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Abstract. We study the signal-to-interference ratio (SINR) percolation model for
a stationary Cox point process in two or higher dimensions, in case of a bounded and
integrable path-loss function. We show that if this function has compact support
or if the stationary intensity measure evaluated at a unit box has some exponential
moments, then the SINR graph has an infinite connected component in case the
spatial density of points is large enough and the interferences are sufficiently re-
duced (without vanishing). This holds under suitable stabilization and connectivity
assumptions on the intensity measure. We also provide estimates on the critical
interference cancellation factor.

1. Introduction

1.1. Background and motivation. Continuum percolation was introduced by Gilbert
(1961). In his random graph model, two points of a homogeneous Poisson point
process Xλ in R

2 with intensity λ > 0 are connected by an edge if their distance is
less than a fixed connection radius r > 0. He showed that this model undergoes a
phase transition: there is a critical intensity λc(r) ∈ (0,∞) such that almost surely,
for λ < λc(r) the graph consists of finite connected components, while for λ > λc(r)
it percolates, i.e., it has an infinite connected component. The motivation of this
setting was to model a telecommunication network, in which the points of Xλ are
the users, and transmissions between users are only possible along the edges of
the graph. In this view, long-distance communication is only possible if the graph
percolates.
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The model of Gilbert (1961) has been widely studied and generalized in the Pois-
son case, see e.g. Meester and Roy (1996); Franceschetti and Meester (2007); Bac-
celli and Błaszczyszyn (2010) for overviews. After 2010, it has also been extended
to various other kinds of point processes, for example sub-Poisson (Błaszczyszyn
and Yogeshwaran, 2010, 2013), Ginibre and Gaussian zero (Ghosh et al., 2016), and
Gibbsian (Jansen, 2016; Stucki, 2013). The case of Gibbsian point processes was
also studied earlier, see the references in Jansen (2016).

Hirsch et al. (2019) considered Gilbert’s graph model for a Cox point process,
that is, a Poisson point process in a random environment. More precisely, let λ > 0
and a stationary random measure Λ on R

d, d ≥ 2, be given. A Cox point process
Xλ with intensity λΛ is characterized by the property that conditional on Λ, Xλ

is a Poisson point process with intensity λΛ. In Hirsch et al. (2019), it was shown
that under certain stabilization and connectedness conditions on Λ, 0 < λc(r) <∞
holds. More precisely, λc(r) > 0 if Λ is stabilizing and λc(r) <∞ under the stronger
assumption that Λ is asymptotically essentially connected. These assertions are to
be understood in the annealed sense, i.e., under a probability measure that governs
Λ and Xλ jointly.

According to Hirsch et al. (2019), the most important examples of Λ for telecom-
munication are given by a stationary tessellation process, e.g., a Poisson–Voronoi,
Poisson–Delaunay or Poisson line tessellation. The edge set of such a tessellation
process can be used for modelling a telecommunication network on a street system,
where the points of the Cox point process are the users, situated on the streets. The
randomness of the tessellation process can be interpreted as the statistical variabil-
ity of street systems in different areas. While Poisson–Delaunay tessellations fit well
for modelling rural areas, Poisson–Voronoi tessellations are good approximations
for various kinds of urban environments (Cali et al., 2018).

Another variant of Gilbert’s graph model motivated by telecommunication is
the signal-to-interference-plus-noise ratio (SINR) graph, which was considered in
Dousse et al. (2005, 2006); Franceschetti and Meester (2007) in the case of a ho-
mogeneous Poisson point process with intensity λ > 0 in R

2. Here, two points
are connected if the SINR between them is larger than a given threshold τ > 0 in
both directions. The SINR of a transmission from x ∈ R

d to y ∈ R
d has the form

Pℓ(|x−y|)/(N0+γPI(x, y)). Here ℓ is a path-loss function describing the propaga-
tion of signal strength over distance, assumed decreasing, P > 0 is the transmitted
power, N0 ≥ 0 is the external noise and I(x, y), the interference for the transmission
from x to y, is the sum of ℓ(|Xi− y|) over all Poisson points Xi /∈ {x, y}, and γ ≥ 0
is a factor expressing how strongly interference is cancelled compared to the signal.
The motivation for the SINR model is that in real telecommunication networks,
even if the transmitter is close to the receiver, the transmission may be unsuccess-
ful due to too many other transmitters standing near the receiver, see Franceschetti
and Meester (2007, Section 1.2.5). Further, it is explained in Dousse et al. (2005,
Section I) that γ is a certain orthogonality factor between different transmissions,
introduced by analogy with CDMA (i.e., Code Division Multiple Access) networks,
which in applications usually takes values in (0, 1], and which appears due to the
imperfect orthogonality of the codes used in CDMA. In order to simplify the pre-
sentation, throughout the rest of the paper we will assume that P = 1.

For λ > 0, let us write γ∗(λ) for the supremum of all γ > 0 for which the
SINR graph percolates. If γ = 0, then the SINR graph equals Gilbert’s graph with
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radius rB = ℓ−1(τN0), and this graph contains all SINR graphs with positive γ.
Thus, for λ < λc(rB), we have γ∗(λ) = 0. Dousse et al. (2006) showed that under
suitable integrability and boundedness assumptions on ℓ, for any λ > λc(rB), one
has γ∗(λ) > 0. Further, the following assertions were derived in Dousse et al.
(2005); Franceschetti and Meester (2007) about λ 7→ γ∗(λ). SINR graphs with
γ > 0 have degrees bounded by 1 + 1/(τγ), which yields that γ∗(λ) ≤ 1/τ for all
λ > 0. Further, γ∗(λ) = O(1/λ) holds as λ → ∞, and also γ∗(λ) = Ω(1/λ) if ℓ
has bounded support. Here, for f, g : (0,∞) → (0,∞), we wrote f(x) = O(g(x)) if
there exists M,C > 0 such that f(x) ≤ Cg(x) for all x > M , and f(x) = Ω(g(x)) if
g(x) = O(f(x)). In Błaszczyszyn and Yogeshwaran (2013), a more general notion of
SINR graphs was considered, and the results of Dousse et al. (2006) were extended
to the case of sub-Poisson point processes in this context.

In particular, the upper bound of O(1/λ) on the critical interference cancellation
factor γ∗(λ) for λ large implies that adding more users to the telecommunication
network (i.e., increasing λ) can actually harm percolation. This is a striking feature
of the SINR graph model, while in e.g. Gilbert’s graph model increasing the intensity
measure always improves the connectivity of the graph.

1.2. Our findings. In the present paper, we investigate SINR percolation for Cox
point processes, combining the benefits of modelling both user locations and con-
nections between the users more realistically than in Gilbert’s original model. To
the best of our knowledge, this paper is the first one that considers SINR percola-
tion also in d ≥ 3 dimensions, despite the fact that some results of previous work
about d = 2 extend to d ≥ 3 without additional effort. We formulate our results for
d ≥ 2 whenever possible, and we point out which assertions of prior work extend
to the higher dimensions.

Let us summarize our most important results. First, we give general sufficient
criteria for the existence of an infinite connected component in this model, in the
case of a bounded path-loss function ℓ. We consider the above defined SINR graph
on a Cox point process Xλ with intensity measure λΛ on R

d, d ≥ 2. We show
that if Λ is asymptotically essentially connected, then for λ sufficiently large, we
have γ∗(λ) > 0 if any of the following additional assumptions is satisfied: (a) ℓ
has bounded support, (b) for any compact set A ⊂ R

d, there exists α > 0 such
that E[exp(αΛ(A))] < ∞, Λ is b-dependent for some b > 0, and ℓ satisfies the
integrability assumption known from the Poisson case (Daley, 1971; Dousse et al.,
2006), that is,

∫
Rd ℓ(|x|)dx <∞.

For the particular case of the homogeneous Poisson point process, our results
imply that γ∗(λ) > 0 holds for λ sufficiently large, also for d ≥ 3. The same holds
for the Poisson–Voronoi and Poisson–Delaunay tessellations in any dimension in
case ℓ has bounded support. Relevant examples of Λ satisfying the condition (b),
such that Λ(A) is unbounded for bounded sets A ⊂ R

d with positive Lebesgue mea-
sure, include some intensity measures given by a shot-noise field with a compactly
supported kernel function.

Further, in the case when d ≥ 2 and Λ is only stabilizing, we show that if the
connection radius rB is sufficiently large, then γ∗(λ) > 0 holds for sufficiently large
λ in case (b) above. This covers a number of relevant examples that are b-dependent
but not asymptotically essentially connected.
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We also provide estimates on γ∗(λ). First, we conclude that the degree bound
1+ 1/(τγ) and the estimate that γ∗(λ) ≤ 1

τ for all λ > 0 also hold in the Cox case.
Second, we observe that if the number of Cox points who can successfully submit
to a given point is bounded by some k ∈ N for all points, then every point can
only receive messages from its k nearest neighbours. This together with a high-
confidence result of Balister and Bollobás (2013) leads us to the conjecture that
in the two-dimensional Poisson case, γ∗(λ) ≤ 1

4τ holds. Third, we show that for
b-dependent Cox point processes, limλ→∞ γ∗(λ) = 0. Here, our proof is applicable
unless N0 = 0 and ℓ has unbounded support. Finally, for d = 2, for b-dependent
Cox point processes with intensity measures that are locally bounded away from 0,
we show that γ∗(λ) = O(1/λ) holds as λ→ ∞, and also γ∗(λ) = Ω(1/λ) if also the
support of ℓ is compact; these assertions generalize Dousse et al. (2005, Theorem
4).

The rest of this paper is organized as follows. In Section 2, we define the model
and present our main results. In particular, in Sections 2.1, we summarize the re-
sults of Hirsch et al. (2019) about continuum percolation for Cox point processes,
and in Section 2.2 the ones of Dousse et al. (2005, 2006) about SINR percolation in
the Poisson case. In Section 2.3, we present our main results about phase transi-
tions in the Cox–SINR setting. Section 2.4 contains our assertions and conjectures
about the critical interference cancellation factor. In Section 2.5 we discuss the
applicability of the assertions of Sections 2.3 and 2.4 to the main examples of the
intensity measure. In Section 3 we carry out and discuss the proofs of the results
of Section 2.3. Finally, in Section 4 we verify the assertions of Section 2.4.

2. Model definition and main results

2.1. Continuum percolation for Cox point processes. In this section we recall the
continuum percolation model defined in Hirsch et al. (2019, Section 2). Let Λ be
a random element in the space M of Borel measures on R

d, equipped with the
evaluation σ-field (Last and Penrose, 2018, Section 13.1), that is, the smallest σ-
field that makes the mappings B 7→ Λ(B) measurable for all Borel sets B ⊆ R

d.
We always assume that d ≥ 2. We define

Qr(x) = x+ [−r/2, r/2]d

for x ∈ R
d and r ≥ 0, further, we write Qr = Qr(o), where o denotes the origin of

R
d. We assume that E[Λ(Q1)] = 1 and Λ is stationary, that is, Λ(·) equals Λ(·+ x)

in distribution for all x ∈ R
d.

Then for λ > 0, we let Xλ be a Cox point process with intensity λΛ. That is,
conditional on Λ, Xλ is a Poisson point process with intensity λΛ. Note that the
conditions on Λ imply that for all x ∈ R

d, Λ({x}) = 0 holds almost surely, and thus
Xλ is a simple point process. That is, one can write Xλ = (Xi)i∈N, so that almost
surely, for all i, j ∈ N, Xi 6= Xj unless i = j. Further, if Λ is identically equal to
the Lebesgue measure | · |, then Xλ is a homogeneous Poisson point process with
intensity λ. We will often simply say “Cox process” instead of “Cox point process”.
We denote by ΛB the restriction of the random measure Λ to the set B ⊂ R

d.
Let us give some examples of random intensity measures satisfying our assump-

tions. Any absolutely continuous example Λ has the form Λ(dx) = lxdx for a
stationary non-negative random field l = {lx}x∈Rd with E[lo] = 1, see Hirsch
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et al. (2019, Example 2.1). Examples include the modulated Poisson point pro-
cess: lx = λ11{x ∈ Ξ} + λ21{x /∈ Ξ} for a stationary random closed set Ξ and
λ1, λ2 ≥ 0, and intensities given by a shot-noise field: lx =

∑
Yi∈YS

k(x − Yi) for

a non-negative integrable kernel k : Rd → [0,∞) with compact support and YS a
Poisson point process with intensity λS > 0. Relevant singular examples are the
Poisson point processes on random street systems (Hirsch et al., 2019, Example
2.2). Here, Λ(dx) = ν1(S ∩ dx) for a stationary point process S with values in the
space of line segments, e.g., a Poisson–Voronoi or Poisson–Delaunay tessellation,
where ν1 denotes one-dimensional Hausdorff measure.

For r, λ > 0, the Gilbert graph gr(X
λ) is defined as follows. Its vertex set is Xλ,

more precisely the set {Xi : i ∈ N}, and Xi, Xj ∈ Xλ, i 6= j, are connected by an
edge whenever their distance is less than the connection radius r. A cluster in a
(possibly random) graph is a maximal connected component, and we say that the
graph percolates if it contains an infinite cluster. The critical intensity is defined as

λc(r) = inf{λ > 0: P(gr(X
λ) percolates) > 0}.

Percolation of gr(X
λ) occurs if and only if the associated Boolean model, that is,

Xλ ⊕ Br/2 =
⋃

i∈NBr/2(Xi), has an unbounded connected component, see Hirsch
et al. (2019, Section 7.1). Here we wrote BR = BR(o) where BR(x) denotes the
open ℓ2-ball of radius R around x for x ∈ R

d and R > 0. Note that for fixed
r > 0, λ 7→ P(gr(X

λ) percolates) is increasing in λ. Given r > 0, any intensity
λ ∈ (0, λc(r)) is called subcritical, λ = λc(r) critical, and any λ ∈ (λc(r),∞)
supercritical.

The next two definitions are crucial in Hirsch et al. (2019) for showing that a
subcritical respectively supercritical phase exists. The first notion is stabilization,
which means a certain decay of spatial correlations of the intensity measure with
distance. We let distp(ϕ, ψ) = inf{‖x − y‖p : x ∈ ϕ, y ∈ ψ} denote the ℓp-distance
between two sets ϕ, ψ ⊂ R

d for p ∈ [1,∞].

Definition 2.1. The random measure Λ is stabilizing if there exists a random field
of stabilization radii R = {Rx}x∈Rd defined on the same probability space as Λ
such that, writing

R(Qn(x)) = sup
y∈Qn(x)∩Qd

Ry, n ≥ 1, x ∈ R
d,

the following hold.

(1) R is measurable with respect to Λ, and (Λ, R) is jointly stationary,
(2) limn→∞ P(R(Qn) < n) = 1,
(3) for all n ≥ 1, for any bounded measurable function f : M → [0,∞) and

finite ϕ ⊆ R
d with dist2(x, ϕ \ {x}) > 3n for all x ∈ ϕ, the following

random variables are independent:

f(ΛQn(x))1{R(Qn(x)) < n}, x ∈ ϕ.

A strong form of stabilization is b-dependence; for b > 0, Λ is called b-dependent
if ΛA and ΛB are independent whenever dist2(A,B) > b. On the other hand, in this
paper, b-dependence of stochastic processes defined on discrete subsets of Rd with
an explicitly given value of b will always be meant with dist∞ instead of dist2 on
the discrete set; we note that Hirsch et al. (2019) also used this convention tacitly.
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Let us write supp(µ) = {x ∈ R
d : µ(Qε(x)) > 0, ∀ε > 0} for the support of a

(possibly singular) measure µ. The second notion, asymptotic essential connected-
ness, indicates, in addition to stabilization, strong local connectivity of the intensity
measure.

Definition 2.2. The stabilizing random measure Λ with stabilization radii R is
asymptotically essentially connected if for all sufficiently large n ≥ 1, whenever
R(Q2n) < n/2, we have that

(1) supp(ΛQn
) contains a connected component of diameter at least n/3, and

(2) if C and C ′ are connected components in supp(ΛQn
) of diameter at least

n/9, then they are both contained in one of the connected components of
supp(ΛQ2n).

As for the main examples, it was shown in Hirsch et al. (2019, Section 3.1) that
Poisson–Voronoi and Poisson–Delaunay tessellations are asymptotically essentially
connected. Further, shot-noise fields are b-dependent but only in some cases asymp-
totically essentially connected, see Section 2.5.1 for further details. The modulated
Poisson point process is also b-dependent if Ξ is a Poisson–Boolean model (that
is, the Boolean model of a homogeneous Poisson point process). In this case, it is
also asymptotically essentially connected if λ1, λ2 > 0, or if λ1 > λ2 = 0 and the
underlying Poisson–Boolean model Ξ is supercritical. However, in general both for
λ1 > λ2 = 0 and for λ2 > λ1 = 0 it may happen that Λ is not asymptotically
essentially connected, as we will explain in Section 2.5.1. Poisson line tessellations
and their rectangular variants like Manhattan grids are also relevant for modelling
street systems Gloaguen et al. (2006); Hinsen et al. (2020+), however, they are not
stabilizing, and neither the existence of subcritical phase nor the one of supercritical
phase has been verified for them so far.

By Hirsch et al. (2019, Theorems 2.4, 2.6), for any r > 0 the following holds. If
Λ is stabilizing, then λc(r) > 0. If Λ is asymptotically essentially connected, then
λc(r) <∞.

In these results, roughly speaking, the spatial decorrelation coming from stabi-
lization of Λ makes it easy to verify, using discrete percolation techniques, that long-
distance connections in gr(X

λ) do not exist for λ > 0 sufficiently small, see Hirsch
et al. (2019, Section 5.1). On the other hand, as λ → ∞, Xλ fills the support
of Λ with high probability. This fact together with the stabilization of Λ and the
strong connectivity of the support of Λ can be used in order to verify percolation
of gr(X

λ) for large λ if Λ is asymptotically essentially connected, cf. Hirsch et al.
(2019, Section 5.2).

2.2. Signal to interference plus noise ratio graph. In this section we follow Dousse
et al. (2006). We choose a decreasing path-loss function ℓ : [0,∞) → [0,∞), which
describes the propagation of signal strength over distance. Note that ℓ(|x − y|) ≤
ℓ(0) for all x, y ∈ R

d. Further assumptions on ℓ will be made below using the
following definitions. For two points Xi, Xj of the Cox point process Xλ, we define
the signal-to-interference-plus noise ratio (SINR) of the transmission from Xi to
Xj as follows

SINR(Xi, Xj , X
λ) =

ℓ(|Xi −Xj |)
N0 + γ

∑
k 6=i,j ℓ(|Xk −Xj |)

, (2.1)
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where N0 ≥ 0 is the environmental noise, the sum in the denominator of (2.1)
is called the interference (of the transmission from Xi to Xj), and γ ≥ 0 is the
interference cancellation factor. Then we fix τ > 0 and say that the transmission
from Xi to Xj is possible if and only if

SINR(Xi, Xj , X
λ) > τ. (2.2)

We will tacitly exclude the degenerate case γ = N0 = 0. Further, if N0 = 0, we
use the convention Baccelli and Błaszczyszyn (2010, Section 6.1) that the inequality
(2.2) holds if ℓ(|Xi −Xj |) > τγ

∑
k 6=i,j ℓ(|Xk −Xj |).

We define the directed SINR graph g→(γ,N0,τ)
(Xλ) on the vertex set Xλ via draw-

ing a directed edge pointing from Xi towards Xj (denoted as Xi → Xj) when-
ever i 6= j and SINR(Xi, Xj , X

λ) > τ . Next, the (undirected) SINR graph
g(γ,N0,τ)(X

λ) has vertex setXλ, and (Xi, Xj) ∈ Xλ×Xλ is an edge in g(γ,N0,τ)(X
λ)

if and only if both Xi → Xj and Xj → Xi are edges in g→(γ,N0,τ)
(Xλ).

We note that Kong and Yeh (2007) studied percolation in the directed SINR
graph in the two-dimensional Poisson case. It obtained results that are very similar
to the ones of Dousse et al. (2005, 2006); Franceschetti and Meester (2007) in the
undirected case. In the present paper we will focus on the undirected SINR graph,
but we will also use some properties of the directed one in our arguments.

See Figure 2.2 for simulations of the SINR graph in the two-dimensional Poisson
case. Extensions of the SINR graph model, such as external interferers
(Błaszczyszyn and Yogeshwaran, 2013), the information theoretically secure SINR
graph (Vaze and Iyer, 2014), and random signal powers, were surveyed in the au-
thor’s PhD thesis (Tóbiás, 2019, Sections 4.2.3.4–4.2.3.6), including a number of
remarks about the case of Cox point processes.

As for N0 > 0 and γ = 0, Xi, Xj are connected by an edge in g(0,N0,τ)(X
λ) if

and only if the signal-to-noise ratio (SNR) between them is larger than τ , i.e.,

SNR(Xi, Xj) = SNR(Xj , Xi) =
ℓ(|Xi −Xj |)

N0
> τ. (2.3)

Whenever ℓ−1(τN0) is well-defined and positive (in particular, ℓ(0) > τN0), this is
equivalent to |Xi − Xj | ≤ ℓ−1(τN0). In this case g(0,N0,τ)(X

λ) equals the Gilbert

graph grB(X
λ), where

rB = ℓ−1(τN0). (2.4)

For two graphs G = (V,E), G′ = (V,E′) with the same vertex set V , we will write
G � G′ if E ⊆ E′, i.e., if all edges in G are also contained in G′. Now, for τ > 0
and N0 > 0, we have g(γ,N0,τ)(X

λ) � g(γ′,N0,τ)(X
λ) for all 0 ≤ γ′ < γ. Thus,

g(γ,N0,τ)(X
λ) � grB(X

λ), hence any edge of g(γ,N0,τ)(X
λ) has length at most rB.

In contrast, if N0 = 0 (and γ > 0), then the edge lengths of the SINR graph
g(γ,0,τ)(X

λ) are unbounded. On the other hand, while Gilbert graphs have no
bound on the degrees of the vertices, we will show in Section 2.4 that all in-degrees
in g→(γ,N0,τ)

(Xλ) and thus also all degrees in g(γ,N0,τ)(X
λ) are bounded by 1+1/(τγ)

for fixed γ > 0. If additionally also N0 > 0, then an easy computation of SINR
values implies that points that are not isolated in g(γ,N0,τ)(X

λ) have uniformly

bounded degrees even in the Gilbert graph grB(X
λ).

In Section 2.4.1 we will explain that for stationary Cox processes, it follows easily
that whenever γ > 0 and in-degrees in g→(γ,N0,τ)

(Xλ) are bounded by k ∈ N, any

two points that are connected in g(γ,N0,τ)(X
λ) are mutually among the k nearest
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neighbours of each other in Xλ. This assertion was not explicitly mentioned in
earlier works about SINR percolation, even though its proof is immediate. This
assertion implies that g(γ,N0,τ)(X

λ) is a subgraph of the bidirectional k-nearest
neighbour graph considered in Balister and Bollobás (2013), where two points Xi 6=
Xj of Xλ are connected by an edge whenever Xi is one of the k nearest neighbours
of Xj in Xλ and also vice versa. We will elaborate on some possible consequences
of this relation in Section 2.4.

Now, we define

γ∗(λ) = γ∗(λ,N0, τ) := sup{γ > 0: P
(
g(γ,N0,τ)(X

λ) percolates
)
> 0} (2.5)

for fixed λ, τ > 0 and N0 ≥ 0. Further, we put

λN0,τ = inf{λ > 0: γ∗(λ′) > 0, ∀λ′ ≥ λ}. (2.6)

Then for λ < λN0,τ , P(g(γ,N0,τ)(X
λ) percolates) = 0 for all γ > 0. A priori, there

is no reason for λN0,τ = inf{λ > 0: γ∗(λ) > 0} to hold, but this identity will turn
out to be true in most of the cases that we consider.

For any Cox–SINR graph with γ ≥ 0, the existence of an infinite cluster is
a shift-invariant event. Therefore, if the stationary intensity measure Λ is also
ergodic, then the probability of this event is either zero or one, and the number of
infinite clusters is almost surely constant (possibly infinite), cf. Meester and Roy
(1996, Theorem 2.1). In particular, this holds for stabilizing Cox processes, since
it is easy to derive that stabilization implies mixing and therefore also ergodicity.
Without ergodicity, one can find examples where this property fails, see e.g. Tóbiás
(2019, Section 4.2.3.3).

Now, let us fix N0 ≥ 0, τ > 0, and let us make the following assumption on
the path-loss function ℓ (which also implies that ℓ is decreasing) for the rest of this
paper.
Assumption (ℓ).

(i) ℓ is continuous, constant on [0, υ0] for some υ0 ≥ 0, and on [υ0,∞) ∩ supp ℓ
it is strictly decreasing,

(ii) 1 ≥ ℓ(0) > τN0,
(iii)

∫
Rd ℓ(|x|)dx <∞.

These constraints on ℓ are slightly more general than the ones of Dousse et al. (2006)
because we allow υ0 to be positive, motivated by the facts that the proof of the
main results of Dousse et al. (2006) works also for υ0 > 0 and path-loss functions
with υ0 > 0 are widely used in practice (see e.g. the simulations in Dousse et al.
(2005, 2006)). E.g., the path-loss function ℓ(r) = min{1, r−α}, α > d (where we
recall that d is the dimension), corresponding to ideal Hertzian propagation (Dousse
et al., 2005) satisfies Assumption (ℓ).

Let us recall Dousse et al. (2006, Theorem 1) about the homogeneous Poisson
case Λ ≡ | · | for d = 2.

Theorem 2.3 (Dousse et al., 2006). If Λ ≡ | · |, d = 2, and N0, τ > 0, then
λN0,τ = λc(rB) ∈ (0,∞).

In words, for any intensity λ such that the SNR graph g(0,N0,τ)(X
λ) = grB(X

λ)

is supercritical, there exists a small but positive γ such that g(γ,N0,τ)(X
λ) still

percolates. The case N0 = 0 will be discussed in Section 2.3.3 in the general Cox
case. Simulations of the SINR graph of a two-dimensional Poisson point process
can be seen in Figure 2.2.
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According to the results of Daley (1971), for bounded path-loss functions ℓ not
satisfying Assumption (ℓ) (iii), the SINR graph of a Poisson point process has
no edges for γ > 0. However, this does not exclude percolation in the SINR
graph in the case of an unbounded path-loss function ℓ : (0,∞) → [0,∞) satisfying∫
Rd\Bε

ℓ(|x|)dx < ∞ for all ε > 0. In fact, Dousse et al. (2005) conjectured that

percolation occurs for ℓ(r) = r−α, α > d, in the two-dimensional Poisson case. Fur-
ther, Dousse (2005, Section 3.3.2) has shown that in case of this path-loss function,
if λN0,τ > 0 holds true, then λ 7→ γ∗(λ) is increasing (but bounded thanks to the
degree bounds, see Section 2.4.1). In contrast, for path-loss functions satisfying
Assumption (ℓ), γ∗(λ) tends to zero as λ → ∞, see Section 2.4.2. See Figure 2.4
for a visual sketch of the already verified and the conjectured properties of the
function λ 7→ γ∗(λ) in the Cox case, which summarizes some of the main results of
our paper.

2.3. Phase transitions. This section contains our main results about percolation
properties of g(γ,N0,τ)(X

λ) depending on the parameters N0, τ, λ, γ. In Section 2.3.1
we present our main results for fixed N0, τ > 0. In this setting, the SNR radius rB is
fixed, and thus, according to Hirsch et al. (2019, Theorem 2.6), if Λ is asymptotically
essentially connected, then the SNR graph percolates for large λ with positive
probability (actually with probability 1 thanks to stabilization). We show that
under additional assumptions on Λ and ℓ, we have γ∗(λ) > 0 for all sufficiently large
λ. Under similar assumptions, in Section 2.3.2 we show that if Λ is only stabilizing,
then one can choose the SNR radius rB large enough such that γ∗(λ) > 0 occurs
for sufficiently large λ > 0. In Section 2.3.3 we comment on the case N0 = 0.

2.3.1. The case of asymptotically essentially connected intensity. If Λ is asymptoti-
cally essentially connected, then the SINR graph percolates for large enough λ and
accordingly chosen small enough γ > 0 under additional assumptions on ℓ and Λ.

Theorem 2.4. Let N0, τ > 0.

(1) λN0,τ ≥ λc(rB). Further, if Λ is stabilizing, then λN0,τ > 0.
(2) If Λ is asymptotically essentially connected, then λN0,τ < ∞ holds if at least

one of the following two conditions is satisfied:
(a) ℓ has compact support,
(b) Λ is b-dependent, and E[exp(αΛ(Q1))] <∞ for some α > 0.

We already see that Theorem 2.4(1) is true. Indeed, it follows from Hirsch et al.
(2019, Theorem 2.4) and the fact that for N0, τ, γ > 0, we have g(γ,N0,τ)(X

λ) �
grB(X

λ). Note that this assertion requires only that SNR graph be a well-defined
Gilbert graph; for this, it suffices if ℓ : (0,∞) → [0,∞) is decreasing and the radius
rB = ℓ−1(τN0) is well-defined and positive. In particular, limr↓0 ℓ(r) = ∞ is not
a problem for this assertion. On the other hand, as we saw in Section 2.2, unless
ℓ has integrable tails, SINR graphs with γ > 0 have no edges in the Poisson case.
It is easy to see that the same holds in the general stationary Cox case. Thus,
the integrability condition (iii) of Assumption (ℓ) in Theorem 2.4(2) is optimal for
percolation in the Cox–SINR graph in case of a bounded path-loss function.

The proof of Theorem 2.4(2) is carried out in Section 3.1.1. The proof consists
of four steps. First, we map our percolation problem to a discrete site percolation
model. Second, we argue why this discrete model has an unbounded cluster for
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large λ and accordingly chosen small γ > 0, conditional on the assumption that
interferences can be suitably controlled. Third, we show that if the discrete model
percolates, then so does g(γ,N0,τ)(X

λ). Fourth, we finish the proof of percolation
in the discrete model by controlling the interferences. At this point we use the
assumption (2a) respectively (2b). In Section 3.1.2 we will comment on possible
generalizations of the proof, using the notation introduced in Section 3.1.1.

In the rest of this paper, we will write “Y is bounded (away from 0)” equivalently
to “Y is almost surely bounded (away from 0)” for any nonnegative random variable
Y . Then we see that any b-dependent Λ such that Λ(Q1) is bounded satisfies (2b);
an asymptotically essentially connected example is the modulated Poisson point
process with Ξ being a Poisson–Boolean model in case λ1, λ2 > 0, or also in case
λ1 > λ2 = 0 if Ξ is supercritical. As for unbounded intensity measures Λ satisfying
the exponential moment condition in (2b), our main b-dependent examples are the
shot-noise fields that are asymptotically essentially connected (see Section 2.5.1 for
explicit examples). For these intensity measures, Theorem 2.4 implies that for large
enough λ and small enough γ its SINR graph percolates in the case of any path-loss
function ℓ satisfying Assumption (ℓ), in particular, for all ℓ satisfying (i) and (ii) of
that assumption and ℓ(r) = O(1/r2+ε) for some ε > 0.

B. Jahnel and the author recently showed Jahnel and Tóbiás (2019) that the
total edge length of two-dimensional Poisson–Voronoi or Poisson–Delaunay tessel-
lations in a unit square has all exponential moments. As already mentioned, these
tessellations are also asymptotically essentially connected, however, they are not
b-dependent. Hence, only the condition (2a) is applicable for them. Since these tes-
sellations can well be used for modelling statistical properties of real street systems
Gloaguen et al. (2006); Cali et al. (2018), it is a highly interesting open question to
verify percolation in the SINR graph for the Cox process on these tessellations in
case of an unboundedly supported path-loss function. In higher dimensions, even
the existence of exponential moments of Λ(Q1) is open. See Figure 2.3 for simula-
tions of SINR graphs in the case of the Poisson–Voronoi tessellation for d = 2.

We see that Theorem 2.4(2) holds in particular in the Poisson case and thus
it generalizes Theorem 2.3 to d ≥ 3 dimensions. However, it does not recover
the identity that λN0,τ = λc(rB) for all N0, τ > 0. We nevertheless expect that
the statement is also true in the higher-dimensional Poisson case. We defer the
proof of this conjecture to future work. Further, in Section 2.5.1 we will discuss
the applicability of all results of Section 2.3 to each of the examples introduced in
Section 2.1.

In fact, λN0,τ < ∞ can also be proven for certain classes of non-stabilizing Cox
processes, cf. Tóbiás (2019, Sections 4.2.3.2, 4.2.3.3). In some cases, even λN0,τ = 0
holds Tóbiás (2019, Section 4.2.3.3), which is impossible in the stabilizing case
thanks to Hirsch et al. (2019, Theorem 2.4).

Apart from the value of positive results on percolation in an SINR graph with
γ > 0, such as Theorem 2.4(2), for applications in telecommunications, such as-
sertions have important theoretical consequences for more well-known continuum
percolation models such as Gilbert and k-nearest neighbour graphs. Namely, the
underlying Gilbert graph keeps percolating after removing all vertices that have
degree larger than n, given that n is large enough. On the other hand, the bidi-
rectional k-nearest neighbour graph containing the SINR graph keeps percolating
after removing all edges that have length larger than rB. This also implies the same
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Figure 2.1. Gilbert graphs in case of a stabilizing intensity mea-
sure such that λc(r) < ∞ holds only for large r. The intensity
measure is given as λΛ(dx) = λλ11{x ∈ Ξ}dx, where λ > 0 is
very large, λ1 > 0, and Ξ is a strongly subcritical Poisson–Boolean
model. (1) Small r: even though the density of Cox points per
unit volume is high, the intensity measure has large void spaces.
The Gilbert graph is split into many small connected components
thanks to the disconnectedness of the support of Λ. (2) Large r:
the small components can now connect up so that gr(X

λ) perco-
lates.

statement for the more frequently studied undirected k-nearest neighbour graph
Häggström and Meester (1996); Balister and Bollobás (2013), where one connects
two points whenever at least one of them is one of the k nearest neighbours of the
other.

2.3.2. The case of only stabilizing intensity. According to Hirsch et al. (2019, Sec-
tion 2.1), stabilization of Λ does not imply that λc(r) < ∞ for all r > 0, see
Figure 2.1 and Section 2.5.1 for more details. Now we argue that if Λ is stabilizing
with E[Λ(Q1)] = 1, then λc(r) < ∞ holds for r large enough, and for the SINR
graph, if rB is large (in particular N0 > 0) and the condition (2b) holds, then also
λN0,τ <∞.

The fact that λc(r) < ∞ holds for r large for Λ stabilizing is actually a direct
consequence of certain results of Hirsch et al. (2019), but since it was not stated
explicitly in that paper, we present it as a corollary.

Corollary 2.5. If Λ is stabilizing, then the following hold.

(1) There exists r0 ≥ 0 such that λc(r) <∞ holds for all r > r0.
(2) limr→∞ λc(r) = 0.

The proof of Corollary 2.5 is carried out in Section 3.2.1. We will see that after
recalling some elements of Palm calculus and the notion of percolation probability
for Cox processes from Hirsch et al. (2019), the corollary follows immediately from
Hirsch et al. (2019, Theorem 2.9).
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Thus, SNR graphs of stabilizing Cox processes exhibit a supercritical phase if
rB = ℓ−1(τN0) is large enough, and the critical intensity tends to zero as rB → ∞.
Hence, any intensity λ > 0 is SNR-supercritical for rB sufficiently large. That
is, percolation can be obtained via reducing N0 or τ , or via increasing the signal
power parameter P that is fixed to the value 1 in the present paper for simplic-
ity. In practice, it depends on technological development and physical constraints
whether such improvements are possible. We note that the paper Błaszczyszyn and
Yogeshwaran (2013) worked under the assumption that N0 an τ are fixed and thus
formulated its results for large rB in terms of large P .

If d = 2, then for the Poisson point process, Theorem 2.3 guarantees that λN0,τ =
λc(rB) < ∞ for all rB > 0. This relies on the Russo–Seymour–Welsh type result
Meester and Roy (1996, Corollary 4.1) that for r > 0 and λ > λc(r), 3n × n
rectangles are crossed by some cluster of the Poisson–Boolean model Xλ ⊕ Br/2

in the hard direction with probability tending to 1 as n → ∞. This result is
formulated more precisely and slightly more generally as follows (cf. Franceschetti
and Meester, 2007, Theorem 2.7.1). For n, α > 0, let R(α, n) denote the rectangle
[0, αn]× [0, n] ⊂ R

d.

Theorem 2.6 (MR96, FM07). For λ > 0, let Xλ be a homogeneous Poisson point
process on R

2. Fix r > 0. For n > 0 and α > 1, let C(α, n) denote the event
that R(α, n) is horizontally crossed by the Poisson–Boolean model Xλ⊕Br/2. That
is, C(α, n) is defined as the event that there exists a connected component C of
Xλ⊕Br/2 such that for both vertical sides {0}× [0, n] and {αn}× [0, n] of R(α, n),

there exists a point in C ∩ Xλ having distance less than r/2 from that side. If
λ > λc(r), then for any α > 1, we have that limn→∞ P(C(α, n)) = 1.

Now, in the coupled limit λ ↓ 0, r ↑ ∞, λrd = ̺ > 0, the rescaled Cox process
r−1Xλ converges weakly to a Poisson point process with intensity ̺ (Hirsch et al.,
2019, Section 2.2.2). Further, using arguments of Hirsch et al. (2019, Section 7.1),
we will see that for fixed n, the probability that the Boolean model of the Cox pro-
cess crosses a 3nr × nr rectangle in a given direction converges to the probability
that the limiting Poisson–Boolean model crosses a 3n × n rectangle in the same
direction. These together with the stabilization of Λ give us an opportunity to
map the SINR graph to a renormalized percolation process, using the construction
of Dousse et al. (2006, Section 3) involving crossing probabilities. Moreover, if Λ
is stabilizing, then interferences can be controlled similarly to the proof of Theo-
rem 2.4 under the assumption (2b) on the stationary intensity measure Λ, using
this renormalized percolation process. These imply that λN0,τ < ∞ if rB is large.
Actually, it is even true that any λ > 0 exceeds λN0,τ if rB is sufficiently increased.
Similarly, in higher dimensions d ≥ 3, one can use discrete percolation arguments
of Hirsch et al. (2019, Section 5.2) in order to verify an analogous assertion.

Proposition 2.7. Let d ≥ 2 and λ > 0, and let Λ be stabilizing. If supp(ℓ) = [0,∞)
and assumption (2b) of Theorem 2.4 holds, then there exists r0 ≥ 0 such that if
rB ≥ r0, then λN0,τ < λ.

We note that while λN0,τ <∞ follows from the mere assumption that rB is large,
the function λ 7→ γ∗(λ) depends on finer details of the parameters λ, τ , and N0.
E.g., for all λ > 0, γ∗(λ) ≤ 1/τ holds thanks to the degree bounds, see Section 2.4.

We will prove Proposition 2.7 in Section 3.2.2 and discuss its applicability to
the main examples in Section 2.5.1. Note that unlike Theorem 2.4, Proposition 2.7
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does not tell about the case when ℓ has compact support. Indeed, in that case,
rB cannot be increased arbitrarily, and it may happen that λc(rB) = ∞ for all rB
such that ℓ(rB) > 0. Then, SINR graphs also do not percolate for any possible
rB < sup supp(ℓ) and λ > 0, γ ≥ 0.

Although apart from the two-dimensional Poisson case we do not know whether
λc(rB) = λN0,τ holds for given values of the parameters, Proposition 2.7 implies at
least that both critical intensities tend to zero as rB → ∞. This assertion relies on
the well-known scale invariance of Poisson–Boolean models and Poisson–Gilbert
graphs, cf. Dousse et al. (2006, Section 3).

2.3.3. The case of no environmental noise. We now consider the case N0 = 0. We
fix τ > 0. Since for any τ, a > 0 and γ > 0, one has g(γ,a,τ)(X

λ) � g(γ,0,τ)(X
λ), it

follows that

λ0,τ ≤ inf
a>0

λa,τ . (2.7)

In the Poisson case for d = 2, Dousse et al. (2006, Section 3.4) claimed that λ0,τ =
0 and argued that this can be shown analogously to the statement of Theorem 2.3
that λN0,τ < ∞ for all N0 > 0, and that the only difference is that there is no
Boolean threshold. We now show that this claim is true if ℓ has unbounded support,
but it fails in most of the relevant cases, in particular also in the two-dimensional
Poisson case, if supp(ℓ) is compact.

Let ℓ be such that supp ℓ = [0,∞). As for the case d = 2 and Λ ≡ |·|, let us fix τ >
0, and let λ > 0 be arbitrary. By the scale invariance of Poisson–Boolean models
and the fact that λc(1) ∈ (0,∞), it follows that any λ > 0 satisfies λ > λc(r) for all
sufficiently large r > 0. Choosing rB(a) = ℓ−1(τa), we see that rB(a) is well-defined
for all sufficiently small noise powers a > 0, and rB(a) → ∞ as a ↓ 0. The proof
of Dousse et al. (2006, Theorem 1) implies that λa,τ = λc(ℓ

−1(τa)) whenever the
right-hand side of this equation is well-defined. Thus, g(γ,a,τ)(X

λ) percolates almost

surely for all γ, a sufficiently small, and hence so does g(γ,0,τ)(X
λ) � g(γ,a,τ)(X

λ).
Now, for d ≥ 2, in the general Cox case, if supp(ℓ) is unbounded, then letting

N0 ↓ 0 is equivalent to letting rB → ∞. Since g(γ,N0,τ)(X
λ) � g(γ,0,τ)(X

λ) for any
N0 > 0, Proposition 2.7 implies that (2.7) holds and its right-hand side equals 0
if Λ is stabilizing, supp(ℓ) is unbounded, and (2b) holds. In contrast, if supp(ℓ)
is bounded, then for any d ≥ 2, λ0,τ = 0 is only true in the pathological case
λc(rmax) = 0, in particular it never occurs if Λ is stabilizing.

Corollary 2.8. If d ≥ 2 and rmax := sup supp(ℓ) is finite, then λ0,τ ≥ λc(rmax).

The proof of the corollary uses an argument similar to the one in Błaszczyszyn
and Yogeshwaran (2013, Section 3.4.2).

Proof : The statement is trivial if λc(rmax) = 0. Else, note that for any λ > 0
and Xi, Xj ∈ Xλ, if |Xi − Xj | ≥ rmax, then SINR(Xi, Xj , X

λ) = 0. Hence,
g(γ,0,τ)(X

λ) � grmax
(Xλ) for any γ > 0. Choosing 0 < λ < λc(rmax), with proba-

bility 1, g(γ,0,τ)(X
λ) does not percolate for any γ > 0. �

Thus, since Λ ≡ |· | is stabilizing, it follows that Dousse et al. (2006, Corollary 1)
is false for all choices of ℓ with compact support.
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2.4. Estimates on the critical interference cancellation factor. In the Poisson case
Λ ≡ | · | for d = 2, Dousse et al. (2005); Franceschetti and Meester (2007) derived
the following bounds on the critical interference cancellation factor γ∗(λ) defined
in (2.5).

(A) ∀λ > 0, γ∗(λ) ≤ 1
τ .

(B) γ∗(λ) = O(1/λ) as λ→ ∞.
(C) If ℓ has bounded support, then γ∗(λ) = Ω(1/λ) as λ→ ∞.

(A) implies that λ 7→ γ∗(λ) is bounded. In Section 2.4.1 we recover this bound
for any stationary Cox point process and present conjectures regarding its possible
improvements. For the Cox case, in Section 2.4.2 we provide sufficient conditions
under which (B) holds or at least γ∗(λ) tends to 0 as λ→ ∞, while in Section 2.4.3
we investigate generalizations of (C). Figure 2.4 visualizes our results and conjec-
tures.

2.4.1. Intensity-independent bounds. In the Poisson case, (A) is a consequence of
the fact Dousse et al. (2005, Theorem 1) that SINR graphs with γ > 0 have bounded
degrees. This assertion generalizes to any dimension and any simple point process
Tóbiás (2019, Section 4.1.4.1).

Proposition 2.9. Let λ > 0, τ > 0, and N0 > 0. Then, almost surely,

∀γ > 0, ∀i ∈ N, Xi has in-degree less than 1 + 1
τγ in g→(γ,N0,τ)

(Xλ). (2.8)

In particular, for all λ > 0, γ∗(λ) ≤ 1
τ , and P(g( 1

τ ,N0,τ)(X
λ) percolates) = 0.

For N0 = 0, the same proof implies the same assertion apart from the non-
percolation for γ = 1/τ . The proof of the bound (2.8) is analogous to the one of
Dousse et al. (2005, Theorem 1). We note that it even holds in one dimension, and
among the properties of ℓ it only uses that ℓ(|Xi−Xj |) > 0 holds if there is an edge
from Xi to Xj or from Xj to Xi in the directed SINR graph. The arguments of
its proof can also be used in order to derive stronger degree bounds if N0 > 0 and
to show that also the out-degrees in g→(γ,N0,τ)

(Xλ) are bounded if ℓ has unbounded

support; we refrain from presenting here the details.
By (2.8), if γ ≥ 1

τ , degrees in g(γ,N0,τ)(X
λ) are at most 1, and thus all clusters of

g(N0,γ,τ)(X
λ) are pairs or isolated points. This implies lack of percolation. We also

expect that there is no infinite cluster if γ ∈ [ 1
2τ ,

1
τ ), where the degree bound is 2,

for a large class of point processing including the stationary Poisson one. Indeed,
in this regime, all clusters are isolated points, finite cycles or (possible in one or
two directions infinite) paths. This reminds of one-dimensional percolation models,
which are very often subcritical (see e.g. Meester and Roy, 1996, Section 3.2).

The degree constraints also relate SINR graphs to certain k-nearest neighbour
graphs. For k ∈ N and λ > 0, the bidirectional k-nearest neighbour graph gB(k,X

λ)
is defined as the undirected graph where Xi, Xj ∈ Xλ, i 6= j, are connected by an
edge if and only if they are mutually among the k nearest neighbours of each other.
It is easy to see that this graph is almost surely well-defined for stationary Cox
point processes. We have the following lemma, which can also be generalized for a
large class of simple point processes, cf. Tóbiás (2019, Section 4.1.4.1).

Lemma 2.10. For any stationary Λ, for any λ > 0 and k ∈ N, if τ, γ > 0 and
N0 ≥ 0 are such that almost surely, all in-degrees in g→(γ,N0,τ)

(Xλ) are at most

k ∈ N, then g(γ,N0,τ)(X
λ) � gB(k,X

λ).
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Figure 2.2. SINR graphs for d = 2 and Λ ≡ | · | restricted to
[0, 1]2 with different values of γ, where N0 = 2, τ = 1 = 1, ℓ(r) =
min{100, r−4}, λ = 40. The realization for γ = 1

5τ has no edges,

and the one for γ = 1
10τ is still highly disconnected. The ones for

γ ≤ 1
25τ are connected, but the effect of bounded degrees is still

prominent for γ = 1
100τ in comparison with the almost complete

graph corresponding to γ = 0.

The proof of Lemma 2.10 is immediate, therefore we omit it. We use this lemma
in order to derive a conjecture for the two-dimensional Poisson case. In this case
Balister and Bollobás (2013) studied the graph gB(k,X

1), which has the same dis-
tribution as λ1/2gB(k,X

λ) for all λ > 0. In particular, P(gB(k,X
1) percolates) =

P(gB(k,X
λ) percolates) for all λ > 0. By Balister and Bollobás (2013, Section 3),

with high confidence, gB(k,X
1) percolates only if k ≥ 5. That is, this assertion

follows once one proves that certain high-dimensional integrals exceed certain de-
terministic values, but so far the integrals have only been evaluated using Monte
Carlo methods. This is more than simulations but less than a proof. If the re-
sult holds, then by (2.8) and Lemma 2.10, it implies the following improvement of
Dousse et al. (2005, Theorem 1).

Conjecture 2.11. Let Λ ≡ | · | and d = 2. Then for any N0 ≥ 0 and λ > 0,
γ∗(λ) ≤ 1

4τ , and P(g( 1
4τ ,N0,τ)(X

λ) percolates) = 0.

Simulations suggest that the maximum of λ 7→ γ∗(λ) is even lower than 1
4τ ,

cf. Figures 2.2 and 2.3. Conversely, Theorem 2.4(2) implies that for d ≥ 2, gB(k,X
1)

percolates for all k sufficiently large. This was proven in Balister and Bollobás
(2013) for d = 2 and k ≥ 15, and it is intuitively quite clear that this implies
the same statement for any d ≥ 3 for k sufficiently large, although this was not
explicitly stated in Balister and Bollobás (2013).

2.4.2. Upper bounds for large intensities. For b-dependent Cox processes in d ≥ 3
dimensions, we recover (B) in a weaker form. Namely, any γ > 0 becomes subcritical
for large λ whenever the SINR graph has bounded edge length.
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Figure 2.3. SINR graphs for d = 2 and Λ given by a Poisson–
Voronoi tessellation restricted to [−0.1, 1.1]2, from which we only
view the part corresponding to the users in [0, 1]2 in order to handle
boundary effects better. The parameters are N0 = τ = 1, ℓ(r) =
min{ε, r−3} for a certain ε that is smaller than the nearest neigh-
bour distance of the given realization of the Cox process, and λ
much larger than λc(rB). (1) γ = 1

τ : the degree bound is 1, the
SINR graph consists of pairs and isolated points. Note that the

value of γ where the last edge disappears is between 4×105

τ and
5×105

τ . (2) γ = 1
2τ : the degree bound is 2, the SINR graph con-

tains some points with degree 2 but hardly any cycles of length
larger than 2, and it is highly disconnected. (3) γ = 15

100τ : the de-
gree bound is 7. While the graph is still clearly subcritical, the first
larger cycles have already arised. (4) γ = 7

100τ seems to be close
to the critical value γ∗(λ): most of the realization consists of the
two biggest clusters, which do not yet connect up in [0, 1]2. The
degree bound is 15, the average degree is about 3.18. (5) γ = 1

100τ :
the degree bound is 100, the number of points in the realization is
119. The graph clearly appears to be supercritical but is still much
sparser than for γ = 0. (6) γ = 0. The SNR graph is almost com-
plete, it contains 6945 edges out of the 7021 ones of the complete
graph.

Proposition 2.12. If Λ is b-dependent, N0 ≥ 0, τ > 0, further, N0 > 0 or ℓ has
bounded support, then

lim
λ→∞

γ∗(λ) = 0. (2.9)

We will prove Proposition 2.12 in Section 4.1.1.
Further, for d = 2, (B) stays true for b-dependent Cox processes for which Λ(Qδ)

is bounded away from 0 for small enough δ > 0.
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λ

γ∗(λ)

∞ > λN0,τ ≥ λc(rB).

If Λ ≡ | · |, λN0,τ = λc(rB) for d = 2, conj. also for d ≥ 3.

Supercritical

γ∗(λN0,τ ) = 0 (for d = 2,Λ ≡ | · |)

limλ→∞ γ∗(λ) = 0

for Λ b-dependent

and N0 > 0

or supp(ℓ) compact

Subcritical

Subcritical

γ′ := sup
λ>0

γ∗(λ)

1
2τ ≥ γ′: conjectured for stationary Cox p.p.

1
τ ≥ γ′: holds for any point process

1
4τ ≥ γ′: with high confidence for d = 2, Λ ≡ | · |

Figure 2.4. Already proven (in black) and conjectured (in blue)
properties of the λ–γ∗(λ) phase diagram of the SINR graph of a
Cox point process, in case N0, γ, τ > 0 for Λ asymptotically es-
sentially connected under the condition (2a) or (2b), or for rB
sufficiently large for Λ stabilizing under the condition (2b). The
question of the continuity of λ 7→ γ∗(λ) and the one of the unique-
ness of its (local) maximum are open in general, and also whether
its value at λN0,τ equals zero. We note that in the two-dimensional
Poisson case, according to Meester and Roy (1996, Theorem 4.5),
one has that P(grB(X

λc(rB)) percolates) = 0, and this together
with Theorem 2.3 immediately implies that γ∗(λN0,τ ) = 0.

Proposition 2.13. If d = 2, N0, τ > 0, Λ is b-dependent, and Λ(Qδ/2) is bounded
away from 0 for some δ > 0 such that ℓ(δ) > τN0, then as λ→ ∞, γ∗(λ) = O(1/λ).

The proof of Proposition 2.13 will be carried out in Section 4.1.2. The reason
why this proposition is restricted to d = 2 is that its proof uses that in a certain
b-dependent site percolation model, the origin not being contained in an infinite
cluster is equivalent to the origin being surrounded by a circuit of closed sites,
which has no clear analogue for higher dimensions. The applicability of the results
of this section to the main examples will be discussed in Section 2.5.2.
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2.4.3. Lower bounds for large intensities. In Dousse et al. (2005, Section III-C),
(C) was verified for the Poisson case for d = 2 and compactly supported ℓ. It can
easily be generalized to a class of b-dependent Cox point processes as follows.

Corollary 2.14. Let d = 2, supp(ℓ) bounded, and let Λ be b-dependent such that
Λ(Qη) is bounded away from 0 for some η > 0. Then we have γ∗(λ) = Ω(1/λ) as
λ→ ∞.

The proof of Corollary 2.14 will be sketched in Section 4.2. This follows the
lines of the original proof of Dousse et al. (2005, Theorem 2), using some additional
observations. Since this proof involves a dual lattice argument that is not applicable
in higher dimensions, the corollary remains restricted to d = 2. In Section 2.5.2 we
will discuss the applicability of Corollary 2.14 to the main examples.

2.5. Applicability of the results to the main examples.

2.5.1. Phase transitions. We now consider each of the relevant examples of Λ from
Hirsch et al. (2019) recalled in Section 2.1 and discuss the applicability of Theo-
rem 2.4 and Proposition 2.7 to them. For the sake of brevity, we will tacitly assume
that N0 > 0. The case N0 = 0 can be handled according to Section 2.3.3.

Let us note that in the case of a modulated Poisson point process, Λ is b-
dependent for some b > 0 also if the stationary random set Ξ is a generalized
Boolean model with bounded grains (cf. Baccelli and Błaszczyszyn, 2010, Chapter
3). That is, Ξ =

⋃
i∈N G(Xi), where the grains G(Xi) (which depend on the position

of the Cox point Xi but not on the other points of Xλ) are such that there exists
a compact set K ⊆ R

d such that G(Xi)−Xi ⊆ K for all Rd. The classical Boolean
model corresponds to the special case G(Xi) = Br/2(Xi).

Now, all examples are stabilizing and therefore they exhibit a subcritical phase
by Theorem 2.4(1), apart from general modulated Poisson point processes where Ξ
is not b-dependent.

For the modulated Poisson point process with Ξ being a generalized Boolean
model with bounded grains, Λ is b-dependent and Λ(Q1) is bounded. Further, if
λ1, λ2 > 0, or if λ1 > λ2 = 0 and Ξ is a supercritical Boolean model, then Λ
is asymptotically essentially connected. In these cases, λN0,τ < ∞ holds for any
rB > 0 under the general Assumption (ℓ) on ℓ. In particular, this covers the Poisson
case Λ ≡ | · |. Further, by stabilization, λN0,τ < ∞ holds for large rB also if either
λ1 or λ2 is zero, in case ℓ has unbounded support and satisfies Assumption (ℓ). It
is easy to see that if Ξ is a Poisson–Boolean model and λ1 > λ2 = 0, then there
are cases where λc(rB) = ∞ holds for small rB > 0, cf. Figure 2.1. Indeed, if the
Poisson–Boolean model is subcritical, then one can choose rB so small that the Cox–
Boolean model Xλ⊕BrB/2 is still contained in a subcritical Poisson–Boolean model
for any λ > 0. Also for λ2 > λ1 = 0, a supercritical phase may be missing. Indeed,
e.g. for d = 2 and λ > 0, for any supercritical Poisson–Boolean model B(λ0, r0)
with intensity λ0 > 0 and radius r0 > 0, there exists r1 < r0 such that B(λ0, r1)
has no unbounded vacant component (Meester and Roy, 1996, Section 4.6). Then
for Ξ = B(λ0, r0) and λ > 0, let the Cox process Xλ have intensity measure λΛ,
with Λ = λ21Ξc |·| satisfying E[Λ(Q1)] = 1. Then for rB > 0 small, for all λ > 0, the
Cox–Boolean modelXλ⊕BrB/2 is included in B(λ0, r1)c and thus has no unbounded
cluster.
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For a general, not b-dependent Ξ, neither Theorem 2.4 nor Proposition 2.7 is
applicable due to the possible lack of stabilization. However, Λ(Q1) is still bounded
and Λ is absolutely continuous, and therefore a subcritical phase exists for λ1, λ2 ≥ 0
thanks to a comparison to a Poisson–Gilbert graph. Further, if λ1, λ2 > 0, then a
similar comparison yields that λN0,τ < ∞ holds for any rB. These assertions were
proven in Tóbiás (2019, Section 4.2.3.2).

For the shot-noise field, let us recall that we only consider the case when the
kernel k is compactly supported and hence Λ is b-dependent. For this intensity
measure, it may again happen that λc(rB) = ∞ for small rB > 0. Indeed, if the
underlying Poisson point process XS is such that its Boolean model with connection
radius r/2 = diam supp k is subcritical and also rB is small, then the Cox–Boolean
model Xλ⊕BrB/2 is included in a subcritical Poisson–Boolean model for any λ > 0.
Nevertheless, for any shot-noise field, Λ is b-dependent and, although Λ(Q1) is not
bounded, it has all exponential moments thanks to Campbell’s theorem (Kingman,
1993, Section 3.2). Hence, for ℓ with unbounded support satisfying Assumption
(ℓ), λN0,τ <∞ holds for the shot-noise field if rB is large.

On the other hand, there exist shot-noise fields that are asymptotically essentially
connected. For example, take a supercritical Poisson–Boolean model Ξ, and denote
its connection radius by r. Let now k : Rd → [0,∞) be defined as k(x) = ε1{|x| <
r/2}, where ε1 > 0 is uniquely chosen so that E[Λ(Q1)] = 1 for the corresponding
shot-noise field intensity Λ. Since supp(Λ) equals a supercritical Poisson–Boolean
model, Λ is asymptotically essentially connected.

Poisson–Voronoi and Poisson–Delaunay tessellations are asymptotically essen-
tially connected, and thus by (2a), λN0,τ < ∞ holds for any rB > 0 if ℓ has
bounded support. They are neither b-dependent nor bounded, hence the question
of existence of a supercritical phase for supp(ℓ) unbounded remains open. On the
other hand, thanks to the results of Jahnel and Tóbiás (2019), for d = 2 they satisfy
the exponential moment condition in (2b).

2.5.2. Estimates on the critical interference cancellation factor. Let us now discuss
the applicability of Propositions 2.12 and 2.13, and Corollary 2.14 to the main
examples. Each of them requires b-dependence, and therefore they are only ap-
plicable to the Poisson point process modulated by a generalized Boolean model
with bounded grains and to the shot-noise field. For these two examples, Propo-
sition 2.12 immediately applies. For d = 2, Proposition 2.13 and Corollary 2.14
require also that Λ(Qδ) be bounded away from 0 for some δ > 0, which only applies
for the modulated Poisson point process with a b-dependent Ξ and with λ1, λ2 > 0
(for which it holds for all δ > 0).

3. Proof and discussion of phase transitions

This section includes the proofs of the results of Section 2.3. In particular, in
Section 3.1.1 we verify Theorem 2.4(2). In Section 3.1.2, we comment on this proof,
in particular on the interference control argument. Further, Section 3.2 contains
the proof of the results of Section 2.3.2: in Section 3.2.1 we show how Corollary 2.5
can be derived from the results of Hirsch et al. (2019), whereas in Section 3.2.2,
using arguments of Section 3.1.1, we verify Proposition 2.7.

3.1. Proof and discussion of Theorem 2.4.
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3.1.1. Proof of Theorem 2.4 (existence of supercritical phase). For the proof we fix
N0, τ > 0. Now, for γ ≥ 0 and λ > 0, we use the simplified notation g(γ)(X

λ) =

g(γ,N0,τ)(X
λ) (until the end of the present section). Further, we assume that Λ

is asymptotically essentially connected. Thus, by Hirsch et al. (2019, Theorems
2.4, 2.6), λc(r) ∈ (0,∞) holds for all r > 0. We recall that g(0)(X

λ) = grB(X
λ),

cf. (2.4). The proof follows the four-step strategy that was outlined in Section 2.3.1.

STEP 1. Mapping to a lattice percolation problem.

Let r ∈ (υ0, rB), such r exists by (2.4) and (i) – (ii) in Assumption (ℓ). Following
Hirsch et al. (2019, Section 5.2), for n ≥ 1, we let Ξn(nz) denote the union of all
connected components of supp(ΛQn(nz)) that are of diameter at least n/3, and we

say that a site z ∈ Z
d is n-good if

(1) R(Qn(nz)) < n/2,
(2) Xλ ∩ Ξn(nz) 6= ∅, and
(3) for every z′ ∈ Z

d with |z − z′|∞ ≤ 1 it holds that every Xi ∈ Xλ ∩ Ξn(nz)
and Xj ∈ Xλ ∩ Ξn(nz

′) are connected by a path in gr(X
λ) ∩Q6n(nz).

A site z ∈ Z
d is n-bad if z is not n-good.

Next, for a ≥ 0, we define a “shifted” version ℓa of the path-loss function ℓ,
similarly to Dousse et al. (2006), which will be used in order to estimate interference

values from above. Note that any point of Qa(x) is at distance at most a
√
d

2 away
from the centre x of Qa(x). We define ℓa : [0,∞) → [0,∞) as follows

ℓa(r) = ℓ(0)1
{
r <

a
√
d

2

}
+ ℓ

(
r − a

√
d

2

)
1

{
r ≥ a

√
d

2

}
. (3.1)

Note that ℓ0 = ℓ. Now, we define the shot-noise processes

Ia(x) =
∑

Xi∈Xλ ℓa(|x−Xi|), I(x) =
∑

Xi∈Xλ ℓ(|x−Xi|), x ∈ R
d.

Then I0(x) = I(x). By the triangle inequality, for a ≥ 0, I(x) ≤ Ia(z) holds for
any z ∈ Z

d and x ∈ Qa(z). Now, for z ∈ Z
d, n ≥ 1, and M > 0, we define the

following events

An(z) = {z is n-good}, Bn,M (z) = {I6n(nz) ≤M}, Cn,M (z) = An(z) ∩Bn,M (z).

STEP 2. Percolation in the lattice.

If λ > 0 is sufficiently large, then for all n,M sufficiently large, the process of
n-good sites z ∈ Z

d such that I6n(nz) ≤M percolates with probability one (where
Z
d is equipped with its nearest neighbour edges). This immediately follows by a

Peierls argument (cf. Grimmett, 1999, Section 1.4) once we have verified that the
following holds.

Proposition 3.1. Under the assumption (2a) or (2b) in Theorem 2.4, for all
sufficiently large n ≥ 1, λ = λ(n) > 0, and M = M(λ, n) > 0, there exists a
constant qC = qC(λ, n,M) < 1 such that for any L ∈ N and pairwise distinct sites
z1, . . . , zL ∈ Z

d, we have

P(Cn,M (z1)
c ∩ . . . ∩ Cn,M (zL)

c) ≤ qLC . (3.2)

Moreover, for any ε > 0, we can choose λ, n, and M large enough such that qC ≤ ε.

In order to verify this proposition we start with the results of Hirsch et al. (2019)
about the n-good sites.
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Lemma 3.2. For all sufficiently large n ≥ 1 and λ = λ(n) > 0, there exists qA =
qA(n, λ) < 1 such that for any L ∈ N and pairwise distinct sites z1, . . . , zL ∈ Z

d,

P(An(z1)
c ∩ . . . ∩An(zL)

c) ≤ qLA. (3.3)

Moreover, for any ε > 0 and for sufficiently large n, one can choose λ so large that
qA ≤ ε.

Proof : In Hirsch et al. (2019, Section 5.2) it was shown that for asymptotically
essentially connected Λ, the process of n-good sites is 7-dependent. Moreover, for
z ∈ Z

d, we have

lim
n→∞

lim
λ→∞

P(An(z)
c) = 0, (3.4)

where the convergence is uniform in z ∈ Z
d. Let now L ∈ N and z1, . . . , zL ∈ Z

d

pairwise distinct. Let us write [L] = {1, . . . , L}. By 7-dependence, there exists
m ≥ 1 and a subset {kj : j = 1, . . . ,m} of [L] such that An(zk1), . . . , An(zkm) are

independent and m ≥ L
8d

. Now, let q′A(n) = lim supλ→∞ P(An(o)
c)

1

8d . By (3.4),
q′A(n) tends to zero as n → ∞. Hence, for n ≥ 1 sufficiently large, there exists
λ = λ(n) > 0 such that

P(An(z1)
c ∩ . . . ∩An(zL)

c) ≤ P(An(zk1
)c ∩ . . . ∩An(zkm

)c) ≤ P(An(o)
c)

L

8d ≤ qLA,

where qA = 2q′A(n). This finishes the proof of the lemma. �

The main step of the proof of Proposition 3.1 is to prove the following assertion,
in other words, to control the interferences.

Proposition 3.3. Under the assumption (2a) or (2b) in Theorem 2.4, for all
sufficiently large n ≥ 1, for all λ > 0, and for all sufficiently large M =M(n, λ) >
0, there exists a constant qB = qB(n, λ,M) < 1 such that for any L ∈ N and
pairwise distinct sites z1, . . . , zL ∈ Z

d, we have

P(Bn,M (z1)
c ∩ . . . ∩Bn,M (zL)

c) ≤ qLB . (3.5)

Moreover, for any ε > 0, for all large enough n ≥ 1 and for all λ > 0, we can
choose M large enough such that qB ≤ ε.

This proposition is formally analogous to Dousse et al. (2006, Proposition 2)
(apart from the additional technical condition that n has to be large enough). The
proof of Proposition 3.3 is however more involved; it is postponed until Step 4.
Given Lemma 3.2 and Proposition 3.3, Proposition 3.1 can be concluded as follows.

Proof of Proposition 3.1. Let L ∈ N and let z1, . . . , zL ∈ Z
d be pairwise distinct.

By the stationarity of Λ, Cn,M (zi), i = 1, . . . , L, are identically distributed. Using
Lemma 3.2 and Proposition 3.3, we obtain for sufficiently large n, λ = λ(n) and
M =M(λ, n) that

P(Cn,M (z1)
c ∩ . . . ∩ Cn,M (zL)

c)

= P((An(z1) ∩Bn,M (z1))
c ∩ . . . ∩ (An(zL) ∩Bn,M (zL))

c)

≤ P

(( ⋃

S⊆[L] : |S|≥L/2

⋂

i∈S

An(zi)
c
)
∪
( ⋃

S⊆[L] : |S|≥L/2

⋂

i∈S

Bn,M (zi)
c
)

≤ 2max
{
P

( ⋃

S⊆[L] : |S|≥L/2

⋂

i∈S

An(zi)
c
)
+ P

( ⋃

S⊆[L] : |S|≥L/2

⋂

i∈S

Bn,M (zi)
c
)}
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≤ 2

(
L

⌊L/2⌋

)
max{qL/2

A , q
L/2
B } ≤ 2× 2L max{√qAL

,
√
qB

L}.

Putting qC = 4max{√qA,
√
qB} and choosing n, λ,M large enough, the proposition

follows. �

STEP 3. Percolation in the SINR graph.

Now, let n, λ,M be such that the process of n-good sites z ∈ Z
d such that

I6n(nz) ≤ M percolates. If z is such a site, then I(x) ≤ M for all x ∈ Q6n(nz).
Now, as in Dousse et al. (2006, Section 3.3) in the case of a different discrete model,
for an n-good site z such that I6n(nz) ≤ M and for Xi, Xj ∈ Xλ ∩ Q6n(nz) with
|Xi −Xj | ≤ r, we have

ℓ(|Xi −Xj |)
N0 + γ

∑
k 6=i,j ℓ(|Xk −Xj |)

≥ ℓ(r)

N0 + γM
.

Choosing

γ′ =
N0

M

( ℓ(r)

ℓ(rB)
− 1

)
> 0, (3.6)

(where the inequality holds because υ0 < r < rB), we have

ℓ(r)

N0 + γ′M
=
ℓ(rB)

N0
= τ. (3.7)

Thus, for γ ∈ (0, γ′), any two Cox points of distance less than r both lying within
Q6n(nz) for an n-good site z such that I6n(nz) ≤M are connected in g(γ)(X

λ).
Finally, similarly to Hirsch et al. (2019, Section 5.2), we have the following. If

there exists an infinite connected component C of n-good sites z with I6n(nz) ≤M ,
let z, z′ ∈ C with |z− z′| = 1. Then by property (2) in the definition of n-goodness,
there exist Xi ∈ Ξn(nz), X

′
i ∈ Ξn(nz

′). By property (3), we find a path from Xi to
X ′

i in gr(X
λ) ∩ Q6n(nz). Since I6n(nz) ≤ M , all the edges of this path also exist

in g(γ)(X
λ). Hence, g(γ)(X

λ) ∩ (
⋃

z∈C Q6n(nz)) contains an infinite path, which

implies that g(γ)(X
λ) percolates.

Thus, Theorem 2.4 follows as soon as we have proven Proposition 3.3. In Sec-
tion 3.1.2 we will comment on the arguments of this proof and possible generaliza-
tions in least technical terms.

STEP 4. Proof of Proposition 3.3.

We start the proof with splitting the interference into two parts. For x ∈ R
d and

n ≥ 1, we put

I in6n(x) =
∑

Xi∈Xλ∩Q12n
√

d(x)

ℓ6n(|Xi − x|), Iout6n (x) =
∑

Xi∈Xλ\Q12n
√

d(x)

ℓ6n(|Xi − x|).

Further, for z ∈ Z
d, we write Bin

n,M (z) = {I in6n(nz) ≤M} and Bout
n,M (z) = {Iout6n (nz)

≤M}. In order to verify Proposition 3.3, we will first prove the following assertion
about the inner part of the interference.

Proposition 3.4. Under the assumption (2a) or (2b) in Theorem 2.4, for all
sufficiently large n ≥ 1, for all λ > 0, and for all sufficiently large M =M(n, λ) >
0, there exists a constant qB = qB(n, λ,M) < 1 such that for any L ∈ N and
pairwise distinct sites z1, . . . , zL ∈ Z

d,

P(Bin
n,M (z1)

c ∩ . . . ∩Bin
n,M (zL)

c) ≤ qLB . (3.8)
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Moreover, for all ε > 0, for all large enough n ≥ 1, and for all λ > 0, we can choose
M large enough such that qB ≤ ε.

Then we will show that the following proposition holds about the outer part
of the interference under the exponential moment assumption in (2b) on Λ for
unboundedly supported ℓ satisfying Assumption (ℓ).

Proposition 3.5. Under the assumption (2b) in Theorem 2.4 for unboundedly
supported ℓ, for all sufficiently large n ≥ 1, for all λ > 0, and for all sufficiently
large M =M(n, λ) > 0, there exists a constant qB = qB(n, λ,M) < 1 such that for
any L ∈ N and pairwise distinct sites z1, . . . , zL ∈ Z

d,

P(Bout
n,M (z1)

c ∩ . . . ∩Bout
n,M (zL)

c) ≤ qLB . (3.9)

Moreover, for all ε > 0, for all large enough n ≥ 1, and for all λ > 0, we can choose
M large enough such that qB ≤ ε.

Before verifying these propositions, let us show how they imply Proposition 3.3.

Proof of Proposition 3.3. Note that for n, λ,M > 0, if I6n(x) > M , then I in6n(x) >
M/2 or Iout6n (x) > M/2. Using a union bound, it suffices to verify Proposi-
tion 3.3 both with Bn,M (zi) replaced by Bin

n,M/2(zi) and with Bn,M (zi) replaced

by Bout
n,M/2(zi) everywhere in (3.5) for all i ≤ L. Indeed, having these assertions,

we can combine them analogously to the proof of Proposition 3.1. Clearly, it is
enough to prove them without the factors 1/2 in front of M , since M can be chosen
arbitrary large in Proposition 3.3.

We conclude that under the assumption (2b) for unboundedly supported ℓ,
Propositions 3.4 and 3.5 imply Proposition 3.3. It remains to show that under the
assumption (2a) that ℓ has bounded support, Proposition 3.4 alone implies Propo-
sition 3.3. But this is true because for ℓ compactly supported, for all sufficiently
large n, the following holds for all z ∈ Z

d

I in6n(nz) ≤ I6n(nz) =
∑

Xi∈Xλ∩Q6n+2 sup supp(ℓ)(nz)

ℓ6n(|Xi − nz|)

≤
∑

Xi∈Xλ∩Q12n
√

d(nz)

ℓ6n(|Xi − nz|) = I in6n(nz).

�

We now prove Proposition 3.4.

Proof of Proposition 3.4: In order to carry out the proof, we fix λ > 0 and construct
a renormalized percolation process as follows. A site z ∈ Z

d is n-tame if

(1) R(Q12n
√
d(nz)) < n/2,

(2) I in6n(nz) ≤M .

A site z ∈ Z
d is n-wild if it is not n-tame. The process of n-tame sites is ⌈12n

√
d+

1⌉-dependent according to the definition of stabilization. Thus, using dependent
percolation theory Liggett et al. (1997, Theorem 0.0) (similarly to the proof of
Lemma 3.2), in order to verify Proposition 3.4, it suffices to show that P(z is n-wild)
can be made arbitrarily close to 0 uniformly in z ∈ Z

d by choosing first n sufficiently
large in order that the condition (1) is satisfied (note that this condition does not
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depend on λ), and then choosing M =M(n, λ) large enough so that (2) also holds.
We have

P(z is n-wild) ≤ P(R(Q12n
√
d(nz)) ≥ n/2) + P(I in6n(nz) > M).

The first term can be made arbitrarily small by choosing n large enough, according
to the definition of stabilization. Further, by (3.1),

I in6n(nz) =
∑

Xi∈Xλ∩Q12n
√

d(nz)

ℓ6n(|Xi − nz|) ≤ ℓ(0)#
(
Xλ ∩Q12n

√
d(nz)

)

holds for all z ∈ Z
d. In particular,

E[I in6n(nz)] ≤ ℓ(0)λE[Λ(Q12n
√
d)] = (12n

√
d)dℓ(0)λ <∞.

Thus, for any sufficiently large n ≥ 1, P(I in6n(nz) > M) can be made arbitrarily
small uniformly in z ∈ Z

d by choosing M = M(n, λ) large enough. Thus, we
conclude Proposition 3.4. �

It remains to prove Proposition 3.5. We start with a deterministic result about
the shifted versions of path-loss functions ℓ satisfying Assumption (ℓ), the use of
which will become transparent during the proof of the proposition.

Lemma 3.6. If ℓ satisfies Assumption (ℓ), then there exists K0 > 0 such that for
all x ∈ R

d, n ≥ 1, L ∈ N and pairwise distinct z1, . . . , zL ∈ Z
d we have

L∑

i=1

ℓ6n(|x− nzi|) ≤ K0.

Proof : This proof follows Dousse et al. (2006, Section 3.2), where only the case
d = 2 was considered. Under the assumptions of the lemma, since the sites zi, i =

1, . . . , L, are pairwise distinct, the sum
∑L

i=1 ℓ6n(|x− nzi|) can be upper bounded
by

∑
z∈Zd ℓ6n(|x − nz|). Further, the sites zi, i = 1, . . . , L, are contained in the

hypercubic lattice Z
d. Let us write Qx for the cube of Z

d containing x; this is
well-defined for a.e. x ∈ R

d. Now, for such x, for i ∈ N0 and z0 ∈ {z ∈ Z
d : i ≤

dist∞(z,Qx) < (i+1)}, the contribution of ℓ(|nz0−x|) to the latter sum is at most
ℓ(in). Thus, we have

L∑

i=1

ℓ6n(|x− nzi|) ≤
∑

z∈Zd

ℓ6n(|x− nz|)

≤
∞∑

i=1

#{z ∈ Z
d : i ≤ dist∞(z,Qx) < (i+ 1)}ℓ6n(in) =: K(n),

(3.10)
where, a priori, K(n) ∈ [0,∞]. Since ℓ is decreasing, we have for any n ≥ 1 that

K(n) ≤ 2d+

⌈6
√
d/2⌉∑

i=0

ℓ(0)((2i+2)d−(2i)d)+

∞∑

i=⌈6
√
d/2⌉

((2i+2)d−(2i)d)ℓ(i−6
√
d/2).

(3.11)
Writing K0 for the expression on the right-hand side, by (iii) in Assumption (ℓ),
we have that K0 <∞, which implies the lemma. �

We now carry out the proof of Proposition 3.5.
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Proof of Proposition 3.5. We proceed similarly to Dousse et al. (2006, Section 3.2)
(until the estimate (3.15)). We fix λ > 0. By Markov’s inequality, for any s > 0,

P(Bout
n,M (z1)

c ∩ . . . ∩Bout
n,M (zL)

c) = P(Iout6n (nz1) > M, . . . , Iout6n (nzL) > M)

≤ P

( L∑

i=1

Iout6n (nzi) > LM
)

≤ e−sLM
E

[
exp

(
s

L∑

i=1

∑

Xk∈Xλ\Q12n
√

d(nzi)

ℓ6n(|nzi −Xk|)
)]
. (3.12)

Applying the form of the Laplace functional of a Cox point process (cf. King-

man, 1993, Sections 3.2, 6) to the function f(x) = s
∑L

i=1 ℓ6n(|x − zi|)1{x ∈
R

d \Q12n
√
d(nzi)}, we obtain

E

[
exp

(
s

L∑

i=1

∑

Xk∈Xλ\Q12n
√

d(nzi)

ℓ6n(|nzi −Xk|)
)]

=E

[
exp

(
λ

∫

Rd

[
exp

(
s

L∑

i=1

ℓ6n(|nzi − x|)1
{
x ∈ R

d \Q12n
√
d(nzi)

})
− 1

)
Λ(dx)

]]
.

(3.13)

Now, we provide a uniform upper bound on the sum on the right-hand side of
(3.13). We fix K0 satisfying the assumption of Lemma 3.6 for the rest of the

proof. Thus, choosing s ≤ 1/K0 in (3.13), we see that s
∑L

i=1 ℓ6n(|nzi − x|)1{x ∈
R

d \Q12n
√
d(nzi)} ≤ 1. Therefore, using that exp(y)−1 ≤ 2y for all y ≤ 1, we have

exp
(
s

L∑

i=1

ℓ6n(|nzi − x|)1
{
x ∈ R

d \Q12n
√
d(nzi)

})
− 1

≤ 2s
L∑

i=1

ℓ6n(|nzi − x|)1
{
x ∈ R

d \Q12n
√
d(nzi)

}
.

(3.14)

Plugging this into (3.13), we obtain

E

[
exp

(
s

L∑

i=1

∑

Xk∈Xλ\Q12n
√

d(nzi)

ℓ6n(|nzi −Xk|)
)]

≤ E

[
exp

(
2λs

L∑

i=1

∫

Rd\Q12n
√

d(nzi)

ℓ6n(|nzi − x|)Λ(dx)
)]
.

(3.15)

We now estimate the right-hand side of (3.15). For i ∈ [L], we extend the in-
tegration domains R

d \ Q12n
√
d(nzi) to R

d \ Q⌊12n
√
d⌋(nzi) and we subdivide R

d \
Q⌊12n

√
d⌋(nzi) into a union of concentric ℓ∞-annuli Q⌊12n

√
d⌋+2(nzi)\Q⌊12n

√
d⌋(nzi),

Q⌊12n
√
d⌋+4(nzi)\Q⌊12n

√
d⌋+2(nzi) etc. (up to the boundaries). Now for each j ∈ N0,

let us write Aj = Q⌊12n
√
d⌋+2j+2\Q⌊12n

√
d⌋+2j . Note that Aj is covered by the union

of νj = (⌊12n
√
d⌋+2j+2)d−(⌊12n

√
d⌋+2j)d congruent copies Qj,1, Qj,2, . . . , Qj,νj
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of Q1, and νj = |Aj |. Further, for i ∈ [L] and x ∈ Aj + nzi, we have for all suffi-
ciently large n (not depending on j)

ℓ6n(|nzi − x|) ≤ ℓ6n

(⌊12n
√
d⌋+ 2j

2

)
≤ ℓ

(
j − 1 +

6n
√
d

2

)
≤ ℓ(j + 2n

√
d).

Hence, we obtain

E

[
exp

(
2λs

L∑

i=1

∫

Rd\Q12n
√

d(nzi)

ℓ6n(|nzi − x|)Λ(dx)
)]

≤ E

[
exp

(
2λs

L∑

i=1

∞∑

j=0

Λ
(
Aj + nzi

)
ℓ(j + 2n

√
d)
)]

= E

[
exp

(
2λs

∞∑

j=0

νj∑

k=1

L∑

i=1

Λ
(
Qj,k + nzi

)
ℓ(j + 2n

√
d)
)]
.

Since Λ is b-dependent, for any i, i′ ∈ [L], j ∈ N0, and k ∈ [νj ], the identically
distributed random variables Λ(Qj,k + nzi) and Λ(Qj,k + nzi′) are independent if

|nzi − nzi′ | > b+
√
d. In particular, since n ≥ 1, Λ(Qj,k + nzi) and Λ(Qj,k + nzi′)

are b+
√
d-dependent. Hence, there exists a subset of [L] with cardinality at least

L
(b+

√
d+2)d

such that Λ(Qj,k+nzi) and Λ(Qj,k+nzi′) are independent for all n ≥ 1,

j ∈ N0 and k ∈ [νj ]. Hence, an application of Hölder’s inequality yields

E

[
exp

(
2λs

∞∑

j=0

νj∑

k=1

L∑

i=1

Λ
(
Qj,k + nzi

)
ℓ(j + 2n

√
d)
)]

≤E

[
exp

(
2λs(b+

√
d+ 2)d

∞∑

j=0

νj∑

k=1

Λ
(
Qj,k

)
ℓ(j + 2n

√
d)
)] L

(b+
√

d+2)d

. (3.16)

Using that the following extended version of Hölder’s inequality holds for any
sequence (Yi)

∞
i=1 of identically distributed non-negative random variables

E

( ∞∏

i=1

Y pi

i

)
≤ E(Y1), pi ≥ 0, ∀i ∈ N,

∞∑

i=1

pi = 1, (3.17)

we obtain

E

[
exp

(
2λs(b+

√
d+ 2)d

∞∑

j=0

νj∑

k=1

Λ
(
Qj,k

)
ℓ(j + 2n

√
d)
)]

≤
[
exp

(
2λs(b+

√
d+ 2)d

∞∑

j=0

|Aj |ℓ(j + 2n
√
d)Λ(Q1)

)]
. (3.18)

Now, since for i ∈ N0, |Ai| ≤ 2d(⌊12n
√
d⌋ + 2i + 2)d−1, for all sufficiently large n,

the right-hand side of (3.18) is upper bounded by

E

[
exp

(
4λsd

∞∑

j=0

(
2 + 2j + 7× 2n

√
d
)d−1

ℓ
(
j + 2n

√
d
)
Λ(Q1)

)]

≤ E

[
exp

(
4× 7d−1λsd

∞∑

j=0

(
j + 2n

√
d
)d−1

ℓ
(
j + 2n

√
d
)
Λ(Q1)

)]
.



SINR percolation for Cox point processes 299

Note that here, the requirement about how large n has to be chosen does not depend
on λ.

Now, co = supn≥1

∑∞
j=0(j + 2n

√
d)d−1ℓ(j + 2n

√
d) is finite thanks to (ii) in

Assumption (ℓ). Let us now fix αo > 0 such that E[exp(αΛ(Q1))] < ∞, such αo

exists due to the exponential moment condition in (2b). Now, it follows that given
that 0 < s ≤ max{ 1

K0
, αo

4×7d−1λcod
}, we have

P(Bout
n,M (z1)

c ∩ . . . ∩Bout
n,M (zL)

c)

≤ exp(−sML)E[exp(αoΛ(Q1))]
L

(b+
√

d+2)d ≤ qLB ,
(3.19)

where qB := exp(−sM)E[exp(αoΛ(Q1))]
1

(b+
√

d+2)d can be made arbitrarily close
to zero by choosing M = M(n, λ) sufficiently large. This finishes the proof of
Proposition 3.3. �

3.1.2. Discussion about the interference control argument. Let us provide a number
of remarks about the essential points of the proof of Theorem 2.4 part (2) and about
its possible generalizations.

• The proof of Proposition 3.3 requires no asymptotic essential connected-
ness of Λ, only stabilization (and b-dependence under the condition (2b)).
Asymptotic essential connectedness is only needed in order to be able to
use strong connectivity of the underlying Gilbert graph, i.e., to verify
Lemma 3.2 for rB (and thus r) arbitrarily small (depending on the value of
d0).

• The proof of Lemma 3.6 together with the integrability of ℓ shows that
under the exponential-moment and b-dependence assumption (2b), Propo-
sition 3.5 with Iout

6n replaced by I6n everywhere can be proven along the
lines of the proof of the original proposition. The reason for splitting the
interference is just to be able to cover the case of only asymptotically es-
sentially connected Λ for ℓ compactly supported, since for such Λ the proof
of Proposition 3.5 is not applicable.

• Roughly speaking, the final estimate (3.19) in the proof of Proposition 3.5
tells that Bout

n,M (zi)
c, i ∈ [L], are b′-dependent for some b′ not depend-

ing on L. This holds despite the infinite-range spatial dependency of the
interference measured at a given site nzi, since exponential moments of
this interference can be bounded by exponential moments of Λ(Q1) using
Hölder’s inequality and the integrability of ℓ. Such an assertion seems dif-
ficult to show if Λ is only stabilizing. Indeed, then even random variables
of the form E[exp(αΛ(Q1(nzi)))], i ∈ [L], are not b-dependent, and in the
event that the suprema of stabilization radii are larger than n in each of

these L boxes, exponential moments of
∑L

i=1 Λ(Q1(nzi)) can only be es-
timated by the ones of LΛ(Q1) (using Hölder’s inequality). This grows
superexponentially in L and thus cannot be compensated by exp(−sML),
unless Λ(Q1) is bounded. Since we are not aware of any relevant intensity
measure where Λ(Q1) is bounded and Λ is stabilizing but not b-dependent,
we omitted this case from the statement of Theorem 2.4 part (2).

3.2. Proof of the results of Section 2.3.2.
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3.2.1. Proof of Corollary 2.5. Before carrying out the proof, we recall Palm calculus
for Cox processes from Hirsch et al. (2019, Section 2.2). The Palm version Xλ,∗

of a stationary point process Xλ of intensity λ = E[#(Xλ ∩ Q1)] > 0 is a point
process whose distribution is defined via

E
[
f(Xλ,∗)

]
=

1

λ
E

[ ∑

Xi∈Xλ∩Q1

f(Xλ −Xi)
]
, (3.20)

for any bounded measurable function f : Mco → [0,∞), where Mco is the set of
σ-finite counting measures. In particular, P(o ∈ Xλ,∗) = 1.

For any infinite, locally finite graph G = (V,E) and for a vertex v ∈ V , we say
that v ! ∞ in G if v is contained in an infinite connected component of G. Then,
for r > 0,

θ(λ, r) = P

(
o! ∞ in gr(X

λ,∗)
)

(3.21)

denotes the percolation probability of the origin of the Cox–Gilbert graph gr(X
λ).

Then λc(r) = inf{λ > 0: θ(λ, r) > 0}, cf. Hirsch et al. (2019, Section 2.2).
Proof of Corollary 2.5. We first verify (1). Let θ(̺) be the percolation probability
of the Gilbert graph of a stationary Poisson point process with intensity ̺ > 0 and
connection radius 1. By Hirsch et al. (2019, Theorem 2.9), for Λ stabilizing,

lim
r↑∞,λ↓0, λrd=̺

θ(λ, r) = θ(̺).

Let ̺ > 0 satisfy θ(̺) > 0. If λrd = ̺ for r large enough, then θ(λ, r) > 0, thus
λc(r) ≤ ̺

rd
< ∞. This verifies (1). Since ̺

rd
→ 0 as r → ∞, it follows also that

limr→∞ λc(r) = 0. But this is (2). �

3.2.2. Proof of Proposition 2.7. Although it is possible to provide one proof for all
dimensions d ≥ 2, we find it instructive to start with the case d = 2 and to verify the
assertion using crossings of 3n× n boxes in that case. Indeed, this discrete model
lead to the assertion that λN0,τ = λc(rB) in the two-dimensional Poisson case, and
thus using this model may be helpful for future investigations of the precise value
of λN0,τ in the stabilizing Cox case for d = 2 and large rB. Afterwards, we will
sketch the proof for d ≥ 3.

Let d = 2. Let us write B(λ̂, r̂) for the Poisson–Boolean model with intensity

λ̂ > 0 and connection radius r̂ > 0. Further, for r > 0, let ̺c(r) be such that
B(̺c(r), r) is critical. Then, by scale invariance of Poisson–Boolean models, we
have ̺c(r) = r−d̺c(1). We fix ̺ > ̺c(1), then there exists ̺′ < ̺ such that B(̺′, 1)
is still supercritical.

For r > υ0, let us write rB(r) = ̺
̺′ r and λ(r) = ̺′r−d. Then by Assumption

(ℓ) (i), (ii), and the fact that ℓ has unbounded support, ℓ(rB(r)) < ℓ(r) holds for
all r > υ0. Further, let N0(r) and τ(r) be such that rB(r) = ℓ−1(τ(r)N0(r));
such parameters exists since ℓ has unbounded support and satisfies (i) and (ii) in
Assumption (ℓ). We map the Cox–Boolean model C(λ(r), r) = Xλ(r) ⊕ Br/2 to
a discrete edge percolation model similarly to Dousse et al. (2006, Section 3.1),
control the interferences and conclude that if r is large enough, then the SINR
graph g(γ,N0(r),τ(r))(X

λ(r)) with SNR connection radius rB(r) percolates for some
γ > 0 (with probability 1 thanks to stabilization).

For n ≥ 1 and r > υ0, let us write ze = (xe, ye) for the centre of the edge e in the
nearest neighbour graph of Z2. Let us denote the set of such edges by E(Z2). Note
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that each ze is an element of X = {(x/2, y) : x, y ∈ Z}∪{(x, y/2) : x, y ∈ Z}. Let us
write Te(n, r) = [nrxe− 3

4nr, nrxe+
3
4nr]× [nrye− 1

4nr, nrye+
1
4nr] if e ∈ E(Z2) is

a horizontal edge and Te(n, r) = [nrxe− 1
4nr, nrxe+

1
4nr]× [nrye− 3

4nr, nrye+
3
4nr]

if e is a vertical edge. Note that Se is a rectangle with its edges parallel to e having
length 3

2nr and its edges perpendicular to e having length 1
2nr. In particular,

Qnr/2(nrze) ⊂ Te(n, r) ⊂ Q3nr/2(nrze), and Te(n, r) \ Qnr/2(nrze) is the disjoint

union of two nr
2 × nr

2 squares, let us denote their closures by S1
e (n, r) respectively

S2
e (n, r) (in an arbitrary but fixed order for each e). For any edge e in E(Z2), we

say that e is (n, r)-good if

(1) R(Q 3
2nr

(nrze)) <
3
2nr, and

(2) C(λ(r), r) crosses Te(n, r) in the hard direction and both S1
e (n, r) and

S2
e (n, r) in the other direction.

An edge e is (n, r)-bad if it is not (n, r)-good. The process of (n, r)-good edges is
4-dependent as can be seen from the definition of stabilization. We write Jn,r(ze)
for the event in (2) and Fn(ze) for the event that B(̺′, 1) crosses Te(n, 1) in the
hard direction and both S1

e (n, 1) and S2
e (n, 1) in the other direction. (The precise

definitions of these events are analogous to the one in Theorem 2.6, therefore we
leave them to the reader.) Note that by scale invariance of the Poisson–Boolean
model, Fn(ze) has probability equal to the one of the event that B(λ(r), r) =

B( ̺′

r2 , r) crosses Te′(n, r) in the hard direction and both S1
e′(n, r) and S2

e′(n, r) in

the other direction for an arbitrary e′ ∈ E(Z2) and r > 0.
Now, let ε > 0. First, we fix n sufficiently large such that the probability of the

event in (1) is at least 1 − ε/4 uniformly for all r ≥ 1 and any edge e in nrZ2,
and that the probability of Fn(ze)

c is also at most ε/4. The last condition can
be satisfied thanks to the Russo–Seymour–Welsh type result, Theorem 2.6. Next,
as observed in Hirsch et al. (2019, Section 7.1), the restriction of r−1C(λ(r), r) to
a bounded sampling window converges weakly to the corresponding restriction of
B(̺′, 1). Now, for fixed e, the event Fn(ze) has discontinuities of measure 0 with
respect to the Poisson–Boolean model. This implies that for all r > υ0 sufficiently
large, |P(Fn(ze)

c) − P(Jn,r(ze)
c)| can be bounded from above by ε/4 uniformly in

e. Now, for any e, using a union bound and the triangle inequality, we have

P(e is (n, r)-bad)

≤ P

(
R(Q 3

2 rn
(ze)) ≥

3

2
nr

)
+ P(Fn(ze)

c) + |P(Fn(ze)
c)− P(Jn,r(ze)

c)| ≤ 3ε

4
< ε.

Applying Liggett et al. (1997, Theorem 0.0), for all sufficiently large n and large
enough r chosen accordingly, the process of (n, r)-good edges is stochastically dom-
inated from below by a supercritical independent edge percolation process. Thus,
the (n, r)-good sites percolate for all sufficiently large n, r.

Next, the interferences can be controlled analogously to Proposition 3.3. Instead
of {I6n(nz) : z ∈ Z

d} in Step 2 defined in Section 3.1.1, now one should work
with the rescaled interferences {I3rn/2(nrze) : e ∈ E(Z2)} associated to the edges.

For n, r ≥ 1, M > 0, and e ∈ E(Z2), let us write Bn,r,M (e) for the event that
I3rn/2(nrze) ≤ M . Under the assumption (2b), it can be proven analogously to
Proposition 3.3 that for any L ∈ N and for any pairwise distinct e1, . . . , eL,

P(Bn,r,M (e1)
c ∩ . . . ∩Bn,r,M (eL)

c) ≤ qLB
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for some qB ∈ [0, 1), where for fixed, large enough n, r and λ = λ(r), qB can
be made arbitrarily close to 0 by choosing M sufficiently large. Using a Peierls
argument, we see that for all sufficiently large n, r (depending on n), and M
(depending on n, r), the process of (n, r)-good edges e with I3rn/2(nrze) ≤ M
percolates. Just as in Dousse et al. (2006, Sections 3.2, 3.3), this implies percolation
of g(γ,N0(r),τ(r))(X

λ(r)) for γ ∈ (0, γ∗(r)), where

γ∗(r) =
N0(r)

M

( ℓ(r)

ℓ(rB(r))
− 1

)
> 0

(cf. (3.7), here we used again that rB(r) > r > υ0). This holds whenever rB(r) =
ℓ−1(τ(r)N0(r)). Thus, since λ(r) ↓ 0 as r → ∞, Proposition 2.7 follows for small
enough λ > 0. But increasing λ increases the probability of (n, r)-goodness of
any edge, and it is easy to see that also the analogue of Proposition 3.3 works for
larger λ > 0 (at the price of reducing γ > 0 without vanishing). We conclude
Proposition 2.7 for d = 2.

For d ≥ 3, one can proceed with an analogous definition of all the parameters
from the first two paragraphs of the proof for d = 2 (adapted to the value of d),
using a different discrete model. Here, we shall define a site z ∈ Z

d to be (n, r)-
good if it satisfies the definition of n-goodness in Section 3.1.1, Step 1, but with
n replaced by nr and λ by λ(r) (in particular, with Xλ replaced by Xλ(r) and
gr(X

λ) replaced by gr(X
λ(r))) everywhere. For z ∈ Z

d, we write Jn,r(z) for the
event that z satisfies (2) and (3) in the definition of (n, r)-goodness. Then, for any
n, r under consideration, the process of (n, r)-good sites is 7-dependent according

to the definition of stabilization. Further, we let Y ̺′
be a Poisson point process

with intensity ̺′ = λ(r)rd, and we write Fn(z) for the event that in the definition

of (n, 1)-goodness, z satisfies (2) with Xλ replaced by Y ̺′
, and (3) with gr(X

λ)

replaced by g1(Y
̺′
) everywhere. The probability of Fn(z) is independent of the

choice of z and tends to one as n → ∞ thanks to the arguments of Hirsch et al.
(2019, Section 5.2), since the constant intensity measure of the Poisson point process

Y ̺′
is obviously asymptotically essentially connected. Using the scale invariance of

Poisson–Gilbert graphs, we conclude that for z ∈ Z
d,

P(z is (n, r)-bad) ≤ P

(
R(Q6nr(nrz)) ≥

nr

2

)
+P(Fn(z)

c)+|P(Fn(z)
c)−P(Jn,r(z)

c)|,

which can be made arbitrarily large by first choosing n large and then r large
according to n, thanks to the weak convergence of r−1gr(X

λ) to g1(Y
̺′
) as r → ∞,

λ(r) → 0, rdλ(r) = ̺′. Thus, the proof for d ≥ 3 can be completed analogously to
the case d = 2, and the scale invariance of Poisson–Gilbert graphs also implies that
λN0(r),τ(r) tends to zero in this coupled limit. As already indicated in Section 2.3.2,
the proof for d ≥ 3 is also applicable for d = 2. �

4. Proof of results about the critical interference cancellation factor

In this section we prove the results of Section 2.4. Section 4.1 contains the
proofs of the results of Section 2.4.2, in particular we prove Proposition 2.12 in
Section 4.1.1 and Proposition 2.13 in Section 4.1.2. In Section 4.2 we sketch the
proof of Corollary 2.14, the result of Section 2.4.3.



SINR percolation for Cox point processes 303

Throughout this section, we will use the simplified notation g(γ)(X
λ) instead of

the one g(γ,N0,τ)(X
λ), and similarly for directed SINR graphs, because the param-

eters N0 and τ are fixed in the context of these proofs.

4.1. Proof of the results of Section 2.4.2.

4.1.1. Proof of Proposition 2.12. We first consider the case N0 > 0. It suffices
to show that for fixed N0, τ, γ > 0, there is λ0 > 0 such that for all λ > λ0,
P(g(γ)(X

λ) percolates) = 0. By Proposition 2.9, the statement is clear if γ ≥ 1
τ .

Else, let L ≥ 2 be such that γ ≥ 1
(L−1)τ . By (2.8), all in-degrees in g→(γ)(X

λ) are

at most L − 1. Let now (Qj)∞j=1 be a subdivision of Rd into congruent copies of

Qυ′
0/

√
d, where υ′0 = ℓ−1(ℓ(0)/2) exists by Assumption (ℓ). Then, for any j ∈ N, we

have ℓ(|x− y|) ∈ [ℓ(0)/2, ℓ(0)] for all x, y ∈ Qj .
We claim that if g(γ)(X

λ) percolates, then each Qj containing at least one point

Xi ∈ Xλ from an unbounded cluster of g(γ)(X
λ) contains at most 2L+ 2 points of

Xλ. Indeed, otherwise, since Xi is not isolated in g(γ)(X
λ), there exists k 6= i such

that Xk → Xi is an edge in g→(γ)(X
λ). Now, if at least 2L points of Xλ \ {Xi, Xk}

are within distance at most υ′0 from Xi, then

SINR(Xk, Xi, X
λ) =

ℓ(|Xk −Xi|)
N0 + γ

∑
j 6=k,i ℓ(|Xj −Xi|)

≤ ℓ(0)

2Lγ ℓ(0)
2

≤ τ,

where in the last step we have used that γL ≥ L
(L−1)τ >

1
τ . This implies the claim.

Since N0 > 0, any edge in g(γ)(X
λ) has length at most rB. Thus, if g(γ)(X

λ)
percolates, then so does the process of open sites in the following site percolation
model defined on the set of centres C(Qi) of the boxesQi, i ∈ N. The site C(Qi), i ∈
N, is open if there exists j ∈ N such that #(Qj∩Xλ) ≤ 2L+2 and minx∈Qi,y∈Qj |x−
y| ≤ rB. Here, the edge set of the site percolation model corresponds to the ℓ1-
neighbourhood of the sites.

We now show that the process of open sites does not percolate for λ large,
almost surely. This process is clearly b′-dependent for sufficiently large b′ > 0
because Xλ is b-dependent, and openness of a site depends on points of Xλ in a
bounded neighbourhood of the site. Thus, it suffices to show that P(C(Qi) is open)
tends to zero as λ → ∞ uniformly in i. Indeed, applying dependent percolation
theory Liggett et al. (1997, Theorem 0.0), for large λ, the process of open sites
is stochastically dominated by a subcritical independent Bernoulli site percolation
process. By stationarity of Xλ, for all i we have the union bound

P(C(Qi) is open) ≤ P

(
∃j : min

x∈Qj ,y∈Qi
|x− y| ≤ rB, #(Xλ ∩Qj) ≤ 3L

)

≤CrdBP(#(Xλ ∩Qυ′
0/

√
d) ≤ 3L) = CrdBE

(
e
−λΛ(Qυ′

0/
√

d)
3N∑

k=0

λΛ(Qυ′
0/

√
d)

k

k!

)
,

for a suitably large constant C > 0. Clearly, the right-hand side tends to 0 as
λ→ ∞.

The case that ℓ has bounded support (and possibly N0 = 0) can be handled
analogously, replacing rB with sup supp(ℓ), which is a bound on the length of any
edge in g(γ)(X

λ) in this case. �
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4.1.2. Proof of Proposition 2.13. We fix d = 2, N0, τ > 0, and M > ℓ(0). Further,
we fix δ > 0 and c0 > 0 such that ℓ(r) > τN0 for all r ∈ [0, δ] and P(Λ(Qδ/2) >
c0) = 1.

The proof is based on Dousse et al. (2005, Section III-D) in the Poisson case. Let
us summarize that proof in a way that is adaptable to the Cox case. The authors of
Dousse et al. (2005) constructed a square lattice with edge length δ/2 with o being
situated in the centre of a square. They showed that for any square of this lattice,

if the number of Poisson points in the square is more than L′ = (1+2τγ)M
τ2γN0

> 0, then

all Poisson points in this square are isolated in g(γ)(X
λ). This also holds if Xλ is

replaced by any stationary Cox process (or even by any simple point process). Let
us call a square open if it has at most 2L′ Poisson points and closed otherwise.

Next, by the independence property of the Poisson point process, any two squares
are open or closed independently of each other, and thus the open sets form an
independent Bernoulli site percolation process. Now, by elementary properties of
the Poisson distribution (Dousse et al., 2005, Lemma 1), this process is subcritical
for all λ sufficiently large, in which case the origin is almost surely surrounded by a
circuit of closed squares. Then, the proof was concluded by verifying the following
statement. If the origin is surrounded by a circuit of closed squares, then for any
Xi ∈ Xλ ∩Qδ/2, we have Xi 6! ∞. Indeed, the statement is clear if Qδ/2 is itself
a closed square. Else, as it was shown in Dousse et al. (2005, Theorem III-D), if
Xi, Xj ∈ Xλ are situated on two different sides of a circuit of closed squares, then
SINR(Xi, Xj , X

λ) ≤ τ . This statement is entirely deterministic and remains true
after replacing Xλ with any stationary Cox (or even any simple stationary) point
process. It follows that E[#{Xi ∈ Xλ ∩ Qδ/2 : Xi ! ∞ in g(γ)(X

λ)}] = 0, and

thus P(g(γ)(X
λ) percolates) = 0 by stationarity.

In the b-dependent Cox case, the process of closed sites is b′-dependent for all
sufficiently large b′. Our goal is to show that

lim
λ→∞

P(a given square is closed) = 1. (4.1)

Having this, by Liggett et al. (1997, Theorem 0.0), the process of closed sites
is stochastically dominated from below by a supercritical independent Bernoulli
percolation process for large enough λ, and thus almost surely there exists an
circuit of closed squares surrounding o. This allows us to conclude the proposition
analogously to Dousse et al. (2005, Section III-D).

Now we verify (4.1). For µ > 0, we write Y (µ) for a Poisson random variable with
mean µ. Let ε ∈ (0, 1). In order to simplify the notation we writeXλ(·) = #(Xλ∩·).
By Chebyshev’s inequality, we have

P

(∣∣Xλ(Qδ/2(x))− λΛ(Qδ/2(x))
∣∣ > ελΛ(Qδ/2(x))

)

=E

(
P

(∣∣Y (λΛ(Qδ/2(x)))− E[Y (λΛ(Qδ/2(x)))
∣∣ > εE[Y (λΛ(Qδ/2(x)))]

∣∣∣Λ
))

≤E

(
E

( Var(Y (λΛ(Qδ/2)))

ε2E[Y (λΛ(Qδ/2(x)))]2

∣∣∣Λ
))

= E

( λΛ(Qδ/2(x))

ε2λ2Λ(Qδ/2(x))2

)

=
1

ε2λ
E

( 1

Λ(Qδ/2(x))

)
. (4.2)

Under the assumption that Λ(Qδ/2) > c0 almost surely, the right-hand side is finite
for all λ > 0 and tends to 0 as λ → ∞. Now, similarly to Dousse et al. (2005,
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Section III-D), if λ satisfies

λ ≥ 2L′

(1− ε)c0
, (4.3)

where, almost surely, the right-hand side is more than L′

(1−ε)Λ(Qδ/2(x))
for all x ∈ R

2,

then

P
(
Xλ(Qδ/2(x)) ≤ L′) ≤ P

(
Xλ(Qδ/2(x)) ≤ (1− ε)c0λ

)

≤ P
(
Xλ(Qδ/2) ≤ (1− ε)λΛ(Qδ/2(x))

)

≤ P

(∣∣Xλ(Qδ/2(x))− λΛ(Qδ/2(x))
∣∣ > ελΛ(Qδ/2(x)

)
,

and thus by (4.2), (4.1) holds. By (4.3), γ > γ∗(λ) holds once

2(1 + 2τγ)M

τ2γN0
≤ (1− ε)λc0,

or equivalently,

γ ≥ 2M

(1− ε)τ2N0λc0 − 4τM
.

This is true if

γ ≥ M

(1− 2ε)τ2N0λc0
, (4.4)

for λ sufficiently large, namely for λ ≥ 4M
ετN0c0

. Clearly, the lower bound on the

right-hand side of (4.4) is in O(1/λ). Now, for λ ≥ 4M
ετN0c0

so large that the process
of closed sites is stochastically dominated from below by a supercritical independent
Bernoulli percolation process, the origin is almost surely surrounded by a circuit of
closed squares. We conclude the proposition. �

4.2. Sketch of proof of Corollary 2.14. Since the assertion of the corollary is a lower
bound on γ∗(λ) for large λ, it suffices to verify it for N0 > 0 (cf. Section 2.3.3).
We fix d = 2, τ,N0 > 0, M > ℓ(0), and δ > 0 such that ℓ(δ) > τN0. Further, we
assume that η ∈ [sup supp(ℓ),∞) such that Λ(Qη) is bounded away from 0 (such an
η exists by the assumption of Corollary 2.14); we will make stronger assumptions
on η later during the proof.

In the following, we summarize the proof of the assertion γ∗(λ) = Ω(1/λ) from
Dousse et al. (2005, Section III-C) in the Poisson case and afterwards we explain
how it can be extended to the setting of Corollary 2.14. For λ > 0, one maps the
SINR graph g(γ)(X

λ) to a square lattice H with edge length η. The dual lattice of
H, i.e., H shifted by the vector (η/2, η/2), is denoted by H′. Lote that there is a
one-to-one correspondence between the edges of H and the ones of H′ by mapping
an edge e of H to the unique edge of H′ which crosses e. In H, one divides each

square into K2 subsquares of size η
K × η

K , where K ∈ N is defined as K = ⌈
√
5η
δ ⌉.

Further, for λ, γ > 0, one puts

L = inf
x : |x|≤

√
5η/K

⌊ 1

γM

(ℓ(|x|)
τ

−N0

)⌋
=

⌊ 1

γM

(ℓ(
√
5η/K)

τ
−N0

)⌋
. (4.5)

One says that a square of H is populated if each of its subsquares contain at least
one point of Xλ. Further, an edge a of H is open if both squares adjacent to a are
populated and the total number of points of Xλ in all squares of H having at least
one vertex in common with the neighbouring squares of a is at most L + 1. An
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edge a′ of H′ is open if and only if the corresponding edge of H is open. The proof
proceeds by the following lemma Dousse et al. (2005, Lemma 2).

Lemma 4.1 (Dousse et al., 2005). Let p denote the probability that an arbitrary
edge in H′ is closed, and let us write q = 1 − p. Then for any q′ > 0, there
exists λ′ ∈ (0,∞) such that for all λ > λ′ there exists γ′(λ) > 0 such that for
all γ ∈ (0, γ′(λ)], q < q′. Further, λ 7→ γ′(λ) can be chosen such a way that
γ′(λ) = Ω(1/λ) as λ→ ∞.

The process of open edges in H′ is 3-dependent thanks to the independence
property of the Poisson point process. Using dependent percolation theory (Liggett
et al., 1997), one concludes that for all sufficiently large λ > 0, there exists γ′(λ) > 0
such that for all γ ∈ (0, γ′(λ)), the process of open edges percolates with probability
1, and such that γ′(λ) = Ω(1/λ). This implies percolation in the SINR graph thanks
to Dousse et al. (2005, Lemmas 4, 5). These lemmas are similar to Step 3 of the
proof of Theorem 2.4(2), they use that ℓ has bounded support and η ≥ sup supp(ℓ),
but they are easily seen to hold for any simple point process rather than only for
the Poisson one.

Now, if Xλ is a Cox point process with intensity λΛ where Λ is b-dependent,
then the process of open edges in H′ is still b′-dependent for all sufficiently large
b′. Thus, in order to conclude Corollary 2.14, it suffices to verify Lemma 4.1 under
the assumptions of the corollary, for η sufficiently large.

Proof of Lemma 4.1 under the assumptions of Corollary 2.14. For p = 1− q, we
estimate

p = P(a given edge of H′ is open)

≥ P
(
2K2 subsquares of area η2/K2 have at least 1 point of Xλ each, and

an area of 12η2 including these subsquares has at most N points
)

≥ P
(
12K2 subsquares of area η2/K2 have between 1 and ⌊L/(12K2)⌋

points of Xλ each
)

= 1− P
(
at least 1 of 12K2 subsquares of area η2/K2 has 0

or more than ⌊L/(12K2)⌋ points
)

≥ 1− 12K2
P
(
a given subsquare of area η2/K2 has 0

or more than ⌊L/(12K2)⌋ points
)
. (4.6)

Let us fix ε > 0 and define

γ′(λ) =
1

12Mλη2(1 + ε)

(ℓ(
√
5η/K)

τ
−N0

)
. (4.7)

Then for γ = γ′(λ), we have L = ⌊12λη2(1+ ε)⌋ in (4.5). Using this, (4.6), and the
stationarity of Xλ, it suffices to show that for all sufficiently large η,

P

(
1 ≤ #

(
Xλ ∩Qη/K

)
≤ λ(1 + ε)η2/K2

)
(4.8)

tends to one as λ → ∞. Indeed, then, using that γ′(λ) defined in (4.7) is Ω(1/λ),
further that the set of edges of g(γ)(X

λ) is stochastically decreasing in γ, we can
conclude the lemma. But for η so large that Λ(Qη/K) is also bounded away from
zero, the convergence of (4.8) to zero can be verified using an estimate analogous
to (4.2). �
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