent choices for �i are proposed in ����
 which makes

the spectrum of the residual noise look similar to that of the clean signal

� � �i  

�
�s�i

�s�i # ��noise

���

 

�
�x�i 
 ��noise

�x�i

���

� �� � � ��	���

� � �i  exp

�

����noise

�s�i

�
 exp

�

����noise
�x�i 
 ��noise

�
� �� � � ��	���

where � is an experimentally determined constant controlling the suppression level of the noise
as well as the resulting signal distortion
 i	e	
 when � increases
 the residual noise level decreases
and the signal distortion level increases	 As before
 the following relations are obtained

GLS  GSDC j�i��
��	���

GLMMSE  GSDC j���� ��	���

Equation ��	��� is denoted the generalized Wiener gain function
 because the rst�order Taylor

approximation of �
����
i is the inverse of the Wiener gain function

�
�����
i  exp

�
��noise
�s�i

�
 � # ��noise

�s�i
 

�s�i # ��noise
�s�i

��	���

The generalized Wiener gain function with ��  � is referred ���� particularly useful in speech
enhancement	
Plot of the gain gi as function of the spectral SNR
 i	e	
 �s�i��

�
noise
 can be used to characterize

the di�erent estimation methods	 In Figure �	��a� and �	��b�
 the Wiener gain function is
compared with the TDC and SDC functions for di�erent parameter choices	 Note
 that the
Wiener function is symmetric around the point ��dB
�� �
 and that the SDC approach results in
a more aggressive transition between high and low gain levels
 while the TDC method simply
moves the Wiener transition to higher SNR due to the relation

gTDC�i

�
�s�i
��noise

� �

�
 gLMMSE�i

�
��s�i
��noise

�
��	���

All the above gain functions have been obtained by introducing a signal subspace
 i	e	
 the gains
related to the noise subspace are explicitly set to zero	 However
 the Wiener based gain functions
can do this implicitly
 since spectral SNRs related to the noise subspace are assumed to be zero
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�in practice small�	 The di�erence between the two approaches become obvious
 when the gains
are estimated from empirical data
 since small gains will be dominated by estimation errors	
Thus
 it is important to estimate the signal subspace dimension in advance to avoid �aws of the
estimator	 In the following
 negative gain estimates are inverted �full�wave rectication�	
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Figure ��� 	a
 Wiener and TDC gain functions for di�erent choices of �� 	b
 Wiener and
generalized Wiener gain functions for di�erent choices of ���

����� Analysis of Practical Gain Functions

In order to analyze the practical behaviour of the di�erent gain functions
 the speech and noise
signals are used separately for the evaluation of the lter parameters	
Figure �	��a� shows estimated Wiener gains fgig��� of ��� speech frames �X � IR�������

obtained from the noisy reference sentence by shifting a ��� sample window by ��� sample �white
noise and SNR  ��dB�	 The estimated gains are calculated from ��	��� using the singular values
of X
 and a ��noise obtained from an initial noise matrix N	 Each gain gi is related to a KLT
vector
 i	e	
 a right singular vector vX�i of X
 which is used to plot gi as function of the spectral
SNR in that direction

SNRspectral  
kSvX�ik��
kNvX�ik��

 �s�i
�n�i

��	���

For spectral SNR less than about � dB
 a large variance in the estimated gains is observed
 which
illustrates the importance of explicitly introducing a signal subspace	 The estimation errors can
be explained by the di�erence in the estimated eigenvalues of the noise given by ��noiseI and
the true ones ��

N 	 From Figure �	��b�
 it can be seen that with this global noise level
 the
distribution of the spectral SNRs basicly covers the transition interval from ��� to �� dB with
the mean value around the lower part	
If only the gains in a ���dimensional signal subspace are considered
 the distribution still

covers the same range �see Figure �	��b��
 but the mean value is shifted to higher SNR	 Thus

even in this case
 a large number of badly estimated gains at low SNRs can be expected as shown
in Figure �	��a�	
The conclusion is that the TDC and SDC based gain functions can be expected to perform

better
 since they are less sensitive to errors in the noise estimation �for increasing parameter
values�	 This is illustrated in Figure �	�
 where estimated gains are plotted for the TDC estimator
��  �� and the SDC estimator ���  ��	
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Figure ��� 	a
 Estimated Wiener gains fgig
��
� of ��� speech frames 	X � IR������


obtained from the noisy reference sentence by shifting a ��� sample window by ��� sample
	white noise and SNR���dB
� The estimated gains are plotted as function of the spectral
SNR 	s�i�	n�i� 	b
 Distribution of the gains�
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Figure ��� As Figure ���� but with gains fgig
��
� belonging to a ��dimensional signal

subspace�
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Figure ��� As Figure ���� but with gains given by 	a
 the TDC estimator 	� � �
 and
	b
 the SDC estimator 	�� � �
�
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Now
 consider the voiced speech frame of ��� samples added white noise �SNR  � dB�
 and
organized in the data matrix X � IR������	 The linear estimators as dened by Equation ��	���
with p  �� are then characterized by the residual matrices R  RS#RN 
 c	f	
 Equation ��	���

or the corresponding residual signals obtained by averaging along the diagonals �see Section �	��	
The latter can be used to compare the di�erent estimators as illustrated in Figure �	�
 where
the power of the residual signals are plotted as function of the TDC parameter � and the SDC
parameter ��	
Clearly
 for increasing parameter values
 the level of the residual noise rn decreases while

the level of signal distortion rs increases	 The minimum residual power is obtained for the MV
estimator ��  � or approximated by ��  �� and is dominated by the residual noise
 however

by choosing the perceptually more meaningful parameters �  � or ��  � as discussed in a
moment
 the signal distortion will become dominant for the price of a slightly increase in the
level of the total residual signal	
The ��th order LPC�based magnitude spectra of the residual noise and signal distortion

corresponding to the examples in Figure �	� are shown in Figure �	� and �	�	 For both the
TDC and the SDC method
 the spectrum of the residual noise looks like the one for the clean
speech �see Figure �	��a��
 and is referred to as musical noise �see Section �	��	 For increasing
parameter values
 less noise accompany the low energy spectral components in accordance to
the masking threshold of the auditory system	 However
 then the spectra of the signal distortion
moves towards the one for the clean speech	
Notice
 that in the LS case ��  ��
 the residual noise actually has the highest level at the

least dominant formant
 i	e	
 the musical noise will be most audible for this estimator
 and that
the signal distortion corresponds to the part of clean signal laying in the noise subspace	
The examples demonstrate the importance of having other quality measures than SNR


taking into account the spectral density of di�erent signal components	
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Figure ��� Power of the residual noise rn and the signal distortion rs for a linear estimator
obtained from a ��dimensional signal subspace� The data matrix X � IR������ represents
the voiced speech frame of ��� samples added white noise 	SNR��dB
� The residual levels
are plotted against the TDC parameter � 	a
 and the SDC parameter �� 	b
�
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Figure ��	 ��th order LPC�based magnitude spectra of the residual noise 	a
 and signal
distortion 	b
 corresponding to the examples in Figure ���	a
�
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Figure ��
 ��th order LPC�based magnitude spectra of the residual noise 	a
 and signal
distortion 	b
 corresponding to the examples in Figure ���	b
�

��� Linear Signal Estimators by QSVD

In the colored noise case
 all the SVD based linear signal estimators in Section �	� can easily be
obtained from the QSVD of �X�N�	

First
 the desired rank�p estimate of the noise normalized signal SN	 is constructed from
the normalized data matrix XN	 ��	���� along the lines in Sections �	�	�
 �	�	� and �	�	�
 i	e	


dSN	  UX���G�U
T
N� ��	���

where the gain matrix G�  diag�g� � � � gp� � IRp�p depends on the estimation method �see
Table �	��	

Thus
 the weights gi are computed by the same formulas as in the SVD based algorithms

but with the singular values �i replaced by the quotient singular values 
i and by using the fact
that the noise variance of the prewhitened signal is one	
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Method Gain matrix G�

LS Ip

MV �Ip ����� �

ETDC �Ip � ��� ������ ��Ip ����� �

ESDC diag�
p
��� � � � �

p
�p�

Table ��� Diagonal gain matrix for di�erent estimation methods as de�ned in Sections
����� ����� and ������

To obtain the corresponding rank�p estimate of the signal S
 the estimate of SN	 must be
denormalized by the noise�only matrix N

�S  � dSN	�N ��	����

 UX�C�G��
T
�

which can be computed directly from ��	����
 i	e	
 the prewhitening is now an integral part of
the algorithm	 By using the identity ��	����

�T
� Z� �T

� Z�
�T
� Z� �T

� Z�

�
 

�
Ip �
� In�p

�
��	����

the matrix UX� is given by
UX�  XZ�C

��
� ��	����

i	e	
 Equation ��	���� can be reformulated to avoid an explicit computation of UX

�S  XZ�G��
T
� ��	����

The QSVD based LS�MV algorithms have been used succesfully for reduction of colored broad�
banded noise in speech signals by Jensen ����	

����� Analysis of QSVD�Based Gain Functions

In this Section
 the practical behaviour of the QSVD based estimators are analyzed and com�
pared with the SVD examples in Section �	�	�	 Figure �	� and �	�� shows estimated gains
corresponding to the examples in Figure �	� and �	�	 However
 the additive noise is a colored
AR��
��	�� process
 and each gain gi is now related to a quotient singular vector uN�i of �X�N�

which is used to plot gi as function of the spectral SNR in that direction

SNRspectral  
kS�N	

uN�ik��
kN�N	

uN�ik��
��	����

where the noise matrix �N used in the prewhitening �normalization� is obtained from an initial
noise segment	 Compared to the white noise case
 an increased variance in the estimated gains
is observed due to the more complex noise dependency	
Now
 consider the residual signals of the voiced speech frame
 where the examples shown

in Figure �	�� � �	�� are colored noise versions of the one in Figure �	� � �	�	 In Figure �	��
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the power of the residual signals are plotted as function of the TDC parameter � and the
SDC parameter ��	 As in the white noise case
 increasing parameter values reduce the level of
the residual noise rn while the level of signal distortion rs increases	 Note that the minimum
residual power has increased compared to Figure �	�
 and that it is no longer obtained for the
MV estimator	 The reason is the bias of the signal subspace due to the prewhitening
 i	e	
 the
signal distortion has increased signi�cantly	

This can also be seen from the ��th order LPC�based magnitude spectra of the residual noise
and signal distortion corresponding to the examples in Figure �	�� as shown in Figure �	�� and
�	��	 Thus
 prewhitening with a noise process dominated by low�frequency energy results in
both signal distortion and residual noise
 which also have high levels at low frequencies	 Since
 a
majority of speech frames have this kind of spectral distribution
 the e�ect of prewhitening will
for this noise process be a more noticeably speech distortion and a musical noise characterized
by low frequencies	
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Figure ��� 	a
 Wiener gains fgig
��
� estimated from a ��dimensional signal subspace and

obtained from ��� speech frames 	X � IR������
� i�e�� from the noisy reference sentence by
shifting a ��� sample window by ��� sample 	colored AR	������
 noise and SNR���dB
�
The estimated gains are plotted as function of spectral SNR� 	b
 Distribution of the gains�
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Figure ���� As Figure ���� but with gains given by 	a
 the TDC estimator 	� � �
 and
	b
 the SDC estimator 	�� � �
�
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Figure ���� Power of the residual noise rn and signal distortion rs for a linear estimator
obtained from a ��dimensional signal subspace� The data matrix X � IR������ represents
the voiced speech frame of ��� samples added colored noise 	SNR��dB
� The residual levels
are plotted against the TDC parameter � 	a
 and the SDC parameter �� 	b
�
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Figure ���� ��th order LPC�based magnitude spectra of the residual noise 	a
 and signal
distortion 	b
 corresponding to the examples in Figure ����	a
�
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Figure ���� ��th order LPC�based magnitude spectra of the residual noise 	a
 and signal
distortion 	b
 corresponding to the examples in Figure ����	b
�
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��� Relation to Spectral Subtraction

In the spectral subtraction approach
 the DFT rather than the KLT is used �see Section �	�	��

i	e	
 the second�order statistics of the signal and noise a�ect only the gain function of the esti�
mator while the transform
 i	e	
 the DFT
 is signal independent	

Based on the fact that the KLT and the DFT are related� ����
 the spectral subtraction
method is by Ephraim and Van Trees ���� shown to be an approximate signal subspace approach

which is optimal in a sense determined by the specic gain function	 Indeed
 it is proven that
if the Wiener gain function is used
 then the spectral subtraction is optimal in an asymptotic
LMMSE sense when the vector length m goes to innity and the signal and noise are assumed
stationary
 i	e	


lim
m��

�

m
Efk�sLMMSE 
�sSPSk��g  � ��	����

Another issue is the existence of the signal subspace
 i	e	
 part of the spectrum represents only
noise components	 Thus
 the spectral subtraction gains are often found to be negative due to the
nonperfect estimator	 Normally
 negative gains are set to zero �half�wave rectication�
 which
is equivalent to nulling spectral components in the noise subspace	

Figure �	���a� shows estimated Wiener gains �half�wave rectication� of ��� speech frames
obtained from the noisy reference sentence by shifting a ��� sample window by ��� sample �white
noise and SNR  �� dB�	 The estimated gains are calculated from ��	��� using the periodograms
�"x�m�  jDHxj�m�K obtained from the Hanning windowed frames
 and a �"n�m�  ��noise
obtained from an initial noise frame	 Each gain gi is related to the spectral SNR given by
�"s�m���"n�m�	 Clearly
 the variance in the estimated gains are larger than the one obtained
by the subspace methods �see Figure �	��	 In Figure �	���b�
 the estimated Wiener gains are
calculated after averaging four periodograms
 and a result much closer to the subspace method is
obtained	 This is also what could be expected since the MV estimate converges to the LMMSE
estimate when the frame length goes to innity
 while convergence of the spectral subtraction
based estimator is only achieved when both the frame length and the number of periodograms
goes to innity	
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Figure ���� 	a
 Estimated Wiener gains 	half�wave recti�cation
 of ��� speech frames
obtained from the noisy reference sentence by shifting a ��� sample window by ��� sample
	white noise and SNR���dB
� The estimated gains are plotted as function of the spectral
SNR� 	b
 As 	a
 after averaging four adjacent periodograms 	frames
�

�The two transforms coincide if the covariance matrix of the signal is circulant�
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��� Musical Noise

In spectral subtraction techniques
 the musical noise introduced in the enhanced speech is often
thought of as an estimation problem
 i	e	
 negative spectral magnitude values are set to zero
�half�wave rectication�	 However
 this is not really true as discussed in the following
 where
arguments indicate that the musical noise is linked to the speech dependent �ltering	
First
 assume that the desired gain function can be obtained perfectly 
 then spectral compo�

nents with low SNR are set to zero
 while components with high SNR remain untouched	 The
latter will typically be the formants
 i	e	
 the residual noise spectrum will also have formants sim�
ilar to the one for the clean speech segment �see
 e	g	
 Figure �	��a��	 For a given noise level and
gain function
 one or more noise formants may dominate the corresponding speech formant�s�

i	e	
 the spectral SNR is less than � dB	 Thus
 the tonal characteristics of the residual noise will
be audible	 This is
 e	g	
 the case for the Wiener function
 where the transition between high
and low gains are centered around � dB
 so components with spectral SNR less than � dB may
be related to gains as high as �	�	
One way to reduce the noise formants is by decreasing the related gain factors
 e	g	
 by

choosing the generalized Wiener function with ��  �	 However
 then important components
of the speech signal will be distorted	 Thus
 with this kind of ltering
 there will always be an
annoying noticeable residual signal	
If the gain function is estimated 
 then the speech�like noise spectrum will also be an estimate

of the true one	 Thus
 it becomes important to introduce the signal subspace in order to avoid a
�aw of the estimator at low spectral SNR	 Obviously
 the estimation problem will have in�uence
on the musical noise
 but it is not the source	
The musical noise can be reduced �eliminated�
 when a subspace based estimation method is

combined with a multi�microphone enhancement technique like the Delay�and�Sum beamformer
�see Figure �	���	 The necessary condition is a low correlation between the noise signals in
the di�erent channels	 Then
 the residual noise will be incoherently added
 giving a whitened
output due to the Central Limit Theorem
 while the signal distortion will be untouched	 This is
illustrated in Figure �	�� and �	�� using � and �� microphones
 respectively
 where both examples
correspond to the ones in Figure �	�	 Thus
 for the price of increased computational complexity

a signicant improvement in performance is obtained with the proposed combination	
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Figure ���� Delay�and�Sum beamformer combined with a single�microphone noise reduc�
tion technique� e�g�� the signal subspace approach�
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Figure ���� ��th order LPC�based magnitude spectra of the residual noise 	a
 and signal
distortion 	b
 corresponding to the examples in Figure ���� but averaged over � independent
white noise realizations�
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Figure ���	 ��th order LPC�based magnitude spectra of the residual noise 	a
 and signal
distortion 	b
 corresponding to the examples in Figure ���� but averaged over �� indepen�
dent white noise realizations�

��� Rank Determination

As mentioned previously
 the correlation matrix of speech signals has full rank
 so signal sub�
space methods based on rank reduction must nd the right tradeo� between model bias �signal
distortion rs� and model variance �residual noise rn�
 when reconstructing signals from noisy
data	 The goal is to minimize the sum of the two terms
 i	e	
 the residual signal r � IRm	 The
general principle has been analyzed by Scharf et al	 ����
 ���
 ����
 and the results are illustrated
here by applying it to the speech enhancement problem	

The residual signals as dened by Equation ��	��� are repeated here for convenience

r  �s
 s  �W 
 Im�s#Wn  rs # rn ��	����

and the energy of the two terms rs and rn are given by ��	��� and ��	���
 i	e	
 by using the gain
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matrix as dened by ��	���
 the following equations are obtained

��s  trEfrsrTs g  tr
�
�G
 Im��s�G
 Im�T

�
��	����

��n  trEfrnrTng  ��noisetr
�
GGT

�
��	����

For the LS estimator with G�  Ip
 the bias �
�
s is simply the sum of signal�only eigenvalues that

are discarded
 and the variance ��n is a linear function of the signal subspace dimension p
 i	e	


��s  
mX

i�p	�

�s�i and ��n  p��noise ��	����

In this case
 the low�rank projection improves the SNR whenever

��s # ��n � m��noise ��	����

In general
 the optimum choice of rank minimizes

popt  argmin
p
���s # ��n� ��	����

which occurs near the point where the rate of decrease in ��n approximately equals the rate of
increase in ��s	 All of this is illustrated in Figure �	��
 where the average power of the residual
noise rn and the signal distortion rs are plottet as a function of the signal subspace dimension p
for the LS and MV estimators	 The data matrixX � IR������ represents the voiced speech frame
of ��� samples added white noise �SNR  � dB�
 and the average is taken over ��� independent
noise realizations	
Notice that in the LS case
 the total residual power has a clear minimum which means that

a proper choice of p is important for this estimate	 However
 the signal distortion and thereby
the optimum rank depends on the eigenvalue spread of the speech signal
 i	e	
 unvoiced frames
with a smaller eigenvalue spread will for example require a higher signal subspace dimension
for a given SNR	 The problem could be solved by tracking the optimal rank with
 e	g	
 the
NEE�algorithm in ����
 but such approaches are computationally expensive	
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Figure ���
 Average power of the residual noise rn and the signal distortion rs as function
of the signal subspace dimension p for the LS estimator 	a
 and MV estimator 	b
� The
data matrix X � IR������ represents the voiced speech frame of ��� samples added white
noise 	SNR � �dB
� and the average is taken over ��� independent noise realizations�
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For the MV estimate
 the choice of p is not so critical
 since the Wiener gain function
implicitly introduces a signal subspace	 Thus
 once p is large enough
 a xed value of p can
be used
 which is also desirable in real�time speech processing applications	 This conclusion
can be extended to the TDC and SDC estimates as illustrated in Figure �	�� � �	��
 where the
average SNR of the reconstructed speech segment �see Section �	�� is plotted as a function of
the signal subspace dimension p using ��� independent noise realizations �SNR  � dB and the
noise variance is estimated from an initial segment�	 The examples in the Figures cover both
the voiced and unvoiced frame
 and the white and colored noise case	 Notice that the unvoiced
segment requires a larger value of p
 and that colored noise can both degrade and improve the
performance depending on the actual speech and noise spectra	

The xed rank decision criterions are that p should be as small as possible to avoid �aws of
the estimator
 and that the degradation of reconstructed noise�free speech should be su�ciently
small	 Simulations and informal listening tests made by Jensen ���� have shown that for xed
values of p � ��
 the quality of the reconstructed speech is satisfactory	 Finally note that a xed
signal subspace dimension always introduces signal distortion
 i	e	
 frames with high SNRs will
be degraded	
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Figure ���� Average SNR of a reconstructed noisy 	voiced
 speech segment using a
TDC estimator with the listed � values� and SNR��dB� The average is taken over ���
independent white noise realizations 	a
 or AR	������
 noise realizations 	b
�
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Figure ���� As Figure ���� but for the unvoiced speech segment�
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Figure ���� As Figure ���� but by using a SDC estimator with the listed �� values�

��� Signal Reconstruction by Toeplitz Matrix Approximation

This section discuss how to construct the enhanced output signal �sK from the reduced�rank and
generally unstructured matrix �S ��	���	

Consider the observed data vector xK � IRK ��	��
 which has a signal component sK to be
estimated
 and an additive noise component nK

xK  sK # nK ��	����

where the index K is used for time sequences with K samples	 The time signals are represented
by the Toeplitz matrix formula as dened by ��	��

X  S#N ��	����

which is redundant
 because the data samples are repeated in di�erent locations within the
matrix	

Using one of the signal subspace methods to estimate the rank�p signal matrix S from the
Toeplitz data matrix X � IRm�n generally spoil the structure
 i	e	
 results in a non�Toeplitz
estimation matrix �S	 So
 it is not possible to directly obtain a time signal vector

�sK  
�
�s� �s� � � � �sK

�T
� K  m# n
 � ��	����

corresponding to it	 However
 a least squares estimate of the time signal vector sK can be
obtained from the reduced�rank matrix �S as described by Tufts and Shah in �����
 and discussed
below	
The time signal estimation is based on the fact that the rank reduced matrix is made up of

two parts
 c	f	
 Equation ��	���
�S  S#R ��	����

where S is the signal�only matrix having a Toeplitz structure
 andR is the residual matrix arising
due to the noise matrix N
 i	e	
 the residual noise term
 and due to any error in the estimation
of the desired signal matrix S
 i	e	
 the signal distortion term	 In general
 the residual matrix R
will not have a Toeplitz structure	
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It is useful to rewrite matrix formula ��	���� as a vector formula by stacking the columns in
each of the matrices �S
 S and R

�s�  s� # r�  MsK # r
� ��	����

where �s�� s�� r� � IRmn	 The linear transformation represented by the matrixM � IRmn�K on the
time signal vector sK � IRK can be visualized as a redundant rearrangement of the K elements
in the redundant signal vector s�	 This matrix M is made up entirely of zeros and ones
 and is
obtained by exploiting the Toeplitz symmetry of the signal matrix S

MT  

�BBBBBBBBBBBBBBBBB�

mT
�

mT
�
			
mT
m

mT
m	�
			

mT
K�m	�
			
mT
K

	CCCCCCCCCCCCCCCCCA

 

�BBBBBBBBBBBBBBBB�

�
� �
	 	 	

	 	 	

� �
�

	 	
	

�
	 	 	

�

	CCCCCCCCCCCCCCCCA
��	����

Now
 let us consider the problem of estimating the signal vector sK using the representation of
the reduced rank matrix �S as the sum of a redundant Toeplitz structured signal component and
the residual vector	 The mn linear equations of formula ��	���� are approximately solved by the
method of least squares
 to obtain an estimate of sK

min
sK

k�s� 
MsKk� � �sK  M
	�s�  �MTM���MT�s� ��	����

Note
 that the equivalent matrix formulation of Equation ��	���� is

min
sK

k�S
 Tn�sK�kF ��	����

where Tn is the Toeplitz operator �see denition in Section �	�	��	 It turns out that the operation
of the linear transformation M	 on the vector �s� is nothing but an arithmetic averaging of the
subdiagonals of �S as originally proposed in ����
 ���
 ���
 i	e	


�sK  A��S� ��	����

where A is the diagonal averaging operator	 The factor �MTM��� is an K�K diagonal matrix
given by

�MTM���  diag��� ���� � � � � n��� n��� � � � � n��� � � � � ���� �� ��	����

which account for the fact that the rst n 
 � and last n 
 � diagonals of �S do not have full
length n	
The resulting Toeplitz matrix is associated with a unique vector �sK of time samples
 but

then the exact rank is lost	 Hence
 it is commonly used to repeat the low�rank approximation
and diagonal averaging a number of times to produce a low�rank Toeplitz matrix approximation
���
 ��
 ����	 It is proven that such iterative usage always converges ����	 However
 the signal
estimate to which this iterative algorithm converges need not be optimal in any signal estimation
sense ����	 In speech processing
 the improvement of the iteration is negligible ����	
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����� Interpretation

The physical interpretation of signal reconstruction from reduced rank matrices by averaging
along the diagonals is examined in ���
 ��
 ��� and discussed below	
First
 insert the estimate �S ��	��� into ��	���� and use the fact that averaging and summation

are interchangeable

�sK  A
� pX
i��

gi�iuiv
T
i

�
 

pX
i��

giA��iuivTi � ��	����

Now consider the rank�one matrix

uiv
T
i  

�BBBB�
u�iv�i u�iv�i u�iv�i � � � u�ivni
u�iv�i u�iv�i u�iv�i � � � u�ivni
			

			
			

			
umiv�i umiv�i umiv�i � � � umivni

	CCCCA ��	����

for which the diagonal summation operation can be expressed as the linear convolution of the
signals represented by ui and vi in reverse order	 This is equivalent to a circular convolution of
the sequences appended with zeros
 until each has K  m#n
� samples
 i	e	
 the reconstructed
signal becomes

�sk  �m
T
kmk�

��
pX

i��

gi�i

�
KX
l��

ul�ivl�k	n�i

�
for k  �� � � � �K ��	����

where the linear transformation matrix M dened by ��	���� has been used	 Equation ��	����
can be reformulated by means of the Toeplitz operator Tn

�sK  �M
TM���

pX
i��

gi�iTn

�B� �n��
ui
�n��

	CAJnvi ��	����

where Jn is an n� n matrix with nonzero elements equal to one only on the anti�diagonal
 i	e	

it reverses the elements of vi	 Thus
 the output signal �sK is the result of the backward ltering
operation of the left singular vectors ui through the eigenlters vi	
On the other hand is ui also the forward ltered version of the input signal xK passed

through the same eigenlters vi

ui  Xvi�
��
i  Tn�xK�vi���i ��	����

Notice
 that the rst and last part of the linear convolution of the signals xK and vi are omitted
in this case	
From ��	���� and ��	���� the precise relationship between the input vector xK and the output

vector �sK can be expressed as follows

�sK  �M
TM���

pX
i��

giTn

�B� �n��
Tn�xK�vi
�n��

	CAJnvi ��	����

Basic signal processing theory shows that successive forward and backward ltering of a signal
results in a zero phase lteret version of it �see e	g	 �����	 Therefore
 averaging along the diagonals
of the matrix �S is equivalent to the weighted summation of p zero phase ltered versions of the
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FIR

Σ )diag( MM
-1T

xK

FIR v1

FIR vp u σpp

u σ1 FIR

vpJn

Jnv1
g

1

gp

sK

1

Figure ���� Zero phase �lter model for rank�p signal subspace estimation followed by
averaging along diagonals�

input signal xK through the eigenlters vi and their reverse counterparts	 The diagonal elements
of the matrix �MTM��� represents an K�point window	

The lter structure is illustrated in Figure �	��
 where the rst and last part corresponds to
��	���� and ��	����
 respectively	 It is a simplied overview and does not explain the initial and
last part of the ltering operation	

Another problem arises when there is a shift between two data matrices X� and X
 so
averaging along diagonals include elements from both matrices as shown in Figure �	�� for the
time sample xk	

If we rst look at the ith forward eigenlter
 then all the lter coe�cients v�i are replaced
with vi
 when the row of input samples corresponding to the storage of the lter goes from x�Tm

the last row of X�
 to xT� 
 the rst row of X	 This results in a sequence of stacked ui vectors
as input to the ith backward eigenlter	 The coe�cients of this lter must be changed one by
one as the shift from u�i to ui pass through the lter storage and the two lter parts must be
weighted separately as shown in Figure �	��	

Note
 that the above mentioned technique corresponds to interpolation of overlaping recon�
structed frames
 and that it can be further extended by overlaping adjacent data matrices and
then reconstruct a subset of the rows	 Note also that an equivalent formulation of the Toeplitz
matrix approximation problem is to subtract from the signal xk
 zero phase ltered version of
itself through the n
 p eigenlters vi corresponding to the n
 p smallest eigenvalues	

Thus
 the lter interpretation of the signal subspace estimation methods both provide an
appealing frequency�domain formulation and gives a possible implementation method	

miu’ m-n+k+1,i... u’

n
k

Filter storage of left
singular vector elements

Filter coefficients of right
singular vector elements

xk

X’

X

(... u vumi k+1,i v’n-k+2,i 1i)... v’n-k+1,i... v
FIR

ki ... u1i

g i
n-k
n

u

ig’

ni

Figure ���� Filter model for averaging along diagonals in the case of shift between two
datamatrices�
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����� Signal Reconstruction and the QSVD

As in the SVD based algorithm
 the output signal is computed by arithmetic averaging of the
subdiagonals of �S
 i	e	
 �sK  A��S�	
Following the equations in Section �	�	�
 an expression for �sK that leads to a lter interpre�

tation is ����

�sK  �M
TM���

pX
i��

giTn

�B� �n��
Tn�xK�zi
�n��

	CAJn�i ��	����

Thus
 the lters that arise in the QSVD based algorithm have coe�cients zi and Jn�i
 and they
are not zero�phase lters as in the white�noise case	

��
 Frame Based Implementation

In most practical signal processing applications
 it is necessary to work with frames of the
signal	 This is especially true if conventional analysis techniques are used on speech signals with
nonstationary dynamics
 i	e	
 it is necessary to select a portion of the signal that can reasonably
be assumed to be stationary	

Thus
 in implementing the linear signal estimators for time series
 other parameters which
must be specied are those characterizing the analysis and synthesis windows	 The windows
operates on the rows of the data matrix and is given by the diagonal matrices Wa and Ws

respectively

Wa  diag�wa� ��	����

Ws  diag�ws� ��	����

where wa � IRm and ws � IRms is a real sequence used to select and weight the desired rows
of X by a simple pre�multiplication process	 Example plots of two commonly used window
sequences are shown in Figure �	���a�	 Due to the Toeplitz structure of the data matrix �see
Section �	�	��
 the corresponding windows related to the time sequences are the row windows
convolved with a n�sample rectangular window �see Figure �	���b��	
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Figure ���� 	a
 Example time plots for the rectangular 	solid
 and Hanning 	dashed

windows with length m � ���� 	b
 The windows after convolution with a rectangular
window of length n � ��
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k KKΔ n

n

Figure ���� Time sequence plot of a rectangular analysis window of length K centered
around time k� �K is the shift between adjacent frames�

First consider the analysis conditions
 where it is important to have good estimates of the
correlation matrix of the noisy signal and the noise process at the current time k
 i	e	
 how to
construct the matrices X and N	 This was discussed in Section �	�	� for Toeplitz matrices using
a rectangular analysis windowWa  Im corresponding to the time sequence window shown in
Figure �	��	
In this case
 the window length K is given by

K  m# n
 � ��	����

and m � n or equivalently K � �n 
 �	 The windowed data segments are allowed to overlap	
Thus
 the data segments can be represented as

xK	i�K  
�
x�	i�K � � � xK	i�K

�
� i  �� �� � � � � F 
 � ��	����

where &K is the shift between adjacent frames �see Figure �	���
 and F is the number of frames
in the time sequence	 Observe that if &K  K
 the segments do not overlap
 and that a frame
shift corresponds to a rank�&K update�downdate of the data matrix	
When applying a given analysis windowWa to X
 a constant weighting c

�
a of the correlation

matrix is obtained

EfXTW�
aXg  Rx

mX
i��

w�a�i  w
T
awaRx  c�aRx ��	����

so the whiteness of the input noise is always preserved	 Note
 that in the prewhitening case

where di�erent analysis windowsWa�X andWa�N can be used on X and N
 the noise�only part
N must be weighted by

ca�X
ca�N

��	����

When analyzing a nonstationary signal like speech
 selection of a window length is an important
consideration
 because sliding it along in time
 a longer window will require a longer period
to cross transitional boundaries in the signal and events from di�erent quasi�stationary regions
will tend to be blurred together more frequently than if the window was shorter	 This is also
the argument for not using a rectangular analysis window and thereby omitting information
in the correlation estimation	 A Hamming window for example has smoother truncations with
maximum weight at the current time k	 This is equivalent to the spectral�temporal resolution

trade�o� ���
 page ���	
Now consider the synthesis window
 which is applied to X before the lter matrixW ��	���


i	e	
 the windowed and enhanced vectors are then given by

�S  
�
� Ws �

�
XW  

�
� Ws �

�
W��

a UX��X�G�V
T
X� ��	����
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Ks Ksk K

n

ΔKΔ s

Ws

+

Figure ���� Time sequence plot of a rectangular synthesis window of length Ks centered
around time k� Ws is the weighting factor and �Ks is the o�set to the analysis window
	dashed
�

where �S � IRms�n
 andWs � IRms�ms is padded with zeros in order to operate on the middle
rows of X	 Note
 that the lter matrix W is obtained from the SVD of WaX
 so if the UX�

matrix is used to obtain the estimate �S
 it must be reweighted byW��
a 	

The time sequence window for a rectangular synthesis window is shown in Figure �	��	 The
window length Ks and weighting factor Ws are given by

Ks  ms # n
 � ��	����

Ws  

�
ms� ms � n
n� ms � n

��	����

where ms � � or Ks � n	 The window is centered around k and the o�set between the analysis
and the synthesis window is

&Ks  

�
K 
Ks

�

�
��	����

where b�c is the truncation operator to nearest lower integer	 Thus
 the shift between adjacent
synthesis windows is also &K and K � Ks � &K	
The enhanced row vectors in �S are combined using the overlap and add synthesis approach


i	e	
 each diagonal in �S which relates to the same time sample is summed	 The obtained Ks�
sample time sequence �sKs must then be reweighted by the corresponding time sequence window
which are the row window ws convolved with a Ws�sample rectangular window due to the
Toeplitz structure	 Another issue is the overlap between adjacent frames
 where the windows
are also used in the interpolation	 Thus
 the overall lter structure can be illustrated by the
block diagram in Figure �	��	
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Figure ���	 Filter structure�
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��� Summary

It is shown that a number of nonparametric linear estimators based on second�order statistics
can be dened in an empirical way based on the data matrix
 where the latter expressions
are based on the SVD instead of the eigendecomposition	 The contribution here is mainly the
unied framework
 where relations between the di�erent estimators are pointed out	 However

the empirical TDC and SDC estimates are alternative formulations based on the data matrix	

The empirical estimators has been compared with the optimal ones
 and it is demonstrated
that the MV estimator introduces gains far away from the optimal Wiener lter	 This is ex�
plained by the fact that the white noise assumption is not exactly satised for the considered
frame length	 The empirical TDC and SDC estimators are less sensitive to the estimate of the
noise variance �for increasing parameter values�
 and they also introduce gains closer to the
optimal lters	

However
 the estimation errors illustrates the importance of explicitly introducing a signal
subspace	 Thus
 the rank decision problem has been discussed
 and the conclusion is that a
xed rank can be used for the Wiener based estimators	

The argument for introducing the TDC and SDC estimates is a reduced residual noise power
with a spectrum that looks like the one for the clean speech
 i	e	
 in accordance to the masking
threshold of the auditory system	 This has been veried by an example
 which illustrates the
tradeo� between residual noise and signal distortion	 In the colored noise case
 it is shown how
prewhitening may increase the signal distortion signicantly	

The relation between the signal subspace approach and spectral subtraction has been consid�
ered
 and the origin of the musical noise has been pointed out	 Combination of noise reduction
methods based on a single microphone with the delay�and�sum beamformer is shown to be an
e�cient way to reduce �eliminate� the musical noise	

Finally
 a lter formulation and frame based implementation of the speech enhancement
methods are discussed
 where a number of practical aspects are considered	
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Parametric Signal Estimators

None of the estimation methods in the last chapter assume a known speech model
 so it is the
hope that introducing a model can be used to improve the noise reduction capabilities	
Two well�known speech models are considered here
 i	e	
 the output of an autoregressive �AR�

system
 and the sum of damped sinusoids	 The former will be used throughout this chapter

while the latter is implicitly used in the last chapter	
In the noisy case
 model based estimation is a nonlinear problem
 which is normally solved

by iterative techniques	 Thus
 a discussion about the di�erent methods is given	
Finally
 a new idea based on multi�microphone inverse ltering is presented
 where the solu�

tion is obtained by subspace methods	

��� AR Di�erence Equation

As discussed in Section �	�	�
 a majority of speech sounds can be described by the transfer
function of an autoregressive �AR� system ��	���
 repeated here for convenience

H�z�  
b�

A�z�
 

b�
� #
Pp

i�� aiz
�i

��	��

where ai are the lter coe�cients
 p is the model order and b� is a gain parameter	 The form
of excitation applied to this lter is either a sequence of delta pulses 
k or white noise wk

corresponding to the voiced or unvoiced speech sounds
 respectively	 Thus
 the synthesized

speech sk is characterized by the following di�erence equation �voiced example�

sk  

pX
i��

aisk�i # b�
k ��	��

When written out for k  �� �� � � � �K
�
 these recursions produce the Toeplitz matrix equations�BBBBBBBBB�

�
a� � �
			

	 	 	
	 	 	

ap � � � a� �
	 	 	

	 	 	
	 	 	

� ap � � � a� �

	CCCCCCCCCA

�BBBBBBBBB�

s�
s�
			
sp
			

sK��

	CCCCCCCCCA
 

�BBBBBBBBB�

b�
�
			
�
			
�

	CCCCCCCCCA
��	��

The last �K 
 p� equations are written as

AT s  � ��	��
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where the full rank matrix AT � IR
K�p��K is denoted the prediction error matrix
 i	e	


AT  

�B� ap � � � a� � �
	 	 	

	 	 	
	 	 	

� ap � � � a� �

	CA ��	��

The vector model ��	�� may be equivalently written as the covariance equations of linear pre�
diction by organizing the coe�cients ai into a parameter vector a
 and the synthesized speech
signal into a data matrix S
 i	e	


AT s  Sa  

�BBBB�
s� � � � sp
s� � � � sp	�
			

			
sK���p � � � sK��

	CCCCA
�BBBB�

ap
			
a�
�

	CCCCA  � ��	��

The covariance equations show that the rank of the signal�only matrix S is
 in fact
 p and not
�p# ��	 It further shows that the parameter vector a lies in the null space of the matrix S
 i	e	

the span of the prediction error matrix A	

��� Modal Decomposition

Another commonly used way of representing the speech signal is in terms of a nite sum of p
complex modes zi ���
 ���

sk  
pX

i��

ciz
k
i ��	��

When written out for k  �� �� � � � �K 
 �
 the corresponding vector model is�BBBB�
s�
s�
			

sK��

	CCCCA  
�BBBB�

� � � � �
z� � � � zp
			

			

zK��� � � � zK��p

	CCCCA
�BBBB�

c�
c�
			
cp

	CCCCA ��	��

or

s  Vc ��	��

where V � CI K�p is a complex Vandemonde matrix and c is a vector of mode weights	 The ith
column of V is called the ith mode
 and is linearly independent of the remaining columns of V

provided zi 	 zj 	

The modal representation ��	���	�� shows that the synthesized speech signal sk obeys a linear
model of the form ��	��
 and that it is a damped complex sinusoid model whose ith mode is
given by

vi  
�
� �ie

j�i � � � �K��i ej�i
K���
�T

� i  �� � � � � p ��	���

where � � �i � 	 and �i � �	 However
 as pointed out in Section �	�	�
 the parameters in the
matrix V need not be explicitly known in implementing
 e	g	
 the LS estimator	 Thus
 for this
model
 the estimator should be obtained from the eigendecomposition of the correlation matrix

i	e	
 there is no reason for the solution of a hard parameter estimation problem	
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��� Noisy Signal

Now
 the noise signal nk is added to the speech signal sk to produce the noisy measurements

xk  sk # nk � X�z�  S�z� #N�z� ��	���

The noise process is assumed locally stationary
 white and uncorrelated with the speech signal	
In the colored noise case
 a prewhitening transformation can always be applied to the signal as
discussed in section �	�
 and since the noise is assumed to be slightly time varying
 the noise in
each speechless section is modelled for the succeeding speech section	
Using ��	��� and ��	��� in ��	���
 the following models are obtained for the voiced sounds

xk � ak  b�
k # nk � ak � X�z�  
b�
A�z�

#N�z�  
b� #A�z�N�z�

A�z�
��	���

and for the unvoiced sounds

xk � ak  b�wk # nk � ak � X�z�  
b�W �z�

A�z�
#N�z�  

b�W �z� #A�z�N�z�

A�z�
��	���

These equations can be equivalently represented by a common ARMA model as follows ����

xk � ak  w�
k � ck # n�k � ak � X�z�  

C�z�

A�z�
W ��z� #N ��z� ��	���

where w�
k is another white noise sequence
 ck is a �nite MA lter given by

C�z�  � #
pX

i��

ciz
�i ��	���

and n�k represent the error in modelling the nominator of ��	��� and ��	��� with a �nite MA
impulse response	 Like the additive noise nk
 the model noise n

�
k is assumed locally stationary


white and independent of sk
 but compared with nk
 the power spectral density of n
�
k will

normally be much smaller	
Thus
 an AR model in additive white noise can be represented by an ARMA model and the

MA part of this model is nothing but the additive noise in the signal	

��� Speech Modelling and Wiener Filtering

The Wiener ltering approach used in spectral subtraction �see Section �	�	�� is reconsidered
in this section	 However
 the gain function is formulated by means of the short�time Power
Spectral Density �PSD� of the clean speech
 i	e	


gWiener�m�  
�"s�m�

�"s�m� # �"n�m�
��	���

The noise PSD
 i	e	
 �"n�m�
 is estimated during periods of silence
 while estimation of the speech
PSD
 i	e	
 �"s�m�
 is a more di�cult problem
 solved by estimation of speech parameters in an
all�pole �AR� model	
The parameter estimation procedures that result in linear equations ��	�� without back�

ground noise become nonlinear when noise is introduced	 However
 by using iterative algorithms

the estimation procedure is linear at each iteration	 In the next section
 several methods for
modelling speech in such an iterative framework are considered	
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����� All�Pole Modelling

Suppose X � IRm�n is the measurement matrix dened by ��	��
 where the columns of S are
known to lie in the rank�p subspace hHi
 but the subspace is unknown	 The least squares
approximation method in Section �	�	� considered the simultaneously estimation of � and H in
the linear model S  H�
 when the structure of H was not specied	 We proceed by reconsider
the minimization problem of the squared �tting error ��	��� with respect to H or equivalently
�H

min
�H

e�  min
H

kX
H��LSk�F � ��LS  �H
TH���HTX ��	���

 min
�H

tr
�
P�H

XXTP�H

�
� P�H

 I
PH

 min
�H

nX
i��

xTi P�H
xi

when H or �H must be optimized within the AR parametric class 	 Using the prediction error
matrix AT ��	��
 the problem is then to determine the least squares estimate of A having the
specic structure in ��	�� from the nonlinear optimization

�ALS  argmin
A

nX
i��

xTi PAxi � PA  A�A
TA���AT ��	���

The prediction errors ATx may be rewritten with the signal values organized into a data matrix
and the autoregressive parameters organized into a parameter vector

ATx  Xa  

�BBBB�
x� � � � xp
x� � � � xp	�
			

			
xK���p � � � xK��

	CCCCA
�BBBB�

ap
			
a�
�

	CCCCA ��	���

which gives an alternative formulation of ��	���

�ALS  argmin
A
aTXT �ATA���Xa ��	���

There is proposed di�erent ways to solve the minimization problem ��	��� or ��	����

� The modi�ed least squares problem approximates the projector PA by AAT 
 i	e	
 the
minimization is modi�ed in the sense that �ATA��� is neglected

�AMLS  argmin
A

�T � ��	���

 argmin
A
aTXTXa

where the prediction errors � is also called the equation errors
 and the equations ATx  �

are simply the covariance equations of linear prediction	

� The KiSS algorithm minimizes the quadratic form using the iteration ����

min
ai
aTi X

T
�
AT
i��Ai��

���
Xai ��	���

where ai is the approximation of a at the ith iteration and Ai�� is built using the co�
e�cients in ai��	 At each iteration
 the new approximation is therefore obtained with a
simple quadratic minimization	 In ���� is shown that the KiSS algorithm is equivalent to
the original Steiglitz�Mcbride algorithm 	
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Other iterative methods is the maximum a posteriori �MAP� estimation ���� and estimate�

maximize �EM� algorithm ����	 However
 in order to obtain reliable parameters
 speech�specic
constraints must be applied to the problem ����	

Common for the above methods is that errors in the parameter estimates introduce signal
distortion
 and the musical noise will also be presented in the enhanced signal due to the Wiener
lter approch	

In the next section
 a totally di�erent approach is considered	 Here
 noise components are
identied from modelling of the noisy speech signal
 and then removed by inverse ltering in the
time domain only	 Thus
 the enhanced signal should be free of musical noise	

��� Subspace Methods for Multichannel Inverse Filtering

In �����
 a monochannel noise reduction procedure is presented
 based on ARMA modelling
of the noisy signal
 followed by inverse ltering in the time domain	 It is concluded that this
method preserves the natural sound of speech
 because it involves some ltering and inverse
ltering procedures in the time domain only	

The idea presented here
 is to combine the ARMAmodelling approach with multi�microphone
inverse ltering
 and to obtain the solution by subspace methods	

First
 assume that the speech signal in additive white noise is ideally modelled as an ARMA
process ��	���
 i	e	
 zero model noise n�k
 then inverse ltering by the MA part C�z� yields a
signal with the following power spectral density

"s���  

���� G

A�z�A�z���

����
z�ej�

��	���

where G is a gain factor	 Equation ��	��� represents the spectra for the clean speech	 Thus

inverse ltering the measurement signal xk by ck in the time domain as

xk  ck � sk ��	���

yields the clean speech

S�z�  
X�z�

C�z�
 
W ��z�

A�z�
��	���

which is driven by the white noise input W ��z�	 However
 in practice the noisy speech signal
cannot be ideally modelled by an ARMA model with nite MA part
 so from ��	��� the signal
xk is modelled as

xk  ck � sk # n�k ��	���

where n�k is the model noise	 Figure �	��a� and �b� show the AR speech model with additive
white noise and the corresponding ARMA model	

There are two problems concerning inverse ltering in the classical monochannel case� First

the identication of ck is iterative and second
 the inverse MA lter has innite length
 even
in the absence of model noise	 As discussed in the next sections
 the identication procedure

and nite inverse ltering is simplied in the multichannel case
 when the additive noise n

i�
k in

the ith channel is uncorrelated with the noise signals in the other channels	 Since only the MA

part of the ARMA model depends on n

i�
k 
 the multichannel system can be considered as the

clean speech signal sk ltered with di�erent FIR channels C

i��z� and added independent model

noises n
�
i�
k 	 This is shown in Figure �	��c� for the case of L channels	
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Figure ��� 	a
 AR speech model with additive white noise� 	b
 ARMA model for 	a

with additive model noise� 	c
 Multichannel ARMA model for 	a
�

����� Subspace Based Identi�cation of Multichannel FIR Filters

A simple blind identication method of multichannel FIR lters
 based on the concept of noise
subspace
 is proposed in ����	 The input signal is allowed to be local stationary and the channel
transfer functions may be nonminimum phase
 hence the proposed algorithm is particularly
suitable for the speech enhancement application in the previous section	

The block diagram of the unknown system model is shown in Figure �	��c�	 It is assumed
that the number of channels L � �	 All channels are fed by the same unknown speech signal

sk which needs to be recovered from the observations x

i�
k 	 From ��	���
 the signal x


i�
k received

from the ith channel is modelled as

x

i�
k  c


i�
k � sk # n

�
i�
k ��	���

where each sequence x

i�
k depends on a di�erent unknown impulse response c
i� of order p char�

acterizing the ith channel

C
i��z�  
pX

k��

c

i�
k z�k � c
i�  

�
c

i�
� c


i�
� � � � c


i�
p

�T
��	���

For a sequence of m successive samples x
i�  �x

i�
� x


i�
� � � � x
i�m���T 
 Equation ��	��� is written as

x
i�  C
i�s# n�

i�

��	���

where s  �s�s� � � � sm	p���
T 
 n�
i�  �n

�
i�
� n

�
i�
� � � �n�
i�m���

T and C
i� � IRm�
m	p� is the �ltering

matrix associated with the linear lter c
i�
 and dened as

C
i�  

�BB�
c

i�
� � � � c


i�
p �

	 	 	
	 	 	

� c

i�
� � � � c


i�
p

	CCA ��	���
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For L channels
 the set of measurements depending on the same set of speech samples is given
by a composite vector x � IRLm���BB�

x
��

			

x
L���

	CCA  
�BB�

C
��

			

C
L���

	CCA s#
�BB�

n�
��

			

n�
L���

	CCA ��	���

or
x  Cs# n� ��	���

This linear system has dimension Lm� �m# p�
 and assuming m � p
 then the system becomes
more and more overdetermined as m increases	
A blind identication procedure consists in estimating the vector c � IRL
p	���� of channel

coe�cients

c  

�BB�
c
��

			

c
L���

	CCA ��	���

from the composite measurement vector x or equivalently from its correlation matrix Rx �
IRLm�Lm

Rx  EfxxT g ��	���

Since the additive model noise n� is assumed to be independent of the speech sequence
 Rx can
be expressed by use of ��	��� as

Rx  CRsC
T #Rn� ��	���

where Rn�  Efn�n�T g  ��n�I � IRLm�Lm and Rs  EfssT g � IR
m	p��
m	p� is assumed to
have full rank but otherwise unknown	 The rank of the composite lter matrix C is given by
the following theorem ����
 ���
 ���

Theorem ��� �Rank of the Composite Filter Matrix
 The composite �ltering matrix denoted

C � IRLm�
m	p� is full rank� i�e�� rank �C�  m# p� if

�� The channel transfer functions C
i��z�  
Pp

k�� c

i�
k z�k have no common zero�

�� m � p�

�� At least one polynomial C
i��z� has degree p�

Thus
 since Rs has full rank
 the signal part CRsC
T of the correlation matrix Rx has rank

�m# p�	 The eigendecomposition of Rx can therefore be expressed as

Rx  U��UT  
�
U� U�

�� ��
� �
� ��n�I

��
UT

�

UT
�

�
��	���

where ��
� � IR
m	p��
m	p�	 The columns of U� � IRLm�
m	p� span the signal subspace
 while

the columns of U� � IRLm�
Lm�m�p� span its orthogonal complement
 the noise subspace	 The
signal subspace is also the linear space spanned by the columns of the composite ltering matrix
C	 Hence
 the columns of C are orthogonal to any vector in the noise subspace
 i	e	


uTj C  
L��X
i��

�u

i�T
j C
i�  � � j  m# p# �� � � � � Lm ��	���
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where the eigenvector uj  ��u

��T
j � � � �u
L���Tj �T � IRLm is partitioned into L blocks of length m

as in ��	���	 Equation ��	��� is the convolution sum of the vectors �u

i�
j with the channel impulse

responses c
i�	 Since the convolution operation is commutative
 ��	��� can also be expressed in
terms of the vector c of channel coe�cients and the lter matrices associated with the segments
of the eigenvector uj dened as

�Uj  

�BB�
�U

��
j
			

�U

L���
j

	CCA � �U

i�
j  

�BBB�
'u

i�
j� � � � 'u


i�
j
m��� �

	 	 	
	 	 	

� 'u

i�
j� � � � 'u


i�
j
m���

	CCCA ��	���

where �Uj � IRL
p	���
m	p� and �U

i�
j � IR
p	���
m	p�	 Thus
 an alternative formulation of

Equation ��	��� is

cT �Uj  
L��X
i��

c
i�T �U

i�
j  � � j  m# p# �� � � � � Lm ��	���

In ���� is shown that the noise subspace hU�i used in ��	��� uniquely determines the channel
coe�cients c up to a multiplicative constant
 i	e	


Theorem ��� �Uniqueness of the Composite Filter Matrix
 Assume that

�� m  p�

�� The �lter matrix corresponding to m
� samples is full rank� i�e�� rank�Cm���  m#p
��

and let c� � IRL
p	���� be another nonzero �lter vector with a corresponding �ltering matrix

C� � IRLp�
m	p�� Then

range �C�� � range �C� ��	���

i�

C  �C� � � � IR and � 	 � ��	���

Hence� both matrices C and C� share the same column space if and only if they are proportional�

Theorem �	� is fundamental for the blind identication method
 since it provides a mechanism
for estimating the channel coe�cients even in the cases where Rs is unknown
 provided it has
full rank	 It relies on the specic structure of C
 which is by construction a ltering matrix	

The orthogonality condition ��	��� is linear in the unknown coe�cients c
 which simplies
the identication procedure	 In practice
 only the sample correlation matrix �Rx is available

�Rx  
�

n
XXT ��	���

where the composite data matrix X � IRLm�n is given by

X  

�BB�
X
��

			

X
L���

	CCA ��	���
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and the Toeplitz structured data matrix for the ith channel X
i� � IRm�n is dened by ��	��
with n� m	 An estimate of the noise subspace �U� are found from the SVD of X

�p
n
X  �U���VT  

�
�U�

�U�

�� ���
� �
� ���n�I

��
�VT
�
�VT
�

�
��	���

Then
 Equation ��	��� is solved in the least squares sense
 which leads to the minimization of
the following quadratic form

e�c�  
LmX

j�m	p	�

kcT ��Ujk�� ��	���

 
LmX

j�m	p	�

cT ��Uj
��U
T

j c

 cT

�� LmX
j�m	p	�

��Uj
��U
T

j

	A c
 cTQc

By Theorem �	�
 if the quadratic form is constructed from the true correlation matrix Rx
 the
true channel coe�cients are the unique �up to a scalar factor� vector c such that e�c�  �
 and
the matrix Q � IRL
p	���L
p	�� must therefore satisfy

rank �Q�  L�p# ��
 � ��	���

When only an estimate of the correlation matrix �Rx is available
 the matrix Q has not exactly
rank L�p#��
�	 Hence
 estimates of c can be obtained by minimizing e�c� subject to a properly
chosen constraint avoiding the trivial solution c  �	 A natural choice is minimization subject
to quadratic constraint

min
c

e�c�  min
c
cTQc subject to kck�  � ��	���

The solution �c is the unit�norm eigenvector associated to the smallest eigenvalue of the matrix
Q	
As pointed out in ����
 the above algorithm is a reminiscent of the MUSIC method �����

for DOA estimation of narrowband sources	 It exploits the orthogonality between the noise
subspace and the column space of C	

����� Multichannel Inverse Filtering

From the estimated channel coe�cients c
 an inverse lter may be obtained	 The method
considered here
 is the linear matrix equalizer C	 � IR
m	p��Lm dened as the pseudoinverse of
the composite ltering matrix C

C	  �CTC���CT ��	���

The matrix C	 may be computed from the SVD of C  Uc�cV
T
c

C	  Vc�
��
c UT

c ��	���

Each row of the matrix C	 is a linear scalar equalizer of length Lm
 i	e	
 each channel is lteret
by an m�tap lter and the L resulting outputs are added	 The following remarks can be made
to expression ��	����
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Equalizer� Each row ofC	 provides an equalizer with various delays and noise enhancement
properties	

Finite length equalization� In the absence of noise
 ��	��� is a zero�forcing equalizer of
�nite length m  p	 This property does not hold in the classical monochannel case
 where the
channel inverse have innite length ���	

No reconstruction delay� Each row of the pseudoinverse is made from the coe�cients
of a multichannel equalizer able to reconstruct the data at time k from the previous observed
samples only	 The multichannel lter is minimum phase	

Applying the multichannel inverse lter C	 to the composite data vector x ��	���
 gives the
enhanced signal �x

�x  C	x  s#C	n� ��	���

��� Summary

In this Chapter
 model based speech enhancement has been considered	 Most methods are
based on Wiener ltering of the noisy signal
 where the parameters of the speech model
 used
in the gain function
 are obtained by iterative techniques	 However
 in order to obtain reliable
parameters
 speech�specic constraints must be applied to the problem	 Another problem is
the musical noise
 which will also be presented in the enhanced signal due to the Wiener lter
approch	
Another approach is ARMA modelling of the noisy signal
 followed by inverse ltering in the

time domain
 to remove the noise represented by the MA part	 Also the ARMA modelling is
normally iterative
 however
 the approach presented here
 use a multi�microphone technique to
identify the MA parts	 The concept has initially been applied to noisy AR�signals
 however
 the
problem is to obtain a rank decient Q matrix
 i	e	
 further work has to be done in this area	
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Rank�Revealing Orthogonal
Decompositions

The Singular Value Decomposition is the basic tool in the discussed noise reduction systems	
One of its major merits is that it provides the rank of the matrix and a basis for four important
spaces	 Unfortunately
 the SVD is computationally expensive and resist updating	 The initial
cost of computing a SVD would not be an objection
 if the decomposition could be cheaply
updated	 However
 all known updating schemes require O�n�� �ops for a matrix of order n even
for a simple update such as adding a new row ���
 ��
 ���	 The problem with the SVD is that it
is essentially unique	 The requirement that � in the SVD be diagonal e�ectively determines U
and V	 To circumvent these drawbacks any decomposition�algorithm that estimates the rank
and the orthogonal spaces can be used in the place of the SVD	 The following issues are critical
for the application�

� Recomputing a factorization is too costly
 and an update algorithm should be performed
with as few operations and as little storage requirement as possible	 This
 e	g	
 important
in real time applications	

� The outcome should be accurate up to the limitations of the data and conditioning of the
problem
 i	e	
 a stable numerical method must be used	

� It should be possible to use a computer with short word�length	 This rules out the corre�
lation based methods
 which requires twice the word�length as methods based on the data
matrix	

The Rank�Revealing QR �RRQR� decomposition could be one possible choice ����	 RRQR
algorithms can track the numerical rank
 and the computational complexity of this approach is
O�n��	 However
 it has been shown by Fierro and Bunch ���� that the quality of the approxima�
tion depends on the gap between the singular values
 and approximations to the right singular
subspaces are not directly available	 Furthermore
 the decomposition is not easy to update	

A better choice is the Rank�Revealing URV�ULV Decompositions introduced by Hanson and
Lawson in ���� �URV version� and the related algorithms devised by Stewart ����
 ���
 �
 ���

which use two�sided orthogonal transformations to upper�lower triangularize the matrix	 Thus

the URV�ULV decompositions are a compromise between the SVD and the RRQR decompo�
sition with some of the virtues of both	 Actually
 these two decompositions are special cases
of the triangular decompositions	 The rank�revealing URV�ULV decompositions are e�ective
in tracking the numerical rank and approximations to both the left and right subspaces are
explicitly available	 Furthermore
 the quality of the subspace approximations are not sensitive
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to the magnitude of the gap in the singular values
 and the decompositions can be updated in
O�n�� �ops	
Another issue is the precision in the estimated row and column subspaces
 which is not

identical for the upper and lower triangular version	 Therefore the ULV decomposition is chosen
in our case
 where only right subspaces are maintained	 For a pair of matrices
 the ULLV
decomposition ���
 ��
 ��
 ��� will be used
 which is an approximation of the QSVD
 and is also
an extension of the ULV decomposition	

In this Chapter
 the rank�revealing ULV�ULLV decompositions are presented	 The quality
of the subspaces are compared with the one produced by the SVD
 and perturbation theory is
considered	 In both analyzes
 the conclusions are drawn from speech related examples	

An ULV�ULLV formulation of the LS
 MV and TDC estimation strategies is given
 where
the last two are suggested here	 Thus
 a recursive updating of the estimates are used instead of
working in frames	 Finally
 implementation aspects are discussed	

��� The ULV Decomposition

The ULV decomposition of a matrix is a product of three matrices dened by the following
theorem	

Theorem 	�� �ULV Decomposition 	ULVD

 Given a matrix X � IRm�n� and assume m � n�
then there exist a matrix UX � IRm�n with orthogonal columns and a orthogonal matrix VX �
IRn�n such that

X  UXLXV
T
X ��	��

where LX � IRn�n is lower triangular�

A basic feature is that the ULV decomposition of a full rank matrix X can be made rank
revealing
 if there is a gap in the singular values
 i	e	
 it can be used to break the space spanned
by the matrix X into two subspaces
 one corresponding to the cluster of largest singular values
and the other corresponding to the group of smallest singular values	 The rank�revealing version
of the ULV decomposition was rst introduced by Stewart ����� as

Theorem 	�� �Rank�Revealing ULV Decomposition 	RRULVD

 Assume that m � n and that

X � IRm�n has numerical rank p � n corresponding to a given tolerance � � i�e�� its singular

values satisfy

�� � � � � � �p � � � �p	� � � � � � �n ��	��

Then there exist a matrix UX � IRm�n with orthogonal columns and a orthogonal matrix VX �
IRn�n such that

X  UXLXV
T
X  

�
UX� UX�

�� LX� �
FX GX

��
VT
X�

VT
X�

�
��	��

where LX � IRn�n� LX� � IRp�p and GX � IR
n�p��
n�p� are lower triangular� and

�min�LX��  �p ��	��

kFXk�F # kGXk�F  ��p	� # � � � # ��n ��	��
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The tolerance � is dened based on a detection threshold in the underlying signal processing
problem	 Thus
 when X is the sum of a rank decient signal matrix S and a full rank noise
matrix N
 then the rank�revealing ULV decomposition can be used to estimate the signal and
noise�only subspace	

For a rank decient matrix
 the ideal form of the rank�revealing ULV decomposition
 i	e	

F  G  �
 is called a Complete Orthogonal Decomposition

Theorem 	�� �Complete Orthogonal Decomposition
 Given a rank�p matrix S � IRm�n� where
m � n  p� then there exist orthogonal matrices US � IRm�m and VS � IRn�n such that

S  US

�
LS� �
� �

�
VT
S ��	��

where LS� � IRp�p is lower triangular�

The Complete Orthogonal Decomposition
 like the SVD
 also provides orthogonal bases for
the row and null spaces of S and ST 
 but unlike the SVD neither the Complete Orthogonal
Decomposition or the RRULVD of a given matrix is unique	 Actually
 the SVD is itself a
Complete Orthogonal Decomposition�RRULVD	

����� Quality of Subspaces

In ���
 ���
 the approximate subspaces produced by the rank�revealing ULV decomposition as
in ��	�� are compared with the subspaces produced by the SVD	 How the singular values of GX

and LX� are related to those of X is also considered	 These results prove that the RRULVD
not only reveal the numerical rank of the matrix but also provide good approximations to the
singular subspaces as part of the factorization	

Assume that there is a su�cient gap in the singular values of the diagonal blocks of the
matrix LX

�  
�max�GX�

�min�LX��
� � ��	��

then the relation in the singular values is bounded by ����

Theorem 	�� �Singular Value Bounds for the RRULVD
 Let a matrix X � IRm�n have the

RRULVD in 	���
 and let � be de�ned by 	���
� then

� � �p	j�LX�

�j�GX�
�
s
�
 kFXk��

��
 �����min�LX��
� j  �� � � � � n
 p ��	��

� � �j�LX��

�j�LX�
�
s
�
 kFXk��

��
 �����min�LX��
� j  �� � � � � p ��	��

Thus
 an o��diagonal perturbation like neglecting FX will only give a relative errorO�kFXk��
in the singular values
 so even the smallest singular values retain their accuracy	 It can also be
seen from Theorem �	� that the singular values of LX� will in general underestimate the rst
p values �i�X� �this fact also follows from the minimax characterization of singular values�	
Similarily
 the singular values of GX will in general overestimate the corresponding last n 
 p
values �i�X�	

Peter S� K� Hansen ����



	� Chapter �� Rank	Revealing Orthogonal Decompositions

0 5 10 15 20
0

2

4

6

8

10

Index, i

S
in

g
u
la

r 
S

p
ec

tr
u
m

 σi(S)

 σi(LS1) and  σi−p(GS)

	a


0 5 10 15 20
1

2

3

4

5

6

7

8

9

Index, i

S
in

g
u
la

r 
S

p
ec

tr
u
m

 σi(X)

 σi(LX1) and  σi−p(GX)

	b


Figure ��� 	a
 The singular values of S � IR������ representing the voiced speech frame
with ��� samples� and the corresponding values obtained from LS� and GS with p �
� 	Initial RRULV algorithm without re�nement
� 	b
 The average singular values of
the corresponding noisy data matrix using ��� independent white noise realizations and
SNR��dB�
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Figure ��� The ratios in Theorem ���� where 	a
 corresponds to Figure ���	a
 and 	b
 to
Figure ���	b
�

The graphs in Figure �	��a� and �	��a� illustrates this problem	 Here
 the singular values of
S � IR������ representing the voiced speech frame with ��� samples are compared with the one
obtained from LS� andGS with p  ��	 Note
 that �i�LS�� are plotted against the rst p indices

and �i�GS� are plotted from index p# � to n	 It is seen that the largest and smallest singular
values and thereby the dominant range and null space are well determined by the RRULVD

while the subspaces diverge a little near the rank�revealing point p due to the o��diagonal block
FX 	 The gap � is �	�� and the lower bounds in Theorem �	� are �	��	

The under�overestimation becomes more pronounced when noise is added as shown in Fig�
ure �	��b� and �	��b�
 and Theorem �	� is obviously no longer valid since �  �
 i	e	
 the subspaces
are now blurred together	 The reduced performance in the noisy case can be explained by the
smaller gap in the singular spectrum of X
 and the reason is the gap�sensitive condition estima�
tor used in the rank�revealing de�ation algorithm �see Section �	�	��
 i	e	
 kFXk� has increased	
In the above example
 a relative low segmental SNR �� dB� is used and the RRULV algorithm
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is applied without renement �see Chapter �� to obtain signicant errors	
The following theorem due to Mathias and Stewart ���� and Fierro and Bunch ���� shows

that as the o��diagonal block FX decreases
 the RRULVD subspaces converge to their SVD
counterparts
 where the quality of the approximate subspaces is measured by the canonical
angles	

Theorem 	�� �Subspace Bounds for the RRULVD
 Let ��hVX��SVDi� hVX�i� � IR
n�p��
n�p�

be the diagonal matrix of canonical angles between the right singular subspace hVX��SVDi corre�
sponding to the smallest n
p singular values of X � IRm�n and the approximate subspace hVX�i
produced by the rank�revealing ULV decomposition of X 	���
� and let ��hUX��SVDi� hUX�i� �
IR
n�p��
n�p� be the diagonal matrix of canonical angles for the case of left supspaces hUX��SVDi
and hUX�i� then under Assumption 	���


k sin��hVX��SVDi� hVX�i�k� � �kFXk�
��
 ����min�LX��

��	���

kFXk�
kLX�k� # kGXk� � k sin��hUX��SVDi� hUX�i�k� � kFXk�

��
 ����min�LX��
��	���

Clearly
 the quality of the approximate subspaces also depends on the o��diagonal block
kFXk� and not really on the gap � in the singular spectrum
 which implies that the matrix FX
should have small elements in absolute value	
The largest canonical angle is also related to the notion of distance between equidimensional

subspaces	 From Denition �	� on Page �� follows

dist�hVX��SVDi� hVX�i�  dist�hVX��SVDi� hVX�i� ��	���

 k sin��hVX��SVDi� hVX�i�k�
and from that denition as well as ���
 lemma �	��

dist�hUX��SVDi� hUX�i�  dist�hUX��SVDi� hUX�i� ��	���

 k sin��hUX��SVDi� hUX�i�k�
By comparing ��	��� and ��	���
 it is seen that the approximation of the right singular subspaces
are more exact than the approximation of the left singular subspaces	 This result can be cast
as more conventional bounds

kXVX�k�  
�����
�
LX�

FX

������
�

� kUT
X�Xk�  kLX�k� ��	���

kXVX�k�  kGXk� � kUT
X�Xk�  

���� FX GX

����
�

��	���

Therefore
 the ULV decomposition is chosen for applications in which an approximate right
singular subspace is needed or maintained
 and the related URV decomposition is used in cases
where the left singular subspaces are desired	 Remember that the URV decomposition is an
upper triangular version of the ULV decomposition	
In Figure �	�
 the canonical angles corresponding to the example in Figure �	� are plotted

against their indices	 For the clean speech frame
 the signal subspace is well determined with
only a few large angles �sin �max  �����	 The gap � is again �	�� and the upper bound in
Theorem �	� is �	��	 In the noisy case
 the reduced gap in the singular spectrum of X generally
increases all the angles because of the increased norm of the o��diagonal block FX as discussed
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Figure ��� 	�
 sin�	hVS��SVDi� hVS��ULV i
� where the p � � dimensional subspaces are
obtained from S � IR������ representing a voiced speech frame with ��� samples� 	�
 The
average sin� of the corresponding noisy data matrix using ��� independent white noise
realizations and SNR��dB�
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Figure ��� 	Solid
 The �rst � eigen�lters VS��SVD of S � IR������ representing a voiced
speech frame with ��� samples� 	Dashed
 The corresponding eigen�lters obtained from the
RRULVD based rank�� approximation� 	Dotted
 The canonical vectors 	�lters
 associated
with VS��SVD �
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Figure ��� 	Solid
 The �rst � eigen�lters VX��SVD of X � IR������ representing a noisy
voiced speech frame with ��� samples and SNR��dB� 	Dashed
 The corresponding eigen�
�lters obtained from the RRULVD based rank�� approximation� 	Dotted
 The canonical
vectors 	�lters
 associated with VX��SVD �

previously
 but the possible mix of signal and noise subspace also results in angles close to one
�sin �max  �����	 The four angles close to the machine precision arise from the fact that two
p�dimensional subspaces in a n�dimensional space must have a �p
 n dimensional intersection	

Now
 compare the rst p  �� eigenlters VS��SVD of the signal�only matrix S with the
corresponding eigenlters obtained from the RRULVD based rank�p approximation �see Sec�
tion �	�	��	 Both sets of lters are illustrated in Figure �	� and
 as the above discussion indi�
cates
 they are very similar	 On the rst four plots in the gure
 the canonical vectors �lters�
associated with the subspace intersection are shown �without ordering�
 and clearly they match
the dominant eigenlters	 In the noisy case
 the di�erence between the two sets of eigenlters
will become more clear
 especially among the last few lters
 as shown in Figure �	�
 where a
single white noise realization has been added �SNR  � dB�	

����� Perturbation Theory

In the noise reduction application
 we will have access to the noise perturbed data matrix
X  S #N
 but is interested in the projection onto the signal subspace spanned by the pure
signal matrix S	 In ����
 perturbation bounds for the RRULVD are given
 i	e	
 bounds on the
angle between the subspaces obtained by performing a RRULVD on the noisy data matrix X as
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in ��	�� and on the signal matrix S as

S  
�
US� US�

�� LS� �
FS GS

��
VT
S�

VT
S�

�
��	���

First dene the signal subspace related noise level

�  max
n
kNVX��SVDk�� kUT

X��SVDNk�
o
� kNk� ��	���

and asumme that

��  
�max�GS�

�min�LX��
� � ��	���

then the following theorem due to Fierro ���� bounds the sensitivity of the RRULVD subspaces	

Theorem 	�	 �Perturbation Bounds for the RRULVD
 Let S and X have the RRULVD given

by Equation 	����
 and 	���
� respectively� and let � and �� be de�ned by Equation 	����
 and

	����
� then

k sin��hVX�i� hVS�i�k� � ���kFXk� # kFSk� # �� # �

��
 �����min�LX��
��	���

k sin��hUX�i� hUS�i�k� � kFXk� # kFSk� # �

��
 ����min�LX��
��	���

However
 to measure the quality of the subspaces isolated using the RRULVD on the noise
perturbed data matrix
 they must be compared with those obtained using the SVD on the clean
signal matrix	 As pointed out in ����
 such bounds is a special case of Theorem �	�
 when the
RRULVD of S is reduced to the SVD
 i	e	
 FS  �
 LS�  �S�
 GS  �S� and

'�  
�S�p	�

�min�LX��
� � ��	���

This results in the following theorem

Theorem 	�
 �True Perturbation Bounds for the RRULVD
 Let X have the RRULVD given

by Equation 	���
 and S the corresponding SVD� and let � and '� be de�ned by Equation 	����


and 	����
� then

k sin��hVX�i� hVS��SVDi�k� � '��kFXk� # �� # �

��
 '����min�LX��
��	���

k sin��hUX�i� hUS��SVDi�k� � kFXk� # �

��
 '���min�LX��
��	���

Theorem �	� indicates that as the norm of the o��diagonal block FX decreases
 the error between
the ULV subspace and the corresponding true SVD subspace is dominated by the magnitude of
the noise in the data matrix	
For FX  �
 the rst cluster of singular values is decoupled from the second
 and the theorem

reduces to the perturbation bounds for singular subspaces by Wedin

k sin��hVX��SVDi� hVS��SVDi�k� and ��	���

k sin��hUX��SVDi� hUS��SVDi�k� � �

�X�p 
 �S�p	�
��	���

� �

�S�p 
 �S�p	� 
 kNk�
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where perturbation theory of singular values
 i	e	
 j�X�p 
 �S�pj � kNk�
 has been used �see
Section �	�	��	 Thus
 if the noise level kNk� is equal to half the gap in the signal�only singular
spectrum
 then the angle between the subspaces is �

� 	 For higher noise levels
 the theory is no
longer valid due to the possible mix of signal and noise subspace	

For the speech enhancement application
 the gap is typically much smaller than the noise
level
 i	e	
 �noise � �S�p 
 �S�p	�
 so Theorem �	� can not be used directly as a quality measure
of the RRULVD	 However
 in practice kFXk� is also much smaller than �noise
 which makes
Equation ��	��� a close approximation to Theorem �	�
 and it is therefore reasonably to assume
that the RRULVD and the SVD will deliver similar results in this application	

Note
 that if the elements of N and S are uncorrelated
 the noise is white N  �noiseI
 and
the signal�only matrix S is rank decient with rank p
 then Equation ��	��� becomes

cos��p�  
q
�
 sin���p�  

vuut�
 ��noise
��X�p

 
�S�p
�X�p

��	���

which is identical to Equation ��	���	

The canonical angles between the signal subspace hVS��SVDi obtained from the SVD of the
clean signal matrix S � IR������ representing the voiced speech frame with ��� samples and the
subspaces hVX��SVDi and hVX��ULV i obtained in the noisy case using both the SVD and the
RRULVD are shown in Figure �	�	 The angles are averaged over ��� independent white noise
realizations �SNR  � dB�	 As expected
 the SVD based subspace hVX��SVDi is in the average
closer to the true one	

Another issue is to compare the eigenlters obtained from the SVD of the clean signal with
the noisy case
 where both the SVD and the RRULVD fail to match the last few eigenlters as
shown in Figure �	�	 Since the lters are averaged over ��� independent white noise realizations

the reduced magnitudes indicate the variance on the eigenlter estimates �see Section �	��	
Obviously� both methods deliver similar results� so the RRULVD will be comparable with the

SVD when used in speech enhancement applications	
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Figure ��� 	�
 Average sin�	hVS��SVDi� hVX��SVDi
� where the p � � dimensional sub�
space hVS��SVDi is obtained from S � IR������ representing a voiced speech frame with
��� samples� and hVX��SVDi is obtained from the corresponding noisy data matrix using
��� independent white noise realizations and SNR��dB� 	�
 The noisy subspace is now
obtained from the RRULVD�
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Figure ��	 	Solid
 The �rst � eigen�lters of X � IR������ representing a noisy voiced
speech frame with ��� samples and SNR��dB� The �lters are averaged over ��� inde�
pendent white noise realizations� 	Dashed
 The corresponding eigen�lters obtained from
the RRULVD based rank�� approximation� 	Dotted
 The eigen�lters of the signal�only
matrix�

��� Linear Signal Estimators by RRULVD

The Least Squares �LS�
 Minimum Variance �MV� and empirical TDC estimates of the clean
signal from the noisy signal as described in Sections �	� can be approximated by using the rank�
revealing ULV decomposition	 The RRULVD based formulation of the last two estimates are
proposals given here �see also ���
 ����	
In this section
 X � IRm�n is a measurement matrix dened by ��	��
 with the signal matrix

S � IRm�n satisfying ��	��
 thus the signal subspace is known to have rank p � n � m	

����� Least Squares Estimator

An Approximate Least Squares �ALS� estimate �SALS of the signal matrix S can be computed
by essentially substituting the RRULV decomposition for the SVD in ��	���
 thus replacing one
problem with a similar
 nearby problem that can be solved more e�ciently	
Based on Theorem �	�
 a useful rank�p matrix approximation to X � IRm�n is given by

�SALS  Xp  UX�LX�V
T
X�  UX�U

T
X�X ��	���

or
�SALS  Xp  XVX�V

T
X� ��	���
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where UX� and VX� approximate the numerical column space and row space as dened via the
SVD of X	 Note
 that ��	��� and ��	��� are only equal when FX  �
 i	e	
 in general

XVX�V
T
X�  UX�LX�V

T
X� #UX�FXV

T
X� ��	���

 UX�U
T
X�X#XVX�G

��
X FXV

T
X� ��	���

and the relative di�erence between the two approximation methods is bounded by

kXVX�V
T
X� 
UX�U

T
X�Xk�

kXk� � kG��X k�kFXk� ��	���

So in speech enhancement applications with relative high noise levels
 i	e	
 kFXk� � �noise and
kG��X k�  ���noise
 the bound is small and both estimates can be used	
For the low noise case
 the accuracy of the rank�p matrix approximation is analysed in ����


where the subspace bounds play an important role	 It is shown that when the subspace angles are
su�ciently small then Xp in ��	��� closely approximates the SVD based least squares estimate
Xp�SVD 	 First
 consider the perturbation

kXp�SVD 
Xpk�  kX �VX��SVDV
T
X��SVD 
VX�V

T
X��k� ��	���

� kXk� kVX��SVDV
T
X��SVD 
VX�V

T
X�k�

 kXp�SVDk� kVX��SVDV
T
X��SVD 
VX�V

T
X�k�

 kXp�SVDk� k sin��hVX��SVDi� hVX�i�k�
where Denition �	� on Page �� has been used	 Then from ��	��� it follows that

kXp�SVD 
Xpk�
kXp�SVDk� � k sin��hVX��SVDi� hVX�i�k� � �kFXk�

��
 ����min�LX��
��	���

showing that the relative error in Xp is proportional to kFXk�	 An equivalent bound based on
Equation ��	��� can be obtained for ��	���	 It is interesting to notice that kFXk� can be made
very small using renement procedures as discussed in Section �	�	�	

����� Minimum Variance Estimator

The Minimum Variance �MV� estimate �SMV of the signal matrix S � IRm�n as described in
Section �	�	� can also be formulated by means of the RRULVD	 The basic idea is to introduce
an idealized rank�revealing ULV decomposition of X � IRm�n
 i	e	
 with reference to ��	��
 the
necessary conditions are

Assumption 	�� �Algebraic and Geometric Conditions


�� All three conditions of Assumption ��� in Section ��� are satis�ed� i�e��

	a
 The signal is orthogonal to the noise in the sense STN  ��

	b
 The matrix N  �noiseQ� where Q has orthonormal columns NTN  ��noiseIn�

	c
 There is a distinct gap in the singular values of the matrix X �X�p  �X�p	��

�� The o��diagonal block FX is zero�

�� GX is a diagonal matrix containing the noise�only singular values �noise�

Peter S� K� Hansen ����



�
� Chapter �� Rank	Revealing Orthogonal Decompositions

Notice that the two additional assumptions are related to the RRULV algorithm and not �di�
rectly� to the signals	 Thus
 the idealized decomposition become

X  
�
UX� UX�

�� LX� �
� �noiseIn�p

��
VT
X�

VT
X�

�
��	���

Similarly
 let the idealized RRULVD �or complete orthogonal decomposition� of the low rank
signal matrix S � IRm�n be dened by

S  
�
US� US�

�� LS� �
� �

��
VT
S�

VT
S�

�
��	���

where LS� � IRp�p
 then Equation ��	��� can also be written in terms of ��	���
 i	e	


X  S#N ��	���

 US�LS�V
T
S� #NVS�V

T
S� #NVS�V

T
S�

 
�
�US�LS� #NVS��L

��
X� NVS��

��
noise

�� LX� �
� �noiseIn�p

��
VT
S�

VT
S�

�

The matrix LTX�LX� can be obtained by comparing the sample correlation matrix of X using
the denitions of S and N

XTX  STS#NTN ��	���

 VS�L
T
S�LS�V

T
S� # ��noiseVS�V

T
S� # ��noiseVS�V

T
S�

 
�
VS� VS�

�� LTS�LS� # ��noiseIp �
� ��noiseIn�p

��
VT
S�

VT
S�

�

with the one based on the idealized RRULV decomposition of X ��	���

XTX  
�
VX� VX�

�� LTX�LX� �
� ��noiseIn�p

��
VT
X�

VT
X�

�
��	���

which gives the relation

LTX�LX�  L
T
S�LS� # ��noiseIp ��	���

In ��	���
 Assumption �	��� has been used
 and this is also a necessary condition for ��	��� to
be a ULV decomposition
 i	e	
 UX has orthonormal columns

UT
XUX  

�
L�TX� �L

T
S�U

T
S� #V

T
S�N

T �

���noiseV
T
S�N

T

�
��	���

�
�
�US�LS� #NVS��L

��
X� NVS��

��
noise

�
 

�
L�TX� �L

T
S�LS� # ��noiseIp�L

��
X� �

� ���noise�
�
noiseIn�p�

��
noise

�

 

�
Ip �
� In�p

�
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Using ��	��� and ��	��� in the MV denition ��	��� yields the desired MV estimate of S

�SMV  X�X
TX���XTS ��	���

 UXU
T
XS

 
�
UX� UX�

�� L�TX� �L
T
S�U

T
S� #V

T
S�N

T �

���noiseV
T
S�N

T

�

�
�
US� US�

�� LS� �
� �

��
VT
S�

VT
S�

�
 UX�L

�T
X� �L

T
S�LS��V

T
X�

 UX�L
�T
X� �L

T
X�LX� 
 ��noiseIp�V

T
X�

 UX��LX� 
 ��noiseL
�T
X� �V

T
X�

where Assumption �	��� and ��	��� have been used	 This equation can be reformulated to avoid
an explicit computation of UX

�SMV  XVX�L
��
X��LX� 
 ��noiseL

�T
X� �V

T
X� ��	���

In practice
 Assumption �	��� and �	��� are nearly satised due to the way of implementing
the RRULV algorithm
 and this can further be improved by a number of renement steps as
discussed in Section �	�	�	 However
 Assumption �	� are never satised exactly
 but as the
SVD
 the rank�revealing ULV decomposition is robust with respect to mild violations of these
conditions	
The Approximate MV �AMV� estimate �SAMV can now be computed by substituting the

rank�revealing ULV decomposition ��	�� for the idealized RRULV decomposition ��	���
 and the
quantity ��noise can
 e	g	
 be obtained from ��	��

��noise  
�

n
 p

nX
i�p	�

��X�i 
�

n
 p

�
kFXk�F # kGXk�F

�
��	���

Note
 that the two estimation Equations ��	��� and ��	��� are no longer equal �see Section �	�	��	

����� Empirical TDC Estimator

Assume that Assumption �	� in the last section is satised
 then the empirical TDC estimate
as dened in Section �	�	� can be obtained by applying the idealized RRULVD of S ��	��� to
��	���
 i	e	


WETDC  VS��L
T
S�LS� # ���noiseIp�

��LTS�LS�V
T
S� ��	���

Using ��	��� and ��	��� in this equation gives

WETDC  VX��L
T
X�LX� 
 ��noise��
 ��Ip�

���LTX�LX� 
 ��noiseIp�V
T
X� ��	���

 VX��LX� 
 ��noise��
 ��L�TX� �
���LX� 
 ��noiseL

�T
X� �V

T
X�

As in the MV method
 the Approximate TDC �ATDC� estimate can now be computed by
substituting the RRULVD for the idealized one
 i	e	


�SATDC  XWATDC ��	���

or
�SATDC  UX�LX��LX� 
 ��noise��
 ��L�TX� �

���LX� 
 ��noiseL
�T
X� �V

T
X� ��	���

Note
 that the related SDC method �see Section �	�	�� can not be implemented by the RRULVD

because the decomposition only tracks two subspaces
 the signal� and noise subspace
 i	e	
 infor�
mation about the individual eigenlters can not be obtained	
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����� A Uni�ed Notation

Also for the RRULVD based linear signal estimators
 it is convenient to introduce a unied
notation	 First note that the transformation y  VT

Xx approximates the Karhunen�Loeve
transform of x
 when VX is generated by the RRULVD of the data matrix X	 Hence
 all the
above mentioned approximate linear signal estimates are obtained by the following steps �see
Figure �	��

� AKLT of the noisy signal onto the signal subspace	
� Modify the components of the AKLT by a symmetric gain �lter matrix G�	

� Inverse AKLT of the modied components to reconstruct the signal in the signal subspace	

s

Loeve

Karhunen

Transform

Karhunen

Loeve

Transform

Inverse

Gain

Filter

x

Figure ��
 General model for approximate linear estimator�

This scheme results in a generalized formulation of the approximate linear estimators similar to
Equation ��	���
 i	e	


�S  XW  XVXGV
T
X  XVX�G�V

T
X� � G  

�
G� �
� �

�
��	���

where the gain lter matrix G� � IRp�p depends on the estimation method �see Table �	��	

Method Gain �lter matrix G�

LS Ip Ip

MV �LTS�LS�  ��noiseIp�
��LTS�LS� L��X�

�LX� � ��noiseL
�T
X�

�

ETDC �LTS�LS�  ���noiseIp�
��LTS�LS� �LX� � ��noise��� ��L�TX�

����LX� � ��noiseL
�T
X�

�

Table ��� Gain matrix for di�erent estimation methods formulated in terms of the clean
signal 	�rst column
 or the noisy signal 	second column
�

Plots of the estimated gains can be obtained from the eigendecomposition of G� dened
by QG��G�Q

T
G�
 i	e	
 the eigenvalue �G��i represents an estimated gain related to the modied

transformation vector VX�qG��i	 The corresponding spectral SNR in that direction is given by

SNRspectral  
kSVX�qG��ik��
kNVX�qG��ik��

��	���

Figure �	� and �	�� shows estimated Wiener gains f�G��ig��� of ��� speech frames �X � IR�������
obtained from the noisy reference sentence by shifting a ��� sample window by ��� sample
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Figure ��� 	a
 Estimated Wiener gains 	i	G�
 of ��� speech frames 	X � IR������

obtained from the noisy reference sentence by shifting a ��� sample window by ��� sample
	white noise and SNR���dB
� The estimated gains are plotted as function of the spectral
SNR� andG� is obtained from a ��dimensional signal subspace using the RRULV algorithm
without re�nement� 	b
 Distribution of the gains�
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Figure ���� As Figure ���� but with gains given by the TDC estimator 	a
 � �  and 	b

� � ��

�white noise and SNR  �� dB�	 The gain matrix G� is calculated from ��	��� using the lower
triangular matrix LX� corresponding to a ���dimensional signal subspace
 and a �

�
noise obtained

from an initial noise matrix N	 The RRULV algorithm has been applied without renement	

Like the related examples in Figure �	� and �	�
 a large variance in the estimated gains is
observed for spectral SNR less than about � dB due to the di�erence in the estimated eigenvalues
of the noise given by ��noiseI and the true ones �

�
N 	 However� the performance of the RRULVD

based method is comparable with the SVD based method	
Now
 consider the voiced speech frame of ��� samples added white noise �SNR  � dB�
 and

organized in the data matrix X � IR������	 The linear estimators as dened by Equation ��	���
with p  �� are then characterized by the residual matrices R  RS#RN 
 c	f	
 Equation ��	���

or the corresponding residual signals obtained by averaging along the diagonals �see Section �	��	
Like the SVD case
 the residual signals can be used to compare the di�erent estimators as
illustrated in Figure �	���a�
 where the power of the residual signals are plotted as function of
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the TDC parameter �	 Clearly
 for increasing parameter values
 the level of the residual noise
rn decreases while the level of signal distortion rn increases	 The minimum residual power is
obtained for the MV estimator ��  �� and is dominated by the residual noise
 however
 by
choosing �  ���
 the signal distortion will become dominant for the price of an increase in the
level of the total residual signal	

In Figure �	���a�
 the powers are compared with the corresponding SVD�based example in
Figure �	��a�
 i	e	
 the ratios shown are Pr�Pr�SV D	 Thus
 the RRULVD based method results
in a larger signal distortion and smaller residual noise level
 however
 for �  �
 the increase in
the total residual signal is less than �	� dB	 Similar results are obtained for the unvoiced frame	

The ��th order LPC�based magnitude spectra of the residual noise and signal distortion
corresponding to the examples in Figure �	�� are shown in Figure �	��	 As expected from
the above discussion
 there are only small changes compared with the SVD based method �see
Figure �	��
 especially in the LS case	
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Figure ���� 	a
 Power of the residual noise rn and the signal distortion rs for the RRULVD
based TDC estimator obtained from a ��dimensional signal subspace� The data matrix
X � IR������ represents the voiced speech frame consisting of ��� samples and added white
noise 	SNR��dB
� The residual levels are plotted against the TDC parameter �� 	b
 Ratios
of the residual powers obtained from RRULVD and SVD based estimators�
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Figure ���� ��th order LPC�based magnitude spectra of the residual noise 	a
 and signal
distortion 	b
 corresponding to the examples in Figure ����	a
�
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��� The ULLV Decomposition

Like the QSVD
 the ULLV decomposition operates on a pair of matrices	 The denition given
here
 is the one used by Luk and Qiao ���� �a slightly di�erent formulation has been given by
Bojanczyk �����	

Theorem 	�� �ULLV Decomposition 	ULLVD

 Given a matrix X � IRm�n and a matrix N �
IRm�n of full rank� where m � n� then there exist matrices UX � IRm�n�UN � IRm�n with
orthogonal columns and a orthogonal matrix V � IRn�n such that

X  UXLXLV
T ��	���

N  UNLV
T ��	���

where LX � IRn�n and L � IRn�n are lower triangular�

As the ULV decomposition
 so is the ULLV decomposition not unique	 Also the ULLV
decomposition can reveale the rank but of the matrix XN	 assuming N has full rank	

Theorem 	�� �Rank�Revealing ULLV Decomposition 	RRULLVD

 Given two matrices X �
IRm�n and N � IRm�n� where m � n� and assume that XN	 has numerical rank p � n
corresponding to a given tolerance � � i�e�� its quotient singular values satisfy


� � � � � � 
p � � � 
p	� � � � � � 
n ��	���

Then there exist matrices UX � IRm�n and UN � IRm�n with orthogonal columns and a orthog�

onal matrix V � IRn�n such that

X  UXLXLV
T  

�
UX� UX�

�� LX� �
FX GX

�
L

�
VT

�

VT
�

�
��	���

N  UNLV
T ��	���

where L � IRn�n� LX� � IRp�p and GX � IR
n�p��
n�p� are lower triangular� and

�min�LX��  
p ��	���

kFXk�F # kGXk�F  
�p	� # � � � # 
�n ��	���

Thus
 from the rank�revealing ULLV decomposition
 the signal� and noise subspaces dened by
the gap in the quotient singular values can be estimated	 It is often convenient to dene

LVT  �T  Z�� ��	����
�T

�

�T
�

�
 

�
L��V

T
�

L��V
T
� # L��V

T
�

�
��	����

Z� Z�

�
 
�
V�L

��
�� 
V�L

��
�� L��L

��
�� V�L

��
��

�
��	���

��	���

where the partioning of L is similar to ��	���	
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����� Subspace Methods and the RRULLVD

Now
 consider the situation where the data matrix X � IRm�n dened by ��	�� consists of the
low�rank signal matrix S � IRm�n added colored noise
 and assume that the noise�only matrix
N � IRm�n can be estimated in periods without speech	 Hence
 by using the QR decomposition
of N ��	��� and Theorem �	�
 the prewhitened data matrix is

XR��  XN	Q ��	���

 X�NTN���NTQ

 UXLXLV
T �VLTUT

NUNLV
T ���VLTUT

NQ

 UXLXU
T
NQ

 
�
UX� UX�

�� LX� �
FX GX

��
UT
N�

UT
N�

�
Q

where the matrix �UT
N  U

T
NQ  �RVL

���T is orthogonal	 Thus
 the RRULLVD of �X�N� and
the RRULVD of XR�� are equivalent
 and in the white�noise case
 the two decompositions yield
the same information
 which can be seen from ��	��� with R  �noiseIn
 i	e	


X  UXLX �U
T
N�noise ��	���

 UX�LX�noise���noiseVL
���T

From ��	��� it is also clear that the perturbation theory in Section �	�	� and �	�	� can be used
to compare the RRULLVD with the QSVD	

����� Linear Signal Estimators by RRULLVD

All the RRULVD based approximate linear signal estimators in Section �	� can in the colored
noise case easily be obtained from the RRULLVD of �X�N�	
First
 the desired rank�p estimate of the noise normalized signal SN	 is constructed from

the normalized data matrix XN	 ��	��� along the lines in Section �	�	�
 �	�	� and �	�	�
 i	e	
dSN	  UX�LX�G�U
T
N� ��	���

where the gain matrix G� � IRp�p depends on the estimation method �see Table �	��	

Method Gain �lter matrix G�

LS Ip

MV L��X�
�LX� � L�TX�

�

ETDC �LX� � ��� ��L�TX�
����LX� � L�TX�

�

Table ��� Gain matrix for di�erent estimation methods�

Thus
 it is computed by the same formulas as in the RRULVD based algorithms
 but by
using the fact that the noise variance of the prewhitened signal is one	
To obtain the corresponding rank�p estimate of S
 the estimate of SN	 must be denormalized

by the noise�only matrix N

�S  � dSN	�N ��	���

 UX�LX�G�L��V
T
�

 UX�LX�G��
T
�
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which can be computed directly from the RRULLVD
 i	e	
 the prewhitening is now an integral
part of the algorithm	 In Equation ��	���
 denition ��	��� has been used
 and from the identity�

�T
� Z� �T

� Z�

�T
� Z� �T

� Z�

�
 

�
Ip �
� In�p

�
��	���

the matrix UX� is given by

UX�  XZ�L
��
X� 
UX�FXL

��
X�  XZ�L

��
X� ��	���

i	e	
 Equation ��	��� can be reformulated to avoid an explicit computation of UX

�S  XZ�G��
T
� ��	���

 XV�L
��
��G�L��V

T
� 
XV�L

��
�� L��L

��
��G�L��V

T
�

As discussed in Section �	�	�
 the approximation in ��	��� gives no signicant di�erence between
the two estimates ��	��� and ��	���	

��� Recursive Implementation

In a recursive implementation
 a rank�� update�downdate of the data matrix is performed �see
Chapter ��
 i	e	
 the shift between adjacent frames is always one sample	 With reference to
Section �	�
 the synthesis window will therefore be of length one

Ws  � ��	���

The analysis window is determined by the ULV updating�downdating algorithm	 At the
moment
 only a sliding �rectangular� and exponential window can be used	 The case with a
rectangular window follows from the frame based implementation
 i	e	
 it is centered around the
middle row of X
 which is selected by the synthesis window	 The case with exponential window
di�er a little due to the non symmetric shape	 Example plots of two windows with forgetting
factor �  ���� and ���� are shown in Figure �	���a� and the corresponding time sequence
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Figure ���� 	a
 Example time plots for the exponential windows with lengthm � ��� and
forgetting factor � � �
�� 	solid
 and �
�� 	dashed
� 	b
 The windows after convolution
with a rectangular window of length n � ��
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related windows in Figure �	���b�	 Thus
 in order to operate on the row with maximum weight

the o�set between the analysis and the synthesis window must in this case be

&Ks�exp  m
 � ��	���

The overall lter structure is shown in Figure �	��	

skxk
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Window

RRULVD

Update

Loeve

Karhunen

Transform
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Loeve

Transform

Inverse

Gain

Filter

Synthesis

Window

Overlap-Add

Synthesis

Figure ���� Filter structure�

��� Summary

Traditionally
 the signal subspace approach for nonparametric speech enhancement is formulated
by means of the SVD �or the eigendecomposition� using a frame�based implementation	
Here
 the rank�revealing ULV decomposition is used instead of the SVD
 and a recursive

updating of the estimate is used instead of working in frames	 An ULV formulation of three
di�erent estimation strategies is considered
 where the last two are new proposals	 In the colored
noise case
 the estmates are formulated by means of the rank�revealing ULLV decomposition

where the prewhitening operation becomes an integral part of the algorithm	
Experiments demonstrate that the ULV�based algorithms are able to achieve the same quality

of the reconstructed speech signal as the SVD�based method	 Thus
 the results in Chapter �
can also be obtained �with minor variations� by the ULV approach	
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Chapter �

The ULLV Algorithm

The rank�revealing ULV�ULLV decompositions can be used in many problems
 e	g	
 speech
enhancement as considered here
 since not all of the information provided by the SVD is actually
needed	 However
 the main advantage of the rank�revealing ULV�ULLV decompositions lies in
the fact that they are numerically stable and easy to update�downdate	
In this chapter
 both initial and recursive computations of the rank�revealing ULLV decom�

position are considered	 The computational complexity is also given
 and error analysis is brie�y
discussed	


�� Algorithm Overview

The rank�revealing ULLV decomposition can be used in connection with up� and downdating
problems arising from recursive algorithms in signal processing	 Starting with the initial decom�
positions ��	����	���
 repeated here for convenience

X  UXLXLV
T  

�
UX� UX�

�� LX� �
FX GX

�
L

�
VT�
VT�

�
��	��

N  UNLV
T ��	��

the matrices are updated as the data xT and nT are brought in one row at a time	 A new row
is processed by some or all of the following steps�

� Updating� The new row of data is appended to X or N and incorporated into the decom�
position	

� Downdating� The oldest row of data in X or N is isolated and removed in the decompo�
sition	

� De�ation� Establish and maintain the rank�revealing nature of the decomposition	
� Renement� The norm of the o��diagonal block FX in the rank�revealing triangular matrix
LX is reduced to improve the subspace quality	

where special care is taken to keep small elements small in the matrices FX and GX 	 In many
applications
 one would normally like to update only the LX 
 L and V factors without the extra
cost of storing and updating the matrices UX and UN 	 Such algorithms are less stable than
methods that update all factors as discussed in Section �	�	�	 However
 they can be stabilized
by a renement technique using the original data matrix X	
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The following discussion will assume that only one row xT is being added�deleted �see ����
for rank�k problems�
 i	e	
 the matrix X is updated as

�X  

�
X
xT

�
� �XT �X  XTX# xxT ��	��

and downdated as

X  

�
xT

�X

�
� �XT �X  XTX
 xxT ��	��

Hence
 the up�downdating of X is mathematically
 but not numerically
 equivalent to a rank
one perturbation of the sample correlation matrix �Rx	
From the relation ��

i �X�  �i�X
TX� and classical perturbation theory for eigenvalues ���


page ����
 it follows that the singular values ��i  �i��X� interleave with �i  �i�X�
 where for
updating

��� � �� � ��� � � � � � ��n � �n � � ��	��

and for downdating
�� � ��� � �� � � � � � �n � ��n � � ��	��

Hence
 in downdating
 the smallest singular value may decrease to ��n  �
 i	e	
 the modied
matrix �X may become rank decient even when X has full rank	 Moreover
 any singular value
may decrease by a considerable amount
 which indicates that downdating can be a sensitive
problem	 On the other hand
 updating X will increase all its singular values	 Thus
 accurate
algorithms are needed when the downdating problem is ill�conditioned	
The rank�revealing ULLV algorithm presented in this chapter is new in its complete treatment

and implementation	 The update method was described by Luk and Qiao ���
 ���
 while the
downdating scheme is new but inspired by the work by Bojanczyk and Lebak ���
 ���	 Finally

the de�ation and renement steps are based on those dened by Stewart for the URV and ULV
decompositions ����
 ����	 Many aspects of the algorithm are discussed in details
 and important
considerations are pointed out	


�� Plane Rotations

The main computational tool in the ULLV algorithm is the plane rotation
 which will be used
to introduce zeros selectively into matrices	 For this reason
 the properties of plane rotations
will be described rst	
A plane rotation �or Givens rotation� ���
 page ���� is an orthogonal transformation that

combines two rows or two columns of a matrix	 It can be constructed to introduce a zero at any
point of the two rows�columns	 The plane rotations are rank�two corrections to the identity and
if only the real case is considered
 they are of the form

P  

�BBBBBBBBBBBB�

�
	 	 	

c � � � 
s
			
	 	 	

			
s � � � c

	 	 	

�

	CCCCCCCCCCCCA

i

j

i j

��	��
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where c  cos��� and s  sin���	 The multiplication PTx rotates the vector x through � radians
clockwise in the �i� j� coordinate plane �see Figure �	��	

ei

θ

ej

xP
T

x

Figure 	�� Plane rotation�

Let X denote a matrix
 then premultiplication by left rotations PT operates on the rows
�i� j� which cannot change the norm of a column	 Likewise
 postmultiplication by right rotations

Q operates on the columns �i� j� which again cannot change the norm of a row

PTX �
�

c s

s c

��
xTi
xTj

�
 

�
cxTi # sxTj

sxTi # cxTj

�
��	��

XQ �
�
xi xj

�� c 
s
s c

�
 
�

cxi # sxj 
sxi # cxj
�

��	��

Plane rotations are clearly orthogonal so multiplication by PPT  I in between two elements
in a matrix decomposition only change the individual matrices in the decomposition and not
the outcome
 i	e	
 when the right rotation P is applied to an element
 then the left rotation PT

is applied to the following element	 It is also easy to verify that the matrix ��norm and the
Frobenius norm are invariant with respect to orthogonal transformations

kPTXQkF  kXkF and kPTXQk�  kXk� ��	���

A left�right rotation can be constructed to introduce a zero at any point of the two rows�columns	
However
 the remaining elements are also a�ected	 If X represents large elements
 e small
elements and � elements that are zero
 then Equation ��	��� illustrates two rows of a matrix
before and after the application of a left rotation
 where 'X is the element to be put to zero	

Before� After�

'X X X X e e �
X X e � e � �

� � X X X e e �
X X X X e e �

��	���

These facts
 except for the rst
 are rather obvious	 For example that a pair of small elements
remains small follows from the fact that a left rotation is orthogonal and cannot change the
norm of any column to which it is applied	 This is essential to preserving the rank�revealing
structure of LX in the ULLV algorithm	
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	���� Computation of c and s

The rotation parameters c and s can be chosen to zero a specied entry in the jth row�column
or in the ith row�column	 The two cases are given by

Case ��

�
c s

s c

��
a
b

�
 

�
r
�

�
�

�
a b

�� c 
s
s c

�
 
�

r �
�
��	���

Case ��

�
c s

s c

��
a
b

�
 

�
�
r

�
�

�
a b

�� c 
s
s c

�
 
�
� r

�
��	���

First consider case �
 where the second equation has the solution


sa# cb  � � c  s
a

b
and s  c

b

a
��	���

which gives two possibilities for substitution in the orthogonality condition c� # s�  �	 The
following solution gards against over�ow

jaj � jbj �

c� # c�
�
b
a

��
 �

�
c  � �q

�	� ba�
�

s  c b
a

jaj � jbj �

s� # s�
�a
b

��
 �

�
s  � �q

�	� ab �
�

c  sa
b

��	���

According to this
 the element r in ��	��� also has to be calculated in two ways	 Using ��	���

the following solutions are obtained

jaj � jbj �

r  ca# sb

 ca



� #

�
b
a

���
 a

r
� #

�
b
a

��

jaj � jbj �

r  ca# sb

 sb
�
� #

�
a
b

���
 b

q
� #

�a
b

��
��	���

Case � could be treated in the same manner
 but by comparing ��	��� and ��	���
 the parameters
for case � can be obtained by using the algorithm for case �


s�a# c�b  �
c�a# s�b  �


� c�  
s�

s�  c�
��	���

and

r�  
s�a# c�b  
�c�a# s�b�  
r� ��	���

A more convenient way to get the parameters for case � is obtained by swapping the elements
a and b

Case ��

�
c s

s c

��
b
a

�
 

�
r
�

�
�

�
b a

�� c 
s
s c

�
 
�

r �
�

��	���

Peter S� K� Hansen ����



Sec� ��� Updating the ULLV Decomposition ���

and then use the algorithm for case �	 By comparing ��	��� and ��	���
 the relations for c and
s are


s�a# c�b  �
c�a
 s�b  �


� c�  
s�  c�

s�  
c�  
s� ��	���

and

r�  s�a# c�b  
�c�a# s�b�  
r�  r� ��	���

Thus
 only a sign shift of the s parameter is necessary to give the desired quantities	

The calculation of c and s requires � multiplications
 � divisions
 � addition
 and � squareroot

and the new element r only requires one more multiplication	 Thus
 the work involved is O���	
The application of the plane rotation to a row�column with n elements is more expensive	 The
work is here �n multiplications and �n additions
 which is O�n�	


�� Updating the ULLV Decomposition

In this section
 it is examined how to update the ULLV decomposition ��	���	�� e�ciently when
new rows of data samples are added to X � IRm�n and N � IRm�n ���
 ���	 In the updating
step a forgetting factor � is incorporated
 where � � ��! ��	 This widely used method is called
exponential windowing and the e�ect is to suppress the older data samples
 so that they have
less and less in�uence as the number of rows m increase

X
m�  

�BBBB�
�m��xT�

			
�xTm��
xTm

	CCCCA and N
m�  

�BBBB�
�m��nT�

			
�nTm��
nTm

	CCCCA ��	���

Thus
 when new rows are added
 the updated matrix is obtained as

X
m	��  

�
�X
m�

xTm	�

�
and N
m	��  

�
�N
m�

nTm	�

�
��	���

In signal processing
 X and N are often Toeplitz structured matrices where a new row
 for the
case of X
 is constructed from a new data sample xk and n
 � previous samples	 To keep the
Toeplitz structure in the updated matrix
 it is necessary to weight the new row

xTm	�  
�
xk xk��� � � � xk�n	��

n�� xk�n	��
n��

�
��	���

which results in the following matrix for dimensions m  � and n  �

X
m	��  

�
�X
m�

xTm	�

�
��	���

 

�BBBBBBBBBB�

xk���
� xk��

 xk���
� xk���

� xk����
��

xk���
� xk���

� xk��
 xk���

� xk���
�

xk���
� xk���

� xk���
� xk��

 xk���
�

xk���
� xk���

� xk���
� xk���

� xk��


xk���
� xk���

� xk���
� xk���

� xk���
�

xk��� xk���
� xk���

� xk���
� xk���

�

xk xk��� xk���
� xk���

� xk���
�

	CCCCCCCCCCA

Peter S� K� Hansen ����



��� Chapter 
� The ULLV Algorithm

The exponential window is then connected with the time sequences and not the rows of the
matrices	 For � close to one
 the exponential window length W is normally dened as

�W  
�

e
� W  
 �

ln���
 �

�
 �
for �  � ��	���

If the window length W is chosen smaller than the row dimension m
 the elements in the top
rows of X andN are insignicant and will not be represented in LX and L	 Therefore
 a top row
of UX and UN can be removed after each update	 This allows us to look at the local behavior
of an arbitrarily long sequence of data	
First consider the update of X and afterwards the update of N using the notation

Case X� X  X
m�� �X  X
m	�� and N  N
m� ��	���

Case N� N  N
m�� �N  N
m	�� and X  X
m� ��	���

	���� Adding a Row to X

Given the ULLV decomposition of X � IRm�n and N � IRm�n
 the initial decomposition with a
new row xT added to X using a forgetting factor � are an augmented system of the form

�X  

�
�X
xT

�
 

�
UX �
�T �

��
�LX �
�T �

��
L
xTV

�
VT  UXLXLV

T ��	���

N  UN
�
In �

�� L
xTV

�
VT  UNLV

T ��	���

Using only plane rotations
 the updating procedure reconstruct the lower triangularity of L and
update LX 
 so its rank revealing structure is retained	 The rotations will be accumulated into
three orthogonal transformations P
 Q and J
 and applied to the factors in ��	��� and ��	��� as
follows

�X  �UXP��P
TLXQ��Q

TLJ��JTVT � ��	���

N  �UNQ��Q
TLJ��JTVT � ��	���

where PTLXQ reveals the numerical rank of �XN
	
and QTLJ is lower triangular	 The update

process is split up into three steps and illustrated by means of an example with matrix dimensions
m  � and n  �
 which gives the initial matrices

LX  

�
�LX �
�T �

�
 

�BBBBBBB�

l �
l l �
f f g �
f f g g �
f f g g g �
� � � � � �

	CCCCCCCA
� L  

�
L
xTV

�
 

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
z z z z z

	CCCCCCCA

UX  

�
UX �
�T �

�
 

�BBBBBBBBBB�

u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
� � � � � �

	CCCCCCCCCCA
� V  

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA
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Sec� ��� Updating the ULLV Decomposition ��	

Step X�� First eliminate all but the rst element of the row xTV
 maintaining the rank
revealing structure of LX as much as possible	 The following three substeps describes the
elimination and are done in a loop for i  n� n 
 �� � � � � �
 where rotations are operating on
neighboring columns or rows �i
 �� i�	

Step X���� Annihilate the ith element by postmultiply L with a rotation J in the plane
�i
 �� i�
 which introduces a nonzero �i
 �� i� entry z in L�

L
xTV

�
JJTVT  

�
L�

�eT�

�
�VT ��	���

 

�BBBBBBB�

l z
l l z
l l l z
l l l l z
l l l l l
� � � � �

	CCCCCCCA

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA

Step X���� Eliminate the superdiagonal of L� by applying from the left a rotation QT in
the plane �i 
 �� i�
 which introduces a nonzero �i 
 �� i� entry in LX 	 This rotation must be
propagated to the left in both decompositions ��	��� and ��	����

�LX �
�T �

�
QQT

�
L�

�eT�

�
 

�
L�
X �

�T �

��
�L

�eT�

�
��	���

 

�BBBBBBB�

l z �
l l z �
f f g z �
f f g g z �
f f g g g �
� � � � � �

	CCCCCCCA

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
� � � � �

	CCCCCCCA
and

UN

�
In �

�
QQT

�
L�

�eT�

�
 UN

�Q
�
In �

�
QT

�
L�

�eT�

�
��	���

 �UN

�
In �

�� �L
�eT�

�

where Q can be directly incorporated into UN because only the In part of the second factor is
a�ected	
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Step X��	� Eliminate the superdiagonal of L�
X by applying from the left a rotation PT in

the plane �i
 �� i��
UX �
�T �

�
PPT

�
L�
X �

�T �

�
 

�
�UX �
�T �

��
�LX �
�T �

�
��	���

 

�BBBBBBBBBB�

u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
� � � � � �

	CCCCCCCCCCA

�BBBBBBB�

l �
l l �
l l l �
f f g g �
f f g g g �
� � � � � �

	CCCCCCCA

After the last step
 the dimensions of LX� in ��	��� will increase by one because of the linear
combination of a row with large elements and a row with small elements	 Thus
 the numerical
rank of �LX may increase by one over that of LX 	 The decomposition is now

�X  

�
�UX �
�T �

��
�LX �
�T �

��
�L

�eT�

�
�VT ��	���

N  �UN

�
In �

�� �L
�eT�

�
�VT ��	���

Step X�� In the second step eliminate the element � using a scaled rotation Y from the left
in plane ��� n# ��	 The matrix Y and its inverse are given by

Y  

�BBBBBBB�

c�� 
c�s�
�
�
�
�

c�s� c��

	CCCCCCCA � Y��  

�BBBBBBBB�

� s�
c�

�
�
�
�


 s�
c�

�

	CCCCCCCCA
��	���

When the scaled rotation is applied from the left
 the solution is chosen to be

Y

�
�L

�eT�

�
 

�
�L
�T

�
��	���

which explicitly determines the parameters s� and c�

c�

�
c� 
s�
s� c�

��
'l��e

T
�

�eT�

�
 c�

�
�c�'l�� 
 s���e

T
�

�s�'l�� # c���e
T
�

�
 

�
'l��e

T
�

�T

�
� ��	���

c�  
'l��q

j�j� # j'l��j�
and s�  


�q
j�j� # j'l��j�

��	���

A scaled rotation is used
 so that when the transformation Y�� is propagated to the left
 the
leading n� n submatrix of the second factor in both decompositions ��	��� and ��	��� remains
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unchanged

�
�LX �
�T �

�
Y��  

�
�LX 
��lX�

�eT� �

�
 

�BBBBBBBB�

l��
s�
c�
l��

l�� l s�
c�
l��

l�� l l s�
c�
l��

f�� f g g s�
c�
f��

f�� f g g g s�
c�
f��


 s�
c�

� � � � �

	CCCCCCCCA
��	���

and

�
In �

�
Y��  

�
In 
�e�

�
 

�BBBBB�
� s�

c�
� �
� �
� �
� �

	CCCCCA ��	���

The transformation creates many nonzero elements in the last column of the second factor in
both decompositions
 but fortunately the last column of these two matrices can be dropped
because the third factor now has a zero row at the bottom	 Consequently the elimination of the
element � introduces only one new element � given by

�  

s�
c�

 
�
'l��

��	���

Hence
 step X� can be implemented using only one division
 and the new decomposition is

�X  

�
�UX �
�T �

��
�LX
�eT�

�
�L�VT ��	���

N  �UN
�L�VT ��	���

Step X	� In the third step eliminate the element � using a rotation KT from the left in plane
��� n# ���

�UX �
�T �

�
KKT

�
�LX
�eT�

�
 
�
�UX z

�� �LX
�T

�
��	���

 

�BBBBBBBBBB�

c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
s� � � � � c�

	CCCCCCCCCCA

�BBBBBBB�

l
l l
l l l
f f g g
f f g g g
� � � � �

	CCCCCCCA
Finally
 the last column of the rst factor can be dropped because the second factor now has

a bottom row of zeros	 The updated decomposition is

�X  �UX
�LX�L�V

T ��	���

N  �UN
�L�VT ��	���

Note that the row dimension of UX has increased by one
 and that UX 
 UN and V are not
needed for the construction of plane rotations	
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	���� Adding a Row to N

When a new row nT is added to N
 the forgetting factor � is associated with L	 Given the ULLV
decomposition ofX � IRm�n andN � IRm�n
 the initial decomposition are an augmented system
of the form

X  UX

�
���LX �

�� �L
nTV

�
VT  UXLXLV

T ��	���

�N  

�
�N
nT

�
 

�
UN �
�T �

��
�L
nTV

�
VT  UNLV

T ��	���

As in the updating of X
 the lower triangularity of L is reconstructed and LX is updated
 so its
rank revealing structure is retained
 where the accumulated plane rotations are applied to the
factors as in ��	��� and ��	���	

In this case
 the update process is split up into two steps and also here illustrated by means
of an example with matrix dimensions m  � and n  �
 which gives the initial matrices

LX  
�

LX
� �

�
 

�BBBBB�
l �
l l �
f f g �
f f g g �
f f g g g �

	CCCCCA � L  

�
�L
nTV

�
 

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
z z z z z

	CCCCCCCA

UN  

�
UN �
�T �

�
 

�BBBBBBBBBB�

u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
� � � � � �

	CCCCCCCCCCA
� V  

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA

Step N�� As in the updating of X
 rst eliminate all but the rst element of the row nTV

maintaining the rank revealing structure of LX as much as possible	 The following three substeps
describes the elimination and is done in a loop for i  n� n 
 �� � � � � �
 where rotations are
operating on neighboring columns or rows �i
 �� i�	

Step N���� Annihilate the ith element by postmultiply L with a rotation J in the plane
�i
 �� i�
 which introduces a nonzero �i
 �� i� entry z in L�

�L
nTV

�
JJTVT  

�
L�

�eT�

�
�VT ��	���

 

�BBBBBBB�

l z
l l z
l l l z
l l l l z
l l l l l
� � � � �

	CCCCCCCA

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA
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Step N���� Eliminate the superdiagonal of L� by applying from the left a rotation QT in
the plane �i 
 �� i�
 which introduces a nonzero �i 
 �� i� entry in LX 	 This rotation must be
propagated to the left in both decompositions ��	��� and ��	����

���LX �
�
QQT

�
L�

�eT�

�
 
�
L�
X �

�� �L
�eT�

�
��	���

 

�BBBBB�
l z �
l l z �
f f g z �
f f g g z �
f f g g g �

	CCCCCA

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
� � � � �

	CCCCCCCA
and �

UN �
�T �

�
QQT

�
L�

�eT�

�
 

�
�UN �
�T �

��
�L

�eT�

�
��	���

Step N��	� Eliminate the superdiagonal of L�
X by applying from the left a rotation PT in

the plane �i
 �� i�
UXQQ

T
�
L�
X �

�
 �UX

�
�LX �

�
��	���

 

�BBBBBBB�

u u u u u
u u u u u
u u u u u
u u u u u
u u u u u
u u u u u

	CCCCCCCA

�BBBBB�
l �
l l �
l l l �
f f g g �
f f g g g �

	CCCCCA
After the last step
 the dimensions of LX� in ��	��� will increase by one because of the linear
combination of a row with large elements and a row with small elements	 Thus
 the numerical
rank of �LX may increase by one over that of LX 	 The decomposition is now

X  �UX

�
�LX �

�� �L
�eT�

�
�VT ��	���

�N  

�
�UN �
�T �

��
�L

�eT�

�
�VT ��	���

Step N�� In the second step eliminate the element � using a rotation KT from the left in
plane ��� n# ���

�LX �
�
KKT

�
�L

�eT�

�
 
�
�LX x

�� �L
�T

�
��	���

 

�BBBBB�
c�l�� 
s�l��
c�l�� l 
s�l��
c�l�� l l 
s�l��
c�f�� f g g 
s�f��
c�f�� f g g g 
s�f��

	CCCCCA

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
� � � � �

	CCCCCCCA
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and

�
�UN �
�T �

�
K  

�
�UN x

�
 

�BBBBBBBBBB�

c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
s� � � � � c�

	CCCCCCCCCCA
��	���

Finally
 the last column of the rst factor can be dropped because the second factor now has
a zero bottom row	 The updated decomposition is

X  �UX�LX�L�V
T ��	���

�N  �UN �L�V
T ��	���

Similar to the updating of X
 the row dimension of UN has increased by one
 and again UX 

UN and V are not needed for the construction of plane rotations	


�� Downdating the ULLV Decomposition

An alternative to the exponential window is a rectangular window 	sliding window
 correspon�
ding to the case of �  �	 Thus
 when new rows of data samples are added to the bottom of
the matrices X and N
 the signal energy is accumulated in LX and L after the update step	
To remove old samples in the top rows of X and N
 it is necessary to identify and remove the
matching energi in the decomposition
 which is done in a downdating step ���
 ��
 ���	 Consider
the partitioning of X � IRm�n and N � IRm�n

X  UXLXLV
T  

�
xT

�X

�
and N  UNLV

T  

�
nT

�N

�
��	���

then the problem of downdating the ULLV decomposition is to nd the ULLV decomposition of
�X � IR
m����n and �N � IR
m����n given the ULLV decomposition of X and N	

Clearly
 the sliding window method can track the change in the signal statistics more accu�
rately than the exponential window method when there is an abrupt change in data	

Downdating can be viewed as the reverse process to updating the ULLV decomposition	 In
the updating process
 the last row of UX or UN corresponding to the added row
 which is
initially external to the decomposition
 is transformed to become an integral part of it	 In the
downdating process
 therefore
 the decomposition is transformed into a form where the rst row
of UX or UN 
 which corresponding to the row to be deleted
 is no longer an integral part of the
decomposition	 Thus
 assume that a row is appended to the top of X or N � this is because
rows are removed from the top � then the downdating follow the updating steps backwards	

There are two main steps in the ULLV downdating procedure
 which will be called the
expansion step and the downdating step
 in accordance with the terms used in ����	 In the
expansion step
 the matrix UX or UN is extended with a new column
 where the method
depend on whether or not the matrix is maintained	 In the downdating step
 a sequence of
plane rotations is used to produce the downdated decomposition	
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	���� Adding a Row to the Top of X and N

To follow the updating steps backwards
 update of X � IRm�n and N � IRm�n from the top is
examined where it di�ers from the bottom case	
The initial decomposition with a new row xT added to the top of X instead of the bottom is

�X  

�
xT

�X

�
 

�
�T �
UX �

��
�LX �
�T �

��
L

xTV

�
VT ��	���

N  UN
�
In �

�� L
xTV

�
VT ��	���

which only di�ers in the last step X� ��	��� compared to updating from bottom	 The new step
X� becomes�

�T �
�UX �

�
KKT

�
�LX
�eT�

�
 
�
�UX z

�� �LX
�T

�
��	���

 

�BBBBBBBBBB�

s� � � � � c�
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��

	CCCCCCCCCCA

�BBBBBBB�

l
l l
l l l
f f g g
f f g g g
� � � � �

	CCCCCCCA
As before
 the last column of the rst factor can be dropped because the second factor now has
a bottom row of zeros	
For the case of N
 the initial decomposition with a new row nT added to the top instead of

the bottom is

X  UX
�

���LX �
�� �L

nTV

�
VT ��	���

�N  

�
nT

�N

�
 

�
�T �
UN �

��
�L
nTV

�
VT ��	���

which only di�ers in the last step N� ��	��� compared to updating from bottom	 The new step
N� become

�
�T �
�UN �

�
K  

�
�UN z

�
 

�BBBBBBBBBB�

s� � � � � c�
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��
c�u�� u u u u 
s�u��

	CCCCCCCCCCA
��	���

Again
 the last column of the rst factor can be dropped because the second factor now has a
zero bottom row	
To reverse this process
 it is necessary to transform UX in ��	��� to the form in ��	��� and

UN in ��	��� to the form in ��	���
 which has one column more than the target matrices �UX
and �UN 
 the columns are orthogonal and the rst row has norm one and is orthogonal to the
other rows	 This is done in the expansion step as explained in the next section for the general
case of a matrix U	
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	���� Expansion Step Methods

The objective of the expansion step is to obtain a new matrix U� � IRm�
n	�� from U � IRm�n
in the form

U�  
�
U q

�
 

�
uT� q�
�U �q

�
��	���

where q � IRm�� and u� � IRn��	 The rst row of U� should have norm one and be orthogonal
to the other rows
 and the matrix should still have orthogonal columns	
To obtain the added column q
 an initial vector a � IRm�� is orthogonalized to U
 where

the vector a is constrained by the above requirements to U�	 First
 calculate the projection
t � IRm�� onto the subspace spanned by the orthogonal complement �U � IRm�
m�n�

t  �I
UUT �a  �U�UTa ��	���

ktk��  tT t  aT �U�UTa  k�UTak�� ��	���

After normalization
 the new column q is

q  
t

ktk�  
�U�UTa

k�UTak�
� q�  

�uT� �U
Ta

k�UTak�
��	���

The norm constraint on the rst row of U� gives

kuT� k�� # q��  uT� u� #
aT �U�u��u

T
�
�UTa

aT �U�UTa
 � ��	���

or

�
 uT� u�  �uT� �u�  
yT ��u��u

T
� �y

yTy
� y  �UTa ��	���

This is the Rayleigh quotient of the matrix �u��u
T
� 
 which has only one non�zero eigenvalue

�max��u��u
T
� �  �uT� �u�	 The vector y is therefore the corresponding eigenvector

y  �UTa  
�u�

k�u�k� c ��	���

where c is a constant	 Because m  n
 Equation ��	��� is an underdetermined system with an
innite number of solutions for the vector a
 but there is only one set of solutions independent
of the unknown matrix �U

a  c�e� � c�  
c

k�u�k� ��	���

Normally
 the vector a is chosen to be e�	 If e� is linearly dependent on the columns of U then
mathematically t  �
 leaving a handful of rounding errors in place of t
 and the orthogonaliza�
tion will fail	 In this case
 kuT� k�  � and q� must be zero	 Thus
 a random vector d � IR
m�����

can be orthogonalized to the matrix �U �see Daniel et al	 �����	
The corresponding numerical problem is more subtle	 If ktk��ke�k� is small
 then numerical

cancellation has occurred in forming t
 and t
 as well as q
 are likely to be inaccurate relative to
their lengths	 The vector t could now be corrected by an iterative reorthogonalization process
����
 where the rounding errors would force some iterate t
k� to have substantial components
orthogonal to the range of U
 i	e	
 kt
k�k��kt
k���k� is not to small	 However
 the following
algorithm relies on the fact that one reorthogonalization is always enough to compute a vector
q which is orthogonal to U to working accuracy �see Parlett ���
 page �����	
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Algorithm 
�� �Expansion�
t  �I
UUT �e�

if ktk� � ke�k�
 then

t�  �I
UUT �t

if kt�k� � ktk�
 then

d  �
m���� � � � � � ��T

t��  �I
UUT �d

q  t��

kt��k�

else q  t�

kt�k�

else q  t
ktk�

The size of the quantity kUTqk� depends on the parameter � satisfying � � �
 for instance
�  

p
� is often used corresponding to a projection angle of 	��	 Another issue is to identify

when the orhogonalization will fail
 i	e	
 q�  �
 as given by the following theorem

Theorem 
�� �Expansion and Rank Decrease
 In the downdating problem

e� � hUi � kuT� k�  � ��	���

if the rank of the downdated matrix decreases�

Proof� � For the case of matrix X � IRm�n
 the ULLV decomposition is

X  UXLXLV
T  

�
xT

�X

�
 

�
uTX�
�UX

�
LXLV

T ��	���

Assume rank�X�  p � n and let the rank decrease
 i	e	


rank��X�  p
 � ��	���

rank��UX � � n
 � ��	���

Using the CS decomposition of the matrix pair ��UX �uTX�� gives�
�UX

uTX�

�
 

�
U� �
� U�

��
C
S

�
VT ��	���

where U� � IR
m����
m���
 U� � IR and V � IRn�n are orthogonal matrices and
C  diag�c� �� � � � � �� � IR
m����n ��	���

S  �s� �� � � � � �� � IR��n ��	���

In  CTC# STS ��	���

From the rank deciency of �UX 
 we conclude that c  � � rank��UX�  n
 � giving s  � �
kuTX�k�  �	 Hence
 we have proved the above relation	 �

Downdating methods may be divided into two classes based on whether or not they maintain
the matrix U	 If U is not maintained
 then the row uT� and the extra element q� must be
calculated in order to determine the inverse update rotations	 Di�erent expansion methods are
used for the two classes	 The rst
 Modi�ed Gram�Schmidt with Re�orthogonalization
 assumes
the left side orthogonal matrices are maintained	 The second
 the method of Corrected Semi�

Normal Equations
 assumes that these matrices are not maintained	

�Due to Per Christian Hansen�
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��
���� Modi�ed Gram�Schmidt with Re�orthogonalization

The Modied Gram�Schmidt �MGS� process orthogonalizes the new initial column e� against
the columns of U
 but because of the orthogonality of U
 the computational procedure in Golub
and Van Loan ���
 p	 ���� can be simplied	
The QR�factorization of a matrix A � IRm�n is given by

A  QR  
�
q� q� � � � qn

�
�BBBB�
rT�
rT�
			
rTn

	CCCCA  
nX
i��

qir
T
i ��	���

where Q � IRm�n has orthogonal columns and R � IRn�n is upper triangular	 In the kth
step of MGS
 the kth column of Q �denoted by qk� and the kth row of R �denoted by rTk � are
determined	 From the triangular structure of R and ��	��� is obtained

A

k��X
i��

qir
T
i  

nX
i�k

qir
T
i  

�
� A
k�

�
��	���

where
A
k�  

�
rkkqk B

�
 
�
z B

�
� IRm�
n�k	�� ��	���

From these two equations the MGS algorithm can be derived

Algorithm 
�� �Modied Gram�Schmidt�
Initialize A
��  A
For k  � to n

� z B �  A
k�

rkk  kzk�
qk  

z
rkk

� rk�k	� � � � rk�n �  qTkB �� qTk qi  � for k 	 i

A
k	��  B
 qk� rk�k	� � � � rk�n �
End

The quality of the orthogonal basis computed by the MGS is ����

QTQ  I#EMGS � kEMGSk�  ����A� ��	���

where � is the machine unit roundo� and ���A� is the ��norm condition number of A	 Thus

in general the MGS should be used to compute orthogonal bases only when the vectors to be
orthogonalized are fairly independent	
If the n
 � rst columns of A are already orthogonal
 then the last column of Q and R had

to be found

A  
�
U a

�
 
�
U q

�� In�� r
� rnn

�
��	���

for r � IR
n����� and scalar rnn	 First by multiplying both sides of ��	��� by U
T 
 it is seen that

r  UTa ��	���

and from ��	���
qrnn  a
Ur � rnn  kqrnnk� ��	���
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which is the desired projection t  qrnn  �I
UUT �a	 For this case the algorithm only operates
on the last column of A
k�
 giving a simplied version of the MGS algorithm for obtaining t

Algorithm 
�� �MGS based Projection of Vector�
Initialize a
��  a �� A  � u� � � � un�� a �
For k  � to n
 �
rkn  uTk a


k� �� rkk  �
 � rk�k	� � � � rk�n�� �  �

a
k	��  a
k� 
 ukrkn
End

t  a
n�

When the last column a is initialized to e�
 the algorithm can be compressed once more if the
Classical Gram�Schmidt �CGS� is used
 i	e	


Algorithm 
�� �CGS based Projection of e��
Initialize a
��  e�
For k  � to n
 �
a
k	��  a
k� 
 uku�k

End

t  a
n�

Thus
 the expanded column q can be obtained by combining Algorithm �	� and �	� with Algo�
rithm �	� on Page ���
 where Algorithm �	� is used to orthogonalize e� against the columns of
U
 and Algorithm �	� is used if reorthogonalization of the obtained solution is required	 Note

that only the U matrix is needed in the expansion	

��
���� Method of Corrected Semi�Normal Equations

The method of Corrected Semi�Normal Equations �CSNE� ��
 �
 ��� obtain the row uTX� and the
expansion element q� ��	��� from the matrix X and the ULLV decomposition elements LX 
 L
and V	 As demonstrated by Bj%orck et al	 in ���
 the explicit use of the original data X typically
gives the same accuracy as the MGSR method based on the matrix UX 	

Consider the QL�factorization

XV  UXLXL ��	���

then the normal equations for solving the least�squares problem

min
z

ke� 
XVzk ��	���

can be rewritten as

�LXL�
T �LXL�z  �XV�

Te� ��	���

which are called the Semi�Normal Equations �SNE�	 The desired quantities can now be found
by two steps of triangular solves
 where the rst triangular system gives the rst row of UX

uTX��LXL�  eT� �XV�  xT�V ��	���

and z is found from the second system

�LXL�z  uX� ��	���

Peter S� K� Hansen ����
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Then the residual vector in the least�squares problem is the desired projection t

t  e� 
 �XV�z ��	���

 e� 
XVL��L��X uX�

 e� 
XVL��L��X �XVL��L��X �T e�
 �I
UXUTX�e�

which is orthogonal to the matrices XV and UX 	 As shown by Bj%orck ���
 the error in the SNE
solution is of the same size as that for the method of normal equations	

In the CSNE method
 the corrected solution is computed by performing one step of iterative
renement of the solution computed by SNE
 i	e	
 to have a better estimate of uX� and t

corrections 
uX� and 
z can be obtained by solving ��	��� with e�  t


uTX��LXL�  tT �XV� ��	���

�LXL�
z  
uX� ��	����

Then uX� and t are corrected as follows

uX�  uX� # 
uX� ��	����

t  t
XV
z ��	����

The CSNE method
 although not backward stable
 will usually give an acceptable�error stable
result ���
 i	e	
 in most applications similar to the MGS based method	

The semi�normal equations and the correction step can be used in an algorithm like Algo�
rithm �	� on Page ��� to nd the expanded column of UX 
 but unlike the MGSR
 the correction
step must always be performed	 The case of UN is treated in a similar manner	

In practice
 the systems containing the product LXL is solved by a two step triangular
process	 Another issue is to handle the case with rank decient X and thereby LX 	 Assume
that the numerical rank of X is p � n
 and that the decomposition of X is given by ��	��� with
FX  � and GX  �	 Then hV�i  null�X�
 and the last n 
 p elements of the right�hand
side of ��	��� will be approximately zero	 Thus
 the solution to the rst three triangular solves

i	e	
 with coe�cient matrices LT 
 LTX and LX 
 will also have zero elements in the same places

and the systems can therefore be solved for the rst p elements by using the upper�left p � p
coe�cient matrices	 A possible tolerance for the numerical rank determination could be

�  ��n� ��	����

where � is the machine unit roundo�	

	���� Removing a Row from X

Given the ULLV decomposition ofX � IRm�n andN � IRm�n
 the starting point is the following
initial downdate decomposition
 where UX is argumented with the column e�

X  

�
xT

�X

�
 
�
UX e�

�� LX �
�T �

��
L
�T

�
VT  UXLXLV

T ��	����

N  UN
�
In �

�� L
�T

�
VT  UNLV

T ��	����
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The downdate process is split up into the expansion step and the downdating step consisting of
three substeps	 As the updating
 the downdating process is illustrated by means of an example
with matrix dimensions m  � and n  �
 which gives the initial matrices

LX  

�
LX �
�T �

�
 

�BBBBBBB�

l �
l l �
l l l �
f f g g �
f f g g g �
� � � � � �

	CCCCCCCA � L  

�
L
�T

�
 

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
� � � � �

	CCCCCCCA

UX  
�
UX e�

�
 

�BBBBBBBBBB�

u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �

	CCCCCCCCCCA
� V  

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA

��
�	�� Expansion step � DX�

Step DX�� First
 use one of the expansion methods to orthogonalize e� against the columns
of UX �

UX e�
�
 

�
uTX� �
�UX �

�
 

�
uTX� q�
�UX �q

��
In uX�

� q�

�
 U�

XR ��	����

The orthogonal columns of UX and the special form of the appended column determine the
structure of R
 and substitution in ��	���� gives

U�
XR

�
LX �
�T �

��
L
�T

�
 U�

X

�
LX uX�

�T q�

��
L
�T

�
��	����

 U�
X

�
LX �
�T �

��
L
�T

�

which mean that the factor R can be left out because the third factor has a zero row at the
bottom	

��
�	�� Downdating step � DX�� DX	 and DX


Step DX�� Second
 eliminate all but the rst and last element in the rst row of U�
X 
 main�

taining the rank revealing structure of LX as much as possible	 The following three substeps
describes the elimination and are done in a loop for i  n� n 
 �� � � � � �
 where rotations are
operating on neighboring columns or rows �i
 �� i�	
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Step DX���� Annihilate the ith element by postmultiply U�
X with a rotation P in the plane

�i
 �� i�
 which introduces a nonzero �i
 �� i� entry z in LX

U�
XPP

T

�
LX �
�T �

�
 �UX

�
L�
X �

�T �

�
��	����

 

�BBBBBBBBBB�

'u�� � � � � 'u��
u u u u u u
u u u u u u
u u u u u u
u u u u u u
u u u u u u
u u u u u u

	CCCCCCCCCCA

�BBBBBBB�

l z �
l l z �
l l l z �
l l l g z �
f f g g g �
� � � � � �

	CCCCCCCA
Note
 that postmultiplication by plane rotations cannot change the norm of a row
 so the rst
row of UX will still have norm one	

Step DX���� Eliminate the superdiagonal of L�
X by applying from the right a rotation Q

in the plane �i 
 �� i�
 which introduces a nonzero �i 
 �� i� entry in L	 This rotation must be
propagated to the left in both decompositions ��	���� and ��	�����

L�
X �

�T �

�
QQT

�
L
�T

�
 

�
�LX �
�T �

��
L�

�T

�
��	����

 

�BBBBBBB�

l �
l l �
l l l �
l l l l �
f f g g g �
� � � � � �

	CCCCCCCA

�BBBBBBB�

l z
l l z
l l l z
l l l l z
l l l l l
� � � � �

	CCCCCCCA
and

UN

�
In �

�
Q  UN

�Q
�
In �

�
 �UN

�
In �

�
��	����

where Q can be directly incorporated into UN because only the In part of the second factor is
a�ected	

Step DX��	� Eliminate the superdiagonal of L� by applying from the right a rotation J in
the plane �i
 �� i��

L�

�T

�
JJTVT  

�
�L
�T

�
�VT ��	����

 

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
� � � � �

	CCCCCCCA

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA
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After the rst two substeps
 the numerical rank of �LX apparently increase by one over that
of LX because of the linear combination of a row �or column� with large elements and a row
�or column� with small elements
 but actually the rank cannot increase in the downdating step	
The decomposition is now

X  �UX

�
�LX �
�T �

��
�L
�T

�
�VT ��	����

N  �UN

�
In �

�� �L
�T

�
�VT ��	����

Step DX	 � Inverse step X	� The transformed matrices now have the form as after step
X� in the updating process	 Thus
 the rst and last element of the rst row of �UX are the
rotation parameters �c�� s�� in the update step X�

s�  'u�� and c�  'u�� ��	����

Then the inverse of the rotation �c�� s�� can be applied to the decomposition

�UXK
TK

�
�LX �
�T �

�
 

�
�T �
�UX �

��
�LX 
s�e�
�eT� c�

�
��	����

 

�BBBBBBBBBB�

� � � � � �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u� 
 s�'u� u u u u �

	CCCCCCCCCCA

�BBBBBBB�

c�'lX�� 
s�
l l �
l l l �
l l l l �
f f g g g �

s�'lX�� � � � � c�

	CCCCCCCA

where the last column of �UX 
 because of the orthogonality
 is transformed to e�	 Using ��	���
divide by c� also gives the rst column of �UX but this may be numerically inaccurate for c�
close to zero	

Step DX
 � Inverse step X�� �LX now has the form as after step X� in the updating process	
Thus the rst element of the last row of �LX is the value � in ��	���

�  

s�
c�

 s�'lX�� ��	����

The inverse of the scaled rotation �c�� s�� in step X� can then be applied to the decomposition	
This single rotation had to zero the n rst elements in the last column of the second factor
in both decompositions	 Because the third factor has a zero row at the bottom
 then the last
column of these two matrices can be changed to satisfy this requirement
 which is the form in
��	��� and ��	���
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�
�LX z
�eT� z

�
YY��

�
�L
�T

�
 

�
�LX 
��lX�

�eT� �

�
YY��

�
�L
�T

�
��	����

 

�
�LX �
�T �

��
�L

�eT�

�

 

�BBBBBBB�

l �
l l �
l l l �
l l l l �
f f g g g �
� � � � � �

	CCCCCCCA

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l

�s�
c�
'l�� � � � �

	CCCCCCCA
and �

In �
�
Y  

�
In 
�e�

�
Y  

�
In �

�
��	����

Consequently the step DX� introduces only one new element � given by

�  

s�
c�
'l��  �'l�� ��	����

Hence
 step DX� can be implemented using only one multiplication
 and the the new decompo�
sition is

X  

�
xT

�X

�
 

�
�T �
�UX �

��
�LX �
�T �

��
�L

�eT�

�
�VT ��	����

N  �UN

�
In �

�� �L
�eT�

�
�VT ��	����

Thus � is the norm of the row xT being removed from X

kxT k  k�eT�VT k  k�eT� k  j�j ��	����

Finally
 the downdated decomposition is

�X  �UX
�LX�L�V

T ��	����

N  �UN
�L�VT ��	����

Note
 that the row dimension of UX has decreased by one
 and that the rst row of UX is
needed to construct the plane rotations	

	���� Removing a Row from N

Given the ULLV decomposition ofX � IRm�n andN � IRm�n
 the starting point is the following
initial downdate decomposition
 where UN is argumented with the column e�

X  UX

�
LX �

�� L
�T

�
VT  UXLXLV

T ��	����

N  

�
nT

�N

�
 
�
UN e�

�� L
�T

�
VT  UNLV

T ��	����
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Again
 the downdate process is split up into the expansion step and the downdating step
consisting of two substeps
 and the process is illustrated by means of an example with matrix
dimensions m  � and n  �
 which gives the initial matrices

LX  
�
LX �

�
 

�BBBBB�
l �
l l �
l l l �
f f g g �
f f g g g �

	CCCCCA � L  

�
L
�T

�
 

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
� � � � �

	CCCCCCCA

UN  
�
UN e�

�
 

�BBBBBBBBBB�

u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �
u u u u u �

	CCCCCCCCCCA
� V  

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA

��
�
�� Expansion step � DN�

Step DN�� First
 use one of the expansion methods to orthogonalize e� against the columns
of UN �

UN e�
�
 

�
uTN� �
�UN �

�
 

�
uTN� q�
�UN �q

��
In uN�

� q�

�
 U�

NR ��	����

The orthogonal columns of UN and the special form of the appended column determine the
structure of R
 and substitution in ��	���� gives

U�
NR

�
L
�T

�
 U�

N

�
L
�T

�
��	����

which mean that the factor R can be left out because the second factor has a zero row at the
bottom	

��
�
�� Downdating step � DN� and DN	

Step DN�� Second
 eliminate all but the rst and last element in the rst row of U�
N 


maintaining the rank revealing structure of LX as much as possible	 The following three substeps
describe the elimination and are done in a loop for i  n� n 
 �� � � � � �
 where rotations are
operating on neighboring columns or rows �i
 �� i�	
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Step DN���� Annihilate the ith element by postmultiplying U�
N with a rotation Q in the

plane �i 
 �� i�
 which introduces a nonzero �i 
 �� i� entry z in L	 This rotation must also be
propagated to the left in ��	����
 which introduces a nonzero �i
 �� i� entry z in LX

U�
NQQ

T

�
L
�T

�
 �UN

�
L�

�T

�
��	����

 

�BBBBBBBBBB�

'u�� � � � � 'u��
u u u u u u
u u u u u u
u u u u u u
u u u u u u
u u u u u u
u u u u u u

	CCCCCCCCCCA

�BBBBBBB�

l z
l l z
l l l z
l l l l z
l l l l l
� � � � �

	CCCCCCCA
and

�
LX �

�
Q  

�
L�
X �

�
 

�BBBBB�
l z �
l l z �
l l l z �
f f g g z �
f f g g g �

	CCCCCA ��	����

Note
 that postmultiplication by plane rotations cannot change the norm of a row
 so the rst
row of UN will still have norm one	

Step DN���� Eliminate the superdiagonal of L�
X by applying from the left a rotation P

T in
the plane �i
 �� i�

UXPP
T
�
L�
X �

�
 �UX

�
�LX �

�
��	����

 

�BBBBBBB�

u u u u u u
u u u u u u
u u u u u u
u u u u u u
u u u u u u
u u u u u u

	CCCCCCCA

�BBBBB�
l �
l l �
l l l �
l l l l �
f f g g g �

	CCCCCA

Step DN��	� Eliminate the superdiagonal of L� by applying from the right a rotation J in
the plane �i
 �� i��

L�

�T

�
JJTVT  

�
�L
�T

�
�VT ��	����

 

�BBBBBBB�

l
l l
l l l
l l l l
l l l l l
� � � � �

	CCCCCCCA

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA
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After the rst two substeps
 the numerical rank of �LX apparently increase by one over that
of LX because of the linear combination of a row �or column� with large elements and a row
�or column� with small elements
 but actually the rank cannot increase in the downdating step	
The decomposition is now

X  �UX

�
�LX �

�� �L
�T

�
�VT ��	����

N  �UN

�
�L
�T

�
�VT ��	����

Step DN	 � Inverse step N�� The transformed matrices now have the form as after step
N� in the updating process	 Thus
 the rst and last element of the rst row of �UN are the
rotation parameters �c�� s�� in the update step N�

s�  'u�� and c�  'u�� ��	����

Then the inverse of the rotation �c�� s�� can be applied to the decomposition	 This single rotation
had to transform the matrices to the form as before step N� in the updating process	 Because
the factor to the right has a zero row at the bottom
 then the last column of � �LX � � can be
changed to satisfy this requirement
 which is the form in ��	����

�LX �
�
KTK

�
�L
�T

�
 
�
�LX 
s��lX�

�
KTK

�
�L
�T

�
��	����

 
�
�LX �

�� �L
�eT�

�

 

�BBBBBBB�

�lX��
c�

�
�lX��
c�

l �
�lX��
c�

l l �
�lX��
c�

l l l �
�fX	�
c�

f g g g �

	CCCCCCCA

�BBBBBBB�

c�'l��
l l
l l l
l l l l
l l l l l

s�'l�� � � � �

	CCCCCCCA
and

�UNK
T  

�
�T �
�UN �

�
 

�BBBBBBBBBB�

� � � � � �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u�� 
 s�'u�� u u u u �
c�'u� 
 s�'u� u u u u �

	CCCCCCCCCCA
��	����

where the last column of �UN 
 because of the orthogonality
 is transformed to e�	 Using ��	���
divide by c� also gives the rst column of �UN but this may be numerically inaccurate for c�
close to zero	 Unfortunately
 the only way to nd �LX is to divide the rst column by c�
 because
the column 
s��lX� is unknown	 The new decomposition is

X  �UX

�
�LX �

�� �L
�eT�

�
�VT ��	����

N  

�
nT

�N

�
 

�
�T �
�UN �

��
�L

�eT�

�
�VT ��	����
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Thus
 the element � given by
�  s�'l�� ��	����

is the norm of the row nT being removed from N

knT k  k�eT�VT k  k�eT� k  j�j ��	����

Finally
 the downdated decomposition is

X  �UX
�LX�L�V

T ��	����

�N  �UN
�L�VT ��	����

Note again
 that the row dimension of UN has decreased by one
 and that we need the rst row
of UN to construct the plane rotations	


�� Making the ULLV Decomposition Rank�Revealing

After an update in the exponential window method
 the numerical rank p of XN	 as dened in
��	��� can increase by one
 decrease
 or stay the same	 In particular
 since the e�ect of old data
is only gradually phased out
 it is likely that situations occur
 where the numerical rank is not
well determined
 and the rank decisions are di�cult	
An advantage of the sliding window method is that after adding a row
 the rank can only

stay the same or increase by one	 Likewise after removing a row
 the rank can only stay the
same or decrease by one	 Therefore
 some a priori information on the numerical rank after the
modication is always available	
In the ULLV decomposition an apparant increase in rank in the updating�downdating pro�

cedure can turn out to be spurious	 We therefore need a means of detecting the numerical rank
p of XN	 and computing a corresponding rank�reavealing ULLV decomposition for it	 This is
done in a de�ation step ����
 ���� to separate LX in the matrices LX�
 FX and GX ��	���
 and
possibly followed by a renement step ���
 ���� to bring LX nearer to block diagonality	

	���� Deation

Step D�� The rst step is to determine if LX � IRn�n is defective in rank
 that is
 if the
smallest singular value �n of LX is less than a prescribed tolerance � 	 This problem is solved
by using a reliable condition estimator to nd a vector �un of norm one
 which estimate the left
singular vector un associated with �n�LX�
 i	e	


kLTX�unk�  �n�LX� ��	����

If kLTX�unk� is greater than the tolerance � 
 then there is nothing to be done	 Otherwise
 LX
must be modied by plane rotations so that the elements in its last row become small	 This
is described in step D� to D�
 which are done in a loop for i  �� �� � � � � n
 where rotations are
operating on neighboring columns or rows �i
 �� i�	

Step D�� Begin by apply a sequence of left rotations PT in plane �i 
 �� i� to transform �un
into the nth unit vector �en

� 'u
� u

u
u
u

�

�
� 'u
� u

u
u

�

�
�

� 'u
� u

u

�

�
�
�

� 'u
� u

�

�
�
�
�

��

��	����
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PT �un  �en ��	����

Step D	� Next apply the sequence of left rotations PT to LX 	 Then the ��norm of the last
row of �LX  PTLX approximates the smallest singular value of LX 
 since

keTn �LXk�  k�uTnPPTLXk�  k�uTnLXk�  �n�LX� ��	����

The rotations P must also be propagated to the left in the ULLV decomposition

UXPP
TLX  �UX

�LX  

�BBBBBBB�

u u u u u
u u u u u
u u u u u
u u u u u
u u u u u
u u u u u

	CCCCCCCA

�BBBBB�
l z
l l z
l l l z
l l l l z
g g g g g

	CCCCCA ��	����

where the last row of �LX has been lled with g$s to indicate that the elements are small	

Step D
� Eliminate the superdiagonal of �LX by postmultiplying a plane rotation Q in the
plane �i
 �� i�	 This rotation must be propagated to the left in both decompositions ��	��� and
��	���

�LXQQ
TL  �LX�L  

�BBBBB�
l
l l
l l l
l l l l
g g g g g

	CCCCCA

�BBBBB�
l z
l l z
l l l z
l l l l z
l l l l l

	CCCCCA ��	����

and

UNQ  �UN ��	����

The ��norm of the last row of �LX still approximates the smallest singular value of LX

keTn �LXk�  k�uTnLXQk�  kLTX�unk�  �n�LX� ��	����

If �un is exactly the left singular vector associated with the smallest singular value of LX 
 then
the last diagonal element of �LX is �n�LX� and the o� diagonal elements in the last row of �LX
are zero ����	 Thus
 an accurate condition estimator is important in the de�ation step	

Step D�� Finally
 triangularize �L by applying from the right a rotation� in the plane �i
�� i�

�L��TVT  �L�VT  

�BBBBB�
l
l l
l l l
l l l l
l l l l l

	CCCCCA

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA ��	����

If the �n
 �� � �n
 �� leading principle submatrix of LX is su�ciently well conditioned
 then
the rank�revealing ULLV decomposition is obtained	 If not
 the de�ation steps can be repeated
on the submatrix	
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	���� Condition Number Estimation

The de�ation step was based on a reliable condition estimator
 which was used to nd an estimate
of the left singular vector un associated with the smallest singular value of LX � IRn�n	
The chosen condition estimator derived by Hager ���� use a convex optimisation approch to

nd the ��norm of L��X 	 The ��norm of L��X is the maximal column sum and can be found as
the maximal value of the convex function

f�d�  kL��X dk� ��	����

over the convex set S  fd � kdk� � �g	 Obviously
 the maximum is attained at one of the
identity vectors ej 	 Based on these observations
 the following gradient algorithm computes a
lower bound � � kL��X k� �see ���� or ���
 page ���� for further details�
Algorithm 
�� �Hager ��norm Condition Estimator�

Initialize d  �
n��� �� � � � � ��T

Repeat
Solve LXy  d

Form � where �i  

�
�� yi � �

�� yi � �

Solve LT
Xz  �

If kzk� � zTd then

�  kyk�  kL��X dk�  f�d�
Quit

Else d  ej where jzj j  kzk�

The triangular systems are solved with forward�back�substitution and requires �sn� �ops
 where
s is the number of iterations of the main loop for convergence	 In the numerical experiments
reported in ���� and ����
 the algorithm almost always terminates on the second execution of the
main loop
 and it frequently yields kL��X k� exactly	
Finally
 solve the triangular system

LT
Xq  y ��	����

Then
 the estimate of the left singular vector �un associated with the smallest singular value ��n
is

�un  
q

kqk�
��	����

��n  kLT
X�unk�  

�����LT
Xq

kqk�

�����
�

 
kyk�
kqk� ��	����

The Hager condition estimator is chosen due to the low computational cost and because Higham
reports in ���� that this estimator provides accurate results	
Two other more reliable and more costly condition estimators are the ��Norm Condition

Estimator by Cline
 Conn and Van Loan ����
 which incorporates a look�behind technique in
the ordinary Linpack condition estimator
 and the Lapack ��Norm Estimator by Higham ���

page ����
 which is a modication of Hagers algorithm	
Numerical experiments with the singular value and singular vector estimators have been

performed in Matlab using three sets of random matrices �also used for test purposes in ����

see
 e	g	
 The Test Matrix Toolbox for Matlab ������
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Set � The elements of X � IRn�n are chosen as random numbers from the uniform distribution
on ��!��	

Set � Random matrices X  U�VT � IRn�n
 where the random orthogonal matrices U and
V are generated following Stewart ����� and the singular values have a preassigned ex�
ponential distribution �i  �i��

i 	 The parameter � is determined by a chosen condition
number ���X�	

Set 	 Similar to the second set
 but with the singular values having sharp�break distribution
�  �i  � � �  �n��  �n  

�
�
X� 	

In each set
 ���� random matrices are formed for each of the sizes n  �� and ��
 and upper
triangular matrices are generated by computing the QR decomposition of X	
The estimated values ��n and �un are compared with the one computed by the the Matlab

function SVD as j�n 
 ��nj��n and dist�un� �un�	 Averages over the ���� matrices are given
in Table �	� � �	� for the di�erent cases
 and selected plots showing the variation among ���
matrices are given in Figure �	�	
In these tests
 the quality of the estimates are quite sensitive to the gap �n����n between

the two smallest singular values	 When the gap is small as in the exponential distribution �set
��
 the error is large �see Table �	��
 and when the gap is large as in the sharp�break distribution
�set ��
 the error is small �see Table �	��	 Another observation is that the average estimation
error is dominated by few poor estimates as shown by the example plot in Figure �	� and the
bar graphs in Figure �	� � �	�	
In the speech enhancement case
 the singular spectrum is similar to one given by test set �

and �
 i	e	
 from Table �	� � �	� and Figure �	� � �	� it can be concluded that the Hager condition

estimator is a good choice	

Estimator Size n Average j�n � ��nj��n Average dist	un� �un


Cline et al� �� ����� ����
� ����� ���

Hager �� ����� �����
� ����� ����

Table 	�� Average errors in set ��

Estimator �� Size n Average j�n � ��nj��n Average dist	un� �un


Cline et al� �� �� ���� ����
� ����� �����

��� �� ���� �����
� ���� ����

Hager �� �� ����� �����
� ���� �����

��� �� ����� �����
� ���� �����

Table 	�� Average errors in set �
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Estimator �� Size n Average j�n � ��nj��n Average dist	un� �un


Cline et al� �� �� ����� �����
� ����� �����

��� �� ����e��� ����e���
� ����e��� ����e���

Hager �� �� ����� ����
� ����� �����

��� �� ����e��� ����e���
� ����e��� ����e���

Table 	�� Average errors in set ��
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Figure 	�� Relative error of the estimated smallest singular value of ��� triangular random
matrices of dimension �� using the Cline and Hager method� 	a
 Test set �� 	b
 Test set 
with condition number �� � ���
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Figure 	�� Histogram of relative error of the estimated smallest singular value of ����
triangular random matrices of dimension �� using Hager method� 	a
 Test set �� 	b
 Test
set  with condition number �� � ���
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Figure 	�� Histogram of relative error of the estimated smallest singular value of ����
triangular random matrices of dimension �� using Cline method� 	a
 Test set �� 	b
 Test
set  with condition number �� � ���

	���� Re�nement

Renement is an iterative algorithm
 which move a triangular matrix L toward diagonality	 This
improves the quality of the subspaces provided by the ULLV decomposition without changing
the orthogonal or triangular properties of the factors	

Consider the block lower triangular matrix L� � IRn�n

L�  

�
�L� �
F� G�

�
��	����

where �L� � IRp�p
 G� � IRn�p�n�p and F� � IRn�p�p	 Flipping the matrix L� to block upper
triangular form decreases the norm of the o��diagonal block F
 and the same is valid when
�ipping down again

L�  Q
T
� L�  

�
�L� F�
� G�

�
��	����

L�  L�Q�  

�
�L� �
F� G�

�
��	����

If there is a su�cient gab in the singular values of the matrix

�  
�max�G�

�min��L�
� � ��	����

then the iteration will converge ���� in a rate

kFik � �ikFk ��	����

�j��Li	�� � �j��Li� � j  �� � � � � p ��	����

�j�Gi	�� � �j�Gi� � j  �� � � � � n
 p ��	����
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which in the limits give

lim
i��

kFik  � ��	����

lim
i��

�j��Li�  �j�L� � j  �� � � � � p ��	����

lim
i��

�j�Gi�  �p	j�L� � j  �� � � � � n
 p ��	����

However
 the matrix Li need not converge ����	

In the ULLV decomposition
 renement is used on the triangular matrix LX 
 where F� and
G� is the last row	 Thus
 F� is a vector and G� is a scalar	 The renement is done in the
following four steps	

Step R�� First �ip the last row of LX up by left rotations PT in plane �i 
 �� n� for i  
n� n
 �� � � � � �

UXPP
TLX  �UX

�LX  

�BBBBBBB�

u u u u u
u u u u u
u u u u u
u u u u u
u u u u u
u u u u u

	CCCCCCCA

�BBBBB�
l 'g
l l 'g
f f g 'g
f f g g 'g
� � � � 'g

	CCCCCA ��	����

Step R�� If �LX is triangularized using column rotations
 then L will be lled up when the
rotations are propagated to L	 To solve this problem
 Qiao ���� has proposed to zero all but
the rst two elements of the last row of L before triangularization of �LX 	 This is done by right
rotations � in plane �i
 �� i� for i  n� n
 �� � � � � �

L��TVT  L� �VT  

�BBBBB�
l
l l z
l l l z
l l l l z
l l � � �

	CCCCCA

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA ��	����

Step R	� Then �ip the last column of �LX down by right rotations Q in plane �i 
 �� n� for
i  �� �� � � � � n	 This rotation must be propagated to the left in both decompositions ��	��� and
��	���

�LXQQ
TL�  �LX�L  

�BBBBB�
l
l l
f f g
f f g g
�g �g �g �g �g

	CCCCCA

�BBBBB�
l z
l l z
l l l z
l l l l z
l l l l l

	CCCCCA ��	����

and

UNQ  �UN ��	����
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Step R
� Finally
 for i  �� �� � � � � n apply right rotations � in plane �i
 �� i� to triangularize
�L

�L��T �VT  �L�VT  

�BBBBB�
l
l l
l l l
l l l l
l l l l l

	CCCCCA

�BBBBB�
v v v v v
v v v v v
v v v v v
v v v v v
v v v v v

	CCCCCA ��	����

The renement step can be repeated to the size of the o��diagonal elements in the last row of LX
are insignicant compared to the diagonal element	 As with the de�ation step
 the procedure
can now be used on the �n
 ��� �n
 �� leading principle submatrix of LX 	

	���� The Complete Rank�Revealing Algorithm

Assume that XN	 has numerical rank p corresponding to a given tolerance � 
 then a straightfor�
ward rank�revealing procedure requires n
p de�ation steps performed on the matrix LX � IRn�n
to the �p # �� � �p # �� leading principle submatrix and the same number of renement steps

if the repetition rate is one	

However
 when LX is already separated in the matrices LX�
 FX and GX before the up�
and downdating
 then the rank�revealing procedure can be simplied
 because the dimension of
LX� only increase by one after the updating �step X�
 N�� and also by one after the downdating
�step DX�
 DN��	 Thus
 in both cases the matrix LX� is now dened as LX�� �p # �� � �p # ��

which must be de�ated to re�ect the new rank of XN		 The required number of de�ation steps
is shown in Table �	� for the di�erent possibilities of rank changes using either exponential or
sliding window	

Rank�revealing Window New rank Required Required
after of XN� de�ation steps re�nement steps

Updating Both sliding p� � � �
and exponential p � �
Exponential only p� �  

���
���

���

Downdating Sliding only p � �
p� �  

Table 	�� Tolerance based rank�revealing�

The renement step could still be applied to LX 
 corresponding to all the rows of the o��
diagonal block FX 
 but fortunately the rst row of FX is the most important one to rene ����	
This results in one renement step on the new row added to the top of FX after each de�ation
step �see Table �	��	 For the case where the rank of XN	 increases
 one renement step will
still be required	

Table �	� suggests the following general rank�revealing algorithm
 where the tolerance � and
the rank p from the previous iteration is input and the new estimated rank is returned	 The
renement can be repeated f times for each submatrix	
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Algorithm 
�	 �Tolerance based Rank�Revealing�
If p � n �� Apparant increase in rank observed
p  p# �

End
Estimate �min�LX�� � p� � � p��
If �min � � �� The rank stays the same or decrease
While �min � � and p  �
De�ate LX�� � p� � � p�
For i  � to f
Rene LX�� � p� � � p�

End
p  p
 �
Estimate �min�LX�� � p� � � p��

End
Else if p � n �� The rank increase by one
For i  � to f
Rene LX�� � p# �� � � p# ��

End
End

Using the rank�revealing ULLV decomposition on speech signals
 a xed value of the numerical
rank p can be used �see Section �	��	 For this situation
 one de�ation step and one renement
step are always required
 so Algorithm �	� can be replaced with

Algorithm 
�
 �Rank based Rank�Revealing�
If p � n
Estimate �min�LX�� � p# �� � � p# ���
De�ate LX�� � p# �� � � p# ��
For i  � to f
Rene LX�� � p# �� � � p# ��

End
�  �min

End

where the xed rank p now is known and the tolerance level � is returned	 In many applications

e	g	
 speech enhancement
 only a small �or no� improvement in performance is obtained by
applying the renement step
 so typically it is left out	


�� Initialization of the ULLV Decomposition

To initialize the recursive ULLV algorithm
 a method for computing the rank�revealing ULLV
decomposition of two matrices X � IRm�n and N � IRm�n is needed	
First compute the QL factorization of the matrix N

N  UNL  UNLV
T � V  In ��	����
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where UN � IRm�n has orthogonal columns and L � IRn�n is lower triangular	 Next
 nd the
product UXLX  Z by solving a triangular system with multiple right�hand sides

X  UXLXLV
T  UXLXL  ZL � V  In ��	����

The matrices UX � IRm�n and LX � IRn�n can now be found by another QL factorization of
the solution matrix Z

Z  UXLX ��	����

At this point
 the following decomposition is obtained

X  UXLXLI
T ��	����

N  UNLI
T ��	����

Finally
 nd a rank�revealing ULLV decomposition by applying de�ation and renement steps
on the matrix LX to the �p#��� �p#�� leading principle submatrix
 where p is the numerical
rank of XN		


�
 The ULLV Algorithm Structure

Combining initialization
 updating
 downdating and rank�revealing the entirely ULLV algorithm
for the case of matrix X becomes

Algorithm 
�� �Rank�Revealing ULLV Algorithm�
Initialize UN �UX �LX �L�V
Repeat
Update X
If �known tolerance ��
Rank�revealing Algorithm �	�

Else if �known rank p�
Rank�revealing Algorithm �	�

End
If �exponential window�
Remove oldest row from UX

Else if �sliding window�
Downdate X
If �known tolerance ��
Rank�revealing Algorithm �	�

Else if �known rank p�
Rank�revealing Algorithm �	�

End
End

where p is the numerical rank of XN	 corresponding to a given tolerance � as dened in ��	���	
Note
 that in the sliding window case
 the rank�revealing algorithm is applied twice
 i	e	
 both
after the updating and downdating step	
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�� Computational Count

The arithmetic complexity of the rank�revealing ULLV algorithm of two matrices X � IRmX�n
and N � IRmN�n is discussed in this section	 One way to quantify the operation counts
 is with
the notion of a �op
 which is a �oating point operation
 i	e	
 one multiplication
 division
 addition

subtraction or square root	 Although �op counting is a crude approach to the measuring of
algorithm e�ciency ����
 it gives us nevertheless a good idea of the possible gain in computational
e�ciency	

The amount of work involved in the initialization
 updating
 downdating
 de�ation and
renement steps are presented in Appendix A
 where the parameters in the �op counts are
given by

� mX  row dimension of UX 	

� mN  row dimension of UN 	

� n  column dimension	

� p  numerical rank of XN		

� r  dimension of the leading principle submatrix of LX to be de�ated and rened	

For large matrix dimensions �m�n�
 the work can be approximated to include only second�order
terms as listed in Table �	�	 Thus
 the recursive algorithm requires O�n�� �ops	

Algorithm Flop count

Updating X �mn� �
�n�

Updating N �mn� �n�

MGS or MGSR expansion mn or �mn

SNE or CSNE expansion mn� �n� or �mn� ��n�

Downdating X �mn� ��n�

Downdating N �mn� ��n�

De�ation 	� step
 �mp� ��np � �p�

Re�nement 	� step
 �mp� ��np � �p�

Table 	�� Approximate �op count for substeps of the rank�revealing ULLV algorithm�

The operation counts for all substeps other than the CSNE�based expansion assume that
the left�side orthogonal matrices UX and UN are maintained	 To obtain the operation counts
for these substeps
 when the left�side orthogonal matrices are not maintained
 simply eliminate
all terms containing m from the given operation counts	 Thus
 in this case the CSNE�based
expansion is used instead of the MGSR�based method	 For our choice of parameters

� mX  mN  ���
 n  �� and p  ��	

the exact �op counts in Appendix A has to be used	 This is shown in Table �	� for di�erent
portions of the ULLV algorithm	 When calculating the number of operations for the de�ation
and renement
 a xed numerical rank p is assumed �see Algorithm �	��
 so one step of each is
required	 Clearly
 the expensive step is downdating
 and the work increases a lot if UX and UN
have to be calculated	

The total amount of work for the di�erent cases is shown in Table �	�
 both for each sample
and for one second of time with a sample rate fs  � kHz	 Note
 that in the sliding window case
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Required Algorithm Flop count

LX �L�V Updating X �����
Downdating X 	SNE or CSNE
 ������ or ������
Updating N �����
Downdating N 	SNE or CSNE
 ����� or ����
De�ation 	� step
 �����
Re�nement 	� step
 �����

UX �LX �L�V Updating X �����
Downdating X 	MGS or MGSR
 ����� or ������
Updating N �����
Downdating N 	SNE or CSNE
 ������ or �����
De�ation 	� step
 ������
Re�nement 	� step
 ������

UN �UX �LX �L�V Updating X ������
Downdating X 	MGS or MGSR
 ���� or ������
Updating N ������
Downdating N 	MGS or MGSR
 ������ or ������
De�ation 	� step
 �����
Re�nement 	� step
 ����

Table 	�� Flop count for substeps of the rank�revealing ULLV algorithm with mX �
mN � ���� n � � and p � ��

Required ULLV Expansion Number Flop MFlop
algorithm method of ref� count �second

LX �L�V Exponential � � ����� ���
window on X � ����� ���

Sliding SNE � ����� ��
window on X � ���� ���

CSNE � ������ ���
� ����� ��

UX �LX �L�V Exponential � � ������ ��
window on X � ������ ���

Sliding MGS � ����� ���
window on X � ������ ���

MGSR � ������ ���
� ������� �����

UN �UX �LX �L�V Exponential � � ������ ���
window on X � ������ ��

Sliding MGS � ������� �����
window on X � ������� �����

MGSR � ������� �����
� ������ �����

Table 	�	 Flop count for the rank�revealing ULLV algorithm with mX � mN � ����
n � �� p � � and fs � ���� sample�sek�

the de�ation and renement steps had to be used twice	 Looking at the rst part
 where only LX 

L and V are maintained
 it is seen that computations can be saved by using the exponential
window method
 i	e	
 omitting the downdating step
 and for a given choice of window
 the
renement step can be left out	 Thus
 a given implementation of the rank�revealing ULLV
algorithm is a tradeo� between complexity and accuracy	 Finally
 there is no numerical benet
in maintaining the left�side orthogonal matrices
 so this can not be recommended considering
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the extra cost	

Another issue is the storage requirements which is roughly the decomposition elements
 since
X is needed when UX is omitted	 However
 when X has a special structure
 e	g	
 Toeplitz
 the
storage requirement for X can be much smaller than that for UX 	

As comparison
 the computational complexity of the QSVD algorithm is �	� M�op
 when
implemented along the lines described in ����� and with the chosen parameters	 If the QSVD
is applied to non�overlapping frames of length �� ms
 the computational count is �� M�op per
second �fs  � kHz�	 Thus
 the recursive RRULLV algorithm is more expensive
 when updated
for every new sample	


� Error Analysis

In the following rounding error analysis
 the indexed scalars �i will denote nonnegative numbers
bounded above by the product of the machine unit roundo� � and small constants dependent
only on the number of orthogonal transformations and possibly the dimension of the problems	
Calligraphic letters are used for the computed versions of their roman counterparts	

	���� Plane Rotations

In the ULLV algorithm
 the basic operations are plane rotations P and Q applied from the left
and right to a given matrix X � IRm�n
 so that ideally

Y  PTXQ ��	����

The numerical properties of plane rotations follows from the work of Wilkinson �����
 i	e	
 it can
be shown that the computed rotations P and Q satisfy

kP
Pk�  �P and kQ
Qk�  �Q ��	����

and that the use of plane rotations are backward stable
 so the computed matrix Y is the exact
update of a nearby matrix

Y  PTXQ  PT �X#E�Q � kEk�  �XkXk� ��	����

	���� Updating

Now
 consider the case of updating UX 
 LX 
 L
 and V in the RRULLVD in an e�cient and
numerically stable way
 when a row xT is appended to X	 Thus
 the problem is�

LXL
xTV

�
 

�
UT
X �
�T �

��
X
xT

�
V ��	����

which determine the updated matrices

�LX�L  �UT
X
�XV ��	����

Since this equation is a continuation of ��	����
 the computational results satisfy the equivalent
of ��	���� and ��	����
 i	e	
 the updating techniques are numerically backward stable �see Paige
�����	 Note that ��	���� require V to carry out the update
 and that V is unaltered
 while UX

is trivially modied	
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The analysis is independent of the form and rank of X and LXL
 but if LXL have a specic
form �lower triangular�
 then the updated matrix �LX�L is expected to have the same form	 In such
cases the form can be e�ciently regained by applying more numerically stable transformations
from the left and right to the relevant parts of ��	����
 which will just be further continuations
of ��	���� and as such will make the computations backward stable	

	���� Downdating

The downdate analysis is more complex	 Assume that the expansion step has been applied to
the matrix UX in the RRULLVD
 i	e	


X  
�
UX un	�

�� LXL
�T

�
VT ��	����

where the appended column un	� satisfy the requirements discussed in Section �	�	�	 Further
assume that the transformations UX and V are available whenever needed
 so the less reliable
methods that use X to nd information on
 e	g	
 UX is not discussed �see Section �	�	��	 Thus

for the MGSR based expansion the analysis in Parlett ���
 page ���� ensures that

kun	� 
 Un	�k�  �u ��	����

The problem of removing a row xT from X is now obtained by applying an orthogonal trans�
formation P so �

UX un	�
�
P  

�
�T �
�UX �

�
��	����

Clearly
 �UX has orthonormal columns and the downdated matrices are determined by

PT
�
LXL
�T

�
 PT

�
UT
X

uTn	�

�
XV ��	����

 

�
� �UT

X

� �T

��
xT

�X

�
V

 

�
�UT
X
�XV

xTV

�

 

�
�LX�L
xTV

�

The analysis by Paige in ���� shows that the computed version of �UX is close to an orthogonal
matrix

k�UX 
 �UXk�  �U ��	����

and that
�LX �L  �U

T
X
�XV  �UT

X��X# �E�V � k�Ek�  �XkXk� ��	����

Notice that ��	���� and ��	���� have the same form as ��	���� and ��	����	 However
 the bound
in ��	���� depends on X rather than just �X
 so if kxT k� � k�Xk�
 the new decomposition
might not be as accurate as if it has been computed directly from �X
 i	e	
 the downdating is as
numerically stable as can be expected for the problem	
Again
 V is unaltered
 while the modication of UX is nontrivial	 Finally
 numerically

stable transformations can be applied to the left and right to give �LX�L any desired form �lower
triangular�	
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	���� Sequential Updates and Downdates

Stewart ����� has shown that sequential updates and downdates of two�sided orthogonal de�
compositions such as the ULV decomposition gives acceptable�error stable results
 when the
condition numbers of the triangular factors are substantially less than ��

p
�	 The analysis

is based on downdating algorithms like the LINPACK
 i	e	
 the CSNE�algorithm discussed in
Section �	�	�	� can reasonably be expected to perform better
 and methods that maintain the
U�factors will have superior numerical properties	
In some applications
 exponential windowing is an alternative to �sequential� downdating	

Stewart ����� has shown that updating the ULV decomposition using exponential windowing is
unconditionally stable in the presence of rounding errors	 Thus
 exponential windowing damps
old rounding errors along with old data	

	���� Maintaining Orthogonality

Unfortunately
 it is usually required to accumulate the right�side transformation V in the
ULV�ULLV algorithms
 and here errors can accumulate very slowly	 Algorithms for maintain�
ing orthogonality in long products of orthogonal matrices
 which arise
 for example
 in subspace
tracking problems in signal processing
 are analysed by Moonen et al	 ����
 Edelman and Stewart
���� and Mathias ����	
Let Vk � IRn�n be iteratively updated according to a product of the form

Vk  Vk��Qk  Q� � � �Qk��Qk ��	����

where the matrices Qi are orthogonal
 then rounding errors will cause Vk to drift from orthog�
onality with increasing k	 The deviation of VT

kVk from the identity is bounded as ����

kIn 
VT
kVkkF � �k # ��n���� ��	����

where � is the machine precision	 In ���� is pointed out that simply normalizing the columns vi
of the product after each update preserve orthogonality
 i	e	


vi  
vi

kvik� � i  �� � � � � n ��	����

The normalization technique is analyzed in ����
 where it is shown that the method succeeds
when the matrix Qi manage to transfer o��diagonal error in the matrices In 
 VT

i Vi to the
diagonal
 i	e	
 the method will fail only in certain unlikely circumstances	
From the point of view of accuracy
 i	e	
 how close the computed product is to the true

product
 this algorithm is actually better than some of the more complicated algorithms �see
���� for details�	
The normalization of V requires �n� �op
 so it is too costly to apply it after every rotation

on V	 The compromise proposed here
 is to normalize V after a complete updating
 downdating
and rank�revealing of the RRULLV algorithm	
As an example
 the RRULLV algorithm has been applied to a sinosoid in colored Gaussian

noise �AR��
��	�� process and SNR  �� dB�	 The RRULLVD of the data matrixX � IR������ is
up�downdated using a sliding window consisting of ��� samples
 and a signal subspace dimension
of two	 The U�matrices are not maintained and no renement is used	 When no intermediate
normalizations are performed
 orthogonality is gradually lost as shown in Figure �	�	 When the
columns in V are normalized after each shift of the sliding window
 the accumulation is appar�
ently stable
 where the level may depends on the number of rotations in between normalizations
of V	 Thus
 the conclusion is that the accumulated error is acceptable and there is no reason
to use more complicated methods	
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Figure 	�� Orthogonality measure kIn�VTVk�� where V is obtained from the RRULLV
algorithm applied to a sinosoid in colored Gaussian noise 	AR	������
 process and SNR �
��dB
� The RRULLVD of the data matrix X � IR������ is up�downdated using a sliding
window consisting of ��� samples� The solid graph is with no intermediate normalizations
and the dashed is when the columns in V are normalized after each shift of the sliding
window�


��� Numerical Results

In this section
 numerical experiments using the rank�revealing ULLV algorithm are presented	
The algorithm is implemented inMatlab m�les
 and a c�version with a mex�le interface �see
Appendix B�
 i	e	
 the machine precision is �  ����� �����	

	����� Test Matrix

The rst group of experiments generates the data matrix X by using a sliding window method
on a test matrix W
 i	e	
 in step k
 the new row wT

k is updated into the RRULLVD and the
existing row wT

k�m is downdated from the decomposition
 where m is the window size	 The
following set of test matrices is also used for test purposes in ����	

Test matrix I Test matrixWI is a ��� � matrix composed of three �� � partsW�
W� and
W�	 These matrices are constructed with elements chosen as random numbers from the
uniform distribution on ��!��	 In order to vary the numerical rank of the data matrix
W�

andW� is given � singular values of ��
��� whileW� is given � singular values of ��

���	
The window size m is � and as a tolerance � for determining the numerical rank is used
����	

Test matrix II Test matrix WII is a �� � � matrix with a window size m of �	 The rst �
rows are generated randomly	 Each of the succeeding rows is a weighted combination of
a xed random row with a new random row	 The weight assigned to the new component
begins as �	� and is divided by �� at each succeeding row	 The numerical tolerance � is
again ����	

The matrix N is made up of elements selected from a normal distribution and is not changed
while matrix X is modied	
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The rst experiment test the algorithms ability to estimate the rank p of the data matrix
based on the numerical tolerance � as shown in Figure �	�
 where the QSVD of the data matrix
is used as a reference in checking the accuracy	 The MGSR based method gives the true rank
estimates for both test matrices
 while the CSNE based method sometimes fail to properly
estimate the rank	 Notice that this was also observed for the algorithm in ����	 The CSNE
method can be improved by increasing the number of correction steps in the CSNE algorithm

however
 the rank estimation problem is not important
 when the RRULLV algorithm is used
on signals with known rank	

5 10 15 20 25
0

1

2

3

4

5

6

Index of New Row

R
an

k 
E

st
im

at
e

	a


10 15 20 25 30
0

1

2

3

4

5

6

7

8

Index of New Row
R

an
k 

E
st

im
at

e

	b


Figure 	�� Rank estimates obtained with matrix WI 	a
 and matrix WII 	b
 using the
MGSR method 	�
 and CSNE method 	�
� The estimates based on the MGSR method
correspond to the true values as given by the QSVD�

	����� Test Signals

The error in the decomposition is measured as kX 
 UXLXLVT k�
 i	e	
 the accuracy of the
decomposition is not tested for the CSNE�based downdating
 as the full decomposition is not
available	 Figure �	� shows the decomposition error of the example in Figure �	�
 where the
error can be explained by the accumulated errors in V	
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Figure 	�	 Decomposition error kX � UXLXLV
T k�� when the RRULLV algorithm

	MGSR
 is applied to a sinosoid in colored Gaussian noise 	AR	������
 process and SNR �
��dB
� The RRULLVD of the data matrix X � IR������ is up�downdated using a sliding
window consisting of ��� samples�
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��� Summary

A complete RRULLV algorithm has been developed
 analyzed and implemented	 The updating
step is straightforward
 while the critical step is the downdating used in the sliding window
method	

Two expansion methods have been considered
 and it has been shown that the orthogonal�
ization will fail if the rank of the downdated matrix decreases	 The CSNE�based expansion is
used when the left�side orthogonal matrices are not maintained
 and here
 the correction step
must always be performed to stabilize the method	 However
 even in this case
 it has been
observed that the algorithm sometimes fail to properly estimate �track� the rank	

When the signal represents a stationary process
 exponential windowing is to be preferred
to downdating	 It is simpler and has better numerical properties	 However
 in nonstationary
situations the two techniques produce di�erent results
 and the decision between the two must
depend on their behavior in the application in question	

De�ation is another important step
 where in speech applications
 the Hager condition esti�
mator is shown to be a good choice	 Finally
 it is noted that the renement step can be left out
in this application	

The computational complexity of the RRULLV algorithm is high
 and further work need to be
done in order to reduce it	 This could
 e	g	
 be obtained by introducing rank�k up�downdating	

Peter S� K� Hansen ����





Chapter �

Experimental Speech Enhancement

In this chapter
 the discussed nonparametric signal subspace based estimators are used for
speech enhancement
 and comparisons are made on the basis of the improvement in quality
�SNR�
 tracking capability
 and informal listening tests	

The experiments will illustrate the di�erences in speech enhancement that may arise from the
use of di�erent estimation strategies
 decomposition methods �SVD or RRULVD� and window
types �sliding or exponential�	 Also the e�ect of prewhitening is evaluated	

��� Experimental Setup

All algorithms are programmed inMatlab
 however
 the rank�revealing ULV�ULLV algorithms
are partly implemented in C to reduce execution time	 The les are collected in two Matlab
toolboxes provided for free �see Appendix B and C�	

The practical implementation of the algorithms follows the lines in Section �	� and �	�
 and
the experiments have been performed by using the following algorithm settings
 if not otherwise
stated�

� A rectangular analysis window consisting of ��� samples is used
 and in the frame based
case
 without overlap between adjacent frames	

� The noise matrix N �or �noise� is only updated in periods without speech
 i	e	
 from an
initial noise�only segment	

� The estimators are construced from the subspace decomposition of Toeplitz data matrices
having dimensions �m�n�  ���� � ���
 and by using a xed signal subspace dimension
p  ��	

� The left�side orthogonal matrices Ui are not maintained in the decompositions
 and there�
fore not used to construct the estimators	

� For the RRULVD based estimates
 no renement steps have been applied to improve the
subspace quality	

As in the previous chapters
 the speech material used in the examples
 is the phonetically
balanced reference sentence shown in Figure �	�	 However
 the obtained results are fairly general

and from other projects
 the sentence is known to be representative	

Finally
 the experiments have been made with the clean speech signal added both articial
white noise and colored noise	
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��� Speech Contaminated by White Noise

In this section
 the di�erent noise reduction methods are applied to speech signals contaminated
by white noise �global SNR  � dB�	 First
 the SVD�based algorithm is used to compare esti�
mation strategies
 and then the application of the ULV�based algorithm illustrates the benets
of the recursive approach	

The noisy speech sentence is shown in Figure �	�
 and Figure �	� � �	� show examples of
enhanced speech signals obtained by the LS
 MV and SDC estimator
 respectively	 During non�
speech activity periods
 it is observed that the Wiener�based gain functions achieve a better
noise reduction than the LS method due to the nulling of components having low spectral SNR	
Furthermore
 the SDC estimator ���  �� seems to have the best performance
 but speech
distortion can hardly be seen from this type of plot	

The segmental SNRs of the noisy speech signal and the enhanced speech signal obtained by
the SDC estimator ���  �� are shown in Figure �	�	 A shaded plot of the clean speech signal
with arbitrary placement and amplitude is also given in order to evaluate the results �will in
general be used on SNR plots�	

From the gure
 it is seen that the segmental SNRs have been improved in most cases	
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�� Noisy speech sentence contami�
nated by white noise 	SNR��dB
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Figure 
�� Enhanced speech signal obtained
by the LS estimator�
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Figure 
�� Enhanced speech signal obtained
by the MV estimator�
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Figure 
�� Enhanced speech signal obtained
by the SDC estimator 	�� � �
�
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Only frames with high SNR �close to �� dB� will not be enhanced due to the signal distortion
obtained by introducing a signal subspace	 Note also that the variations among the segmental
SNRs are reduced
 and that the SNRs of the enhanced signal are mainly above � dB	 The latter
observation rely on the actual gain function
 which sets spectral components below � dB to zero
�see Figure �	��b��	

Figure �	� illustrates the improvements in segmental SNRs for the enhanced waveforms shown
in Figure �	� � �	�	 The LS estimator gives a nearly constant improvement n�p as expected from
the p�dimensional signal subspace
 while the two other methods perform considerably better	
At low SNRs
 the improvements obtained by the SDC estimator ���  �� are signicantly larger
than the ones obtained by the MV estimator
 which can be explained by the practical behavior of
the estimators �see Figure �	��a� and �	��b��	 Thus
 the SDC esimator is closer to the theoretical
value	 At high SNRs
 both estimators approximately gives the theoretical values
 and the MV
estimator will therefore be slightly better
 since it results in the minimum residual signal	

Figure �	� shows the input�output relations of segmental SNRs for the MV and SDC ���  ��
estimators
 i	e	
 the segmental SNRs of the enhanced speech signal as function of the segmental
SNRs of the noisy signal	 Clearly
 the improvement in output SNR increases for decreasing input
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Figure 
�� Segmental SNRs of the noisy signal and the enhanced waveforms shown in
Figure ��� and ����

0 5000 10000 15000 20000 25000 30000
0

5

10

15

20

25

30

35

40

Sample Number, k

S
N

R
 I

m
p
ro

ve
m

en
t 

 [
d
B

]

 γ=0

 γ=1

 β2=5

Figure 
�� Improvement in segmental SNRs for the enhanced waveforms shown in Fig�
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Figure 
�	 Segmental SNRs of the enhanced speech signal as function of the segmental
SNRs of the noisy signal� 	a
 Using the MV estimator� 	b
 Using the SDC estimator
	�� � �
�

SNR
 and no improvement can be expected in frames with SNR close to �� dB	 Note again the
� dB limit for the SDC estimator	

Figure �	� shows the improvements in segmental SNRs
 when the RRULVD�based algorithm
is used to enhance the noisy speech signal in Figure �	�	 The results are close to the one obtained
by using the SVD
 so the di�erence between the two approaches �SNRRRULVD�SNRSVD� is
magnied in Figure �	� for the MV and TDC based estimation
 respectively	 Obviously
 the
recursive RRULVD method gives the best results
 when there is a change in the dynamics of
the signal
 while the frame�based SVD approach is more accurate in stationary periods	

The same observation is made
 when the RRULVD�based algorithm using a sliding window
is compared with the one based on an exponential window �forgetting factor �  �����	 The
di�erences in segmental SNRs �SNRsli�SNRexp� are shown in Figure �	�� for the two estimation
strategies	

Thus
 when signal subspace methods are applied to speech signals
 there is an argument
for both introducing a recursive approach like the RRULV algorithm
 and for using a sliding
window
 which requires a numerically complex and computationally expensive downdating step	
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Figure 
�
 Improvement in segmental SNRs for the RRULVD based estimators�
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Figure 
�� Di�erence between segmental SNRs of enhanced speech obtained by the
RRULVD and the SVD� i�e�� SNRRRULVD�SNRSVD � 	a
 Using the MV estimator� 	b

Using the TDC estimator 	� � 
�
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Figure 
��� Di�erence between segmental SNRs of enhanced speech obtained by
the RRULVD using a sliding and exponential window 	� � �
��
� respectively� i�e��
SNRsli�SNRexp� 	a
 Using the MV estimator� 	b
 Using the TDC estimator 	� � 
�

��� Speech Contaminated by Colored Noise

When the speech signal is added the colored AR��
��	�� noise process �global SNR  � dB�
 the
QSVD�based algorithm is used in order to include prewhitening	 The method is compared with
the SVD�based approach and the RRULLVD�based algorithm	

Figure �	�� gives examples of enhanced speech signals obtained by using the SDC estimator
���  ��
 based on the SVD and the QSVD
 respectively	 If the enhanced waveforms are
compared with the white noise case in Figure �	�
 it is observed that the results are more noisy	
For the SVD case
 the increased noise level rely on the fact that the eigenvectors of the correlation
matrix of the clean signal and the one of the noisy signal are no longer equal
 resulting in a
bias of the estimator	 This is indeed the argument for introducing prewhitening
 however
 then
a bias of the signal subspace is obtained as discussed in Section �	�
 explaining the reduced
performance of the estimator compared with the white noise case	
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Figure 
��� Enhanced speech signal obtained by the SDC estimator 	�� � �
� 	a
 Using
the SVD� 	b
 Using the QSVD�

Figure �	�� illustrates the di�erence between SNR improvements obtained by estimators
based on the QSVD and estimators based on the SVD
 i	e	
 SNRQSVD�SNRSVD	 Thus
 for most
frames
 the QSVD approach with integrated prewhitening delivers the best result
 so in spite of
the discussed drawbacks
 it is still better to use a signal subspace method with prewhitening

than without	

Another issue is to evaluate the amount of noise reduction
 which can be obtained by the
QSVD�based algorithm	 The improvement plots in Figure �	�� demonstrates a signicant lower
performance compared with the white noise case in Figure �	�	 Even larger degradations are
observed for frames with high segmental SNR	 The overall reduction in performance rely on
the actual noise process
 which is dominated by low frequencies
 since a majority of speech
frames also have this type of spectral distribution	 However
 the example is assumed to be
representative
 because many acoustical noise scenarios are of the type
 considered here	

Figure �	�� shows the input�output relations of segmental SNRs for the MV and SDC ���  
�� estimators corresponding to the examples in Figure �	�	 Clearly
 the improvements in output
SNR have decreased
 so the frames with high input SNRs are now degraded
 for a broad range
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Figure 
��� Di�erence between segmental SNRs of estimates obtained by using the QSVD
and SVD algorithms� i�e�� SNRQSVD�SNRSVD �
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of input SNRs
 small �or none� improvements are obtained
 and only for low input SNRs
 noise
reduction comparable with the white noise case are obtained	

The di�erence between the RRULVD�based and QSVD�based algorithm
 i	e	
 the ratio
SNRRRULLVD�SNRQSVD
 is magnied in Figure �	� for the MV and TDC based estimators

respectively	 As in the white noise case
 the tracking capabilities of the RRULLVD method
are demonstrated to outperform the QSVD method
 while the latter is a better approach in
stationary periods	 However
 the variations between the two methods are larger in the colored
noise case	

Finally
 the di�erence between estimates obtained by using the RRULLVD without and
with the left�side orthogonal matrices U is considered	 This is demonstrated in the Figure �	��

where the quantity SNRwithout U�SNRwith U is shown for the TDC ��  �� based enhanced
speech	 Obviously
 there is no benet in maintaining the U matrices	
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Figure 
��� Improvement in segmental SNRs for the QSVD based estimators�
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Figure 
��� Segmental SNRs of the enhanced speech signal 	QSVD based
 as function of
the segmental SNRs of the noisy signal� 	a
 Using the MV estimator� 	b
 Using the SDC
estimator 	�� � �
�
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Figure 
��� Di�erence between segmental SNRs of enhanced speech obtained by the
RRULLVD and the QSVD� i�e�� SNRRRULLVD�SNRQSVD � 	a
 Using the MV estimator� 	b

Using the TDC estimator 	� � 
�
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Figure 
��� Di�erence beween segmental SNRs of TDC 	� � 
 based enhanced
speech using the RRULLVD without and with the left�side orthogonal matrices U� i�e��
SNRwithout U�SNRwith U �

��� Informal Listening Tests

Informal listening tests have been carried out for a number of speech sentences corrupted by
white and colored noise	 At higher noise levels �global SNR � �� dB�
 the enhanced speech
signals obtained by the LS and MV methods are seriously a�ected by the musical noise	 For
the TDC and SDC estimators
 the informal listening tests conrm that musical noise and�or
audible distortions are still present in the processed speech	 For example
 the SDC estimator
with ��  � results in enhanced speech almost free of musical noise
 but with a signicant
distortion of the speech	

In the case with colored noise
 the audible speech distortion has increased and the musical
noise is now dominated by low frequencies as discussed in Section �	�	�	

If the computational complexity is of no importance
 the musical noise can be reduced by
increasing the frame length K and space dimension n
 e	g	
 K  ��� and n  ��	 Thus
 the
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SNR improvement n�p expected from the existence of the p�dimensional signal subspace is better
utilized	 However
 since the complexity of the considered algorithms are at least O�n��
 better
results can be obtained by using the proposed multi�microphone combination in Section �	�

where the complexity is O�Ln��	 In this case
 the number of microphones L increases
 instead
of n	 Informal listening tests using four microphones conrm that the enhanced speech are
almost free of both musical noise and distortions	

��� Summary

The subspace�based noise reduction algorithms have been applied successfully to continuous
speech embedded in white noise as well as colored broad�band noise	

It has been demonstrated that the SVD�based signal subspace approach is able to achieve
satisfactory improvements in the speech quality	 Furthermore
 arguments have been given for
both introducing a recursive approach like the RRULV algorithm
 and for using a sliding window

which requires a numerically complex and computationally expensive downdating step	

In the colored noise case
 the performance is highly dependent on the noise statistics	 Thus

a noise process dominated by the same frequencies as the speech
 will results in a less reliable
algorithm �typically with more speech distortion�	 Also here
 a recursive approach like the
RRULLV algorithm can be introduced successfully	
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Chapter 	

Conclusion and Topics for Further
Research

A study of subspace based speech enhancement techniques has been carried out having in mind
applications in mobile telephone environments	

One purpose of the work has been to characterize subspace methods when applied to speech
signals	 The result of the preceding analyses is that no gab exists in the eigenspectrum of the
short�term correlation matrix of the speech signal as could be expected from the fundamentals
of the speech production system	 However
 the quality of the speech is related to the formants

represented by the dominating eigenvalues
 so it still makes sense to dene a signal subspace	 It
has been shown that projection onto the signal subspace can be interpreted as lter oprations

removing the spectral components of the noisy spectrum having the lowest Signal�to�Noise Ratio
�SNR�	

When the speech signal is corrupted by additive white noise
 the signal and noise subspace are
blurred together
 but this is not crucial for speech signals as long as the formants are maintained
in the signal subspace	 However
 in the case of colored noise
 it has been demonstrated that this
can not be guaranteed
 since the e�ect of prewhitening is a noise dependent bias of the speech
components	 Thus
 signal subspace methods are sensitive to the second order statistics of the
noise	

The conditions that allows us to derive the speech signal from the SVD of the noisy data
matrix have been discussed
 and assuming stationarity
 the conclusion is that both matrix di�
mensions should approach innity in order to obtain the best performance	 This is not possible
due to the non�stationarity of speech signals
 and considerations concerning a proper choice of
dimensions have been given	

Projection onto a signal subspace is a widely used method to reduce the dimensionality of
the considered problem and thereby removing the in�uence of noise components	 However
 from
a noise reduction point of view
 this is not su�cient	 If information about the noise statistics can
be obtained
 combination of the signal subspace approach with classical estimation strategies like
Wiener ltering will in general have better performance	 This is indeed the case in nonparametric
speech enhancement	 Another issue is the annoying tonal characteristics of the resulting residual
noise �musical noise�	 Thus
 constrained estimation methods must be used in order to mask this
component	 The price paid is an increased speech distortion	

The contribution here
 is a unied presentation of the discussed estimation methods
 for�
mulated by means of both the eigendecomposition of correlation matrices and the SVD of data
matrices	 Relations between the di�erent estimation methods are pointed out
 and comparisons
provide information on the improvement in the enhanced speech quality that can be gained with
each estimator	
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The e�ects of short data observations
 i	e	
 the practical behavior of the estimators
 have been
examined through simulations
 where the introduction of the signal subspace is demonstrated
to be important in order to avoid �aws of the estimators	

The signal subspace based speech enhancement method has also been compared with the
classical spectral subtraction technique	 The two methods are closely related
 but they have
di�erent advantages	 In the signal subspace approach
 the noise subspace can easily be iden�
tied and its in�uence on the estimates removed
 but the method is sensitive to prewhitening	
The spectral subtraction approach can handle colored noise
 but the method is in�uenced by
estimation errors in the noise subspace
 and it su�ers from the fact that it is a frequency do�
main approach and speech signals are extremely non�stationary	 However
 frequency domain
approaches typically o�er signicant reductions in computational requirements
 which is also
the case here	

The origin of the musical noise obtained in subspace related speech enhancement systems
has also been pointed out
 and a proposed combination of noise reduction methods based on a
single microphone with the delay�and�sum beamformer is shown to be an e�cient way to reduce
�eliminate� the musical noise	

In the noisy case
 model based estimation is a nonlinear problem
 which is normally solved
by iterative techniques	 However
 a new idea based on multi�microphone inverse ltering is
presented
 where the solution is obtained by subspace methods	

A recursive approach for nonparametric speech enhancement has been developed	 Tradi�
tionally
 the SVD �or the eigendecomposition� is performed on a frame�by�frame basis
 but here
the rank�revealing ULV decomposition is used instead of the SVD
 and the decomposition is
updated for each new sample instead of working in frames	

Furthermore
 ULV formulations of Wiener based estimation strategies have been proposed	
The necessary conditions are never exactly satised
 however
 it has been demonstrated that the
rank�revealing ULV decomposition is robust with respect to mild violations of these conditions	
Another point is that the rank�revealing ULV algorithm is implemented in a way that closely
match the conditions	

A complete rank�revealing ULLV algorithm has been developed
 analyzed and implemented	
The critical step is the CSNE�based downdating used in the sliding window method when the
left�side orthogonal matrices are not maintained	

When the signal represents a stationary process
 exponential windowing is to be preferred
to downdating	 It is simpler and has better numerical properties	 However
 for nonstationary
signals like speech
 the techniques produce di�erent results
 and the downdating method can
track the change in the signal statistics more accurately than the exponential window method	

Finally
 experiments demonstrate that the ULV�based algorithm is able to achieve the same
quality of the reconstructed speech signal as the SVD�based method	 In the sense of signal
dependent assumptions
 the descriebed algorithms can be considered very robust	

For further research
 structured estimation strategies are suggested
 e	g	
 formulated by
means of the Riemannian SVD	 Another promising area is the multichannel blind identica�
tion approaches	
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Appendix A

Computational Count for the RRULLV
Algorithm

Table A	��A	�� gives the amount of work involved in the initialization
 updating
 downdating

de�ation and renement step in the rank�revealing ULLV algorithm of the matrix pair �X�N�	
The parameters in the �op counts are given by

� mX  row dimension of X and UX 	

� mN  row dimension of N and UN 	

� n  column dimension	

� p  numerical rank of XN		

� r  dimension of the leading principle submatrix of LX to be de�ated and rened	

and the �oating point operation is either one multiplication
 division
 addition
 subtraction or
square root	
The operation counts for all substeps other than the CSNE�based expansion assume that

the left�side orthogonal matrices UX and UN are maintained	 To obtain the operation counts
for these substeps
 when the left�side orthogonal matrices are not maintained
 simply eliminate
all terms containing mX and mN from the given operation counts	 Thus
 in this case the
CSNE�based expansion is used instead of the MGSR�based method	
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Step Formula Item Flop count
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Method Formula Item Flop count
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Step Formula Item Flop count
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Step Formula Item Flop count
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 see Table A��P
flop

� ��mXn� � �mNn� � �mXn � �mNn � �n� � ��n� � �n

��	mX �mN � �n
	�p� � �p
 � �p� � p� � ��p�

Table A��� Flop count for initialization�
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Appendix B

The ULV�ULLV Toolbox for Matlab

The ULV�ULLV Toolbox consists of a number of Matlab routines for calculation of rank�
revealing ULV�ULLV decompositions	 This includes initial calculation of the decompositions
and up�downdating methods	 The algorithms are based on Givens rotations
 i	e	
 for�loops

resulting in a slow execution of Matlab m�les	 Therefore
 a c�version is also available with
a mex�le interface	 Totally
 the package consist of �� m�les and �� c�les
 and the present
reference documentation ���� covers the m�version	 One of the inspirations for the toolbox was
a set of Matlab routines concerning rank�revealing ULLV updating kindly provided to us by
S	 Qiao	 First
 the installation of the ULV�ULLV Toolbox is described
 followed by an overview
of the les	

B�� Installation

The ULV�ULLV Toolbox is distributed as a compressed Unix tar�le UllvBox�tgz
 available by
anonymous ftp from Internet address ftp�imm�dtu�dk in directory out�pskh	 A short intro�
duction and the manual pages is a compressed ps�le UllvBox�ps�gz ���� in the same location	
To install the toolbox
 download the tar�le into the directory
 where you want the ULV�ULLV
toolbox subdirectory to be
 then type

tar xzvf UllvBox�tgz

A directory UllvBox will be created containing a number of subdirectories with m�les and
c�les arranged as follows

UllvBox � MatFun

Ulv

Ullv

Mex � include

libAlloc

libNum

Ulv

Ullv

To generate the mex�les
 go to the UllvBox directory and type make	 This will do all the job
for you	 Now you can either append the relevant directories to the Matlab path or copy the
les to a known location	
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B�� Quick Reference Tables� m�	les

This section contains quick reference tables to the ULV�ULLV Toolbox	 All the m�les in the
toolbox are listed by category in the three tables with a short description	 Manual pages can be
obtained through the on�line help facility	

Rank�Revealing ULV Decomposition

rrulvd Initial computation of the rank�revealing ULV decomposition	
ulv x Up�downdating the rank�revealing ULV decomposition	
ulv up Updating the ULV decomposition	
ulv dw Downdating the ULV decomposition	
ulv rr Rank�revealing algorithm for the ULV up�downdating	
ulv def De�ation on L in the ULV decomposition	
ulv ref One iteration of renement in the ULV decomposition	

Rank�Revealing ULLV Decomposition

rrullvd Initial computation of the rank�revealing ULLV decomposition	
ullv a Up�downdating the A�part of the rank�revealing ULLV decomp	
ullv b Up�downdating the B�part of the rank�revealing ULLV decomp	
ullv upa Updating the A�part of the ULLV decomposition	
ullv upb Updating the B�part of the ULLV decomposition	
ullv dwa Downdating the A�part of the ULLV decomposition	
ullv dwb Downdating the B�part of the ULLV decomposition	
ullv rr Rank�revealing algorithm for the ULLV up�downdating	
ullv def De�ation on LA in the ULLV decomposition	
ullv ref One iteration of renement in the ULLV decomposition	

Matrix Tools

pythag Pythagoras equation	
back sub Column version of Back Substitution	
forward sub Column version of Forward Substitution	
given cs Givens rotation matrix	
given rt Applying Givens rotations �left�right�	
exp mgsr Modied Gram�Schmidt expansion	
exp csneL Corrected Semi�Normal Equations expansion in an ULV�decomp	
exp csneLL Corrected Semi�Normal Equations expansion in an ULLV�decomp	
ql house QL�factorization using Householder transformations	
ql mgs QL�factorization using Modied Gram�Schmidt	
svd t�� SVD of �� � upper triangular matrix �real�	
vmin ccvl Generalized LINPACK estimator of the smallest singular value	
vmin co Convex optimization based estimator of the smallest singular value	
vmin lb Look�behind based estimator of the smallest singular value	
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B�� Quick Reference Tables� c�	les

The mex�le version of the toolbox is almost identical to the m�le version
 but of course some
of the build�in functionality ofMatlab
 such as the norm functions
 the QR�decomposition etc	

is implemented	

Also the c�les in the toolbox are listed by category in the following four tables with a short
description
 and the manual pages are available from the le headers	

Rank�Revealing ULV Decomposition

rrulvd mex mex gateway function to be called from Matlab	
rrulvd Initial computation of the rank�revealing ULV decomposition	
ulv x mex mex gateway function to be called from Matlab	
ulv x Up�downdating the rank�revealing ULV decomposition	
ulv up Updating the ULV decomposition	
ulv dw Downdating the ULV decomposition	
ulv rr Rank�revealing algorithm for the ULV up�downdating	
ulv def De�ation on L in the ULV decomposition	
ulv ref One iteration of renement in the ULV decomposition	

Rank�Revealing ULLV Decomposition

rrullvd mex mex gateway function to be called from Matlab	
rrullvd Initial computation of the rank�revealing ULLV decomposition	
ullv a mex mex gateway function to be called from Matlab	
ullv a Up�downdating the A�part of the rank�revealing ULLV decomp	
ullv b mex mex gateway function to be called from Matlab	
ullv b Up�downdating the B�part of the rank�revealing ULLV decomp	
ullv upa Updating the A�part of the ULLV decomposition	
ullv upb Updating the B�part of the ULLV decomposition	
ullv dwa Downdating the A�part of the ULLV decomposition	
ullv dwb Downdating the B�part of the ULLV decomposition	
ullv rr Rank�revealing algorithm for the ULLV up�downdating	
ullv def De�ation on LA in the ULLV decomposition	
ullv ref One iteration of renement in the ULLV decomposition	
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Matrix Tools

vnorm� Vector ��norm	
mnorm� Matrix ��norm	
mnormf Matrix Frobenius�norm	
mnorminf Matrix inf�norm	
back sub Column version of Back Substitution	
forward sub Column version of Forward Substitution	
given cs Givens rotation matrix	
given lt Applying Givens Rotations �left�	
given rt Applying Givens Rotations �right�	
house cv Householder column vector	
house rv Householder row vector	
house lt Householder pre�multiplication	
house rt Householder post�multiplication	
house p Product of Householder matrices �right transformations�	
house q Product of Householder matrices �left transformations�	
solveXLY Solve triangular system with multiple right�hand sides	
exp mgsr Modied Gram�Schmidt expansion	
exp csneL Corrected Semi�Normal Equations expansion in an ULV�decomp	
exp csneLL Corrected Semi�Normal Equations expansion in an ULLV�decomp	
qr house QR�factorization using Householder transformations	
qr mgs QR�factorization using Modied Gram�Schmidt	
ql house QL�factorization using Householder transformations	
ql mgs QL�factorization using Modied Gram�Schmidt	
vmin ccvl Generalized LINPACK estimator of the smallest singular value	
vmin co Convex optimization based estimator of the smallest singular value	

Memory Allocation Tools

dvector Allocates a double vector	
dmatrix Allocates a double matrix	
matlab�pp Change matrix pointer format to matrix pointer�pointer format	
free dvec Frees memory allocated by dvector	
free dmat Frees memory allocated by dmatrix	
free mat�pp Frees memory allocated by matlab�pp	
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The Speech Enhancement Toolbox for
Matlab

The Speech Enhancement Toolbox consists of a number of Matlab routines for signal subspace
based noise reduction	 This includes a GUI interface
 signal generation
 enhancement algorithms
and analysis tools	 First
 the installation of the Toolbox is described
 followed by an overview
of the les	

C�� Installation

The Speech Enhancement Toolbox is distributed as a compressed Unix tar�le SubBox�tgz

available by anonymous ftp from Internet address ftp�imm�dtu�dk in directory out�pskh	 A
short introduction and the manual pages is a compressed ps�le SubBox�ps�gz in the same
location	 To install the toolbox
 download the tar�le into the directory
 where you want the
subdirectory of the speech enhancement toolbox to be
 then type

tar xzvf SubBox�tgz

A directory SubBox will be created containing a number of subdirectories with m�les arranged
as follows

SubBox � AnaFun

GenFun

GuiFun

IoFun

SigFun

SubFun

Now you can either append the relevant directories to the Matlab path or copy the les to a
known location	

C�� Quick Reference Tables� m�	les

This section contains quick reference tables to the Speech Enhancement Toolbox	 The m�les
in the toolbox are listed by category in the ve tables with a short description	 However
 note
that a large number of analysis functions are also available
 but they are not yet included in the
GUI structure
 and will not be listed here	 Manual pages can be obtained through the on�line
help facility	
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GUI Interface

GuiMain GUI controlled signal subspace based noise reduction demo	
GuiInfo GUI information interface	
GuiSig GUI input interface for signal generator parameters	
GuiSigExe Generate noisy signals with parameters obtained from GUI	
GuiAlgo GUI input interface for algorithm parameters	
GuiAlgoExe Run noise reduction algorithm with parameters obtained from GUI	
GuiShift Shifts secondary window	
GuiVis Find indices of visible uicontrols	
GuiFrm Generate frames for pairs of uicontrols	
GuiBtn Generates a set of uicontrols	
GuiBtnPo Generate position parameters for a matrix of uicontrols	

Signal Generator

SigGen Signal generator	
Noise ARMA process generator	
Sinus Sinus generator	
SynTalk Syntetic talk generator	
VocalTr Vocal tract lter	
LoadProc Load mat�le from disk	
LoadMult Load several mat�les from disk	
AddNoi Add noise to signals	

Subspace Functions

FiltFrm Frame�based noise reduction algorithm	
FiltRec Recursive noise reduction algorithm	
EstSVD SVD�based estimation	
EstQSVD QSVD�based estimation	
EstULV ULV�based estimation	
EstULLV ULLV�based estimation	
Toep Generates a Toeplitz matrix	
DiagSum Sum elements along the diagonals of a matrix	
DiagMean Average elements along the diagonals of a matrix	
PowerRec Short�term power computation using a sliding window	
Window Generates a window function	
GenWin Generate matrix window and the corresponding time window	
AppWin Apply window to a matrix	
OlapAdd Window�based overlap�add synthesis	

Signal Processing Functions

BandPass Butterworth bandpass lter	

I�O Functions

RawRead Read raw data from le	
RawWrite Write raw data to le	
WavWrite Write raw data to wav sound le	
adc A�D converter	
dac D�A converter	
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ABSTRACT

A recursive approach for nonparametric speech enhancement
is developed� The underlying principle is to decompose the
vector space of the noisy signal into a signal subspace and
a noise subspace� Enhancement is performed by removing
the noise subspace and estimating the clean signal from the
remaining signal subspace� The decomposition is performed
by applying the rank�revealing ULLV algorithm to the noisy
signal� With this formulation� a prewhitening operation be�
comes an integral part of the algorithm� Linear estimation
is performed using a proposed minimum variance estimator�
Experiments indicate that the approximative method is able
to achieve a satisfactory quality of the reconstructed speech
signal comparable with eigen�lter based methods�

� INTRODUCTION

Recently� a new approach for noise reduction of speech signals
based on subspace decomposition has been proposed ��� �� 	
�
The idea is to organize the noisy speech signal in a Toeplitz
structured data matrix� and to decompose the span into two
mutually orthogonal components�
The noise reduction algorithm in ��
 is based on the Sin�

gular Value Decomposition �SVD�� which is a robust and
widely used computational tool in noise suppression tech�
niques� From the SVD of the data matrix� the Least Squares
�LS� estimate of the signal�only matrix can be obtained by
neglecting the smallest singular values and �nally the Toep�
litz structure of the estimate is restored to identify the time
samples� The problem is that the method deals only with
white noise and the LS estimate is sensitive to the number of
retained singular values�
In �	
 is a noise reduction method based on the Quotient

Singular Value Decomposition �QSVD� presented� where a
prewhitening is an integral part of the algorithm� Moreover�
by using a MinimumVariance �MV� estimate �
 of the signal�
only matrix� the algorithm is less sensitive to the choice of
retained singular values �	
�
Unfortunately� the SVD�QSVD is computationally expen�

sive and resists updating� This paper uses the rank�revealing
ULV�ULLV decomposition ��� �� �
 to estimate the rank and
the orthogonal subspaces in the noise reduction algorithm�
A recursive ULLV algorithm for a sliding window has been
developed and an approximate MV estimate is proposed�

� SIGNAL AND NOISE MODEL

Let x � �x�� x�� � � � � xm�
T denote the noisy signal vector of

m samples and assume that the noise is additive and uncor�
related with the speech signal� i�e��

x � s� n ���

where s contains the speech component and n represents the
noise� A set of time shifted vectors can be organized in a
data matrix X � IRm�n with Toeplitz structure

X �

�
BB�

xn xn�� � � � x�

xn�� xn � � � x�

���
���

���
xm�n�� xm�n�� � � � xm

�
CCA � S�N ���

where m � n� Moreover� assume that the noise is broad�
banded so rank�X� � rank�N� � n and that the speech signal
can be described by a low order model� giving a rank de�cient
matrix S with rank�S� � p � n� It includes� for example�
the damped complex sinusoid model� which has often been
attributed to speech signals�
Thus� the speech signal is known to lie in a subspace of

order p� but the subspace is unknown� The noise reduction
problem is to estimate the subspace� i�e�� its dimension and a
suitable basis� and use this information in a signal processing
procedure� Note� that its not possible to �nd the exact sub�
space�

� LINEAR SIGNAL ESTIMATORS

One approach for nonparametric speech enhancement is lin�
ear estimation of the clean signal from the noisy signal using
signal subspace methods� which is based on the SVD of the
data matrix X partitioned as follows

X �
�
U� U�

�� �� �

� ��

��
V
T
�

V
T
�

�
���

where U� � IRm�p� V� � IRn�p and �� � IRp�p�
A straightforward and simple solution to the estimation

problem is obtained by use of the Least Squares �LS� cri�
terion� which minimizes the squared �tting errors between
the noisy measurements X and a low rank model Sp� i�e��

min
rank�Sp��p

tr
�
�X� Sp�

T �X� Sp�
�
� �	�
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�SLS � Sp � U���V
T
� ���

The estimate �SLS is easily obtained without any statistical
knowledge about the signals�
Assume now that the estimator �s � IRm of the pure signal

vector s is constrained to be a linear function of the meas�
urement vector x� i�e�� �s � Wx where W � IRm�m is a
�lter matrix� then the Linear Minimum Mean�Squared Error

�LMMSE� estimator problem is to �nd the matrix W that
minimizes

min
W

trEf�Wx� s��Wx� s�T g � �	�

WLMMSE � RsR
��
x �
�

This theory produces the Wiener�Hopf equations as the fun�
damental design equations� i�e�� we require the covariance
properties of the noisy signal and the noise process�
In practice� this information is not available and is es�

timated from the noisy data� Under stationary and ergodic
conditions� the ensemble average operator Ef�g can be im�
plemented as the mean value of several time shifted vectors�
i�e�� by use of the data matrix X and the signal�only matrix
S ���� This gives us the Minimum Variance �MV� estimator

min
W

tr
�
�XW � S�T �XW � S�

�
� ���

WMV � �XT
X���XT

S ��

which converges asymptotically to the LMMSE estimator as
the number of rows m � � �
�� Note that W � IRn�n in
this case�
Since speech signals are nonstationary� a time varying es�

timator must be used� Such an estimator provides non�
stationary residual noise with annoying noticeable tonal char�
acteristics referred to as musical noise� This can be reduced
��� by maintaining the residual noise below some threshold
either global or local in each eigen�lter� An ULV�ULLV
treatment of these estimators is outside the scope of this pa�
per�

� ULV BASED SIGNAL ESTIMATION

The ULV decomposition was �rst introduced by Stewart ����
A basic feature is that the ULV decomposition of a full rank
matrix X can be made rank�revealing� if there is a gap in the
singular values� e�g�� when X is the sum of a rank de�cient
signal matrix S and a full rank noise matrix N�
Assume that X � IRm�n has numerical rank p � n � m

corresponding to a given tolerance � � then its singular values
satisfy

�� � � � � � �p � � 	 �p�� � � � � � �n ����

and there exists a matrix U � IRm�n with orthogonal
columns and an orthogonal matrix V � IRn�n such that

X � ULVT �
�
U� U�

�� L� �

F G

��
VT

�

VT
�

�
����

where L � IRn�n� L� � IRp�p and G � IR�n�p���n�p� are
lower triangular� and

�min�L�� 
 �p ����

kFk�F � kGk�F 
 �
�
p�� � � � �� �

�
n ����

From the RRULVD we can estimate the signal� and noise
subspaces de�ned by the gap in the singular values� The
tolerance � is de�ned based on a detection threshold in the
underlying signal processing problem�

��� LS Estimate by RRULVD

An approximate least squares estimate �SALS of the signal
matrix S can be computed by essentially substituting the
ULV decomposition for the SVD based estimate ���� thus re�
placing one problem with a similar� nearby problem that can
be solved more e�ciently�
Based on ��� and ����� a useful rank�p matrix approxima�

tion to X is given by

�SALS � U�L�V
T
� � XV�V

T
� ����

where U� and V� approximate the numerical column space
and row space as de�ned via the SVD of X�

��� MV Estimate by RRULVD

The minimum variance estimate �SMV of the signal matrix S
can be obtained along the lines in �
� using an idealized rank�
revealing ULV decomposition of X � IRm�n� With reference
to ����� the necessary conditions are

�� The signal is orthogonal to the noise in the sense�
STN � ��

�� The matrix N � �noiseQ� where Q has orthonormal
columns� NTN � ��noiseIn�

�� There is a distinct gap in the singular values of the mat�
rix X� �p � �p���

�� The o��diagonal matrix F is zero�

�� G is a diagonal matrix containing the noise�only singu�
lar values �noise�

Thus� we have

X �
�
UX� UX�

�� LX� �

� �noiseIn�p

��
VT
X�

VT
X�

�
����

Let the ULV decomposition of the matrix S be de�ned by

S �
�
US� US�

�� LS� �

� �

��
VT
S�

VT
S�

�
��	�

where LS� � IRp�p� then we can write the idealized rank�
revealing ULV decomposition of X in terms of the ULV de�
composition of S

X � US�LS�V
T
S� �NVS�V

T
S� �NVS�V

T
S� ��
�

�
�
�US�LS� �NVS��L

��
X� NVS��

��
noise

�

�

�
LX� �

� �noiseIn�p

��
VT
S�

VT
S�

�

The matrix LTX�LX� can be obtained by comparing the mat�
rix XTX using the de�nitions of S and N with the one based
on the ULV decomposition of X ����� which gives

L
T
X�LX� � L

T
S�LS� � �

�
noiseIp ����

Using ��	� and ��
� in the MV de�nition �� yields the desired
MV estimate of S

�SMV � X�XT
X���XT

S ���

� UXU
T
XS

�
�
UX� UX�

�� L�TX� �L
T
S�U

T
S� �V

T
S�N

T �
���noiseV

T
S�N

T

�

�
�
US� US�

�� LS� �

� �

��
VT
S�

VT
S�

�

� UX��LX� � �
�
noiseL

�T
X� �V

T
X�
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where ���� has been used� This equation can be reformulated
to avoid an explicit computation of UX

�SMV � XVX�L
��
X��LX� � �

�
noiseL

�T
X� �V

T
X� ��	�

The quantity ��noise can be obtained from ��
�

�
�
noise �

�

n� p

nX
i�p��

�
�
i �

�

n� p

�
kFk�F � kGk�F

�
����

In practice� the above mentioned conditions are never sat
is�ed exactly� but the rankrevealing ULV decomposition is
robust with respect to mild violations of these conditions�

� ULLV BASED SIGNAL ESTIMATION

If the additive noise N is colored� NTN �� ��nIn� then a pre
whitening transformation can be applied to the data matrix
using the QR decomposition of N � QR

XR
�� � SR�� �NR�� � SR�� �Q ����

This transformation does not change the nature of the low
order model of the speech signal while it diagonalizes the
covariance matrix of the noise� In this application the noise
matrix N can be estimated in periods without speech�
One problem concerning the prewhitening transformation

is the complicated update of the matrix XR�� when X and
N are updated� e�g�� in a recursive application� This can be
avoided by using the ULLV decomposition of the matrix pair
�X�N�� which allows each matrix to be updated individually
and delivers the required factorizations without forming the
quotients and products�
The de�nition given here for the rankrevealing ULLV de

composition �RRULLVD� of two matrices X � IRm�n and
N � IRm�n is the one used by Luk and Qiao ����
Assume that XN� �N� is the pseudoinverse of N� has

numerical rank p � n � m corresponding to a given tolerance
� � then its quotient singular values satisfy

�� � � � � � �p � � � �p�� � � � � � �n ��
�

and there exist matricesUX � IRm�n andUN � IRm�n with
orthogonal columns and a orthogonal matrix V � IRn�n such
that

X �
�
UX� UX�

�� LX� �

F G

�
L

�
VT
�

VT
�

�
����

N � UNLV
T ����

where L � IRn�n� LX� � IRp�p and G � IR�n�p���n�p� are
lower triangular� and

�min�LX�� � �p ����

kFk�F � kGk�F � �
�
p�� � � � � � �

�
n ����

Thus� the ULLV decomposition reveals the rank of the matrix
XN� assuming N has full rank

XN
� �

�
UX� UX�

�� LX� �

F G

��
UT
N�

UT
N�

�
����

Hence� working with the RRULLVD of �X�N� and the matrix
Q is mathematically equivalent to working with the RRULVD
of XR���

��� LS Estimate by RRULLVD

An approximate LS estimate �SALS of the lowrank signal
matrix S added colored noise can easily be obtained by �rst
substituting the ULV decomposition of XN� for the SVD
based estimate

�XN��ALS � UX�LX�U
T
N� ����

and then perform a denormalization of �XN��ALS

�SALS � �XN��ALSN � UX�LX�L�V
T
� �
	�

which can be computed directly from the ULLV decompos
ition� i�e�� the prewhitening is now an integral part of the
algorithm� As before� equation �
	� can be reformulated to
avoid an explicit computation of UX

�SALS � XV�V
T
� �
��

��� MV Estimate by RRULLVD

The approximate minimum variance estimate �SAMV of the
lowrank signal matrix in the colored noise case follows from
the least squares analysis�
Using ���� with ��noise � �� the approximate MV estimate

of the normalized data matrix XN� de�ned by ���� is

�XN��AMV � UX��LX� � L
�T
X� �U

T
N� �
��

To obtain the corresponding approximate minimum variance
estimate of S� we must denormalize �XN��AMV

�SAMV � �XN��AMVN � UX��LX� � L
�T
X� �L�V

T
� �

�

where we have used ����� Again� this equation can be refor
mulated to avoid an explicit computation of UX

�SAMV � XV�L
��
� L

��
X��LX� � L

�T
X� �L�V

T
� �
��

� EXPERIMENTS

A recursive RRULLV algorithm has been developed based on
the methods given in ��� �� ��� Starting with initial matrices�
the decomposition is updated as X and N are taken into
account one row at a time� A new row is processed in the
following four steps� Updating� The current row of X or N is
incorporated into the decomposition� Downdating� The old
est row of X or N is isolated and removed in the decomposi
tion� De�ation� Establishes and maintains the rankrevealing
nature of the decomposition� Re�nement� The norm of F is
reduced to improve the subspace quality� By using an ex
ponential window� the downdating step can be omitted� but
clearly� the sliding window method can track the change in
the signal statistics more accurately when there is an abrupt
change in data�
The recursive RRULLV algorithm was applied to speech

signals contaminated by an AR���	��� noise process and the
noise matrix N was only updated in periods without speech�
All the signals were sampled at � kHz and the matrix dimen
sion was m � ��� and n � �	�
The typical average SNR of a reconstructed speech seg

ment �voiced� using �		 noise realizations and SNR � � dB
is illustrated in Fig� � as a function of the signal subspace
dimension p� Clearly� the MV estimate is less sensitive to the
choice of p compared with the LS estimate� Thus� using a
�xed value of p � �� as in the following results� we are able
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to achieve a satisfactory quality of the reconstructed speech�
The behavior of the reconstructed segment in the frequency
domain was also analyzed using a tenth order LPC model
spectra of noise�free� noisy and reconstructed �MV estimate�
speech segments� respectively� As shown in Fig� �� the MV
estimate improves the spectrum in the regions near the dom�
inant formants� These results closely match the QSVD based
method �	
�

The RRULLV algorithm using a sliding window was ap�
plied to the speech signal in Fig� � added broad�band noise
�global SNR of � dB�� Observe from Fig� 	 that the global
SNR improvement using the MV estimate is about twice the
LS based improvement due to the xed p� Moreover� the
variations among the local SNRs of the various segments are
reduced�

In the RRULLV algorithm computations can be saved by
using the exponential window� but as demonstrated in Fig� ��
the sliding window method gives up to � dB better SNR� when
there is a change in the dynamics of the signal� The same is
true by comparing the SNRs obtained from the RRULLV
sliding window method with the QSVD segment based ap�
proach also illustrated in Fig� ��

� SUMMARY

A recursive signal subspace approach for noise reduction of
speech signals is presented� The algorithm is formulated by
means of the RRULLVD using a proposed MV estimator�
The method was demonstrated to be comparable with ei�
genlter based methods� Integration of the RRULLVD with
perceptually more meaningful estimation criterias is a topic
of current research�
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Figure � Average SNR of a reconstructed voiced speech segment�
SNR��dB� LS estimate 	solid
� MV estimate 	dashed
�
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Figure � LPC model spectra of noise�free speech segment 	solid
�
noisy speech segment� SNR��dB 	dash�dot
 and MV estimate
	dashed
�

0 2000 4000 6000 8000 10000 12000 14000 16000

−0.5

0

0.5

1

Sample number

A
m

p
lit

u
d
e

Figure � Noise�free speech signal�
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Figure � Local�global SNR of noisy speech signal 	solid
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 and MV estimate 	dashed
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Figure � Di�erence in SNR between sliding and exponential
window based MV estimate 	solid
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	dashed
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ABSTRACT

In this paper the signal subspace approach for non�
parametric speech enhancement is considered� Tra�
ditionally� the SVD �or the eigendecomposition is
used in frame�based methods to decompose the vec�
tor space of the noisy signal into a signal� and noise
subspace ��� �� ��� Linear estimation of the clean sig�
nal from the information in the signal subspace is
then performed using a set of nonparametric estima�
tion criteria� In this paper� the rank�revealing ULV
decomposition is used instead of the SVD� and we use
recursive updating of the estimate instead of work�
ing in frames� An ULV formulation of three di�erent
estimation strategies is considered	 Least Squares�
Minimum Variance and Time Domain Constrained�
Experiments indicate that the ULV�based algorithm
is able to achieve the same quality of the recon�
structed speech signal as the SVD�based method�

� SIGNAL AND NOISE MODEL

Let x � �x�� x�� � � � � xm
T denote the noisy signal

vector of m samples and assume that the noise
component n is additive and uncorrelated with the
speech signal s� i�e�� x � s� n�
A set of time shifted vectors can be organized in

a data matrix X � S � N � IRm�n with Toeplitz
structure where m � n� We assume that the noise
is broad�banded so rank�X � rank�N � n� and
that the speech signal can be described by a low
order model� giving a rank de�cient matrix S with
rank�S � p � n� This formulation includes� for ex�
ample� the damped complex sinusoid model� which
has often been attributed to speech signals�

� ULV BASED SIGNAL ESTIMATION

One approach for nonparametric speech enhance�
ment is linear estimation of the clean signal from the
noisy signal using signal subspace methods� which
are based on the rank�revealing ULV decomposition
�RRULVD introduced by Stewart ����

Assume that the singular values of X satisfy

�� � � � � � �p � � � �p�� � � � � � �n ��

then there exists a matrix UX � IRm�n with orthog�
onal columns and an orthogonal matrix VX � IRn�n

such that

X � UXLXV
T
X ��

�
�
UX� UX�

�� LX� �

FX GX

��
V
T
X�

V
T
X�

�

where LX� � IRp�p� GX � IR�n�p���n�p� and LX �
IRn�n are lower triangular� and

�min�LX� � �p ��

kFXk
�
F � kGXk

�
F � �

�
p�� � � � �� �

�
n ��

Thus� the signal� and noise subspaces de�ned by the
gap in the singular values can be estimated using the
RRULVD� where the quality depends on kFXk��
An approximate LS estimate �SALS of the signal

matrix S can be computed by essentially substitut�
ing the RRULVD for the SVD based estimate ����
thus replacing one problem with a similar� nearby
problem that can be solved more e�ciently� i�e��

�SALS � XVX�V
T
X� ��

The estimate converges to the true LS solution� if
the following condition is satis�ed

� The o��diagonal matrix FX is zero�

Assume now that the estimator �S of the pure signal
matrix S is constrained to be a linear function of the
data matrix X� i�e�� �S � XW where W � IRn�n is
a �lter matrix� then the Minimum Variance �MV
estimator problem ��� is to �nd the matrix W that
minimizes

min
W

tr
�
�XW � ST �XW � S

�
� ��

WMV � �XT
X��XT

S ��
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Note� that under stationary and ergodic conditions�
the MV estimator converges asymptotically to the
Linear Minimum Mean�Squared Error �LMMSE� es�
timator as the number of rows m�� ���	
To obtain the RRULVD based MV estimate pro�

posed in �
�� i	e	�

�SMV � XVX�L
��

X�
�LX� � �

�
noiseL

�T
X�

�VT
X� ���

we need the additional conditions

� The signal is orthogonal to the noise STN � �	

� The matrix N satisfy NTN � ��noiseIn	

� There is a distinct gap in the singular values of
the matrix X �p � �p��	

� GX � �noiseIn�p is a diagonal matrix	

The residual matrix R � S�W � In� � NW �
RS�RN minimized in the above method represents
signal distortion RS and residual noise RN 	 Since
both terms can not be simultaneously minimized� a
Time Domain Constrained �TDC� estimator is pro�
posed in ��� which keep the residual noise energy
��n � tr�RT

NRN � below some threshold while mini�
mizing the signal distortion energy ��s � tr�RT

SRS�

min
W

�
�
s subject to �

�
n � �n�

�
noise � ���

WTDC � �STS� ��
�
noiseIn�

��STS ����

where � is a �xed or SNR�dependent parameter �� �
� � ��� and � is the Lagrange multiplier in ���	 In
a practical implementation� � is actually used as the
parameter	
Given the above conditions� we propose a

RRULVD based TDC estimate� which can be ob�
tained by using the following RRULVD formulations
for S and X

S �
�
US� US�

�� LS� �

� �

��
VT
S�

VT
S�

�
����

X �
�
�US�LS� �NVS��L

��

X�
NVS��

��

noise

�

�

�
LX� �

� �noiseIn�p

��
VT
S�

VT
S�

�
����

and the relation LTX�
LX� � L

T
S�LS� � ��noiseIp� i	e	�

�STDC � XVX��LX� � �
�
noise��� ��L�TX�

��� ����

� �LX� � �
�
noiseL

�T
X�

�VT
X�

Note that for � � � we obtain ��� and for � � �
we obtain ���	 For speech signals� the TDC estima�
tion criterion will control the nonstationary residual
noise with annoying noticeable tonal characteristics�
referred to as musical noise� since this noise compo�
nent decreases as � ��	

In practice� the above mentioned conditions are
never satis�ed exactly� but the RRULVD is robust
with respect to mild violations of these conditions	
If the additive noise matrix N is colored� NTN ��

��noiseIn� then a prewhitening transformation can be
applied to the data matrix using the QR decomposi�
tion of N � QR

XR�� � SR�� �NR�� � SR�� �Q ��
�

One problem concerning the prewhitening transfor�
mation is the complicated update of the matrix
XR�� when X and N are updated	 This can be
avoided by using the rank�revealing ULLV decom�
position ��� of the matrix pair �X�N�� which allows
each matrix to be updated individually and deliv�
ers the required factorizations without forming the
quotients and products	

� IMPLEMENTATION

The transformation y � VT
Xx approximates the

Karhunen�Loeve transform �KLT� of x	 Hence� all
the above mentioned linear signal estimates are ob�
tained by the following steps �see Figure ��

� KLT of the noisy signal onto the signal subspace	

� Modify the components of the KLT by a gain
�lter matrix G�	

� Inverse KLT of the modi�ed components to re�
construct the signal in the signal subspace	

This scheme results in a generalized formulation of
the optimal linear estimator

�s �Wx � VX�G�V
T
X�x ����

where the matrix G� 	 IRp�p depends on the esti�
mation method as shown in the last section	
The two matrices LX and VX necessary for com�

puting W are updated for each new sample xk cor�
responding to a new row in the data matrix X	 A
new row is processed in the following four steps	

� Updating The new row of X is incorporated
into the decomposition	

� Downdating The oldest row of X is isolated
and removed in the decomposition	

� De�ation Establishes and maintains the rank�
revealing nature of the decomposition	

� Re�nement The norm of FX is reduced to im�
prove the subspace quality	

Obviously� the �lter matrix W is estimated in an
analysis window of width �m�n���� centered around
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the middle row of X� The linear estimator is ap�
plied to this row� giving a n�sample synthesis win�
dow� Finally� the enhanced vectors are combined us�
ing the overlap and add synthesis approach� which
corresponds to the LS esimate of the noise�free sig�
nal sk from the enhanced vectors ����

� EXPERIMENTS

A recursive RRULLV algorithm has been developed
based on the methods given in ��� 	�� and was applied
to speech signals contaminated by an AR
�� ����
noise process� The noise matrix N was only updated
in periods without speech� and the matrix dimension
was m � ��� and n � ��� In all simulations� a TDC
estimator is used�

The typical average SNR of a reconstructed speech
segment 
voiced� using ��� independent noise real�
izations and SNR � � dB is illustrated in Fig� � as
a function of the signal subspace dimension p and
the parameter �� Clearly� the MV estimate 
� � ��
gives the best SNR improvement and is less sensi�
tive to the choice of p compared with the other esti�
mates� However� if � is chosen in the neighbourhood
of �� the variations are minimal� Thus� using a �xed
value of p � �� as in the following results� we are able
to achieve a satisfactory quality of the reconstructed
speech� An informal listening test gave � � � as the
best �xed value� but a better choice is to make �

dependent on the local SNR�

The RRULLV algorithm using a sliding window
was applied to the speech signal in Fig� � with added
broad�band noise 
global SNR of � dB�� Observe
from Fig� � that their is a SNR improvement using
the TDC estimate and that the variations among the
local SNRs of the various segments are reduced�

In the RRULLV algorithm computations can be
saved by omitting the re�nement step� i�e�� accepting
a larger kFXk�� but then the singular values of LX�

will underestimate the �rst p values �i
XR
��� by a

larger factor� Similarily� the singular values of GX

will in general overestimate the corresponding last
n� p values �i
XR

����

The graphs in Fig� � and 	 illustrates this problem�
Here� the average singular values of a prewhitened
voiced speech frame are compared with the one ob�
tained from LX� and GX with p � �� and no re�ne�
ment� Note� that �i
LX�� are plotted against the
�rst p indices� and �i
GX� are plotted from index
p � � to n� It is seen that the largest and smallest
singular values and thereby the dominant range and
null space are well determined by the RRULLVD�
while the subspaces are blurred together near the
rank�revealing point p due to the o��diagonal block
FX and the small gap in the singular spectrum� As
shown in Fig� 	� the quality can be increased by ap�

plying a number of re�nement steps�
In Fig� � the canonical angles between the QSVD

and RRULLVD based signal subspaces are plotted
against their indices� where the example corresponds
to the one in Fig� �� As expected� there is a group
of large angles due to the mix of signal and noise
subspace� However� since the singular spectrum
of speech signals is relative constant at the rank�
revealing point� this has no practical e�ect in a noise
reduction algorithm as shown in Fig� �� Here� four
di�erent speech segments all result in a reconstructed
average SNR� which is nearly independent of the
number of re�nement steps� This is also why these
results closely match the QSVD based method�
Another issue is that the conditions for the

RRULLV based estimates are typically not satis�ed�
However� as demonstrated in Fig� �� the method is
very robust concerning this�

� SUMMARY

A recursive signal subspace approach for noise reduc�
tion of speech signals is presented� The algorithm is
formulated by means of the RRULVD using a pro�
posed set of estimators� The method is demonstrated
to be comparable with SVD�based methods�
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���� Block diagram of Adaptive Noise Canceller� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ANC based noise reduction ���� as function of MSC� � � � � � � � � � � � � � � � � � � � � � ��
���� Block diagram of Delay�and�Sum beamformer� � � � � � � � � � � � � � � � � � � � � � � � � �	

���� Direct�form structure for adaptive beamformer� � � � � � � � � � � � � � � � � � � � � � � � � �	

��� The eigenvalues of Rx � IR����� representing a sinusoid with unit power� and added white
noise �SNR��dB�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� �solid� PSD of the noisy signal� and �dashed� of the projection onto the signal subspace
�p � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Singular spectrum of S � IR������ representing a voiced �a� and unvoiced �b� speech frame
with ��
 samples� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� �a� Amplitude waveform of the word �enormously�� �b� Normalized singular spectra
�S	�S�� versus time� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� The gap �p��	�p of �

 speech frames �S � IR������� obtained from the reference sentence
by shifting a ��
 sample window by �
 samples� �a� p � ��� �b� p � � to �	� � � � � � � � � ��

��� As Figure ��� with white noise added to the reference sentence �SNR��
dB�� � � � � � � � ��
��� �a� sin��hVS�i� hVX�i�� where the p � �� dimensional right singular subspaces are ob�

tained from S � IR������ representing a voiced speech frame with ��
 samples� and the
corresponding noisy data matrixX �SNR��dB�� Note that sin� is averaged over �

 inde�
pendent white noise realizations� �b� The distance sin 
p as function of the signal subspace
dimension p� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
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��� kSTN	mk� as function of the row dimension m� where S � IRm��� represents a voiced
speech frame with m  �	 samples� and N is obtained from a white noise realization
�SNR��dB�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 �a� The �rst �
 singular values of S representing a voiced speech frame with ��
 sam�
ples� �b� The average singular values of the corresponding noisy data matrix using �


independent white noise realizations and SNR��
dB� � � � � � � � � � � � � � � � � � � � � �


���
 Canonical angles between signal subspaces �dimension p � �
� obtained from the signal�
only matrix S � IRm��� representing the voiced speech frame with m�	 samples and the
corresponding noisy data matrixX added white noise �SNR��dB�� �a� The angles between
the right singular subspaces� i�e�� sin��hVS�i� hVX�i�� which should converge to zero� �b�
�solid� The angles between the left singular subspaces� i�e�� cos��hUS�i� hUX�i�� which
should converge to the theoretical result ������� �dashed� The error j�S�	�X� � cos�j
between estimated and theoretical values� � � � � � � � � � � � � � � � � � � � � � � � � � � � �


���� �solid� The �rst �� eigen�lters VS� of S � IR������ representing a voiced speech frame
with ��
 samples� �dashed� The corresponding eigen�lters obtained from the noisy data
matrix X using a white noise realization and SNR��dB� �dotted� The canonical vectors
��lters� associated with the ��dimensional intersection of the clean and noisy signal subspace� ��

���� �solid� The �rst �� eigen�lters VS� of S � IR������ representing a voiced speech frame
with ��
 samples� �dashed� The corresponding averaged eigen�lters obtained from the
noisy data matrix X using �

 independent white noise realizations and SNR��dB� � � � ��

���� �a� LPC�based magnitude spectra for voiced speech frame �solid�� AR����
��� noise process
�dashed� and the speech prewhitened with the noise frame �dash�dot�� �b� As �a� using
unvoiced speech frame� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� �a� LPC�based magnitude spectra versus time for the �rst part of the reference sentence�
�b� As �a� after prewhitening with AR����
��� noise process �SNR��dB�� � � � � � � � � � ��

���� �a� Singular spectra versus time for noise measured in car cabin �see Figure ����� and
normalized to have unit power� �b� The singular spectra after prewhitening with the �rst
noise frame� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� General model for signal subspace based linear signal estimator� � � � � � � � � � � � � � � � ��

��� �a� Wiener and TDC gain functions for di�erent choices of �� �b� Wiener and generalized
Wiener gain functions for di�erent choices of ��� � � � � � � � � � � � � � � � � � � � � � � � ��

��� �a� Estimated Wiener gains fgig��� of ��� speech frames �X � IR������� obtained from the
noisy reference sentence by shifting a ��
 sample window by ��
 sample �white noise and
SNR��
dB�� The estimated gains are plotted as function of the spectral SNR �s�i	�n�i�
�b� Distribution of the gains� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� As Figure ���� but with gains fgig��� belonging to a ���dimensional signal subspace� � � � � ��

��� As Figure ���� but with gains given by �a� the TDC estimator �� � �� and �b� the SDC
estimator ��� � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Power of the residual noise rn and the signal distortion rs for a linear estimator obtained
from a ���dimensional signal subspace� The data matrix X � IR������ represents the
voiced speech frame of ��
 samples added white noise �SNR��dB�� The residual levels are
plotted against the TDC parameter � �a� and the SDC parameter �� �b�� � � � � � � � � � ��

��� �
th order LPC�based magnitude spectra of the residual noise �a� and signal distortion �b�
corresponding to the examples in Figure ����a�� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� �
th order LPC�based magnitude spectra of the residual noise �a� and signal distortion �b�
corresponding to the examples in Figure ����b�� � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 �a� Wiener gains fgig��� estimated from a ���dimensional signal subspace and obtained from
��� speech frames �X � IR�������� i�e�� from the noisy reference sentence by shifting a ��

sample window by ��
 sample �colored AR����
��� noise and SNR��
dB�� The estimated
gains are plotted as function of spectral SNR� �b� Distribution of the gains� � � � � � � � � ��

���
 As Figure ��	� but with gains given by �a� the TDC estimator �� � �� and �b� the SDC
estimator ��� � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
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���� Power of the residual noise rn and signal distortion rs for a linear estimator obtained
from a ���dimensional signal subspace� The data matrix X � IR������ represents the
voiced speech frame of ��
 samples added colored noise �SNR��dB�� The residual levels
are plotted against the TDC parameter � �a� and the SDC parameter �� �b�� � � � � � � � �	

���� �
th order LPC�based magnitude spectra of the residual noise �a� and signal distortion �b�
corresponding to the examples in Figure �����a�� � � � � � � � � � � � � � � � � � � � � � � � �	

���� �
th order LPC�based magnitude spectra of the residual noise �a� and signal distortion �b�
corresponding to the examples in Figure �����b�� � � � � � � � � � � � � � � � � � � � � � � � �	

���� �a� Estimated Wiener gains �half�wave recti�cation� of ��� speech frames obtained from
the noisy reference sentence by shifting a ��
 sample window by ��
 sample �white noise
and SNR��
dB�� The estimated gains are plotted as function of the spectral SNR� �b� As
�a� after averaging four adjacent periodograms �frames�� � � � � � � � � � � � � � � � � � � � �


���� Delay�and�Sum beamformer combined with a single�microphone noise reduction technique�
e�g�� the signal subspace approach� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� �
th order LPC�based magnitude spectra of the residual noise �a� and signal distortion �b�
corresponding to the examples in Figure ���� but averaged over � independent white noise
realizations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� �
th order LPC�based magnitude spectra of the residual noise �a� and signal distortion
�b� corresponding to the examples in Figure ���� but averaged over �
 independent white
noise realizations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Average power of the residual noise rn and the signal distortion rs as function of the signal
subspace dimension p for the LS estimator �a� and MV estimator �b�� The data matrix
X � IR������ represents the voiced speech frame of ��
 samples added white noise �SNR
� 
dB�� and the average is taken over �

 independent noise realizations� � � � � � � � � � ��

���	 Average SNR of a reconstructed noisy �voiced� speech segment using a TDC estimator
with the listed � values� and SNR��dB� The average is taken over �

 independent white
noise realizations �a� or AR����
��� noise realizations �b�� � � � � � � � � � � � � � � � � � � ��

���
 As Figure ���	 but for the unvoiced speech segment� � � � � � � � � � � � � � � � � � � � � � ��

���� As Figure ���	 but by using a SDC estimator with the listed �� values� � � � � � � � � � � � ��

���� Zero phase �lter model for rank�p signal subspace estimation followed by averaging along
diagonals� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Filter model for averaging along diagonals in the case of shift between two datamatrices� � ��

���� �a� Example time plots for the rectangular �solid� and Hanning �dashed� windows with
length m � �

� �b� The windows after convolution with a rectangular window of length
n � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

���� Time sequence plot of a rectangular analysis window of length K centered around time k�
�K is the shift between adjacent frames� � � � � � � � � � � � � � � � � � � � � � � � � � � � �


���� Time sequence plot of a rectangular synthesis window of length Ks centered around time
k� Ws is the weighting factor and �Ks is the o�set to the analysis window �dashed�� � � � ��

���� Filter structure� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� �a� AR speech model with additive white noise� �b� ARMA model for �a� with additive
model noise� �c� Multichannel ARMA model for �a�� � � � � � � � � � � � � � � � � � � � � � ��

��� �a� The singular values of S � IR������ representing the voiced speech frame with ��
 sam�
ples� and the corresponding values obtained from LS� and GS with p � �� �Initial RRULV
algorithm without re�nement�� �b� The average singular values of the corresponding noisy
data matrix using �

 independent white noise realizations and SNR��dB� � � � � � � � � 	�

��� The ratios in Theorem ���� where �a� corresponds to Figure ����a� and �b� to Figure ����b�� 	�

��� ��� sin��hVS��SVDi� hVS��ULV i�� where the p � �� dimensional subspaces are obtained from
S � IR������ representing a voiced speech frame with ��
 samples� ��� The average sin�
of the corresponding noisy data matrix using �

 independent white noise realizations and
SNR��dB� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
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��� �Solid� The �rst �� eigen�lters VS��SVD of S � IR������ representing a voiced speech frame
with ��
 samples� �Dashed� The corresponding eigen�lters obtained from the RRULVD
based rank��� approximation� �Dotted� The canonical vectors ��lters� associated with
VS��SVD � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� �Solid� The �rst �� eigen�lters VX��SVD of X � IR������ representing a noisy voiced speech
frame with ��
 samples and SNR��dB� �Dashed� The corresponding eigen�lters obtained
from the RRULVD based rank��� approximation� �Dotted� The canonical vectors ��lters�
associated with VX��SVD � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		

��� ��� Average sin��hVS��SVDi� hVX��SVDi�� where the p � �� dimensional subspace hVS��SVDi
is obtained from S � IR������ representing a voiced speech frame with ��
 samples� and
hVX��SVDi is obtained from the corresponding noisy data matrix using �

 independent
white noise realizations and SNR��dB� ��� The noisy subspace is now obtained from the
RRULVD� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

��� �Solid� The �rst �� eigen�lters of X � IR������ representing a noisy voiced speech frame
with ��
 samples and SNR��dB� The �lters are averaged over �

 independent white noise
realizations� �Dashed� The corresponding eigen�lters obtained from the RRULVD based
rank��� approximation� �Dotted� The eigen�lters of the signal�only matrix� � � � � � � � � �
�

��� General model for approximate linear estimator� � � � � � � � � � � � � � � � � � � � � � � � �
�

��	 �a� Estimated Wiener gains �i�G�� of ��� speech frames �X � IR������� obtained from
the noisy reference sentence by shifting a ��
 sample window by ��
 sample �white noise
and SNR��
dB�� The estimated gains are plotted as function of the spectral SNR� and
G� is obtained from a ���dimensional signal subspace using the RRULV algorithm without
re�nement� �b� Distribution of the gains� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

���
 As Figure ��	� but with gains given by the TDC estimator �a� � � � and �b� � � �� � � � � �
�

���� �a� Power of the residual noise rn and the signal distortion rs for the RRULVD based
TDC estimator obtained from a ���dimensional signal subspace� The data matrix X �
IR������ represents the voiced speech frame consisting of ��
 samples and added white
noise �SNR��dB�� The residual levels are plotted against the TDC parameter �� �b�
Ratios of the residual powers obtained from RRULVD and SVD based estimators� � � � � �
�

���� �
th order LPC�based magnitude spectra of the residual noise �a� and signal distortion �b�
corresponding to the examples in Figure �����a�� � � � � � � � � � � � � � � � � � � � � � � � �
�

���� �a� Example time plots for the exponential windows with length m � �

 and forgetting
factor � � 
�	� �solid� and 
�		 �dashed�� �b� The windows after convolution with a
rectangular window of length n � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Filter structure� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Plane rotation� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Relative error of the estimated smallest singular value of �

 triangular random matrices
of dimension �
 using the Cline and Hager method� �a� Test set �� �b� Test set � with
condition number � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Histogram of relative error of the estimated smallest singular value of �


 triangular
random matrices of dimension �
 using Hager method� �a� Test set �� �b� Test set � with
condition number � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Histogram of relative error of the estimated smallest singular value of �


 triangular
random matrices of dimension �
 using Cline method� �a� Test set �� �b� Test set � with
condition number � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Orthogonality measure kIn �VTVk�� where V is obtained from the RRULLV algorithm
applied to a sinosoid in colored Gaussian noise �AR����
��� process and SNR � �
dB��
The RRULLVD of the data matrix X � IR������ is up�downdated using a sliding window
consisting of ��
 samples� The solid graph is with no intermediate normalizations and the
dashed is when the columns in V are normalized after each shift of the sliding window� � ���

��� Rank estimates obtained with matrixWI �a� and matrixWII �b� using the MGSR method
��� and CSNE method ���� The estimates based on the MGSR method correspond to the
true values as given by the QSVD� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
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��� Decomposition error kX�UXLXLVT k�� when the RRULLV algorithm �MGSR� is applied
to a sinosoid in colored Gaussian noise �AR����
��� process and SNR � �
dB�� The RRUL�
LVD of the data matrix X � IR������ is up�downdated using a sliding window consisting
of ��
 samples� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Noisy speech sentence contaminated by white noise �SNR��dB�� � � � � � � � � � � � � � � ���
��� Enhanced speech signal obtained by the LS estimator� � � � � � � � � � � � � � � � � � � � � ���
��� Enhanced speech signal obtained by the MV estimator� � � � � � � � � � � � � � � � � � � � ���
��� Enhanced speech signal obtained by the SDC estimator ��� � ��� � � � � � � � � � � � � � � ���
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