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Abstract

Background: Constitutive activation of signal transducer and activator of transcription 3 (Stat3)

signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent

on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear

translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is

involved in the oncogenesis of bladder cancer.

Results: We found that elevated Stat3 phosphorylation in 19 of 100 (19%) bladder cancer tissues

as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation

is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling

pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F) and

a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in

these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC). The survival

inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-

regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin) and a cell cycle regulating gene (cyclin

D1) was associated with the cell growth inhibition and apoptosis.

Conclusion: These results indicated that activation of Stat3 is crucial for bladder cancer cell

growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential

therapeutic approach for bladder cancer.

Background
Several malignancies have been shown to result from con-
stitutive activation of STATs, in particular Stat3 and 5

[1,2]. Stat3 is widely expressed in normal tissues and tran-
siently activated and then inactivated by a group of sign-
aling proteins, such as SH2-containing tyrosine
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phosphotases (SHP1 and SHP2), protein inhibitors of
activated STATs (PIAS) and suppressor of cytokine signal-
ing proteins/extracellular signaling regulated kinase
(SOCS/ERK) cascades [3-5]. In a variety of human cancers,
defects in these signaling pathways or persistent presence
of up-stream activators would lead to constitutive activa-
tion of Stat3 and tumorgenesis [6,7]. Interference of con-
stitutive Stat3 signaling pathway suppresses
chemotherapy resistance, tumor growth and metastasis,
induces cancer cell death and therefore shows great poten-
tial for cancer therapy [8,9].

Several lines of evidence suggest that constitutive activa-
tion of Stat3 might play a role in bladder malignancy.
Bladder cancer is one of the common malignancies and
molecular causes for its progress and development have
been intensively investigated [10-12]. However, the
detailed picture of oncogenic pathways for bladder cancer
has just begun to be revealed [11]. Bladder cancer is
induced by amplification of oncogenes [eg. fibroblast
growth factor receptor 3 (FGFR3) and Ras gene] or by
mutational defects in tumor suppressor genes (eg. PTCH
& PTEN). These diverse genetic changes lead to oncogenic
signalings via MAPK, PI-3 kinase, AKT and c-Myc path-
ways. Overactive FGFR3 and ERBB2 in bladder cancer pre-
sumably would activate Stat3 that is down-stream to these
two receptor tyrosine kinases [10]. Another line of evi-
dence is that overexpression of Stat3-regulated anti-apop-
totic genes (Bcl-2, Bcl-xL and survivin) is found in bladder
cancer. Overexpression of these genes renders bladder
cancer progression, accelerated rates of recurrences, anti-
apoptosis and chemotherapeutic resistance [13-18]. The
role of activated Stat3 in bladder cancer remained specu-
lative until the recent report showed that Stat3 activation
correlated with malignant characteristics of T24 bladder
cancer cells [19]. This implicates that activation of Stat3
may play a role in the development of bladder cancer.

We initiated a study to explore any further relation
between activation of Stat3 and bladder malignancy. We
found that 19 of 100 (19%) bladder cancer biopsy tissues
had elevated expression of phosphorylated-Stat3 (p-
Stat3) using an immunohistochemical staining with a p-
Stat3 specific monoclonal antibody. In addition, elevated
p-Stat3 expression was also found in bladder cancer cell
lines, UMUC-3, 253J and WH. Thereafter, we targeted the
activated Stat3 signal pathway using a dominant negative
Stat3 Y705F (dnStat3) and a small molecule inhibitor,
STA-21 [8,20]. Inhibition of Stat3 pathway suppressed
cell growth of bladder cancer cells in vitro. DnStat3 and
STA-21 also induced apoptosis as revealed by immunos-
taining of cleaved caspases 3, 8 and 9 in bladder cancer
cells. Down regulation of anti-apoptotic genes (Bcl-2, Bcl-
xL and survivin) and a cell-cycle regulating gene, cyclin
D1, were correlated with dnStat3- and STA-21 induced

apoptosis and cell growth inhibition. Taken together,
Stat3 activation may play a pivotal role in bladder cancer
cell growth and survival and serve as a novel therapeutic
target for this type of cancer.

Results
p-Stat3 was elevated in bladder cancer tissues

Tissue microarray immunohistochemistry indicated that
Stat3 phosphorylation was elevated in bladder cancer tis-
sues. Three representative bladder cancer tissues with p-
Stat3 positive immunostaining (scale 2–3) are shown
(Figure 1B–D), whereas normal bladder tissues were neg-
ative or very weak (scale 0–1) with immunostaining (Fig-
ure 1A). The elevated p-Stat3 in the bladder cancer tissues
was scored and summarized according to immunostain-
ing intensities. Two of the bladder cancer tissues were not
included for immunostaining scoring because no staging
information is available. Nineteen out of 100 bladder can-
cer tissues were positive for p-Stat3 immunostaining
(scale 2–3).

The clinicopathological data for 102 bladder cancer tis-
sues are classified in Table 1. The samples represented 76
male and 26 female patients, with the majority of patients
(95.1%, 97 out of 102) between 41–90 years old. Forty-
five tissues and 57 tissues were staged and graded, respec-
tively. Forty of 45 staged tissues (89%) had no signs of
regional lymph nodes nor distant organ metastases.
According to histological features, the bladder cancer tis-
sues were identified as urothelial carcinoma (85%), squa-
mous cell carcinoma (3%), adenocarcinoma (2%) and
mixed carcinomas (10%).

p-Stat3 was also elevated in bladder cancer cell lines

Western blot analysis showed that elevated p-Stat3 was
also found in bladder cancer cell lines, UMUC-3, 253J and
WH (Figure 2). Very low or no p-Stat3 was detected in the
same amount of T24 and TCC cell lysates as revealed by
the internal controls of GAPDH. All bladder cancer cell
lines examined have very similar total Stat3 expression
levels.

rAd-mediated transduction of dnStat3 in bladder cancer 

cell lines

One way to investigate the functions of activation of Stat3
in bladder cancer is to interrupt Stat3 signaling pathway in
bladder cancer cell lines with elevated p-Stat3. To that
end, WH and UMUC-3 were transduced with rAd/
dnStat3. The two cell lines were infected with rAd/dnStat3
(moi = 100, 250, and 500). The expression of dnStat3 in
WH cells was observed and shown at 48 hours post infec-
tion (Figure 3). FLAG-tagged dnStat3 expressions in 10 μg
of bladder cancer cell lysates were detected by western
blots using an anti-FLAG antibody. Total Stat3 expres-
sions correspondingly reflected the dose-dependent
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increase of dnStat3 expressions in these bladder cancer
cells.

Targeting Stat3 signaling pathway using dnStat3 and STA-

21 induced cell growth and viability inhibition in bladder 

cancer cells

Bladder cancer cell growth was significantly suppressed in
the presence of dnStat3 and STA-21. UMUC-3 and WH
cells were transduced with either rAd/dnStat3 or rAd/
eGFP (moi = 100 and 500). Cell growth is presented in
cell densities normalized to untransduced controls at day
2 and day 4 post-infection (Figure 4A and 4B). The growth
rates of untransduced cells were set at 100%. There was
20–30% reduction in UMUC-3 cell growth at day 4 post-
infection with rAd/eGFP; more notably, the UMUC-3 cell
line transduced with rAd/dnStat3 (moi = 100 and 500)
was reduced down to 11.9 ± 0.3% (P < 0.05) and 1.3 ±
0.3% (P < 0.005) of cell growth at day 4 compared to
untransduced controls (Figure 4A). The discrepancies
between cell growth of bladder cancer cells transduced
with rAd/eGFP and rAd/dnStat3 apparently reflects
dnStat3-specific inhibitory effects. The dnStat3-mediated
inhibition of cell growth was even more dramatic as

observed in WH cells (Figure 4B). WH cells transduced
with rAd/dnStat3 (moi = 100 and 500) had only 50.2 ±
13.5% (P < 0.05) and 16.1 ± 2.2% (P < 0.005) of cell
growth compared to untransduced controls at day 2 post-
infection; evenmore, at day 4 post-infection, cell growth
of rAd/dnSTat3-transduced WH cells was decreased to
only 1.1% and 0.5% of untransduced controls. After 4 day
of infection with a higher dose of rAd/Stat3 (moi = 1000),
a cell viability assay (MTT) also revealed that WH and
UMUC with higher content of p-Stat3 only maintained
34.8 ± 1.4% and 51.9 ± 8.5% cell viability of untreated
controls (Figure 4C). On the contrary, TCC and T24 with
much lower or undetectable p-Stat3 contents had much
higher cell viability with 90.5 ± 3.6% and 73.6 ± 7.5% of
untreated controls under the same experimental condi-
tions. The overall cell viability of cells treated with rAd/
dnStat3 was decreased along the time, while that of cells
untransduced or treated with rAd/eGFP was increased
(data not shown).

As MTT assay showed, similar inhibition on cell growth
and viability was observed in bladder cancer cells treated
with 30 μM STA-21 (Figure 4C). Viability of bladder can-

p-Stat3 was elevated in bladder cancer tissuesFigure 1
p-Stat3 was elevated in bladder cancer tissues. (A) normal tissue, (B) squamous cell carcinoma (Stage II), (C) urothelial 
carcinoma (stage III), (D) urothelial carcinoma (stage IV). Normal tissues appeared negative in p-Stat3 staining. The nuclei were 
counterstained with hematoxylin blue. Image magnification was 100×.
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cer cells and BdSMC treated with DMSO was about the
same as untreated controls. However, exposure to STA-21
greatly reduced cell viability of 253J, UMUC3 and WH
(38.1 ± 0.74%, 11.4 ± 1.5%, and 29.0 ± 6.7%). Interest-
ingly, STA-21 had very minimal effects on BdSMC cell via-
bility (91.3 ± 4.4%). This indicated that STA-21 inhibition
is specific to bladder cancer cells that have constitutive
activation of Stat3. In addition, the decreased overall via-
bility of cells treated with STA-21 was consistent with that
observed in cells treated with rAd/dnStat3. These together
suggested that bladder cancer cell death associated with
inhibition of Stat3 pathway might have occurred.

Table 1: Clinicopathological parameters of urinary bladder cancers used

Clinicopathological parameters Numbers (%)

Gender Male 76 (75.9)

Female 26 (24.1)

Age (years) 20–40 4 (3.9)

41–60 41 (40.2)

61–90 56 (54.9)

N/Aa 1 (1.0)

Mean 62

Median 64

Stage (total 45) 0ab 6 (13.3)

0isc 3 (6.7)

I 16 (35.6)

II 7 (15.6)

III 8 (17.8)

IV 3 (6.7)

N/A 2 (4.4)

Grade (Total 57) I 5 (8.8)

II 17 (29.8)

III 35 (61.4)

Regional lymph node and/or distant metastasis N0M0d 40 (88.9)

(total 45) N1M0e 1 (2.2)

N0M1f 1 (2.2)

N1M1g 1 (2.2)

N/A 2 (4.4)

Histology (total 54) Urothelial carcinoma 87 (85.3)

Squamous cell carcinoma 3 (2.9)

Adenocarcinoma 2 (2.0)

Mixed carcinomas 10 (9.8)

a N/A – Information are not available
b 0a – Cancer is noninvasive
c 0is – Noninvasive, flat carcinoma in situ
d N0M0 – No regional lymph nodes neither distant organs metastasis
e N1M0 – Metastasis in 1 to 3 regional lymph nodes
f N0M1 – No regional lymph nodes but distant organs metastasis
g N1M1 – Metastasis both in regional lymph nodes and distant organs

Elevated p-Stat3 (Y705) was found in bladder cancer cell linesFigure 2
Elevated p-Stat3 (Y705) was found in bladder cancer 
cell lines. One hundred μg of cell lysates from bladder can-
cer cells were subject to western blot analysis using anti-p-
Stat3 (Y705), -Stat3 and -GAPDH specific antibodies.
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Inhibition of Stat3 pathway induces activation of 

apoptotic caspase pathways

Transduction of dnStat3 in bladder cancer cells induced
activation of apoptotic caspases 3, 8, and 9 in those cells
transduced with rAd/dnStat3. UMUC-3 and WH were
fixed at day 2 and day 1, respectively, post-transduction of
rAd/eGFP or rAd/dnStat3 and then subject to immuno-
fluorescent staining using antibodies that recognize
cleaved caspases 3, 8 and 9 for apoptosis evaluations.
Only rare sporadic cells were found stained by anti-
cleaved caspases 3, 8, and 9 antibodies in negative
UMUC-3 and WH controls (untransduced or transduced
with rAd/eGFP) (Figure 5A &5B). However, many
dnStat3-transduced cells were positive in anti-cleaved cas-
pases 3 (44.2 and 53%), 8 (53.5 and 74.4%), and 9 (74.2
and 42.4%) immunostaining (Figure 5B).

Targeting Stat3 pathway using STA-21 also led to
increased cleavage of caspase 3 after 72 hours of treatment
in 253J, UMUC-3 and WH (Figure 5C and data not
shown). About 6.4–13% cells were cleaved caspase 3 pos-
itive in these three STA-21-treated bladder cancer cell
lines, compared to less than 0.5% in untreated or DMSO-
treated cells. STAT-21 treatment did not seem to induce
caspase 3 cleavage in BdSMC cells with less than 0.1%
appearing positive with anti cleaved caspase 3 immunore-
activity. The increased apoptotic caspase activation impli-
cated that apoptosis could be one of mechanisms
underlying the decreased cell viability in bladder cancer
cells in that Stat3 pathway was compromised by treatment
of rAd/Stat3 or STA-21.

dnStat3 down-regulated anti-apoptotic genes and cyclin 

D1 in bladder cancer cells

We then would like to explore possible mechanisms for
dnStat3-induced cell growth inhibition and activation of

apoptotic caspases in bladder cancer cells. It is likely that
inhibition of Stat3 pathway by dnStat3 or STA-21 down
regulated Bcl-2, Bcl-xL and survivin as well as cell cycle
regulating gene, cyclin D1. Reduced expressions of these
genes may contribute to bladder cancer cell growth inhi-
bition and apoptotic caspase activation. UMUC-3 and
WH cells were transduced with either rAd/eGFP or rAd/
dnStat3 (moi = 1000 and 500) for 27 hours and 48 hours,
respectively. Expression of survivin, Mcl-1, Bcl-2, Bcl-xL
and cyclin D1 proteins in these cells were evaluated using
western blot analysis and densitometric quantification. In
UMUC-3 cells, Bcl-2 (47% untreated control), Bcl-xL
(55.4%) and survivin (9.7%) were down regulated by the
transduction of dnStat3 as compared to expressions in
untransduced cells or cells transduced with rAd/eGFP
(Figure 6A), whereas Mcl-1 (100%) remained intact.
Expression of the three genes in rAd/eGFP-transduced
cells (moi = 1000) was only slightly changed as compared
to the untransduced cells. survivin(67.1% untreated con-
trol), Bcl-xL (61.1%) and cyclin -D1 (62.7%) expression
was detected to be decreased when the same cell line
treated with 30 μM STA-21 for 4 days (Figure 6C).

We also examined the expression of anti-apoptotic genes
and cyclin D1 in WH bladder cancer cells when Stat3
pathway was targeted by rAd/dnStat3 or STA-21. Mcl-1
(80% untreated control) was apparently not affected as
compared with the control treated with rAd/eGFP but Bcl-
2 (16.6%) and Bcl-xL (46.9%) protein expressions were
down regulated by the transduction of dnStat3 (Figure
6B). In addition, cyclin D1 expression (1.9% untreated
control) was almost completely inhibited by the interfer-
ence of Stat3 signaling pathway. Expression reduction in
two anti-apoptosis genes (Bcl-2 and Bcl-xL) and cyclin D1
were consistent with apoptosis and cell growth inhibition
in WH cells. Four days of treatment of STA-21 showed
similar but less reduction in survivin (19.6% untreated
control), Bcl-2 (64%) and Bcl-xL (79.2%) expressions.

Discussion
Constitutive activation of Stat3 signaling pathway is fre-
quently detected in several types of human cancers. This
report was to explore the correlation between bladder can-
cer and Stat3 status in bladder cancer tissues and cell lines.
We found that elevated p-Stat3 expression is found in
both bladder cancer tissues and cell lines. Among 100 pri-
mary bladder cancer biopsy tissues, 19% appears positive
in p-Stat3 immunostaining in nuclei, cytoplasm or both
compartments. Majorities of bladder cancer tissues exam-
ined are negative for p-Stat3 and may result from other
causes for this kind of cancer [10]. Elevated p-Stat3 expres-
sion is also found in bladder cancer cells, UMUC-3, WH
and T24. These suggest that elevated p-Stat3 might con-
tribute to some of bladder malignancy. Phosphorylation
at tyrosine 705 is required for the activation of Stat3. Ele-

Transduction of dnStat3 (Y705F) in bladder cancer cell lines using a recombinant adenoviral vectorFigure 3
Transduction of dnStat3 (Y705F) in bladder cancer 
cell lines using a recombinant adenoviral vector. A 
representative bladder cancer cell line, WH, was transduced 
with designated mois of rAd/dnStat3 and rAd/eGFP. Twenty 
μg of cell proteins were fractionated on 12% PAGE gels and 
immunoblotted with specific antibodies against FLAG, Stat3 
and GAPDH.



Molecular Cancer 2008, 7:78 http://www.molecular-cancer.com/content/7/1/78

Page 6 of 12

(page number not for citation purposes)

Figure 4 (see legend on next page)
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vated Stat3 phosphorylation in these bladder tissues and
cell lines might result from abnormal overactive upstream
oncogenic FGFR or ERBB2 in these cancer tissues [10,21].
A recent study shows that overactive Stat3 serves as the sig-
nal mediator between EGF and MMP-1 for bladder cancer
cell migration, invasion and tumor formation [19]. Alter-
native explanation is the down regulation of counter bal-
ancing signal transduction pathways, such as SH2-
containing tyrosine phosphotase (SHP1 and 2), protein
inhibitors of activated Stats (PIAS), and suppressors of
cytokine signaling (SOCS), could also contribute to
higher Stat3 phosphorylation in these bladder cancer tis-
sues or cell lines [5]. These need further verifications using
tissue microarray immunohistochemistry or quantitative
PCR.

Our data suggest that bladder cancer cells might utilize
Stat3 signaling pathway for cell growth and survival. Inter-
ruption of Stat3 pathway using a dnStat3 or STA-21 affects
bladder cancer cell growth and induces the activation of
apoptotic caspases. DnStat3 may inhibit phosphorylation
and dimerization of endogenous Stat3 [22-24] and down
regulates a group of survival and proliferation genes [25-
27]. STA-21 was discovered from a virtual drug screen and
showed efficacy in blocking Stat3 dimerization and trans-
location into nuclear compartments [8]. Our data, con-
sistent with previous studies, has delineated part of the
relationship between elevated p-Stat3 expression and
bladder cancer [19], although mechanisms for cell growth
inhibition and cell death by dnStat3 in bladder cancer cell
UMUC-3 and WH remain largely unclear. Reduction of
cyclin-D1 expression in WH and UMUC-3 cells might be
part of the causes for cell growth inhibition. This is con-
sistent with previous study that targeting Stat3 signaling
with dnStat3 suppresses cell-cycle-related genes, including
cyclin-D1, in ALK-positive anaplastic large cell lymphoma
[28].

Interruption of Stat3 pathway by dnStat3 and STA-21
leads to activation of caspase 3 signaling in bladder cancer
cells. Apparently, dnStat3-induced cleavage of caspase 3 is

also mediated through caspases 8 and 9 pathways. Cas-
pases 8 and 9 are key initiator caspases for two largely
independent apoptotic pathways mediated by death
receptors and stresses [29-32]. Cleaved caspase 8 suggests
an autocrine signal(s) following dnStat3 transduction in
bladder cancer cells. Fas, TRAIL receptors and their ligands
are usually suppressed in several cancers to prevent apop-
tosis [33,34]. Stat3 has been shown to directly down reg-
ulate Fas, TRAIL, and TGF-α [35-37]. To Target Stat3
signaling pathway using Stat3β upregulates TRAIL and a
secretory apoptotic signal(s) in B16 tumor cells. What
death receptor(s) is involved in dnStat3-induced apopto-
sis in bladder cancer cells acquires further investigations.

Activation of caspase 9 pathway in bladder cancer cells is
very likely triggered by down regulation of Bcl-2 family
genes and inhibitors of apoptotic proteins (IAP). We
observed that two Bcl-2 family genes (Bcl-2 and Bcl-xL)
and an IAP gene (survivin) are negatively affected at pro-
tein level by dnStat3 and STA-21. Overexpression of Bcl-2,
Bcl-xL, and survivin in several cancers overcomes severe
tumor environments and facilitates cancer progression,
chemotherapeutic resistance and higher rate of recurrence
[15,17,18,38,39]. Down regulation of these genes likely
contributes to the dnStat3- and STA-21-induced activa-
tion of apoptotic caspases in bladder cancer cells. DnStat3
also inhibits Stat3 signaling in ALK-positive anaplastic
large cell lymphoma by suppression of several Bcl-2 fam-
ily genes [28]. Activated Stat3 promoting cancer survival
and proliferation has been demonstrated in several can-
cers [8,40-48]. To suppress Stat3 signaling pathway using
anti-sense RNA, siRNA, small molecules, decoy-oligos
and dnStat3 results in cancer cell growth inhibition and
apoptosis. It appears that targeting dnStat3 signaling path-
way could be an effective therapeutic approach for blad-
der cancer expressing constitutive activation of Stat3.

Conclusion
Our data show that Stat3 phosphorylation is elevated and
may play a pivotal role in cell growth and survival of blad-
der cancer. Cell growth inhibition and apoptosis can be

Targeting Stat3 pathway inhibits cell growth and viabilityFigure 4 (see previous page)
Targeting Stat3 pathway inhibits cell growth and viability. Transduction of dnStat3 suppressed cell growth of bladder 
cancer cell lines, (A) UMUC-3, at day 4 post infection and (B) WH, at day 2 and 4 post infection. Growth of bladder cancer 
cells was strongly suppressed by the expression of dnStat3. Cells were transduced with either rAd/dnStat3 or rAd/eGFP (moi 
= 100 or 500) while untransduced cells served as negative controls. Cells in five random individual microscopic fields (100×) 
were scored at day 2 or day 4 post-infection. (C) MTT assay also shows that transduction of dnStat3 limits cell growth of blad-
der cancer cell lines (WH and 253J) with higher content of p-Stat3 but not that of those cells with less p-Stat3 at 4 day post-
infection. Cell growth was shown in cell density over control cell density (%). (D) Cell viability of cancer cells was greatly 
reduced after treatment of STA-21, a Stat3 dimerization inhibitor. Cells were treated with DMSO or 30 μM STA-21 for 4 days. 
STA-21 had very limited effects on BdSMC cell viability. Cell viability was determined using a MTT assay. Averages and standard 
deviations for data points were derived from triplicate experiments. * (P < 0.05) and ** (P < 0.005) indicate paired t-test statis-
tic significance.
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induced in bladder cancer cell lines using either a dnStat3
or a small molecule inhibitor, STA-21 to interfere with the
Stat3 signaling pathway. The Stat3 signaling pathway
appears as a potential target for bladder cancer therapy.

Methods
Cell culture

Bladder cancer cell lines were purchased from American
Type Culture Collection (ATCC). Cell lines were main-
tained in 1× DMEM supplemented with 10% fetal bovine
serum and 100 U/ml penicilin/streptomycin/amphoter-
icin B (Mediatech, Herndon, VA) at 37°C, aired with 5%
CO2. Bladder smooth muscle cells (BdSMC) were pur-
chased from Cambrex Bio Science and maintained in

SmGM®-2-Smooth muscle medium (Cambrex, Chicago,
IL) supplemented with 5% FBS.

Bladder cancer tissue microarray immunohistochemistry

Stat3 phosphorylation status in bladder cancer tissues
were examined using immunohistochemistry with a p-
Stat3 (Y705)-specific monoclonal antibody (Cell Signal-
ing Tech., Danvers, MA). We stained bladder cancer tissue
samples (n = 102) on tissue microarray slides from two
different providers (US Biomax, Inc., Rockville, MD and
ISU ABXIS Co., Seoul, Korea). The immunohistochemis-
try and scoring of p-Stat3 expression were described previ-
ously [49]. Most of the p-Stat3 positive cancer tissues
showed staining in greater than 50% of each sample.

Inhibition of Stat3 pathway induces apoptosis through caspase 3, 8 and 9 pathways in bladder cancer cells but not in bladder smooth muscle cellsFigure 5 (see previous page)
Inhibition of Stat3 pathway induces apoptosis through caspase 3, 8 and 9 pathways in bladder cancer cells but 
not in bladder smooth muscle cells. (A) Cleaved caspase 3, 8 and 9 staining in dnStat3-transduced UMUC-3 and WH at 48 
h post-infection and 31 h post-infection, respectively. Cells were transduced, fixed and then immunostained with anti-cleaved 
caspases 3, 8 and 9 antibodies. Cleaved caspases 3, 8 and 9 immunoreactivies were observed in cells transduced with rAd/
dnStat3 but not in the cells transduced with rAd/eGFP or negative control. Cleaved caspase 3, 8, 9: anti-cleaved-caspases 3, 8, 
& 9 antibody immuno-fluorescent staining; Unt: untreated; DAPI: nuclear staining with DAPI; phase:phase-contrast. Magnifica-
tion of images was 100×. (B) 45–75% of UMUC-3 and WH cells transduced with rAd/dnStat3 were cleaved caspase 3, 8, and 9 
positive. (C) STA-21 also induced apoptosis (cleaved caspase 3 staining) in 253J, WH and UMUC-3 cells but not in BdSMC 
cells.

Inhibition of Stat3 pathway by dnStat3 down-regulates survival genes and cyclin-D1 geneFigure 6
Inhibition of Stat3 pathway by dnStat3 down-regulates survival genes and cyclin-D1 gene. The protein expression 
levels are shown in (A) UMUC-3 at 27 hours and (B) WH at 48 hours post-infection with rAd/dnStat3 or the control vector, 
rAd/eGFP as well as in (C) UMUC-3 and (D) WH that are treated with designated concentrations of STA-21 for 4 days. Pro-
tein expressions of survival genes (Bcl-xL, Bcl-2, Mcl-1 and survivin) and cyclin-D1 were subject to densitometric quantification 
and shown in percents of the untreated controls after being normalized to the GAPDH expression. A representative experi-
ment of triplicates is shown.
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Western blots

Western blots were carried out according to protocols
described previously [49]. 10 to 100 μg of cellular pro-
teins were resolved on 10% or 14% SDS-PAGE gels before
transfer, immunoblotting, and visualization of specific
protein bands. Antibodies were purchased separately and
used to recognize FLAG (Sigma, St. Louis, MO) GAPDH
(Chemicon International, Temecula, CA). Stat3, p-Stat3
(Y705) (Cell Signaling Tech., Danvers, MA), Bcl-2, Bcl-xL

(Biosciences, Inc. Franklin Lakes, NJ,), Mcl-1, cyclin D1
(Lab Vision Corp., Fremont, CA) and survivin (UpState,
Charlotteville, VG)

For expression comparison, each protein expression was
presented in a percentage of its corresponding untreated
control after densitometric quantification and normaliza-
tion to the GAPDH expression. A representative one from
duplicated experiments was presented.

Transduction of dnStat3 in bladder cancer cell lines

The construction of recombinant Adenovirus/CMV-
dnStat3 Y705F (rAd/dnStat3) is described previously [23].
DnStat3 was generated from Stat3 by changing the tyro-
sine at position 705 into phenylalanine. The dnStat3 pro-
tein product is tagged with a 6-repeat FLAG sequence for
detection and cannot be activated through tyrosine phos-
phorylation. About 2 × 105 WH and UMUC-3 cells were
transduced with rAd/dnStat3 or rAd/CMV-eGFP (rAd/
eGFP) (Applied Viromics, Fremont, CA) at variant multi-
plicities of infection (moi) based on TCID50 assay using
293T cells. For cell growth experiments, cell numbers were
enumerated at day 2 or 4 post-infection. Cell counts in 5
random fields of view (magnification 100×) were
obtained for each treatment and control. Cell growth rates
were presented in percentages of cell density of untreated
controls and averaged from triplicate experiments.

Treatment of STA-21 and Cell viability assay

Approximately 5000 cells were grown in 100 μl 10% FBS-
supplemented DMEM medium in 96-well flat-bottomed
plates overnight. Cells were exposed to STA-21 (30 μM)
that was dissolved in dimethyl sulfoxide (DMSO) before
added to the medium. Cell viability was analyzed by the
MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-
tetrazolium bromide] (Sigma) assay in three replicates. At
the time of assay end-point, cells were treated with MTT (1
mg/ml) for 3–4 hours. Colormetric quntitation was deter-
mined by an EL808 Ultra Microplate Reader (Bio-Tek
Intruments, Inc) after formazan was dissolved in 25% N,
N-dimethylformamide and 10% SDS in a light-proof con-
dition overnight.

Caspases 3, 8, and 9 immuno-fluorescent staining

Approximately 1 or 2 × 105 cells (UMUC-3, WH, 253J, and
BdSMC) were seeded on sterile coverslips in a 6-well plate

overnight, either transduced by either rAd/eGFP or rAd/
dnStat3 (moi = 500) for 48 or 28 hours respectively, for
UMUC-3 and WH cells. For the small molecule inhibi-
tion, cells were treated with 30 μM STA-21 for 72 hours.
Cleaved caspase immunostaining and documentation
were described previously [50]. The primary rabbit anti-
bodies were diluted with 1:100, 1:50, and 1:100 dilutions,
respectively, for detecting cleaved-caspase-3 (Asp175),
cleaved-caspase-8 (Asp374), or cleaved-caspase-9
(Asp330) (Cell Signaling Tech)

Abbreviations
BdSMC: bladder smooth muscle cell; DMSO: dimethyl
sulfoxide; MTT: [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphe-
nyl-2H-tetrazolium bromide]; PIAS: protein inhibitors of
activated STATs; SHP1/2: SH2-containing tyrosine phos-
photases; Stat3: signal transducer and activator of tran-
scription 3.
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