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Signal-to-noise ratio of Gaussian-state ghost imaging
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The signal-to-noise ratios �SNRs� of three Gaussian-state ghost-imaging configurations—distinguished by

the nature of their light sources—are derived. Two use classical-state light, specifically a joint signal-reference

field state that has either the maximum phase-insensitive or the maximum phase-sensitive cross correlation

consistent with having a proper P representation. The third uses nonclassical light, in particular an entangled

signal-reference field state with the maximum phase-sensitive cross correlation permitted by quantum mechan-

ics. Analytic SNR expressions are developed for the near-field and far-field regimes, within which simple

asymptotic approximations are presented for low-brightness and high-brightness sources. A high-brightness

thermal-state �classical phase-insensitive state� source will typically achieve a higher SNR than a biphoton-

state �low-brightness, low-flux limit of the entangled-state� source, when all other system parameters are equal

for the two systems. With high efficiency photon-number-resolving detectors, a low-brightness, high-flux

entangled-state source may achieve a higher SNR than that obtained with a high-brightness thermal-state

source.

DOI: 10.1103/PhysRevA.79.023833 PACS number�s�: 42.50.Ar, 42.30.Va, 42.50.Dv

I. INTRODUCTION

Ghost imaging is a transverse imaging modality that ex-
ploits the cross correlation between two photocurrents, aris-
ing from the detection of two distinct but highly-correlated
optical beams, to image an object �1–5�. One beam illumi-
nates the object prior to detection by a single-pixel �bucket�
detector, while the other undergoes only free-space diffrac-
tion before being detected by a high spatial resolution �scan-
ning pinhole or charge coupled device �CCD� camera� detec-
tor. Ghost imaging was initially demonstrated with biphoton-
state light obtained from spontaneous parametric
downconversion �6�, which requires a quantum-mechanical
description for its photodetection statistics. Subsequent dem-

onstrations with thermal-state light �7,8�, which admits to a

semiclassical interpretation of its photodetection statistics,

have generated interest in applying ghost imaging to remote-

sensing applications �9�.
In �10� we developed a Gaussian-state framework for the

analysis of ghost imaging that provides a unified treatment of

biphoton-state and thermal-state illumination �11�. There we

also introduced a classical-state source of maximum phase-

sensitive cross correlation whose ghost-imaging characteris-

tics are most similar to those obtained with biphoton-state

illumination. For all of these sources we determined the near-

field and far-field image resolution they afford in lensless

ghost imaging, and we quantified the low cross-correlation

contrast seen with classical Gaussian-state sources and the

significant advantage, in this regard, that accrues from use of

the biphoton state. We did not, however, address the signal-

to-noise �SNR� behavior of these ghost imagers, although we

noted the relevance of having high cross-correlation contrast

to achieving high SNR. This relation between SNR and con-

trast �visibility� has been noted in other earlier treatments of

ghost imaging as well, e.g., �12�.

The low cross-correlation contrast of classical-state ghost
images—which originates from the appreciable featureless
background in which the desired image is embedded—is eas-
ily remedied by forming cross-covariance images, rather
than cross-correlation images �2,3,10�. This can be accom-
plished by ac coupling the photocurrents into a correlator, as
was done in �13�, or by background subtraction. Neverthe-
less, these techniques do not eliminate the noise �shot noise
and excess noise� associated with the featureless background,
which affects the integration time needed to obtain an accu-
rate cross-covariance estimate. Therefore it is important to
quantify the performance of classical and quantum ghost im-
agers via their signal-to-noise ratios. Furthermore, pursuing
closed-form analytic expressions for their SNRs is beneficial
in identifying the most critical source and detector param-
eters that impact image quality. Several valuable contribu-
tions have been made toward this end �14,15�, but the com-
plexity of the variance expression for the image estimate has
thus far prevented a rigorous treatment of ghost-image SNR
behavior.

In this paper, we shall utilize our previously developed
Gaussian-state framework to derive tractable analytical ex-
pressions for the SNRs of three lensless ghost imagers,

whose configurations are distinguished by the nature of their

light sources. Two use classical-state light, specifically a

joint signal-reference field state that has either the maximum

phase-insensitive or the maximum phase-sensitive cross cor-

relation consistent with having a proper P representation.

The third uses nonclassical light, in particular an entangled

signal-reference field state with the maximum phase-

sensitive cross correlation permitted by quantum mechanics.

Because the low-flux, low-brightness limit of the last state

reduces to vacuum plus a weak biphoton component, our

analysis encompasses biphoton-state ghost imagers. The rest

of the paper is organized as follows. In Sec. II we establish

our notation and list the general assumptions used in our

analysis. Then, for each source, we develop its ghost-image

SNR expression and its low-brightness and high-brightness

asymptotic behavior in both the near-field and far-field re-
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gimes. In Sec. III we compare the required averaging times

for each source to achieve a desired SNR value. We con-

clude, in Sec. IV, with a summary and discussion of our

results.

II. ANALYSIS

The lensless ghost-imaging configuration that we will

consider is shown in Fig. 1 �16�. Here, ÊS�� , t�e−i�0t and

ÊR�� , t�e−i�0t are scalar, positive-frequency, paraxial, signal

�S�, and reference �R� source-field operators, each with cen-

ter frequency �0 and �photons /m2 s units. These operators

obey the canonical commutation relations �17�

�Êm��1,t1�,Ê���2,t2�� = 0, �1�

�Êm��1,t1�,Ê
�

†��2,t2�� = �m,����1 − �2���t1 − t2� , �2�

for m ,�=S ,R. The joint signal-reference source states we

shall employ will all be zero-mean jointly Gaussian states in

which the signal and reference beams have identical

coherence-separable Gaussian-Schell model phase-

insensitive autocorrelation functions given by

�Êx
†��1,t1�Êx��2,t2��

=
2P

�a0
2
e−���1�2+��2�2�/a0

2
−��2 − �1�2/2�0

2

e−�t2 − t1�2
/2T0

2

�3�

for x=S ,R, but vanishing phase-sensitive autocorrelations.

Each source will therefore be distinguished by its �phase-

insensitive and phase-sensitive� cross-correlation functions,

which will be specified in the subsections that follow. In Eq.

�3�: P denotes the photon flux of the signal and reference; a0

is their beam radius; �0 is their coherence radius, which is

assumed to satisfy the low-coherence condition �0�a0; and

T0 is their coherence time.

The source-plane signal and reference field operators both

undergo quasimonochromatic, paraxial diffraction over

L-m-long free-space paths, yielding detection-plane field op-

erators Ê1�� , t� and Ê2�� , t�, respectively. These detection-

plane field operators are also in a zero-mean jointly Gaussian

state, whose second-order correlation functions can be de-

rived from their source-plane counterparts and the free-space

Green’s function �10,17�. The first field, Ê1�� , t�, illuminates

a quantum-limited pinhole photodetector whose photosensi-

tive region is centered at the transverse coordinate �1, and

whose photosensitive area A1 is smaller than the coherence

area of the impinging field state. The second field, Ê2�� , t�,
illuminates a field-transmission mask T��� that is located im-

mediately in front of a quantum-limited bucket photodetector

which collects all light transmitted through the mask �18�.
The photodetectors are assumed to have identical sub-

unity quantum efficiency � and no dark current or electronic

thermal noise. Furthermore, finite-bandwidth postdetection

filters ac couple the photocurrents into the correlator block

from Fig. 1, so that a background-free ghost image is ob-

tained. For analytic simplicity, we assume that the composite

baseband frequency response of the photodetectors and their

ac coupling is given by the difference of two Gaussian func-

tions �19�,

HB��� = F�hB�t�� = e−2�2
/�B

2

− e−2�2
/�N

2

, �4�

where �B is the baseband bandwidth of the detector �taken at

the e−2 attenuation level of the frequency response�,
�N��B is the stop band bandwidth of the ac-coupling notch

around �=0, and F�hB�t�� denotes the Fourier transform of

the composite filter’s impulse response, hB�t�. In order to

minimize suppression of the baseband photocurrent

fluctuations—whose cross correlation yields the ghost

image—the notch bandwidth will be taken to be much

smaller than the bandwidth of the impinging fields, i.e.,

�NT0�1 will be assumed in all that follows.

The ghost image at the transverse coordinate �1 is formed

by time-averaging the product of the detector photocurrents,

which is equivalent to a measurement of the quantum opera-

tor

Ĉ��1� =
1

TI

	
−TI/2

TI/2

dtı̂1�t�ı̂2�t� , �5�

where �20�

ı̂m�t� = q	 d�	
Am

d�Êm�
†��,��Êm� ��,��hB�t − �� , �6�

for m=1,2, with q being the electron charge, Am being the

photosensitive region of detector m, and TI being the dura-

tion of the averaging interval. The field operators appearing

in these photocurrent operators are

Êm� ��,t� 
���Ê1��,t� + �1 − �Êvac1
��,t�

��T���Ê2��,t� + �1 − ��T����2Êvac2
��,t� ,

�
�7�

for m=1,2, where the Êvacm
�� , t��—which are needed to

ensure commutator preservation—are in their vacuum states.

The Ĉ��1� measurement yields an unbiased estimate of

the ensemble-average equal-time photocurrent cross-

correlation function

correlator

ˆ( )C
�
�

pinhole detector, center

(scanning)
�
�

Bucket detector (fixed)

( )T �Object,

L-m free space

propagation

ˆ( )t�
�

ˆ( )t�
�

ˆ ( , )
S
E t�

ˆ ( , )
R
E t�

ˆ ( , )E t
�
�

ˆ ( , )E t
�
�

Source

(classical or quantum)

FIG. 1. �Color online� Lensless ghost-imaging configuration.
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�Ĉ��1�� = �ı̂1�t�ı̂2�t��

= q2�2A1	
A2

d�	 du1	 du2hB�t − u1�hB�t − u2�

	�T����2�Ê1
†��1,u1�Ê2

†��,u2�Ê1��1,u1�Ê2��,u2�� ,

�8�

where we have approximated the integral over the pinhole

detector’s photosensitive region as the value of the integrand

at �1 times the photosensitive area A1. Evaluation of �Ĉ��1��,
for the Gaussian-state sources we shall consider, can be ac-

complished along the lines established in �10�. To find the

ghost-image signal-to-noise ratio �SNR� at the point �1,

SNR 

�Ĉ��1��2

�
Ĉ2��1��
, �9�

where 
Ĉ���
 Ĉ���− �Ĉ����, all that remains is to evaluate

the variance term appearing in the denominator.

We have that the variance term obeys

�
Ĉ2��1�� =
1

TI
2	

−TI/2

TI/2

dt	
−TI/2

TI/2

du�ı̂1�t�ı̂2�t�ı̂1�u�ı̂2�u��

− �Ĉ��1��2. �10�

This expression reveals the primary challenge in evaluating

the measurement variance: the fourth moment of the photo-

currents in the integrand is an eighth-order moment of the

field operators. Fortunately, the moment-factoring theorem

for Gaussian-state optical fields �21,22�—which we used in

�10� to find �Ĉ��1��—allows all field moments to be ex-

pressed in terms of second-order moments. Because this pro-

cedure is straightforward but tedious, we shall confine our

discussion here to a detailed description of the simplification

procedure, rather than a lengthy derivation.

First, we express the integrand on the right-hand side of

Eq. �10� in terms of the field-operator moments, as we have

done in Eq. �8� for the mean. We then use the commutator

relations �1� and �2� to put the integrand into normal order.

This procedure yields the sum of four normally ordered mo-

ments: one eighth-order moment, two sixth-order moments,

and one fourth-order moment. Next, the Gaussian-state

moment-factoring theorem is applied to each term, replacing

higher-order moments with expressions that depend only on

the second-order moments of the fields. Note that the non-

zero terms in the moment-factored expression depend on

whether the source of interest has nonzero phase-sensitive or

phase-insensitive cross-correlation functions. Finally, em-

ploying the coherence separability of the correlation func-

tions, the spatial and temporal integrals in each term are

evaluated separately. It is relevant to note that many temporal

integrals vanish due to our use of ac coupling, i.e., because

HB�0�=0. Moreover, the symmetry properties of correlation

functions can be used to group some nonzero terms so that

the final variance expression is a sum of only eight terms. We

now proceed with the details for each of the three sources

under consideration.

A. Thermal-state light

Lensless ghost imaging with thermal-state light usually

derives its signal and reference sources from 50–50 beam

splitting of a single zero-mean Gaussian-state beam possess-

ing a phase-insensitive autocorrelation function but no

phase-sensitive autocorrelation function, see, e.g., �13�. Tak-

ing the postsplitter signal and reference fields to have the

Gaussian-Schell model autocorrelations from Eq. �3�, it fol-

lows that these fields have the maximum phase-insensitive

cross correlation, given by

�ÊS
†��1,t1�ÊR��2,t2��

=
2P

�a0
2
e−���1�2+��2�2�/a0

2
−��2 − �1�2/2�0

2

e−�t2 − t1�2
/2T0

2

, �11�

and a vanishing phase-sensitive cross correlation, viz.,

�ÊS��1 , t1�ÊR��2 , t2��=0.

Let us begin our thermal-state SNR analysis with near-

field operation, wherein k0�0a0 /2L�1 prevails, with

k0
�0 /c being the wave number associated with the center

frequency �0. In this regime, the detection-plane correlation

functions are approximately equal to those of the source.

With all autocorrelation and cross-correlation functions

specified, evaluating the spatial and temporal integrals in the

moment-factored variance expression is a straightforward ex-

ercise. For the spatial integrals, we assume that a0 exceeds

the transverse extent of the transmission mask by an amount

sufficient to permit the approximation e−���2/a0
2

�T������T����.
For convenience, we define

AT� 
	 d��T����4, �12�

which we will regard as the effective area of the transmission

mask. Our AT� interpretation follows by analogy with the case

of a binary ��T����� 0,1�� mask, for which AT� is the area

over which �T����=1. With this interpretation we have that

AT� /�0
2 is the number of spatial resolution cells in the ghost

image �10�. We also note that the small-pinhole approxima-

tion introduced in the previous section requires �0
2
/A1�1 for

its validity in near-field operation. Finally, we identify the

two assumptions employed in evaluating the variance ex-

pression’s temporal integrals: TI�T0 and �BTI�1. Neither

of these averaging-time conditions is at all surprising. The

former states that we must average over many source coher-

ence times to form a high-quality ghost image. The latter

states that we must average over many photodetector re-

sponse times to achieve this same purpose.

Within the near-field regime—and subject to the assump-

tions given in the preceding paragraph—we will evaluate the

ghost-imaging SNR behavior that prevails under narrowband

and broadband illumination conditions. A source state is said

to be narrowband if �BT0�1, so that the coherence time of

the impinging field state T0 greatly exceeds the �1 /�B
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integration time of the photodetectors. Conversely, a broad-

band source state is one that satisfies �BT0�1, so that the

source’s coherence time is much shorter than the photodetec-

tor’s integration time.

For a narrowband source and near-field ghost imaging

with thermal-state light when AT� /�0
2�30 �e.g., the 2D image

consists of 10	10 or more resolution cells�, we find that the

signal-to-noise ratio is

SNR =
�T��1��4TI/T0

� AT�

�2��0
2

+
�T��1��2

�I
+

4��0
2�T��1��4

3A1�I
+

���BT0�0
2�T��1��2

16�2A1�2
I

2 � , �13�

where I
 PT0�0
2
/a0

2 is the source brightness, i.e., the

source’s average number of photons per spatiotemporal

mode. As expected, this SNR expression grows linearly with

increasing averaging time TI, behavior that will be seen in all

the cases we will consider in this paper. More importantly,

we can give physical interpretations to the terms in its noise

denominator that dominate in low-brightness and high-

brightness operation.

We have chosen to use quantum photodetection theory to

derive all the SNR expressions in this paper. However, as

shown in �10�, quantitatively identical formulas follow from

semiclassical photodetection theory when the signal-

reference state is classical, i.e., when it has a proper P rep-

resentation. The thermal state is classical. It is thus appropri-

ate to replace the photocurrent operators ı̂m�t�� with classical

photocurrents im�t�� that, owing to the assumed ac coupling,

are zero-mean random processes comprised of a shot-noise

component, arising from the discreteness of the electron

charge, plus an excess-noise component, which is propor-

tional to the fluctuations in the photon flux illuminating the

detector. The variance contributions generated by these pho-

tocurrent components scale differently with increasing

source brightness. As a result, we can identify the leftmost

and rightmost terms in the noise denominator of Eq. �13�—
which are the noise terms that dominate at high and low

source brightness, respectively—as being normalized vari-

ance contributions coming from excess noise alone and from

shot noise alone, while the middle terms arise from beating

between excess noise and shot noise. Thus, as the source

brightness grows without bound, the SNR from Eq. �13� in-

creases until it saturates at its maximum value,

SNR = �2�
TI

T0

�0
2

AT�
�T��1��4, �14�

which is limited by the excess-noise term �23�. Roughly

speaking, this maximum SNR equals the number of source

coherence times in the averaging interval divided by the

number of spatial resolution cells in the image and multiplied

by the square of the object’s intensity transmission. Note that

�0
2
/AT� is the image contrast for dc-coupled ghost-image for-

mation in the near field with narrowband thermal-state light

�10�. Hence, the SNR of ac-coupled, high-brightness,

thermal-state ghost imaging is proportional to the image con-

trast realized using the same setup with dc coupling.

At very low source brightness the ghost-image SNR ob-

tained with a narrowband thermal-state source will be con-

trolled by the shot-noise contribution to its noise denomina-

tor. In this case Eq. �13� reduces to

10
-3

10
-2

10
-1

10
0

10
1

10
-7

10
-6

10
-5

10
-4

10
-3

PT0ρ
2

0
/a2

0

S
N

R
T

0
/
T

I

Ω
B

T 0
=

1
0

Ω
B

T 0
=

1
0
0

Ω
B

T 0
=

1
0
0
0
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-4

10
-2

10
0

10
2
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10
-8
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10
-6

10
-5

10
-4

PT0ρ
2

0
/a2

0

S
N

R
T

0
/
T

I

ΩBT0 = 0.1

ΩBT0 = 0.01

ΩBT0 = 0.001

(b)

(a)

FIG. 2. �Color online� Thermal-state ghost-imaging SNR,

normalized by TI /T0, plotted as a function of source brightness

I
 PT0�0
2
/a0

2, for �T��1��=1, AT� /�0
2=104, �0

2
/A1=10, and �=0.9.

Various �BT0 values are shown in the �a� narrowband and �b�
broadband limits. Dash-dotted lines represent low-brightness as-

ymptotes, and dashed lines correspond to high-brightness

asymptotes.
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SNR =
16�2

��

TI

T0

�PA1

�Ba0
2

�I�T��1��2. �15�

In Fig. 2�a� we have plotted the narrowband thermal-

state ghost-imaging SNR from Eq. �13�—along with its

high-brightness and low-brightness asymptotes from Eqs.

�14� and �15�—for several narrowband ghost-imaging sce-

narios.

We now turn our attention to broadband sources, which

satisfy �BT0�1. When AT� /�0
2�12�BT0 holds, we find that

SNR =
�T��1��4TI/T0

� 2�2AT�

���BT0�0
2

+
2�T��1��2

�3�I
+

8��0
2�T��1��4

3�3A1�I
+

���0
2�T��1��2

4A1�2
I

2 � , �16�

where, once again, the leftmost and rightmost terms in the

noise denominator are due to excess noise alone and shot

noise alone. Here too, SNR increases with increasing source

brightness until it reaches its maximum value,

SNR =
��

2�2
�BTI

�0
2

AT�
�T��1��4, �17�

where it is limited by excess noise alone. Aside from insig-

nificant numerical factors, the maximum broadband SNR

differs from the maximum narrowband SNR only through

replacement of 1 /T0 from the narrowband expression with

�B in the broadband expression. This replacement is to be

expected. In the narrowband case TI /T0 is the number of

photocurrent coherence times that are being averaged by the

correlator. This is because the narrowband condition �BT0

�1 ensures that the photon-flux fluctuations are not affected

by the photodetector’s baseband bandwidth limit. However,

under the broadband condition, �BT0�1, the photocurrent

fluctuations have a much longer ��1 /�B� coherence time

than that of the photon flux illuminating the detectors, so it is

�BTI that appears in the broadband maximum SNR formula.

At very low source brightness, the SNR of the broadband

thermal-state ghost imager becomes limited by shot noise

alone and is given by

SNR =
4

��

TI

T0

A1

�0
2

�2
I

2�T��1��2. �18�

Figure 2�b� shows several plots of broadband thermal-state

ghost-imaging SNR, together with its high-brightness and

low-brightness asymptotes.

Thus far we have concentrated on the near-field SNR be-

havior with a thermal-state source. Our results, however, are

easily converted to the far-field regime, in which

k0�0a0 /2L�1. In order to obtain the far-field SNR we must

first propagate the second-order correlation functions from

the source plane to the detection planes. For Gaussian-Schell

model correlation functions this transformation is a simple

replacement of a0 by aL
2L /k0�0, and �0 by �L
2L /k0a0,

when quadratic phase factors that do not affect ghost-image

formation are omitted �24�. Therefore, all of our near-field

thermal-state SNR results can be converted to corresponding

far-field results by making these parameter value changes.

B. Classically correlated phase-sensitive light

Let us now consider a source state that has the maximum

phase-sensitive cross correlation permitted by classical phys-

ics, given the autocorrelation functions in Eq. �3�, but has no

phase-insensitive cross correlation, i.e.,

�ÊS��1,t1�ÊR��2,t2��

=
2P

�a0
2
e−���1�2+��2�2�/a0

2
−��2 − �1�2/2�0

2

e−�t2 − t1�2
/2T0

2

, �19�

and �ÊS
†��1 , t1�ÊR��2 , t2��=0, where we have assumed the

phase-sensitive cross-correlation function is real valued �25�.
In the near-field regime, which is now given by

k0�0
2
/2L�1, we can follow the same assumptions stated in

the previous section for thermal states and arrive at the same

near-field SNR expressions; i.e., Eqs. �13� and �16� apply to

narrowband and broadband near-field operation with this

classically correlated phase-sensitive source state. Further-

more, the high-brightness and low-brightness asymptotes are

as given by Eqs. �14� and �15�, respectively, for the narrow-

band case, and by Eqs. �17� and �18�, respectively, for the

broadband case. Moreover, the physical interpretations we

provided for the thermal-state results continue to apply, with-

out modification, for the classically-correlated phase-

sensitive source.

For phase-sensitive coherence, the far-field regime corre-

sponds to k0a0
2
/2L�1. As stated in the previous section, the

detection-plane �phase-insensitive� autocorrelation functions

are found by substituting aL for a0 and �L for �0. Propagating

the source-plane phase-sensitive cross correlation given in

Eq. �19� involves the same substitutions, but in addition re-

quires replacing ��2−�1�2 by ��2+�1�2, because the far-field

ghost image formed with phase-sensitive light is inverted. It

follows that the far-field SNR expressions are derived from

the near-field SNR expressions by replacing the source-plane
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coherence radius �0 and beam radius a0 by their detection-

plane counterparts, �L and aL respectively, and using

�T�−�1�� in lieu of �T��1��.

C. Maximally entangled phase-sensitive light

We continue to consider signal and reference beams in a

zero-mean jointly-Gaussian state with no phase-insensitive

cross correlation, but now we take the phase-sensitive cross

correlation to be the maximum permitted by quantum phys-

ics. Because quantum ghost-imaging experiments have used

the signal and idler outputs from spontaneous parametric

downconversion �SPDC� as the two source fields, we shall

focus on this case here. The output field operators of SPDC

can be expressed as �26–28�

Êm��,t� = A���Êm��,t� + L̂m��,t� , �20�

for m=S ,R, where �A�����1 is an aperture function

representing the finite transverse extent of the interaction

medium, and the L̂m�� , t� are auxiliary vacuum-state opera-

tors, so that the Êm�� , t� satisfy the free-space field commu-

tator relations. The operator-valued Fourier transforms of

Êm�� , t� ,m=S ,R�, denoted by Âm�k ,�� ,m=S ,R�, are given

by a two-field Bogoliubov transformation of vacuum-state

input field operators, âm�k ,��, i.e.,

ÂS�k,�� = �k,��âS�k,�� + ��k,��âR
†�− k,− �� , �21�

ÂR�− k,− �� = �k,��âR�− k,− �� + ��k,��âS
†�k,�� .

�22�

Here ��k ,���R and �k ,��
1+ i��k ,�� are the canoni-

cal transformation coefficients. In accordance with the

Gaussian-Schell model treatment introduced earlier, we set

�29�

��k,�� = 2�2��1/4�PT0�0
2

a0
2

e−�0
2�k�2/4−T0

2
�2

/4, �23�

and

A��� = exp− ���2/a0
2� , �24�

such that the Êm�� , t�, for m=S ,R, are in a zero-mean jointly

Gaussian state, with phase-insensitive autocorrelation func-

tions given by Eq. �3�, and the maximum permissible phase-

sensitive cross-correlation function,

�ÊS��1,t1�ÊR��2,t2�� =
2P

�a0
2
e−���1�2+��2�2�/a0

2�e−��2 − �1�2/2�0
2

e−�t2 − t1�2
/2T0

2

+ i�2/��1/4� a0
2

PT0�0
2
e−��2 − �1�2/�0

2

e−�t2 − t1�2
/T0

2� . �25�

All other second-order moments, i.e., the phase-sensitive autocorrelation functions and the phase-insensitive cross-correlation

function, are zero. It is worthwhile to point out that when the source brightness I
 PT0�0
2
/a0

2�1, the first term in the square

brackets dominates, and Eq. �25� approaches the classical phase-sensitive cross correlation given in Eq. �19�. However, when

I�1, the second term is much larger than the first, resulting in a much stronger phase-sensitive cross correlation than

permitted in a classical state. If the brightness is lowered to the limit in which there is on average much less than one photon

in the signal and idler beams within a detection interval, the output of the SPDC can be approximated as a dominant vacuum

component plus a weak pair of entangled photons, viz., the biphoton state �10,26�.
To evaluate the ghost-image SNR in the near-field regime �k0�0

2
/2L�1� we utilize the same approximations we have used

for classical phase-sensitive light, now with the cross-correlation function from Eq. �25� employed in lieu of Eq. �19� when

integral expressions are explicitly evaluated. In the narrowband limit, �BT0�1, we find that

SNR =
�1 + 1/�2�I�2TI/T0

� AT�

�2��T��1��4�0
2

+
1

I
� 1

��T��1��2
+

4��0
2

3A1�
� +

���0
2�BT0

16�2A1�T��1��2�2
I

2�1 +
1

�2�I
�� . �26�

This SNR expression captures the full quantum-to-classical

transition seen in ghost imaging with maximally entangled

phase-sensitive light �the output fields from SPDC�, as the

source brightness I is increased. When the source is bright,

i.e., I�1, the first terms in the numerator and the denomi-

nator of Eq. �26� are dominant, yielding the same SNR as

that obtained with narrowband, bright classical maximally-

correlated �thermal or phase-sensitive� light, i.e.,

SNR = �2�
TI

T0

�0
2

AT�
�T��1��4. �27�

For dim-source �I�1� ghost imaging the second term in the

numerator of Eq. �26� dominates the first, and when �T��1��
�1 the last term in the noise denominator is the most sig-
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nificant, yielding an SNR that is linear in photon flux,

SNR =
16

�

TI

T0

�2PA1�T��1��2

�Ba0
2

. �28�

For example, even with the generous parameters values

PT0�0
2
/a0

2=0.01, �0
2
/A1=10, and �BT0=10, it is necessary to

have 107 resolution cells before Eq. �26� deviates apprecia-

bly from the linear dependence on the photon flux P for

�T��1���1. In this regime the SNR is limited by the very low

number of photon pairs detected over a detector integration

time. The SNR achieved with narrowband maximally en-

tangled phase-sensitive light is plotted in Fig. 3�a� for several

�BT0 values. The plots verify the linear low-brightness re-

gime and the high-brightness saturation toward the classical

asymptote. However, as shown in the plotted curves, the

SNR can exceed the bright-source asymptote. When this oc-

curs, there is a finite source brightness that yields the maxi-

mum SNR, and increasing I beyond this threshold will de-

crease the SNR with increasing photon flux. For a given set

of parameters this source-brightness threshold can be found

easily by solving for the roots of a third-order polynomial,

which yields the critical points of Eq. �26�. Although closed-

form solutions for these roots exist, the expressions are too

cumbersome to pursue further in this paper.

If the low-brightness condition of the source �I�1� is

augmented with the low-flux condition

�PAT�

�Ba0
2

� 1, �29�

then the average number of photons per integration time im-

pinging on either detector becomes much less than unity. It

follows that the photodetectors can be replaced with non-

photon-resolving photodetectors without appreciable loss in

imaging functionality, thereby rendering the Fig. 1 ghost-

imaging configuration equivalent to biphoton-state ghost im-

aging with coincidence-counting circuitry �instead of photo-

current correlation�. Thus, narrowband biphoton-state ghost

imaging is also governed by the linear photon-flux SNR for-

mula from Eq. �28� for �T��1���1.

Shifting our attention to the broadband ��BT0�1� limit,

we arrive at

SNR =
�1 + 1/2��I�2TI/T0

� �8AT�

���BT0�0
2�T��1��4

+
D1

I
+

1

2��I
2� �2

�BT0

+
��0

2

�A1
�1 +

1

2��T��1��2�� +
�0

2

8�2A1�T��1��2I3� , �30�

where

D1 

2

�3��T��1��2
+

�8

�BT0

+
8��0

2

3�3�A1

. �31�

When I�1, the first terms in the numerator and denomina-

tor are dominant. Consequently, the SNR approaches the

SNR of classical ghost imaging with a bright �phase-
insensitive or phase-sensitive� maximally correlated broad-
band source, which is given in Eq. �17�.

On the other hand, if the low-brightness condition, I�1,
and the low-flux condition, as given in Eq. �29�, are both
satisfied, the rightmost term in the noise denominator be-

comes dominant, for �T��1���1, yielding
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FIG. 3. �Color online� Nonclassical phase-sensitive Gaussian-

state ghost-imaging SNR, normalized by TI /T0, plotted versus

source brightness I
 PT0�0
2
/a0

2 for a near-field configuration

�k0�0
2
/2L�1� with �T��1��=1, AT� /�0

2=104, �0
2
/A1=10, and �=0.9.

Various �BT0 values are shown in the �a� narrowband and �b�
broadband limits. Dash-dotted lines represent low-brightness as-

ymptotes and dashed lines correspond to high-brightness

asymptotes.
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SNR =
2

�
�BTI

�2PA1�T��1��2

�Ba0
2 �32�

for the broadband biphoton-state SNR expression. As in the

narrowband case, the SNR in this regime suffers from the

paucity of photon pairs detected within the photodetector’s

�1 /�B integration time, which is compensated by averaging

the photocurrent product over many temporal coherence

bins, i.e., employing TI�B�1. Figure 3�b� shows plots of

Eq. �30� for several values of �BT0. It is seen that the linear

photon-flux dependence of the SNR extends well beyond the

low-flux regime. Furthermore, the SNR achieved in the low-

brightness regime �i.e., Eq. �32�� can exceed the bright clas-

sical source asymptote given in Eq. �17�. Similar to what we

found for narrowband operation, the broadband SNR has a

well-defined maximum achieved at finite source brightness.

Increasing the brightness beyond this optimal value reduces

the SNR, which ultimately converges to the SNR attained

with classical sources. All three of these SNR regimes are

clearly identifiable in the Fig. 3�b� SNR plots. For example,

for �BT0=10−2, the SNR is linear in photon flux until I

�10−3, its maximum occurs at I�10−2, then the SNR de-

creases with increasing I until at I�10 it converges to the

bright-source asymptote.

In the far field �k0a0
2
/2L�1� the source-plane phase-

sensitive cross correlation in Eq. �25� must be propagated to

the detection planes �24� before the SNR can be evaluated.

For narrowband sources ��BT0�1� we get

SNR =
�1 + 1/�8�I�2TI/T0

� AT�

�2��T�− �1��4�L
2

+
1

I
� 1

��T�− �1��2
+

4��L
2

3A1�
� +

���L
2�BT0

16�2A1�T�− �1��2�2
I

2�1 +
1

�8�I
�� . �33�

This result simplifies to

SNR =
8

�

TI

T0

�2PA1�T�− �1��2

�BaL
2

�34�

in the low-flux �biphoton-state� limit, defined by Eq. �29�,
with �T�−�1���1, showing that narrowband biphoton-state

ghost-imaging SNR is limited by the number of photon pairs

detected within the detectors’ integration time. On the other

hand, when I�1, the SNR converges to

SNR = �2�
TI

T0

�L
2

AT�
�T�− �1��4, �35�

which, as explained in the previous subsection, is equal to

the bright-source SNR asymptote for far-field ghost imaging

with narrowband classical �maximally correlated� phase-

sensitive light. Similar to the near-field scenarios, the SNR

can have a maximum at finite source brightness. The full

behavior of the far-field biphoton SNR in the narrowband

regime is shown in Fig. 4�a�.
The SNR in the broadband case ��BT0�1�, on the other

hand, is given by

SNR =
�1 + 1/4��I�2TI/T0

� �8AT�

���BT0�L
2�T�− �1��4

+
1

I
� 2

�3��T�− �1��2
+

�2

�BT0

+
8��L

2

3�3�A1

� +
D2

8��I
2

+
�L

2

16�2A1�T�− �1��2I3�
, �36�

where

D2 

�2

�BT0

+
8��L

2

3�A1

�1 +
3

4��T�− �1��2
� , �37�

which simplifies in the biphoton limit to

SNR =
1

�
�BTI

�2PA1�T�− �1��2

�BaL
2 , �38�

for �T�−�1���1. Hence, broadband biphoton-state ghost-

imaging SNR is limited by the number of photon pairs de-

tected within the detectors’ �1 /�B integration time. The I

�1 SNR simplifies to

BARIS I. ERKMEN AND JEFFREY H. SHAPIRO PHYSICAL REVIEW A 79, 023833 �2009�

023833-8



SNR =��

8
�BTI

�L
2

AT�
�T�− �1��4, �39�

which is identical to the bright-source SNR asymptote for

far-field ghost imaging with broadband classical �maximally

correlated� phase-sensitive light. The far-field biphoton SNR

in the broadband regime is shown in Fig. 4�b� for several

�BT0 values.

III. IMAGE ACQUISITION TIMES

All of our SNR expressions are proportional to the cross-

correlation averaging time TI. Consequently it is meaningful

to compare the averaging times required to achieve a desired

SNR value with different ghost imagers. Let us first assume

that all parameters except photon flux are equal in the con-

figurations of interest. Because the classical sources �the

thermal state and the classical phase-sensitive state� yield

identical SNRs, we shall use P�c� to denote their photon

fluxes, reserving P�q� for the photon flux of the maximally

entangled �nonclassical� state. Likewise, the averaging time

for the classical-state ghost imagers to achieve the desired

SNR will be denoted by TI
�c�, while that for the entangled-

state source will be designated TI
�q�.

Then, in the near field and with narrowband sources we

obtain �30�

TI
�q�

TI
�c� =

���

8�2

�Ba0
2

�2P�q�AT�

�0
2

A1

�T��1��2, �40�

where the classical-state sources are assumed to be bright

enough to achieve the saturation SNR in Eq. �14�, but the

quantum source is limited to low brightness so that the non-

classical signature of the source prevails. In the biphoton-

state �low-flux� limit with �T��1���1, Eq. �40� implies

TI
�q��TI

�c�, i.e., the cross-correlation averaging time required

for narrowband biphoton-state ghost imagers to achieve a

desired SNR value is much longer than that for bright

classical-state ghost imagers to do so, given that all other

system parameters are equal.

In the near field using broadband sources we obtain

TI
�q�

TI
�c� =

���

4�2

�Ba0
2

�2P�q�AT�

�0
2

A1

�T��1��2. �41�

Thus, when the quantum ghost imager utilizes a low-flux

�biphoton-state� source and �T��1���1, we find that

TI
�q��TI

�c� prevails, i.e., once again the cross-correlation av-

eraging time required for ghost imaging with broadband

bright classical-state light is significantly shorter than that for

biphoton-state ghost imaging, given equal system param-

eters. Nevertheless, in a very high-resolution ghost-imaging

configuration, high illumination flux �P�q�AT� /�Ba0
2�1� may

be achievable with low-brightness �P�q�T0�0
2
/a0

2�1� maxi-

mally entangled phase-sensitive Gaussian-state light. In this

case Eq. �41� implies that the averaging time for the

nonclassical-state ghost imager can be shorter than that for

the classical-state ghost imager �31�. For example,

�T��1��=1, AT� /�0
2=104, �BT0=10−2, P�q�T0�0

2
/a0

2=10−3, and

�0
2
/A1=10 will yield TI

�q��TI
�c�

/100�2.

Finally, we compare ghost imaging with a broadband

biphoton-state �low-brightness and low-flux� to that with a

bright narrowband classical state. Denoting the parameters

specific to the classical and quantum sources with the super-

scripts �c� and �q�, we obtain

TI
�q�

TI
�c� =

���

�2

�B
�q�a0

2

�2P�q�AT�

�0
2

A1

�T��1��2

�B
�q�T0

�c� . �42�

Because the last factor on the right is typically less than

unity, for �T��1���1, whereas the remaining factors are

greater than unity, the cross-correlation averaging time may

favor either source state. As an example, consider �T��1��
=1, AT� /�0

2=104, P�q�T0
�q��0

2
/a0

2=10−6, �0
2
/A1=10. Then a

biphoton-state source with 1 THz bandwidth and a 1 MHz

thermal-state source will result in TI
�q��4	10−3TI

�c�
/�2,

which shows that the biphoton-state imager enjoys an enor-

mous advantage in averaging time as compared to the

classical-state imager when the quantum efficiency is not un-

duly low.
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FIG. 4. �Color online� Nonclassical phase-sensitive Gaussian-

state ghost-imaging SNR, normalized by TI /T0, plotted versus

source brightness I
 PT0�0
2
/a0

2 for a far-field configuration

�k0a0
2
/2L�1� with �T�−�1��=1, AT� /�L

2 =104, �L
2

/A1=10, and

�=0.9. Various �BT0 values are shown in the �a� narrowband and

�b� broadband limits. Dash-dotted lines represent low-brightness as-

ymptotes and dashed lines correspond to high-brightness

asymptotes.
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So, ghost imaging with bright classical thermal or phase-

sensitive states affords a shorter averaging time to reach a

desired SNR value than does a biphoton-state ghost imager,

given all of the remaining parameters governing the two

ghost-imaging systems are equal and �T��1���1. However,

ghost imaging with low-brightness, but high-flux quantum

sources may achieve shorter averaging times than bright

classical sources, if high quantum efficiency photon-number-

resolving photodetectors are employed. Finally, if ghost im-

aging with a broadband biphoton state is compared to that

with a narrowband bright classical state, the integration time

may favor either source, depending on the ratio of the

achievable source bandwidths, number of resolution cells in

the image, and the biphoton-state source brightness.

IV. DISCUSSION

We have presented a detailed SNR analysis for three

Gaussian-state ghost-imaging configurations. Two used

classical-state light, specifically a joint signal-reference field

state that has either the maximum phase-insensitive or the

maximum phase-sensitive cross correlation consistent with

having a proper P representation. The third used nonclassical

light, in particular an entangled signal-reference field state

obtained from SPDC, with the maximum phase-sensitive

cross correlation permitted by quantum mechanics. Our

analysis concentrated on the narrowband and broadband lim-

its in both the near field and the far field. Because the con-

clusions from our analysis apply, in identical ways, to both

the near-field and far-field regimes, we shall omit references

to these regimes in what follows.

We found that classical-state ghost imager SNRs

saturate—with increasing source brightness—to maximum

values that are inversely proportional to the number of reso-

lution cells on the imaged object. In this high-brightness

limit the SNR is thus proportional to the contrast achieved in

dc-coupled operation. The contrast can be improved by re-

moving the featureless background via ac-coupled photode-

tectors or background subtraction, but SNR improvements, at

high source brightness, require increasing the cross-

correlation averaging time.

Biphoton-state ghost imagers were shown to have SNRs

that are typically proportional to their low photon flux.

Hence, for such imagers, increasing the photon flux of the

source is of prime importance. However, the SNR gain de-

rived from such increases is not unbounded. Our analysis

revealed that the SNR realized with a nonclassical-state

source with low brightness but high flux typically has a well-

defined maximum, after which increasing flux reduces the
SNR. The inverse relation between SNR and photon flux
may seem counterintuitive, but it is consistent with the fact

that the SNR must approach the bright classical-state SNR as

the source brightness increases beyond unity. This classical-

state limit, however, is in general lower than the maximum

SNR achieved by the nonclassical-state source in the low-

brightness regime. Hence, in these cases, the SNR achieved

with nonclassical phase-sensitive light must have a decreas-

ing trend as source brightness increases without bound.

To assess the performance achieved by different sources

we compared their image acquisition times, i.e., the cross-

correlation averaging times needed to achieve a predefined

target value for SNR. We showed that with equal bandwidth

sources, and all system parameters being equal unless other-

wise noted, bright classical-state ghost imagers typically

reach the desired SNR value with a much shorter averaging

time than that needed by a biphoton-state ghost imager.

Therefore, although the biphoton state yields images with

high contrast even in dc-coupled operation, because the bi-

photon imager is photon starved the total time duration it

requires to accumulate the ghost image far exceeds that nec-

essary with a bright classical-state source. Nevertheless, we

saw that there is a broadband, low-brightness, high-flux re-

gime of nonclassical phase-sensitive light that may get by

with much shorter cross-correlation averaging times than

those needed by bright classical-state imagers. The notable

drawback to reaping this quantum advantage, however, is the

necessity for high quantum efficiency photon-number-

resolving detectors.

In conclusion, Gaussian-state analysis provides a robust

and versatile framework for answering some of the most fun-

damental questions associated with developing practical

ghost imagers for remote sensing applications. In this paper,

we have used this framework to study the SNR behavior of

ghost imagers with source states that encompass those that

have been used in proof-of-principle ghost-imaging experi-

ments. Our analysis unambiguously identifies the key param-

eters that limit SNR behavior. For high-brightness classical-

state ghost imaging it is the number of resolution cells in the

image, whereas for the biphoton-state case it is the low pho-

ton flux of the source.
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