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Monte Carlo simulations of an atmospheric phase screen, based on a Kolmogorov spectrum of phase fluctuations,
were performed. Speckle patterns produced from the phase screens were used to derive statistical properties of
power spectra and bispectra of speckle interferograms. We present the bispectral modulation transfer function and
its signal-to-noise ratio at high light levels. The results confirm the validity of a heuristic treatment based on an
interferometric picture of speckle pattern formation in deriving the attenuation factor and the signal-to-noise ratio
of the bispectral modulation transfer function in the mid-spatial-frequency range. The derived modulation
transfer function is also interpreted in terms of the signal-to-noise ratio at low light levels. A general expression of
the signal-to-noise ratio of the bispectrum is derived as a function of the transfer functions of the telescope, the
number of speckles, and the mean photon counts in the mid-spatial-frequency range.

1. INTRODUCTION

Speckle interferometry' was first extended to full imaging

with phase by Knox and Thompson. 2 A more powerful
imaging technique, based the use of closure phase, 3 was
developed in radio astronomy. Independently, for optical
wavelengths, a method to extract closure-phase information
from speckle observations by means of the bispectrum was
developed by the Erlangen group.4 So far, the method,

called bispectral analysis, has been successful in recovering a
10th-magnitude multiple stellar system.5 However, the po-
tential and the limitations of the method have not yet been
investigated fully both in sensitivity and resolution. It is
important to quantify the behavior of the signal-to-noise
ratio (SNR) of the bispectrum, which depends on both the
spatial frequency and the light level.

The analysis of the SNR of the bispectral analysis is paral-
lel to that of the power spectrum analysis and comprises two
stages. First the modulation transfer functions (MTF's)
that describe the combined effect of the telescope and the
atmospheric disturbance are obtained by treating an incom-
ing light as a wave and treating a speckle interferogram as an
intensity distribution. By taking the influence of photon
noise into account, the SNR of the bispectrum at arbitrary
light levels is determined as a function of the classical MTF's
and the mean photon counts.

In most discussions of the SNR in the literature on speckle
interferometry, MTF's are derived in the mid-spatial-fre-
quency range, based on the heuristic interferometric view
(HIV) of the image-forming process.6 From this point of

view, a speckle pattern is regarded as a random interference
pattern produced by a partially coherent incident wave.
The validity of this heuristic treatment is known empirically
in the case of the power-spectrum analysis. The effect of
the atmospheric disturbance is included in only one parame-
ter, the coherence length. The existence of the steep Kol-
mogorov spectrum in phase fluctuations suggests that there
may be some important effects that are not predicted by this

simple approach. A more thorough derivation of the power-

spectrum MTF, based on the phase structure function of the
Kolmogorov theory, was derived by Korff,'7 who used a semi-

analytical approach that took the atmospheric turbulence
properly into account. The derivation of the power-spec-
trum MTF is close to the limit of what can be done analyti-

cally. In order to obtain higher-order MTF's, such as the
bispectral MTF, that take the Kolmogorov theory into ac-
count, it is necessary to resort to Monte Carlo simulations.
This method enables us to test the predictions of the HIV of
the bispectral analysis,8 -10 and it is shown here that those
predictions can be used as a guide to the correct first-order

results. Predictions of the HIV are summarized in Appen-
dix A of this paper.

The modeling of the photodetection process, based on the
rules of conditional statistics, and its application to the pow-
er-spectrum analysis were given by Goodman and
Belsher,11-"3 who formulated an unbiased estimator of the
classical power spectrum from an ensemble of photon-noise-
limited images. They also obtained an expression for the
SNR of the power spectrum in terms of the classical MTF
and the mean photon counts. Their analysis is applicable to
non-photon-counting detection. In other words, they treat-
ed a case in which average photon counts per image were

measurable but neither the positions of the individual pho-
tons nor the total photon counts of individual images were
known. Dainty and Greenaway14 applied the approach of
Goodman and Belsher"1-"3 to photon-counting detection
and pointed out that an unbiased estimator of the power
spectrum is given in the same manner as in the case of non-
photon-counting detection but the expression for the SNR is
different. Since the photon-noise bias can be removed in
each frame, the variance of the power spectrum does not
include terms originating from the fluctuations of the bias.

Wirnitzer'5 gave an unbiased estimator of the classical
bispectrum, applying the method of Goodman and
Belsherll-13 to the bispectral analysis for photon-counting
detection. Wirnitzer also obtained the SNR in the high-
and low-light limits by evaluating the corresponding leading
terms in the power of photon counts. This was the first
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realistic attempt to estimate the limiting magnitude of the
bispectral analysis. However, as was first pointed out by
Karbelkar and Nityananda,9 the classical bispectral MTF
adopted by Wirnitzer and the SNR in the high-light limit do
not agree with those derived from the treatment based on
the HIV.

Monte Carlo simulations of an atmospheric phase screen,
based on the Kolmogorov spectrum derived by Tatarskii,' 6 ,17

were made in order to study statistical properties of the
bispectral MTF at high light levels. The algorithm and the
computation are described in Sections 2 and 3, respectively.
The results of the simulations for a 2-m telescope are pre-
sented in Section 4. The results are compared with those
obtained by using the interferometric view in Section 5.
The MTF obtained by the simulations is reinterpreted to
yield the SNR at low light levels in Section 6. In Section 7
the discussion of the SNR is generalized to arbitrary light
levels and arbitrary telescope sizes by modeling of the photo-
detection process and the approximate MTF's in the mid-
frequency range. Finally, in Section 8 the SNR in the recov-
ered map is considered. An estimate of the practical limit-
ing magnitude is discussed along with the limitation in
resolution.

2. ALGORITHM

The simulations are based on the Kolmogorov theory of
turbulence and refractive-index fluctuation' 6-'8 and on re-
cent observations of the altitude dependence of the refrac-
tive-index structure constant Cn2 (e.g., the La Silla Seeing
Campaign19' 20). The Kolmogorov theory provides mathe-
matical expressions of the atmospheric disturbance on a
light-wave propagation as two-dimensional spectral densi-
ties of phase fluctuation and amplitude fluctuation and the
cross spectral density of the two. On the other hand, recent
observations indicate that most of the turbulence is pro-
duced at the boundary layer and that the high-altitude tur-
bulence contributes a relatively small fraction of the overall
seeing degradation. We therefore assume that the major
disturbance appears as phase fluctuations in the near-field
limit and that the amplitude fluctuation (scintillation) and
the cross correlation of the phase and the amplitude fluctua-
tions are negligible to first order.

In the near-field limit, the spectral density of the phase
fluctuation at the aperture plane of a telescope is given by

FS(Kr) = 0.03321rk2[J Cfl2(L)dL]Kr-11/3, (2.1)

where Kr = (Kx
2

+ KY
2

)1/
2

is the two-dimensional radial spatial
frequency, k is the wave number, and f C,2(L)dL is the
integrated structure constant of the refractive-index fluctu-
ation over the optical path through a turbulent medium.

Since the spectral density constrains the frequency-de-
pendent variance of the fluctuation but not the probability
distribution, we further assume a Gaussian probability dis-
tribution with zero mean. In what follows, 4(x) denotes the
phase at the aperture plane of a telescope and is a real
function of x, and @(K) denotes its Fourier transform, which
is a conjugate-symnmnetric-complex function of K. At each
point over one half of the K space, @(K), a complex random
number whose modulus is a Gaussian random number with a
variance of FS(Kr)AK and whose phase is a uniform random

number between 0 and 27r, is generated. AK denotes an area
in K space equaling (27/lmax)2 , where 1

max is the size of the
square phase screen. A conjugate-symmetric-to-real Fouri-
er transform from K to x space then creates a monochromatic
phase screen b(x) at A = 27r/k.

An idealized telescope is simulated simply by a circular
aperture on the phase screen. At each point of the aperture
plane, the complex amplitude T(x) = exp[ib(x)] is calculat-
ed. Another Fourier transform simulates the light-wave
propagation from the aperture plane to the image plane, and
from the squared modulus of the Fourier transform of I(x),
a monochromatic speckle pattern, ['I'(s) 12, is obtained, where
s denotes the coordinate on the image plane. Since the
phase fluctuations are simply proportional to the wave num-
ber k, the finite-bandwidth effect is taken into account by
averaging over monochromatic speckle patterns at equally
spaced wave numbers covering the bandpass. Thus, from
one evaluation of '(x), multiple IjII(s)I2 are generated and
averaged to produce one speckle interferogram I(s). If Tay-
lor's hypothesis of frozen-in turbulence2' and a uniform
translation by a constant wind velocity are assumed, a con-
tinuous observation can be simulated by considering a series
of apertures displaced by a distance that is typically the
coherence length, r,.

In the data reduction, many short-exposure frames are
processed to derived statistics. The Fourier transform Ij(u)
of the speckle interferogram of the jth frame Ij(s) is taken to
form the bispectrum,

B3j")(u,, u2) = 1j(u1)Ij(u2 ) 1j(-U1 '-U"9 (2.2)

where u denotes the spatial frequency on the image plane.
For n frames, both the sum of bispectra,

n

E' B[j(3)(Ul, U2),

j=1

and the sum of square moduli,

jf3jl)(U,, U2)1
2
,

(2.3)

(2.4)

are calculated. The unbiased estimator of the ensemble-
average bispectrum is

n

1 B3j (3)(Ul, U2)

0 (N uP U2)) = j1, (2.5)
n

where ( ) indicates an ensemble average. Likewise the un-
biased estimator of the variance of the bispectrum per frame
is

n

> IA'j(3)(u, U2) 12-n1(B3(U, U2))12

u2[B3(u3 , U 2)I = j1 

(2.6)

In the case of the bispectral MTF, the mean value is real,3
since the atmospheric disturbance is statistically isotropic
and the ideal telescope is static and symmetric. After aver-

n

j=1
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aging over enough samples, the SNR of the MTF per frame

is defined as

N[B~(u, u2 )] =Re[(B(3)(ul, u2))] (2.7)

77

D

Henceforth a SNR is taken to mean a SNR per frame

unless specified otherwise. The SNR in the recovered map

is discussed in Section 8.

3. COMPUTATION

The simulations were made at a wavelength X = 0.55 ,gm with

a fractional bandwidth of 0.1. At this wavelength, the inte-
grated structure constant of the refractive-index fluctua-
tion,

J C"
2
(L)dL = 5 X I0O-

3
ml/'

3
, (3-1)

was adopted corresponding to 1-arcsec seeing. This is ap-

proximately Roddier's value.2 2 It was found experimentally
that five monochromatic speckle interferograms produced
at equally spaced wave numbers within the bandpass were
enough to obtain a reasonable averaged speckle interfero-

gram.
In order to include wave-front degradations at small

scales, the sampling interval on the phase screen must be
significantly smaller than the coherence length r,. On the
other hand, the linear size of the phase screen (lma,) must be
significantly larger than the primary mirror of the telescope
so that the large-scale disturbance is simulated properly.
Both the sampling interval and the ratio between the size of
the phase screen and the diameter of the primary mirror
lmax/D were determined empirically. The sampling interval
Al was chosen to be 2 cm, so that 49 phase data were obtained

within a square area of r,2 for r, = 14 cm. It was found that

fluctuations with correlation scales larger than four times
the telescope diameter mainly caused image wandering but
did not affect the power spectrum of the bispectrum of a

speckle interferogram. The ratio lmax/D must be at least 4.

The maximum practical array size on the computer used, a
VAX/750, is 5122 when the memory access time and the CPU

C

D

Fig. 2. Two-dimensional coordinate system (D t), adopted to rep-
resent a two-dimensional cross section of the four-dimensional bi-

spectrum b(3)(t, 0,0, ii), and that of the SNR. uj = (D, 0) and U2 = (0,
w) are perpendicular to each other, and the third spatial frequency
-Ul-U2 = (-i,-n) has the largest modulus (r + ,12)1/2. Therefore
the circle t2 + r7

2
= (D/X)

2
forms the boundary, where D/X is the

telescope-cutoff frequency.

time for the fast Fourier transform are taken into account.
When the array size is combined with the sampling interval
Al, the size of phase screen is (512Al)

2
10 m X 10 m. Since

the size of the phase screen is still smaller than the typical
outer scale of the atmospheric turbulence, the Kolmogorov
theory can safely be assumed. The maximum primary mir-
ror size of the resultant simulated telescope is about 2.5 m or

128 pixels in diameter. In practice, we concentrated on a 2-

m telescope but also made calculations for a 1-m telescope

for comparison. In producing images, 2562 -sized fast Fouri-

er transforms were made to satisfy the Nyquist sampling
requirement. A cross section of a phase screen is shown in

Fig. 1.

Unfortunately the entire four-dimensional bispectrum is
beyond the capacity of the computer used. It is, however,
possible to get a good insight into the MTF from a two-

dimensional cross section of the bispectrum, since the atmo-
spheric disturbance was already assumed to be locally iso-

tropic in the Kolmogorov theory. The cross section of the
bispectral MTF was chosen so that ul and u2 are perpendic-
ular to each other because of the convenience in drawing
two-dimensional contour maps (Fig. 2). Therefore in a four-

dimensional expression the cross section is

13f)(j; 0, 0, Oq) = I(, 0)I(0, )I(- n,-). (3.2)

It should be noted that the third spatial frequency (-ul -

u2) has the largest modulus, (?e + r/2)1/2, among the three
and that the circle,

e2 + 7 2 = (D/X)2, (3.3)

forms the boundary of the bispectrum, where D/X is the

telescope cutoff frequency.

coordiate(r)

Fig. 1. Cross section of a simulated phase screen, plotted as a

function of the x coordinate on the aperture plane.
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4. RESULTS OF THE SIMULATIONS

The results of the computations are the normalized bispec-
tral MTF's, defined as

(B,(3)(0, 0)) (4.1)

Since fluctuations in the total intensity I(0) = f I(x)dx are
not considered,

(fr')(O, 0)) = A(0)M = const.,

and then

(b')(ul, U2)) = (T(u,)T(u2)T(-u1 -U2))

(4.2)

(4.3)

where i(u) = 7(u)/l(0). For the same reason, the SNR in the
normalized bispectral MTF is

SNR[6(')(uj, u2 )] = SNR[f(3)(u,, U2)]- (4.4)

The r and -q axes on the t-77 plane correspond to the
normalized power-spectrum MTF:

(5(3)(D, 0, 0, 0)) = (T(r, 0)i(0, 0)T(-, 0))

= (T(D, 0)1T(¢, 0)*)

= (JT(I, 0)12), (4.5)

and, similarly,

(&(6 )(0, 0, 0, n)) = ( I(o 77)12). (4.6)

The normalized MTF of a 2-m telescope is shown in Fig. 3.
The statistics are derived from 500 interferograms sampled
from independent portions of 50 different phase screens to
ensure the statistical independence of instantaneous bispec-
tra. One pixel in spatial frequency corresponds to 0.173

0

6o

6

6i

0.2 0.4 0.6 0.8 1.0
( t A)

Fig. 4. Contour map of the normalized OTF of the telescope, t(3)(¢,

0, 0, i7), drawn on the {-17 plane in a logarithmic scale. The numbers
labeling contours indicate powers of 10.
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Fig. 3. Contoui
1) for a 2-m teles
The numbers lal

0.2 0.4 0.6 0.8 1.0
( (DA)

Fig. 5. Contour map of the attenuation factor, &(3)(t, 0, 0, 7) for a 2-
m telescope, drawn on the A-,1 plane in a logarithmic scale. The
numbers labeling contours indicate powers of 10.

3 - \)arcsec-1 = (1.95 cm)/(0.55 ktm) = 0.01 D/X, and the 102nd
I I _t_-x > 1)pixel corresponds to the telescope cutoff frequency, D/X.

0.2 0.4 0.6 0.8 1.0 In understanding the physics of the results, it is conve-
( ( i)) nient to introduce a concept of the attenuation of the bispec-

r map of the normalized bispectral MTF b(3)(D, 0, 0 tral MTF, since the atmospheric disturbance is regarded as a
cope, drawn on the {-71 plane in a logarithmic scale. low-pass filter of the spatial-frequency information. The)eling contours indicate powers of 10. attenuation factor (ATF) of the bispectral MTF, &(3)(t, 0, 0,

9
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0) is defined along with the optical transfer function (OTF)
of the telescope, j(3)(D, 0, 0, 7), as

(a(3)(~' 0, 0, a)) = (b(3( 0, 0, 1))
F'3)(' 0, , ,)

(4.7)

where 1(3)(¢, 0, 0, 77) is static and real. The OTF is the

normalized bispectrum of the Airy pattern and thus is the
normalized MTF under the coherent illumination. It could
also be interpreted as the relative weight of the frequency
components or the relative redundancy of the triangular
baselines (both closed and nonclosed) on the primary mirror.
To avoid confusion, it should be noted that the attenuation

is the combined effect of the atmosphere and the optics and

thus that the ATF depends on the OTF even for a given

atmospheric condition. The OTF and the ATF are shown in
Figs. 4 and 5, respectively. The OTF is a monotonically

decreasing function of r and 7. It is fairly flat at (r + 772)1/2

' 0.5 D/X and then falls more steeply at higher frequencies.
The ATF, and thus the MTF, behave in a more complicat-

ed manner. The SNR of the classical MTF or the saturated
SNR at high light levels is shown in Fig. 6. The behavior of

the SNR is quite similar to that of the ATF. Semiquantita-
tively, the contour maps of the ATF and the SNR can be

classified into five distinct regions in spatial frequency as

follows.

A. Low-Frequency Region [(f2 + n72
)
1

/
2

< 0.1 D/XA

The ATF is larger than 0.01 and the SNR is larger than

unity. The information of this region originates from the
envelopes of instantaneous interferograms. Even this low-
frequency region has better information than a seeing disk
obtained by a long time exposure, since the effect of image

wandering is removed.

9

Iq

6

'0

Cld

6E

0 0.2 0.4 0.6 0.8 1.0

Radial Spatial Frequency Jul (A)

Fig. 7. Power-spectrum atmospheric transfer function l(u)12,
plotted as a function of the modulus of the radial spatial frequency

ul.

B. On-Axis Region (D = 0, 77 = 0)

The power-spectrum ATF is plotted as a function of radial
frequency in Fig. 7, since it is statistically isotropic. The
ATF falls off steeply at low frequencies (<0.1 D/X) and then
levels between 0.1 D/X and 0.8 D/X at around 4 X 10-3.

Above 0.8 D/X, the ATF slowly rises up to 10-1 at D/X. This

increase in the ATF at high spatial frequencies is not fast
enough to compensate for the steep fall of the OTF, and the
power-spectrum MTF monotonically falls off, as is shown on

the axes in Fig. 3. The SNR is larger than 0.8 up to D/X.

C. Near-Axis Region (D • 0.1 D/X, or i7 ' 0.1 D/X)
The ATF falls off steeply to 10-4, and the SNR decreases to
0.3 as the plot moves vertically saway from each axis. The

bispectral components are the combination of the low-fre-
quency Fourier components and the power spectrum.
Phases of the bispectral components in this region are effec-
tively local phase differences of nearby Fourier components,
which are used in the Knox-Thompson method. 2

D. Mid-Frequency Region [r, i1 > 0.1 D/X and (r2 + 772)1/2

< 0.8 D/XI

A large triangular plateau of the ATF with a mean value of 3

X 10-5 is evident in Fig. 5. In this region, the behavior of the
0.06 CJ ( \MTF is determined mainly by that of the OTF. The MTF

falls from 10-4 to 10-6. The SNR is between 0.1 and 0.2.

0.1 EJ E. High-Frequency Region [r2 + X7
2

(D/X)
2 J

The diffraction-limited information lies in this region. Be-
cause of the steep fall of the OTF, the MTF is very small

0 2 (<10-7). The SNR is smaller than 0.1.

-0.

0.6 I _ = 1 5. COMPARISON WITH THE HEURISTIC

0.2 0.4 0.6 0.8 1.0 INTERFEROMETRIC VIEW

((A)

Fig. 6. Contour map of the SNR of the bispectral MTF SNR[b(
3
)(D,

0, 0, 7)] for a single frame obtained with a 2-m telescope, drawn on
the t-77 plane. This map shows the saturated SNR at high light
levels.

It is interesting to compare the results described in section
four with the predictions obtained by using the HIV of the
image-forming process. A brief description of this view is

given in Appendix A, and a detailed discussion is found in

l I l l l l l l l I

. , . , . I . I
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Ref. 10. The HIV predicts that the power-spectrum ATF is
approximated by n,-1 = (rI/D) 2, where n, is the number of
speckles, and that the SNR of the power spectrum is unity in
the mid-frequency range. It also estimates that the bispec-
tral ATF in the mid-frequency range is about n,- 2

= (r,/D)4

and that the SNR is given by n,-1/2 = r/D. The bispectral
ATF and its SNR are therefore related by

(5.1)

Thus the similarity of the contour maps of the ATF and the
SNR, which are plotted in logarithmic scale in Figs. 5 and 6,
is naturally explained by the HIV. For r, = 14 cm and D = 2
m, n, = 204. The flat portion of the simulated power-
spectrum ATF between 0.2 D/I and 0.8 D/A is 4 X 10-3 on
average, whereas the value predicted by the HIV is 5 X 10-3.

The SNR of the power spectrum lies between 0.6 and 0.8 and
is approximately unity. At the mid-frequency region, the
simulated bispectral ATF has an average value of 3 X 10-5,
whereas the value predicted by using the HIV is 2 X 10-5.
We consider this agreement good.

The simulations were also made for a 1-m-diameter tele-
scope. For a telescope of this size the midfrequency of the
power spectrum ranges from 0.3 D/A to 0.6 D/A, and the
simulated power-spectrum ATF is 3 X 10-2, whereas the
predicted value is 2 X 10-2. The SNR of the power spec-
trum is between 0.7 and 1.0. The simulated bispectral ATF
at the mid frequency is 2 X 10-3 in average, which is some-
what larger than the predicted value, 4 X 10-4. The agree-
ment is not so good as for a 2-m telescope.

The rise of the power-spectrum ATF at the high-frequen-
cy region ('0.8 D/X for D = 2 m) can be interpreted qualita-
tively by the HIV. At the high-frequency region, the redun-
dancy (or OTF) of the baselines is so small and the identical
baselines are so localized on the primary mirror that the
phasors of those baselines are correlated and increase the
ATF. The approximate validity of the HIV of the image-
forming process is confirmed by the simulations. The simu-
lations also clarified the boundaries of the mid frequency for
given apertures. Because of the higher redundancy and the
wider mid-frequency range, the predictions made by using
the HIV work better for larger telescopes.

9

0

'0

41-c

6t

ci

6

0.2 0.4 0.6 0.8 1.0

Fig. 8. Contour map of the SNR for a V = 12.3 magnitude star
obtained with a 2-m telescope after integrating 104 frames, assuming
a 10% observing efficiency, a 10% fractional bandwidth and a 10-
msec integration time. These brightness and observing efficiencies
correspond to 1 photon per speckle.
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'0

6D~

lH
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6. SIGNAL-TO-NOISE RATIO AT LOW LIGHT
LEVELS

At low light levels, the SNR per frame of an unbiased estima-
tor of the classical bispectral MTF is approximated by

(6(3)(ul, u2)) x p73/2'

Cl

(6.1)

where N is the average photon count per frame.I5 Therefore
the contour map of (b(3)(ul, u2)) can be converted immedi-
ately to that of the SNR.

Figure 8 shows the SNR of a V = 12.3 magnitude star with
a 2-m telescope after integrating 104 frames; this magnitude
corresponds to one photon per speckle in a 10% fractional
bandwidth, with 10% efficiency of the observing system and
a 10-msec integration time. The SNR = 3 contour reaches
the diffraction limit on the axes but stays near the axis as or
77 increases. The slope of the contours is the steepest diago-
nally. Figure 9 shows SNR = 3 contours according to the
brightness of the sources. At 9.0 magnitudes the bispectral
analysis is diffraction limited in the sense of a 3a detection,

Fig. 9.
levels.
Fig. 8.

0.2 0.4 0.6 0.8 1.0

((A)

Behavior of 3a contours, plotted according to the light
Magnitudes are calculated for the same conditions as for

whereas at 13.9 magnitudes even the power-spectrum analy-
sis is not necessarily diffraction limited, and the region of
high SNR is strictly near the axes.

The contour maps immediately show that the power spec-
trum in general has a better SNR than the bispectrum. The
closure-phase information obtained by near-axis bispectral

(&"'(Ull U2)) - jSNR[P)(uj, U2)114.
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components is effectively the local phase differences of
neighboring Fourier components. For a simple source such
as a multiple stellar system, the autocorrelation function
contains most of the source structure. The behavior of the
phase in Fourier space is fairly regular, and thus the local
phase differences are enough to recover a full image. Hof-
mann and Weigelt5 used only the 5% of the bispectrum near
the axes with the highest SNR for their image recovery.
The result of the simulations is consistent with their obser-
vations. The wide mid-frequency range contains global clo-
sure-phase information with lower quality. For a compli-
cated source, mid-frequency components may be crucial in
recovering a full image. Intensive computations are re-
quired for utilization of the full bispectrum.

7. SIGNAL-TO-NOISE RATIO AT ARBITRARY
LIGHT LEVELS

In the simulations, the incoming light is treated as a wave.
Thus, from the point of view of photon detection, a limiting
case with an infinite number of photons is considered. In
this section, by using the modeling of the photodetection
process by Goodman and Belsher"l-1 3' 23 and following the
treatment of the influence of photon noise on the bispectral
analysis by Wirnitzer,15 the derivation of an unbiased esti-
mator of the classical bispectrum is reviewed, and then an
expression for the SNR of the bispectral MTF is obtained as
a function of the mean photon count, the OTF's of tele-
scopes, and the number of speckles.

We consider a speckle observation by using a photon-
counting detector that records the positions of individual
photons detected on the image plane. The raw intensity of
the jth frame is given as

Nj

Dj(x) = E(x - Xk), (7.1)

k=1

where Xk is the position of the kth photon and Nj is the total
number of photons. The Fourier transform of Eq. (7.1) is

Nj

Dj(u) = J (x - xk)exp(iux)dx

Nj

= Z exp(iuxk). (7.2)
k=1

The bispectrum of the raw data is given as

5j(3 )(u1, u2) = Dj(ul)Dj(u 2)Dj(-U 1 - U2)

Nj Nj Nj

= I I I expfi[ul(xk - Xm) + U2(XI - Xm)]1.
k=1 1=1 m=1

(7.3)

The expected value of .1 ( 3)(ul, u2) is evaluated over the

conditional statistics of XkS, Nj, and the rate function Xj(x),
which is proportional to the classical intensity, Ij(x). For a
given Nj and Xj(x), the event locations x are independent
random variables with a common probability-density func-
tion,

p(X) = Xj(x) Ij(X))

J Xj(x)dx | Ij(x)dx

The characteristic function of pj(x) equals the normalized
Fourier transform of the classical intensity distribution

pj(u) = J pj(x)exp(iux)dx

| Ij(x)exp(iux)dx

J Ij(x)dx

Ij(u)

ii().

.Dj(3)(u1 , u2) is averaged first over the conditional statistics of
Xk, x1 , and xm and then over Nj and Xj(x). The starting point
is the evaluation of

Eklm[.j(3)(Ul, u2 )J

Nj Nj Nj

= Eklm Z EX expli[u(xk -Xm) + U2(X1 Xm)]1)|
k=1 1=11m=1

Nj Nj N.

= EE Ek~m (expli[Ul(Xk Xh) + U2(X1 Xm)]),

k=l 1=1 m=l

(7.6)

where Ekl00 stands for an average over Xk, xi, and Xm. The
Nj

3 terms are classified as follows:

(1) For k = I = m and Nj terms,

Eklm(l) = pj(Xk)dxk = 1

(2) For k 0 1 = m and Nj(Nj - 1) terms,

Eklmjexp[iul(Xk - k)]j}

= J J exp[iul(xk - x)] pj(xk)pj(xl)dXkdxl

= [JPj(Xk)exP(iulxk)dxk] [JPj(xl)exP(-iulxl)dXI]

= 'ij(Ulij-

= 1i7(ul)1
2

,

where I7j(ui)12 is the normalized power spectrum.

(3) For k = m F 1 and Nj(Nj - 1) terms,

Eklmtexp[iul(xl - Xm)]} = I7(U2)12.

(4) For k = 1 5d m and Nj(Nj - 1) terms,

Eklmlexp[i(-ul - u2)(x - Xm)]I = 1T(/u1 - U2)1
2. (7.10)

(7.4)

(7.7)

(7.8)

(7.9)

Tadashi Nakajima
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(5) For k , I m and Nj(Nj - 1)(Nj - 2) terms,

Eklm(expli[ul(xk - Xm) + U2 (X1 - Xm)]1)

[ Pj(Xk)exp(iUlXk)dXk][J Pj(xI)exp(iU 2X)dxi]

X (J pj(xm)exp[i(-u1 - U2 )xm]dxm)

= ij(uL)Tj(u2 )j(-u1 - u2)

= j(3)(ul, u2), (7.11)

where bj(3)(u1, u2) is the normalized bispectrum.

Thus the average of Dj(3)(u1, u2) over the statistics of xk, xi,

and xm is

Eki. [fj(3)(Ul, U2)1

=Nj + Nj(Nj - 1)[Ij(u1 )12 + k 1(u2)I + ij(- U,)12

+ Nj(Nj - 1)(Nj - 2) X bV'3)(ul, u2). (7.12)
Next Ekbm[D /

3
)(ul, u2)] is averaged over the Poisson statis-

tics of Nj. For Poisson statistics,

E[Nj(Nj -1) ... (Nj - r + 1)] = N~jr, (7.13)

where Nj denotes the Poisson mean of Nj. For a given rate
function Xj(x),

EkjlNj[Dj( )(uj, U2)]

- Nj + Nj2[Ij(u1 )12 + Ii(U2)12 + 1i(-u1 - U2)I

+ Nj 3bj(3)(u1 , u2). (7.14)

Finally, averaging over the ensemble of Xj(x) or pj(x), yields

E [f(3)(Ul, U2)1

=Nj + Nj2[(IT(u1 )12) + (IT(u2)12) + (IT(-u 1 - U2)12)]

+ Nj3 (&(3 )(ul, u2)). (7.15)

If Nj does not fluctuate from frame to frame, i.e.,

E(Njr) = E(Nj)' = Nr, (7.16)

then, for an arbitrary r,

EDf(3)(ul, u2)I = N + N 2
[(IT(u1 )I2) + (IT(u2 )12

)

+ (IT(-U1 - u2)12)] + N3(&(3)(u1 , u2)).

(7.17)

In order to express an unbiased estimator of (b( 3
)(u1 , u2) ) by

using the quantities observed directly,

E[ID(u)12 ] = N + N 2(dI(u)12) (7.18)

is useful. This equation was first obtained by Goodman and
Belsher for non-photon-counting detection and was also de-
rived by Dainty and Greenaway1 4 for photon-counting de-
tection. From it we obtain

N
3

(6(3)(U1 , u 2 )) = Ef)(3)(ul, U2 ) - [ID(U1 )12

+ If)(U2)12 + ID(-u 1 - U2)12 - 2N].

(7.19)

Thus an unbiased estimator of the bispectrum for the jth
frame becomes

Qj(3)(u1, u2) = D 3
)(u1, u 2) - [IDj(U)12

+ I3j(U2)12 + Ij(-u - U2) - 2J],
(7.20)

where the terms in square brackets represent the photon-
noise bias. Equation (7.20) was first obtained by Wir-
nitzer. 1 5 This estimator can be rewritten as

Q.(3)(ul, U2) = > exp{i[ul(xk - Xm) + U2(X1 - Xm)]}'

(7.21)

Since the observables are the positions of individual pho-
tons, it is also possible to calculate the Nj(Nj - 1)(Nj - 2)
exponential terms directly through Eq. (7.21). The absolute
minimum number of photons per frame is 3, since triple
cross correlations of different photon events contribute to
the unbiased estimator of the classical bispectrum.

The next goal is to find the variance of the unbiased
estimator Q/3)( u2) and its SNR per frame. In evaluating
the variance U2[Qj(3)(ul, u2 )], it is necessary to calculate
E[IQj(3)(u1 , U2)12]. The derivation is systematic but lengthy
and is given in Appendix B. Here only the resultant expres-
sion is presented:

a
2
[Q j (

3 )
(u1 , u 2)] = N 3[' + (Ii(u 1 - U2 )12

) + (VI(2u1 + U2 )12 )

+ (IT(ul + 2U2)I
2) + (&(3)(ul - U2, U1

+ 2u 2)) + (P)
3
)(2uj + U2, -U 1 + U2 ))]

+ N 4
[(li(u 1)l

2
) + (IT(U2 )12)

+ (IT(-U 1 - u 2 )12) + (&(3)(u,, -U 2 )) + C.c.

+ (&(a)(ul + u 2, U1 )) + C.C.

+ (&(3)(u2, U1 + U2)) + C.C.

+ (IT(u1)I2IT(uj + 2U2)12)

+ (IT(u2)12 1I(2u, + u2)12)

+ (IT(ul + u2) 12I(ul - u2)12)

+ (14)(U1 - U2, U1 + 2U2 , -U 1 - U2)) + C.C.

+ (r 4)(U1 , U1 + 2U2 , -2u 1 - U2 )) + C.C.

+ (T
4 )(2u1 + U2 , -U1 + U2 , -U 1 - U2 ))

+ c.c.] + N5{(IT(u1)I2 i(-u1 - u2)12)

+ (IT(u2)I2IT(-ul - u2)12) + (IT(uJ) 12IT(u2 )1
2
)

+ (IT(uO)I2 [&(3)(u2, U1 + U2) + C.C.])

+ (IT(u2 )I
2
[&(3)(ul, U1 + U2) + C.C.])

+ (IT(-U1 - u2)I2[&(3)(uP, -u2 ) + c.c.-)}

+ N6 [(I&(3 )(uj, u 2) 12. I (6b(3)(ul, u2))1],

(7.22)

where
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Fig. 10. Lightlevelandspatial-frequencydependence of the SNR n,1/
2
.SNR[Q(3)(x .D/X, 0, 0,x *D/X)], which is independent of the size of the

telescope, plotted as a function of the mean photon counts per speckle n and the normalized spatial frequency x. Since nl/ 2
= D/r1 , the SNR for

a telescope with a diameter of D meters can be obtained by lowering the whole plot by log(D/r,), as indicated by the arrow.

,(4)(Ul U2 , u3 ) = T(ul)T(u 2 )T(u3 )T(-ul - u2 - u3 ) (7.23)

is the normalized fourth-order spectrum and c.c. denotes a
complex conjugate. The SNR of the unbiased estimator of
the bispectrum is given by

SNR[ U
3 )(u1 ,u 2)] = N 2[Q(3)(ul, u2)1/2) (7.24)

In order to obtain a more useful expression, it is conve-
nient to use approximate attenuation factors of MTF's
based on the HIV of the image-forming process (Appendix
A). In the mid-frequency range, MTF's are expressed by
the number of speckles n, and normalized OTF's of the
telescope as follows:

(IT(u)12) = n,-l F(U)12

(&(3)(ul, u2)) = nj
2

tI(3)(ul, U2),

(P) (Uu, U21 U3))d = nj- 3 TW4 )(ul, U2, U3),

(IT(u1)1
2
1i(u2 )1

2
) = n,-21F(u,)121TW 12)

(IT(ul)J
2

5(3)(u 2 , U3)) = n,8
3 JF(u1 )J

2
t(3)(u 2 , U3),

(I5(3)(ul, u2 )1
2
) = n,8

3
JT(3)(ul, u2)1

2
,

1(&(3)(ul, u2 ))1
2

= n8
4IFl 3 (ul, u2 )1

2
.

(7.25)

(7.26)

O' 2[Q(3)(Ul, U2)] = TV3 + N ~n,,

x [IT(u1)1
2

+ I F(U2)12 + IT(-u 1 - u2)12]

+ N5n- 2 [Ii(u1 )12
1(-Ul - u2)12

+ IR(U2)I21t(-ul - u2)12 + IT(u1)121t(u2)12]

+ N6n, 3I(3)(ul, U2 ).

The SNR of the unbiased estimator is then given by

SN[ (lu)] {f[Q(3)(U N n, u, u 2 )
SNR[Q3 Uu2)] = 11Q3(J

U2)1

(7.32)

(7.33)

If the mean number of photons per speckle, n, is defined as n
= N/n,, the SNR can also be expressed as

[ -1/2 X -3/
2

X E
3
)(u3 u2 ),

A

(7.27) where

(7.28)

(7.29)

(7.30)

(7.31)

Typically n, = (D/r,)2 > 102, and |t(u)12 - 10'1 in the mid-

frequency range. By selecting leading terms of each order of
Nin Eq. (7.22), the variance of the unbiased estimator of the
classical bispectral MTF, a 2[Q(3)(ul, u2)] is found to be

A = 1 + H(Ii(u1 )1
2

+ I1(u2)1
2

+ It(-U 1 - u2)12)+ -2(dI(u1)1
2IE(u2)I2

+ IT(u1)1
2

1t(-ul - u2)12+ RI(U2 )12

X 1i(-u 1 - u2 )12) + H31F(3)(u1, u2)1
2

(7.34)

and n,112 X SNR[Q(3 )(ul, u2)] is independent of n, = (D/r,) 2.
In Fig. 10, n,1/2 X SNR[Q( 3)(xD/X, 0,0, xD/X)] at x = (0.2,0.3,

0.4, 0.5, 0.6) is plotted as a function of n in a logarithmic
scale. An estimate of the SNR for a telescope with a diame-
ter of D meters can be obtained by lowering the value on the

Tadashi Nakajima
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plot by log (Dir,). It should again be emphasized that the
above approximations are valid only in the mid-frequency
range.

8. ESTIMATES OF THE LIMITING MAGNITUDE
AND RESOLUTION

In order to estimate the limiting magnitude, we must first
obtain the statistically independent volume of the bispec-
trum. The HIV suggests that the Fourier components in the
mid-frequency range are statistically independent. The
volume is proportional to n, 2, which must be multiplied by a
factor related to the symmetry and the boundary of the
bispectrum. Wirnitzer estimated the bispectral volume as
n, 2/4. In Ref. 10 3n,2/4 was obtained for a square aperture,
and (7r2/32)n,2 was obtained for a circular aperture, with the
assumption of statistical independence of all the baselines.
Since only the mid-frequency components are statistically
independent, these values give upper limits. An estimate of
the SNR of an ideally recovered map from the bispectral
MTF is given as

SNR(map) = (-3 n,2) X SNR[ 3 )(uP, u2 )] z1/2,

(8.1)

where SNR[Q(
3 )(ul, u2)] is the average SNR over the mid-

frequency range and Z is the number of frames. As is esti-
mated from Eq. (7.34) and shown in Fig. 10, the SNR at the
mid frequency for n ' 1 is approximated well by

SN[Q(3)(Ul, 12]tn~/2-3/2t()uu) 82

since A - 1 in (7.34). Equation (8.1) can then be rewritten
as

SNR(map) = () 2
) (nsn3)1/2 (3)(ui, U2) X Z1/2

- 0.027(nsn3)11 2Z , 2 (8.3)

where t(3)(ul, u2) is the average OTF over the mid frequency
and -5 X 10-2. n can be expressed as functions of the
magnitude of the object m, the fractional bandwidth AX/X,
the efficiency of the detection system n, the integration time
Ar, and the coherence length r,. The limiting magnitude at
X = 0.55 ,um is given as

mum = 13.3 + 2.5{log( AX/ + log(1) + log ( sec)

4 /r\2 /D\) 1 /ogZ\
+ -logi + -log 1+ -lg-3 l4 cmi 3 l m) 3 104

2 lo[SNRimap)]} (8.4)

With a resolution approximately a factor of 2 lower than the
diffraction limit, a SNR of 10 is obtained from the attainable
number of frames of 104 for a point source of 13.3 magni-
tudes with a 1-m telescope and for a point source of 14.5
magnitudes with a 5-m telescope. For a good observing

condition, Ar may be somewhat longer, and the limiting
magnitude may reach 15 mag. As can be seen from Fig. 10,
the SNR at frequencies above 0.5 D/X decreases drastically
according to the behavior of the OTF.

For the high-frequency region the nonredundant-masking
method10' 24' 25 is more promising than the fully filled aper-
ture method of the conventional speckle. From the interfer-
omietric view, for a certain Fourier component, other Fourier
components behave as backgrounds. In the presence of
overwhelming lower-frequency components, high-frequency
components are suppressed strongly because of the low re-
dundancy of long baselines. However, before we proceed to
a quantitative comparison between the fully filled-aperture
method and the nonredundant-masking method, there are
still problems to be solved, such as the estimation of the
independent bispectral volume for the nonredundant mask-
ing. 2 6

9. CONCLUSIONS

In this paper the behavior of the SNR of the bispectral
analysis of speckle interferometry is studied in two stages.
At the high-light limit, the Monte Carlo simulations of an
atmospheric phase screen based on the Kolmogorov theory
and recent observations of the atmospheric disturbance are
used to derive statistical properties of the classical bispectral
MTF. The influence of photon noise is taken into account
by modeling the photodetection process.

A general expression for the SNR of the bispectrum at
arbitrary light levels is obtained in terms of the classical
MTF's and the mean photon counts. In the mid-frequency
range, a practical expression is obtained for the SNR as a
function of the OTF's of the telescope optics, the number of
speckles, and the mean photon counts.

Major conclusions are as follows:

(1) The overall behavior of the MTF is qualitatively
consistent with the HIV of the image-forming process, and,
especially in the mid-frequency range, the quantitative pre-
dictions of the HIV agree approximately with the simulated
results. At the mid frequencies, the attenuation of the bi-
spectral MTF and the SNR are approximated by the pre-
dicted values n,- 2 and n,-1/2, respectively.

(2) At low light levels, only bispectral components near
the axes have a high SNR. Closure phases near the axes are
effectively local phase differences. For simple sources, the
behavior of the phase in Fourier space is so regular that local
phase differences are enough for a full image recovery. In
recovering complicated sources, global closure phases con-
tained in the mid-frequency range may be crucial for the
reconstruction of images of complicated sources. However,
the SNR at the mid frequency falls off so drastically at low
light levels that the effective limiting magnitudes are much
lower than those of simple sources.

(3) As estimated from the SNR in the mid-frequency
range, the practical limiting magnitude of the bispectral
analysis at a visual wavelength is between 13 and 15 magni-
tudes, depending on the size of the telescope and the observ-
ing conditions. This limit is achieved with a resolution that
is half the diffraction limit of a given telescope.

Tadashi Nakajima
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APPENDIX A: PREDICTIONS OBTAINED BY
THE TREATMENT BASED ON THE HEURISTIC
INTERFEROMETRIC VIEW OF THE IMAGE-
FORMING PROCESS

A detailed treatment based on the HIV of the image-forming
process was discussed in Ref. 10. In this appendix the major
predictions are reviewed briefly.

A speckle pattern is regarded as an instantaneous interfer-
ence pattern formed by a number of elementary coherent
areas on the aperture plane, whose linear sizes are about r,.
The discussion must be restricted to mid spatial frequency,
where a certain Fourier component on the image plane is
given as a sum of random phasors originating from identical
baselines on the aperture plane. A mid-frequency compo-
nent satisfies the following two conditions. First, the corre-
sponding baselines to a mid-frequency component are so
much longer than r, that the rms phase (ac) of the baselines
is significantly larger than 27r. In other words, the rms
phase correlation function of a pair of elementary areas is
significantly larger than 27r. The unit phasor exp(iA) of a
baseline then becomes a uniform random number on the
unit circle on the complex plane. Effectively a 4 can be
regarded as a uniform random number between -7r and 7r.
Second, the redundancy of the baseline must be high so that
the number of random phasors is large enough for an inco-
herent average to be performed. Although individual pha-
sors have uniformly random phases, phases of neighboring
baselines are correlated. To ensure that a good average is
obtained over the random phasors, the number of phasors
must be significantly larger than 27r. (Recall that the trans-
lation by r, on the aperture plane causes a rms phase change
of 1 rad.) At the highest-frequency region of a circular
aperture, this condition is not satisfied; thus we restrict our
discussion to the mid-frequency range.

The dependences of the power-spectrum ATF, the bispec-
tral ATF, and their SNR's on the number of speckles [n, =
(D/r,) 2] are determined below. For simplicity, we neglect
scintillation and assume unit phasors originating from indi-
vidual baselines.

ui, 7(ui), and N(ul) denote a mid-spatial frequency and
the Fourier component and the number of phasors or redun-
dancy of the baseline corresponding to ul, respectively. The
Fourier component is given as

N(ul)

I(ul) = E exp(i'b,),
k=1

where 4 k is the phase of the kth phasor. The average power-
spectrum MTF over an ensemble of speckle patterns is

/N(u,) N(u,)

(II(Ui)12) = (> 3> exp[i(k - 1)]
k=1 1=1

N(ul) N(ul)

= >3 >3 (exp[i(k- -b].

k=1 1=1

Since 4
k and bl are not correlated unless k = 1,

(exp[i('k - 41)]) = 1, k = 1, with N(u,) terms

= 0, k #4 1, with N(u,) [N(u1 ) - 1]

terms;

then

(II(Ui)12) = N(u 1 ).

In the absence of atmospheric disturbance,

II(Ui)12 = N(u 1 )
2
.

Thus the ATF or the power-spectrum ATF is N(ul)-l. In
addition to the ATF that is due to the atmosphere, there is
an atmospheric noise factor that is -N(ul). Thus the SNR
of (I1(UD)I2) is 1. In the mid-frequency region, the redun-

dancy N(u) is proportional to and of the order of the number
of speckles, n, = (D/r,) 2 . The ATF is about n,-8 .

The bispectral ATF is obtained in the same manner. The
ensemble average of the bispectral component at (u1, u2) is

J(I()(Ul, U2))

/N(ul) N(u2) N(-ul-U2 )

= (\ exp(i"l 2 ,k) E exp(i4 2 3 ,1 ) >3 exp(A)31,m)
k=1 1=1 : m=1

N(u,) N(u2) N(-u,-u,)

k=1 1=1 M=1
(exp[i(12k + 23,1 + 31,)]I

where 12, 23, and 31 denote baselines corresponding to the
frequencies u1 , u2, and -ul - u2, respectively. The only
terms with k = 1 = m have finite contributions, and the other
terms have zero mean. In the ideal case in which the clo-
sure-phase cancellation is perfect,

(I()(u 1, u2)) = Min[N(u 1 ), N(u 2 ), N(-u 1 -U2)1

where Min[N(ul), N(u2 ), N(-ul - u 2)] is the minimum
among the three redundancies and the number of closed
triangles. In the absence of atmospheric disturbance,

.T3)(ul, u2) = N(u1)N(u 2)N(-u 1 -U2);

then the bispectral ATF at (u1, u2) is

Min[N(ul), N(u2), N(-ul - u 2)]

N(u 1)N(u 2 )N(-u 1 - U 2 )

After N(u1 )N(u2 )N(-u 1 - u2) terms are added, the average
becomes Min[N(ul), N(u2), N(-ul - u2)]. Therefore the
SNR is

Min[N(ul), N(u 2 ), N(-u 1 - U2)]

[N(u1)N(u2 )N(-u 1 - u 2)]1/2

Estimates of the bispectral ATF and the SNR are given as
ns 2 and n,-1/2 , respectively.

In what follows, higher-order ATF's used to derive Eqs.
(7.27)-(7.30) are calculated.
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(2(4)(Uj U2, U3 ))

N(u,) N(u.,) NWu) N(-u,-u.--u:)

>3 >3 >3 >3 (exp[i("1 2,k + b23,1 + "?34,m + (P41,A)])
k-= 1=1 m=1 n=1

(1d(ul)121&(u2)12)

NMul) NWul) N(u.,) N(u.,)

>3 >3 >3 >3 (exp[i(cI -12,k - ")12,1 + '34,m - 34,n)
k=l 1=1 m=1 n=1

N(u8 )N(u 2)N(u3 )N(-u 1 - U2 - U3 )

Min[N(u 1 ), N(U2 ), N(U3 ), N(-u 1 - U 2 - U3 )]

N(u1 )N(u2 )N(u3 )N(-u 1 - U2 - U3)

; ns 3

N(u1 )N(U2 )

N(u )2 N(U2)'

n~-2,
5:- ns,

since for only the terms with k = 1, m = n,

(exp[iQ(l 2 ,k - "D12,1 + 11)34,m - 34,n)]) = 1;

N(u,) N(u,) N(u ) N(u,) N(-u, - u,)

= >3 >3 >3 >3 >3 (exp[i(cI 12 ,k - 'P12,1 + ')34,m + 'P45,n + 'I 53 , )])/N(u 1)2N(u2)N(u 3)N(-U 2 - U3)
k=1 1=1 m=1 n=l o=l

N(u 1 ) X Min[N(u 2 ), N(U3 ), N(-U 2 - U3 )]

N(u 1)
2N(U2 )N(U3 )N(-U 2 - U3)

ns-3 ;

since for only the terms with k = 1, m = n = o,

(exp[i(4 2 3,k - )12,1 + 134,m + (I)45,n + "'53,o)]) = 1,

N(u,) N(u,) N(-u,-u,) N(u,) N(u.) (-u,-u.)

= I " I v" I

k=1 1=1 m=l n=l o=1 p=1

(exp[i(1 12 k + "'23,1 + "'31,m - "'12,n - "'23,o

- 31,p)] ),/N(U1)2N(U2)2 N(-U1 - U2)2

N(u1 )N(U2 )N(-u 1 - U2 ) + Min[N(U2), N(U3), N(-U 2 - U3)]2

N(u3)2N(U3)2N(-ul-U2)2

-z ns-3;

since the followinrg closure-phase cancellations work only for
the terms with k = 1 = m = n:

'I'12,k + 4'23,k + "'34,k + ")41,k = ((12,k + "b23,k + "'31,k)

+ ((D13,k + "'34,k + <b4tk)

= 0.

since for only the terms with k = n, I = o, m = p or k = 1 = m, o

= p = q,

(exp[iQ(l2,k + ('23,1 + 'D31,m - 'D12,n - 'D23,o - "'31,p)]' = 1-

APPENDIX B: CALCULATIONS OF THE
VARIANCE OF THE BISPECTRUM

In the estimation of the expected value of the variance, the
Thus we have starting point is the modulus squared of Eq. (7.21):

Eaw86fl7 E E expli[ul(xa - xy - Xb + X) + u2(x - X-:

=> 3
a ;- 0 P6 y 6 i' (5.- 

K, + Xd)1

Ec,0-Yf(expji[uj(x, - x- x + Xd.) + U2(XO - -x 1+ xd)),

Tadashi Nakajima

(jEj(UJ)j2a(3) (U21 U3))

(la(31(Ul, U2) 12)
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where Eafyber denotes an average over xa, x0, xy, xb, Xe, and
xi. The [Nj(Nj - 1)(Nj - 2)]2 terms are classified as fol-
lows:

(1) Fora= 6,fl= e,y = PandNj(Nj- 1)(Nj-2) terms,

(2) For a = E, E = 6, -y = andNj(Nj - 1)(Nj -2) terms,

Eayafl exp[i(U1 - u 2 )(Xa - X#)]1 = I1j(Ul - u2)12.

(3) Fora = ",1 = >, -y = 6 andNj(Nj -1)(Nj -2) terms,

Eaayfl-Yexp[i(2uj + u 2 )(Xa -Xy)] = X Ij(2U1 + u 2)1
2
.

(4) Fora= 6,f=,r-y=eandNj(Nj-1)(Nj-2)terms,

E,,#Ybexp[i(ul + 2U2 )((X -x7)II = Iij(u + 2U2 ) 1
2
.

(5) Fora=e,l= ,-y=6andNj(Nj-1)(Nj-2)terms,

Eayfle(expji[(ui - U2)Xa + (u1 + 2U2)X# + (-2u1 - U2)Xyl])

= 6j(3)(U.-u 2, U1 + 2U2).

(6) Fora = ,= 
6
,-y = E and Nj(Nj - l)(Nj -2) terms,

Eapyba(expji[(2uj + U2 )Xa + (-U 1 + U2)Xf + (-U 1 - 2U2 )Xy]1)

= j(3) (2u, + U2, -U1 + U2).

(7) Fora # 6,3= , y= andNj(Nj-1)(Nj-2)(Nj-3)
terms,

Eajyfel4xp[iuj(xe - xb)]1 = 1i (U l) 
2.

(8) Fora= 6,13# E,-y= ?andNj(Nj -1)(Nj-2)(Nj-3)
terms,

Eay0e'exp[iU 2 (Xf - XM)] = 1,j(u 2)1
2.

(9) Fora= 6, a =e,'ysandNj(Nj-1)(Nj-2)(Nj-3)
terms,

Eafl~8bexp[i(-uj - u2)(xy - x!.)]1 = '( -u - u2)12.

(10) Fora , = 6,-y= andNj(Nj-1)(Nj-2)(Nj-
3) terms,

_E7,Y6,(expji[ujx, + (-U 1 + u2)Xf - U2 XJ11) = 6j,(3)(ul, U2 ).

(11) For a= ,( X, ,yz= and Nj(Nj-1)(Nj- 2)(Nj-

3) terms,

Easy#3,(expfi[(u 1 -u 2 )Xa + u2 xf - uIx]}) = 6j(3)(-u1, u2 )

=b(3)(Ul, -u2)*.

(12) For a = 6, E =Eand Nj(Nj- 1)(Nj- 2)(Nj-
3) terms,

Eca-ybf¢xpjiu2Xf - (u1 + 2U2)Xy + (Ul + U2)XJI)

= 6j(3 )(ul + u 2 , u 2).
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(13) Fora= 6,fl= ,y-#eandNj(Nj-1)(Nj-2)(Nj-
3) terms,

Eaayfl'(expji[(uj + 2u 2)xf - (U1 + U2)Xy + U2X,]})

= 6j(3)(-u, - U2, U2)

= 6j(3)(ul + U2, U2)*-

(14) For a =e, y = 6 and Nj(Nj- 1)(Nj -2)(Nj-
3) terms,

Ea#y6.(expti[ujxa - (2u1 +U2)Xy + (U1 + U2)XtJI)

= 
6

j(
3

)(ul + U2, U1).

(15) Fora= ,fl= E, yz < 6 andNj (Nj -1)(Nj-2)(N 1 -
3) terms,

Eaflyaey(exp{i[(2ui + U2 )Xa - (u1 + U2)Xy - u1xb]j)

= bj(3)(-ul - U2, -U1 )

=j(3 + u 2, U1 )*.

(16) Fora # 6,3= ¢,,y = eandNJ(Nj- 1)(Nj-2)(Nj-
3) terms,

Ea0fy&D(expji[uj(x a - xb) + (u1 + 2U2 )(Xfl -X)])

- 1Ij(u1)121i(ul + 2U2)12.

(17) Forca= , 5 3 E,-y=6andNj(Nj-1)(Nj-2)(Nj-
3) terms,

Ea,576f*(expfi[U2(Xl - Xf) + (2u1 + U2 )(Xa - Xy)]j)

- ij(U2)12 1 j(2u, + U2)2.

(18) Fora=e,fl=6,.y andNj(Nj-1)(Nj-2)(Nj-
3) terms,

E,,fl-y(expti[(uj - U2)(xa - Xf) -(Ul + U2)(X, -x))

= ITJ(u1 - u2)I It((u1 + u2)I.

(19) F~or a=e, , = A, y < 6and Nj(Nj- 1)(Nj- 2)(Nj-

3) terms,

E.#, ¢(expji[(uj - u 2)Xa + (u, + 2u2 )Xf - (Ul + U2)Xy - U1xaJj)

= ij(U - U2)j(Uil + 2U2 )ij(-u 1 -U2)Tj(-Ul)

= j(4)(U1 -u 2 , U1 + 2U2,-U1 -U 2)-

(20) Fora # ,=6,-y=eandNj(Nj-1)(Nj-2)(Nj-
3) terms,

Ea,6,t(expfi[ujx, + (-u 1 + u2)x# - (u1 + 2U2)Xy + (U1 + U2)X6]1)

= ij(ulij(-ui + u2)ij(-U- 2u2 )i,(Ul + U2)

= j()Ul-2, U1 + 2U2,-_U1 U2)*-

(21) Fora e,j = ,-y=6andNj(Nj-1)(Nj-2)(Nj-
3) terms,

Eafybsr(pxpji[ujx. + (u1 + 2U2)X# - (2u1 + U2)X, - u2x,})

= j(
4

)(U, U1 +2U 2 ,-2u 1 -U 2 )
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(22) Fora= , , e3,-y = eandNj(Nj- 1)(Nj-2)(Nj-
3) terms,

Eayfle(expti[(2ui + U2)Xa + U2 XO - (u1 + 2U2)X7 - U1 X3]j)

= lj(4)(ul, u1 + 2u2 , -2u U2)*-

(23) Fora = ¢,/3= 3,y z eandNj(Nj- 1)(Nj-2)(Nj-
3) terms,

EO.6f(expli[(2u, + U2)X,, + (-U1 + U2)Xl - (U1 + U2)Xy - U2XI)

= fj( )(2u1 + u2, -u1 + u2,-u1 - u2).

(24) For a =e,f 3 , y= 6and Nj(Nj- 1)(Nj- 2)(Nj-
3) terms,

E,,yfl-(,xpji[(u -u 2)xa + u2xO + (-2u, + U2)Xy + (Ul + U2)X,]})

= f1( )(2u1 + u 2 , -u 1 + u 2 , -u 1 -U2)*

(25) For a 56, p < 5e, y= and Nj(Nj- 1)(Nj- 2)(Nj-

3)(Nj - 4) terms,

E, y- x(expji[uj(x 5-x,) + U2 (Xf - Xf)]1) = ij(u1)1
2

3j(U2)1
2.

(26) Fora <, = e,' , andNj(Nj- 1)(Nj- 2)(Nj-
3)(Nj- 4) terms,

Eay-x(expji[uj(x 4-x6) - (U1 + U2)(Xy-xd)

- l(ul)121i(-ui - u2)12.

(27) For a= 6, : < e, < P4-and Nj(Nj- 1)(Nj- 2)(Nj-

3)(Nj - 4) terms,

Ea,,.Y6(expji[U2(X0 - Xf) - (U1 + U2)(X7 -xd)
- 1ij(u 2 ) 

2Iij(-u1 - u2)1.

(28) For a#a#ao < o, z= eand Nj(Nj-1l)(Nj- 2)(Nj
- 3)(Nj - 4) terms,

Ecyfl -xpji[u,(x 5-x6) + U2(Xfl - x) + (Ul + u2)(X - X)]1)

= Ui,(ui)I2 6i( 3
)(u 2 , U1 + U2 ).

(29) Foraoy oEand= and(Nj (Nj-1)(Nj-2)(Nj
- 3)(Nj - 4) terms,

Ea,3,fl (expji[uj(xa - xa) - U2(X, - X,) - (Ul + U2)(Xy - X)])

= IT/u1 )I2 b3
3 (u2, U1 + U2)*

(30) Foraofleo e ,y=bandNj(Nj-1)(Nj-2)(Nj
- 3)(Nj - 4) terms,

Ec,#Y,.(expji1u 2(x0 - X) + Ul(Xa -` Xy) + (U1 + U2)(Xr - X7)11)

= 1ij(u 2 )I25
1

3
)(ui, U1 + U2 ).

(31) For 3 # 3 y 6 55e,a= andNj(Nj-1)(Nj-2)(Nj
- 3)(Nj - 4) terms,

EcyflY(expji[u2(x0 - X) - U1(X6 - Xa) - (Ul + U2)(Xt - XC)])

= Ij(u 2)I
26j3

)(u1 , U1 + U2)*.

(32) Fora $ y $ e <y ,fl= Iand Nj(Nj- 1)(Nj-2)(Nj
- 3)(Nj - 4) terms,

Eaayfl (expji[-(uj + U2)(Xy - x + ul(xa - X) - U 2(x -X))

- 1ij(-u1 - u2)I2 b (3)(u1, -u2 ).

(33) Forj#-y zb ,a=EandNj(Nj-1)(Nj-2)(Nj
- 3)(Nj - 4) terms,

E,,,:zafl, xpji[-(uj + U2)(X-, - x) - ul(xa - Xc) + U2(X,3 - Xa)]1)

= Ij1 (-U1 - u 2)I2 -3 )(u1 -u 2)*.

(34) For a 0 0 5,! -y 3, 6 54 e 5- Pand Nj(Nj - 1) (Nj -

2)(Nj- 3)(Nj - 4)(Nj - 5) terms,

Ec,#yW,(expji[uj(xa - x6) + U2(Xf - X) -(Ul + U2)(X, - x)]1)

= 1i1(ul021ij(u2 )I
2I1j(-u1 - u2)I

= IQj(3)(u, u2 )1
2

Averaging over the statistics of Nj and Xj(x) and assuming
that Eq. (7.16) holds, we obtain Eq. (7.22).

APPENDIX C: VARIANCE FOR NON-PHOTON-
COUNTING DETECTION

For an observation with a non-photon-counting detector, it
is impossible to remove bias terms frame by frame. An
unbiased estimator of the classical bispectrum is again given
by Eq. (7.20). However, fluctuations in the bias terms cause
additional terms in the variance of the unbiased estimator of
the classical bispectrum, Eq. (7.21). Those terms are evalu-
ated as

N+T 2 + 2(N 3 + 2N2)[(I(U2 )12 ) + (IT(u2)12) + (IT(-U -U2) 2)]

+ (N4 + 3N3)[(b63)(u1, u2)) + c.c.] + (N4 + 4V3

+ 2N
2
)[(Ii(u 1 )1

4
) + (IT(u2 )14) + (IT(-ul - u2)14)

+ 2(Ii(u1 )1
2
1i(u2 )1

2
) + (IT(u2 )12IT(-ul - u2)12)

+ (IT(-u 1 - u2)Ik(u 1 )I )] + (N5 + 6N4 + 6N3
)

X ([6(3)(ul, u2))+ c.c.][IT(ul)12 + IT(u2)12 + IT(-u - u2)12]).
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