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Signal Transducer and Activator of Transcription (STAT) pathway is connected upstream

with Janus kinases (JAK) family protein and capable of integrating inputs from different

signaling pathways. Each family member plays unique functions in signal transduction

and crucial in mediating cellular responses to different kind of cytokines. STAT family

members notably STAT3 and STAT5 have been involved in cancer progression whereas

STAT1 plays opposite role by suppressing tumor growth. Persistent STAT3/5 activation

is known to promote chronic inflammation, which increases susceptibility of healthy

cells to carcinogenesis. Here, we review the role of STATs in cancers and inflammation

while discussing current therapeutic implications in different cancers and test models,

especially the delivery of STAT3/5 targeting siRNA using nanoparticulate delivery system.
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INTRODUCTION: THE ROLE OF STAT FAMILY MEMBERS IN
CANCER AND INFLAMMATION

The first direct link between STAT family proteins and carcinoma in human derived from research
works that demonstrate that constitutively activated STAT3 is crucial for the carcinogenesis
of head and neck cancer and multiple myeloma cells (1, 2). There is evidence indicated that
antagonizing STAT3 signaling could induce cell death in human U266 myeloma cells (1).
Subsequently, several types of solid tumors, leukemia, and lymphomas have been linked with
constitutive activation of STAT3. IL-6 autocrine or paracrine loops was recognized as source for
composition of STAT3 activity in myeloma and prostate malignant cell lines (3). Transforming
growth factor-α (TGF-α)-mediated epidermal growth factor receptor (EGFR) signaling plays a
vital role for the activation of STAT3 in some head and neck cancer cell lines (2). Hepatocyte
growth factor (HGF) signaling via the receptor, c-MET, is related with the transformation of
leiomyosarcoma cells, breast carcinoma cells, melanoma cells, and lung cancer cells in conjunction
with SRC kinase which stimulate the expression of STAT3 (4–7).

Evidences have shown that constitutive activation of STAT5 are the leading causes of
tumorigenesis (8). STAT proteins are indispensable in coordinating the response of hematopoietic
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cells to a wide range of cytokines. In fact, STAT5 activation is
crucial for cancer progression in chronic myelogenous leukemia
(CML) and myeloproliferative disease induced by TEL–JAK2
(9, 10). Aberrant chromosomal translocation BCR–ABL kinase
and activation of FMS-like tyrosine kinase 3 (FLT3) receptor
tyrosine can induce STAT 5 activation in CML and Acute
myeloid leukemia (AML), respectively. However, not all family
members in STAT proteins are promoting cancer progression.
For instance, activated STAT1 appears to exert pro-apoptotic and
anti-proliferative effect as STAT1-null mice lead to higher risk of
tumor development than controls (11, 12), these results indicate
that STAT1 has the tumor-suppressing properties like TP53 and
could be an antagonist for STAT3 and STAT5 activation. All
these studies showed that STAT1 unlikely to promote tumor cell
growth in human.

Abnormally high activity of the Nuclear Factor Kappa
B (NF-κB) pathway and Cyclooxygenase-2 (COX-2) activity
induced by inflammatory mediators or reactive nitrogen
oxygen species (RNOS) might aid inflammation-mediated
tumorigenesis. STAT3 has close association with inflammation
which is subsequently linked with tumor initiation due to
mutation in genetic makeup of malignant cells (13, 14), in
addition to this different environmental influences such as, stress,
carcinogenic agents, smoking and radiations (15, 16). Apart
from that, STAT proteins are crucial mediators of immunity
against pathogens, and in the advancement of inflammatory
disorder (17). Emphatically, initial natural protective event
which is connected with STATs was inflammation in which
STAT1 shows anti-viral activity while STAT4 and STAT6 involves
in polarization of T helper cells. IFN/STAT1 pathway can
induce inflammation in several ways, for example increasing
the production of chemokines, managing the differentiation and
apoptosis of hematopoietic cells and initiating formation of
reactive oxygen species and nitric oxide (18). STAT2, STAT4,
and STAT6 are stimulated by certain cytokines, such as IL-12,
IL-4/IL-13, and IFN-α (19). Development of T helper cells by
STAT6 contributes in a positive way in modulating inflammation
during allergy while in negative way in autoimmunity (20).
Consequently, differentiation of type 1 T helper cells by STAT4
was essential for autoimmune and inflammatory disorders. This
model has highlighting the fact that numerous STAT proteins
can participate in differentiation of single T helper phenotype,
and single STAT protein can be essential for the expansion of
numerous T helper subsets (21, 22).

As discussed above, STAT1 protein mainly function as tumor
suppressor, suggesting that not all STAT proteins participate in
the progression of inflammation andmalignancy in human. Since
STAT3/5 is directly implicated in oncogenesis and inflammation,
the following sections will focus more on their molecular
regulation and therapeutic implications of these proteins.

MOLECULAR REGULATION OF STAT 3/5
PROTEIN ACTIVATION

Accumulating research has shown that how STAT3 constitutively
activated in numerous types of cancer, including multiple

FIGURE 1 | Domain structures of the STAT family members. N-terminal is

required for protein interactions, SH-2 domains are required for dimerization,

both the N-terminal and SH-2 domains mediated homo or heterodimer

formation. Coiled-coil domains are required as a nuclear localization signal for

activation. Y-S within the C-terminal are the phosphorylation sites.

myeloma, lymphomas, head and neck squamous cell carcinoma,
breast cancer, prostate cancer, and hepatocellular carcinoma
(HCC) (23–26). STAT3 generates two isoforms STAT3α
and STAT3β by alternative splicing (27). STAT5 consists
of two isoforms, STAT5a and STAT5b which map to
chromosome17q11.2 in human and share 94% structural
homology, these two isoforms are transcribed from separate
genes and differ primarily at their C-terminus (19, 28). STAT5a
is predominantly expressed in mammary gland and mammary
tissue while STAT5b is more prevalent in muscle and liver
(19, 28, 29). STAT3, STAT5a, and STAT5b belong to a family
of STAT proteins along with STAT1, STAT2, STAT4, and
STAT6 (30, 31). STAT proteins were discovered initially as
latent transcription factors found in the cytoplasm of cells
(32, 33). All seven STAT proteins share a common structural
motif (Figure 1).

STAT3, STAT5a, and STAT5b can be activated by numerous
cytokines and growth factors, including interleukin (IL)-6, EGF,
insulin-like growth factor, hepatocyte growth factor, colony-
stimulating factor-1, platelet derived growth factor, hormones
(growth hormone, insulin) and downstream of some G-protein-
coupled receptors (34–37). The binding of these molecules
will activate JAK kinases and causing the phosphorylation of
tyrosine residues on receptors which allow the SH2 domains
of STAT proteins to attach to the phosphorylated receptor
(38–40). It is crucial for STAT proteins to undergo tyrosine
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phosphorylation for homodimerization or heterodimerization
through an SH2 domain-mediated mechanism (40). Particularly,
IL-6 is important for the production of HCC (41, 42) and is able
to activate STAT3 via IL-6 receptor, gp130 and JAKs (43, 44).
Upon attaching of IL-6 to its receptor, dimerization of the gp130
receptor occurs and causes subsequent activation of JAK due to
its association with gp130 (25, 45, 46). Three members of the JAK
family of proteins, JAK1, JAK2, and TYK2 can be activated by
this manner (47, 48). After which, phosphorylation of tyrosine
residues on gp130 is induced, providing docking sites for inactive
STAT3 monomers (49, 50) causing STAT3 to be phosphorylated
at its Tyr705 residue (23, 51). Activated STAT3 monomers then
dimerize by coupling of the phosphorylated Tyr705 remainder on
STAT monomer with Src homology 2 (SH2) domain of another
STAT monomer (52, 53). Nuclear translocation happens next,
which is mediated by importin α5/NPI-1 (54, 55). Thereafter,
STAT3 dimers attach to STAT3-specific DNA-response elements
of desired genes and this brings about transcription of genes
(56, 57) Phosphorylation of STAT3 can be induced by c-Src
directly or indirectly, in which c-Src may exerts its function
downstream following activation of G protein-coupled receptor
(GPCRs) or receptor tyrosine kinases (RTKs) (47, 58). Apart from
its Tyr705 residue, STAT3 can be phosphorylated at its Ser727 as
well. BCR-ABL primarily phosphorylates STAT3 at Ser727 while
phosphorylation at Tyr705 is at a comparatively lesser degree
(58). Additionally, the phosphorylation of the Ser727 residue
can be moderated by the Ras/mitogen-activated protein kinase
(MAPK) pathway when it is induced by IL-6 (36, 59). However,
the phosphorylation of Ser727 residue on STAT3 is not affecting
the DNA-binding ability of STAT3 (60, 61) (Figure 2).

It was reported that STAT5 can be triggered by cytokines,
such as Prolactin (PRL), growth hormone, erythropoietin,
thrombopoietin, EGF, IL-2, IL-3, IL-6, IL-7, IL-9, and IL-15
(62). STAT5a and STAT5b are phosphorylated at its Tyr694 and
Tyr699 residue by JAK2 (28). STAT3 and STAT5 isoforms are
able to be phosphorylated and consequently initialized by non-
receptor tyrosine kinases of the Src kinase families (63, 64),
particularly c-Src (65, 66). However, activation of STAT5 by Src
kinases will only translocate STAT5b into the nucleus Serine
phosphorylation sites for STAT5 isoforms are Ser725 and Ser730

for STAT5a and STAT5b, respectively in murine (67). Another
study demonstrated that Ser779 in STAT5a was constitutively
phosphorylated in multiple tissues (40, 68). Xue et al. (40)
demonstrated that both STAT5 isoforms underwent rapid serine
phosphorylation in response to IL-2 where the phosphorylation
site in STAT5a was Ser780 which is not conserved in STAT5b.
The mutation of Ser730 in STAT5b stimulated the STAT5 DNA
binding activity thus promote the growth hormone-induced
β-casein promoter activity (69).

CROSSTALK BETWEEN STATS WITH
OTHER TRANSCRIPTION FACTORS IN
CANCER AND INFLAMMATION

Constitutively activated STAT3 and STAT5 are causes of concern
due to their tumorigenic potential. Various oncogenic pathways

FIGURE 2 | Activated STAT3/5 signaling pathway by IL-6 receptor, Prolactin

(PRL) receptor, VEGF Receptor, EGF Receptor, and IL-10 receptor. STAT3 and

STAT5 are activated through tyrosine phosphorylation, then the STAT3/5

moomer undergoes dimerization and translocated into the nucleus. In the

nucleus, STAT3/5 dimers binds to the promoter region or γ-interferon

activation sequence (GAS) of target genes with co-factors, such as Nuclear

Factor Kappa (NF-κB), Hypoxia-inducible factor 1-alpha (HIF-1α), protein

kinase B (Akt), and p300 to transcript genes related to inflammation,

proliferation, migration, and survival. NF-κB is activated through the

phosphorylation of Inhibitor of kappa (IκB-α). PRLR activate Mitogen-activated

protein kinase (MAPK) and Phosphoinosite 3-kinase (PI3K) pathways to

produce co-regulators that are required for expression of certain

STAT5-related genes.

are regulated by STAT3, including cell-cycle progression,
apoptosis, angiogenesis, invasion, and metastasis (58, 70). This
is because STAT3 is capable of modulating the expression of
proteins involved in these pathways, for instance, cell cycle
regulator cyclin D1, anti-apoptotic proteins B-cell lymphoma
2 (Bcl-2) and B-cell lymphoma-extra Large (Bcl-xL), Vascular
Endothelial Growth Factor (VEGF) (58, 63) and Matrix
Metalloproteinase-9 (MMP-9), which performs a main role in
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invasion (23, 71). Like STAT3, STAT5 is able to modulate growth
and suppression of cell death in a few cancer cell lines, notably
association with the Bcl-Ab1 fusion protein in hematopoietic
cancers (72, 73). STAT5 is reported to influence the expression
of Bcl-2, Survivin, MMP-2, MMP-9, VEGF, and E-cadherin
by interacting with MAPK pathway in colorectal cancer cells
(72). Interestingly, STAT family also collaborate with other
transcription factors, such as RUNX family proteins, p53 and
Nuclear factor-κB, as described below.

RUNX Family Proteins
Runt-related (RUNX) family genes were shown to participate
in the progression of human cancers and induce tumors in
mouse models (74). The RUNX genes exhibit the properties
of oncogenes and tumor suppressors in various cancers and
cellular contexts (75). All RUNX family genes attach DNA via
the conserved Runt domain, and contain the same heterodimeric
binding cofactor, CBFβ (75). Mutations in RUNX genes have
been correlated with different types of cancers. As one of
the developmental regulators in haematopoiesis, functional
dysregulation of RUNX1 will lead to leukemia (74, 76). RUNX2
is crucial in breast and prostate cancer progression and is related
with osteosarcoma (77, 78). RUNX3 is strongly implicated as
tumor suppressor for gastric cancer and the absence of RUNX3
expression is proposed to be linked to gastric cancer because
expression of RUNX3 is not observed in more than 45% of the
gastric cancer patients (74, 77, 79). JAK-STAT signaling pathway
induces interferon-γ (IFN- γ) to express TGF-β signaling
pathways inhibitor, Smad7 (80). JAK-STAT signaling pathway
indirectly affect the expression of RUNX3 as this gene is closely
linked to TGF- β signaling pathways (81–83). By indirect binding
of STAT3 and bone morphogenetic proteins (BMP)-specific
Smads, BMP pathways interact with Leukemia inhibitory factor
(LIF) induce differentiation of astrocytes from neuroepithelial
cells (84). Latent form of STAT1 protein binds to RUNX2 and
retains it in the cytoplasm thus attenuating its function as a
transcription factor in osteoblast and this interaction occurs
independent of IFN signaling since phosphorylation of tyrosine-
701 of STAT1 is not needed (85). STAT1 is suggested to regulate
the role of other RUNX proteins and STAT1 indirectly regulate
TGF-β superfamily signaling through the RUNX proteins (86).

p53
The p53 gene is a tumor suppressor gene and a potent inhibitor
of cell growth (87). The p53 protein arrests cell cycle progression
at several points and promotes cell death of cancerous cells (88).
Activated Stat3 was reported to bind to the p53 promoter both
in vitro and in vivo, supressing the p53 activity in breast cancer
cells (88). Both STAT1 and p53 activate the p21 gene promoter
(89, 90) and they both bind to p300/CREB binding protein (CBP)
at different sites suggest that they may form a complex with
CBP to regulate p53-dependent apoptotic signaling pathway (91).
Knockout STAT1 gene from a p53-deficient animals leads to
rapid tumor development and with a wider spectrum of tumor
types (92). Mdm2 protein promotes degradation of the p53
protein by ubiquitination (93), is downregulated by STAT1 (91).
Townsend et al. (91) also demonstrated that STAT1 and p53

cooperate in inducing apoptosis in cancer cells. Elevated STAT1
transcription activation is reported to enhance the cytotoxic
activity of p53 inducers, such as fludarabine (94). Youlyouz-
Marfak et al. (95) showed that agents that are able to induce
p53 activation could also promote collateral STAT1 activation.
The role of STAT2 in cancer progression and the correlation
with p53 remain understudied. Recently Gamero et al. (96)
showed that STAT2 is tumorigenic in the absence of p53, STAT2
knockdown in p53 null tumor cells increased protein levels
of the marker of epithelial-mesenchymal transition (EMT), E-
cadherin while overexpression of STAT2 in p53 null cells reduced
E-cadherin protein.

Nuclear Factor Kappa B
Nuclear factor-κB (NF-κB) is a well-known signaling pathway
accountable for inflammation-induced carcinogenesis and anti-
tumor immunity. NF-κB has potential of enhancing expression of
different inflammatory mediators by acting as their transcription
factor in number of immune reactions, it has been designated as
major signaling pathway involved in development of tumor as
a result of inflammation (97–99). Alongside, dominant part of
STAT proteins especially STAT3 in development of inflammation
mediated cancers, it is not surprising to mention that it possesses
secret crosstalk with NF-κB (100–104). These proteins are
constantly expressed in carcinoma cells and indispensable for
converting cytoplasmic signals from extracellular stimuli and
act as nuclear transcription factors needed for modulating
genes involved in tumor growth, existence, angiogenesis and
invasiveness, as well as genes encoding key cancer-promoting
inflammatory mediators (52, 98, 99, 105, 106). Various
inflammatory factors encoded by NF-κB target genes, most
notably IL-6, are critical activators of STAT3 (1, 100, 101, 107).
While in certain tumors, STAT3 encounters directly with NF-
κB to capture it in nucleus and thus causing its activation in
malignancies (102). Eventually, STAT3 and NF-κB are major
regulators of oncogenic and pro-inflammatory genes (105, 106,
108, 109). In comparison to regulated expression of STAT3 and
NF-κB in healthy cells, persistent restricted expression of these
genes by uninterrupted activation of STAT3 and NF-κB will
results in chronic inflammation and advancement of cancer cell
growth (110).

THERAPEUTIC IMPLICATIONS OF
TARGETING STATS

JAK-STAT Inhibitor
Recently, Debio 0617B is the first-in-class kinase inhibitor that
targeting phospho-STAT3 (pSTAT3) and/or pSTAT5 specifically
in carcinomas by suppressing the activity of JAK, SRC, ABL,
and class III/V receptor tyrosine kinases (RTK). Debio 0617B
demonstrated dose-dependent inhibition of pSTAT3 in STAT3-
activated cancer cell lines as well as suppressing cell proliferation
in several cancer cell lines and in malignant xenografts derived
from patients (111). In year 2011, Ruxolitinib (Jakafi R©, Incyte
Corp.) was the first United State Food and Drug Administration
(USFDA) approved JAK inhibitor which targeting both JAK1 and
JAK2 (112). Ruxolitinib was investigated in Clinical Trial Phase 3
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as intervention for Myeloproliferative Neoplasms, Polycythemia
Vera, Primary Myelofibrosis and Graft-vs-host Disease in year
2018. In comparison with other JAK family members which
are ubiquitously expressed in mammals, JAK3 is predominantly
expressed in hematopoietic cells and is highly regulated with cell
development and activation (113, 114). Signals relayed by the
JAK3 protein regulate the growth and maturation of T cells and
natural killer cells. Tofacitinib (Xeljanz R©, Pfizer) was approved
by the USFDA as a JAK3-selective suppressor for rheumatoid
arthritis (RA) therapy in year 2012 and recently approved to treat
Ulcerative Colitis (112). However, Tofacitinib still demonstrates
restricted selectivity against JAK1 and JAK2 which could lead
to outcomes like anemia and neutropenia due to simultaneous
suppression of JAK1 and JAK2 (115, 116). Pei et al. developed a
4-aminopiperidine-based compound, RB1 which was extremely
selective for JAK3, and reasonable pharmacokinetics properties
(F = 72.52%, T1/2 = 14.6 h) and favorable results of toxicology
experiments exhibited by RB1 indicating that it might be a
potent candidate for RA treatment (113). Several JAK inhibitors
which are currently under developmental phases have been listed
in Table 1.

Persistent initiation of STAT3 and STAT5 are described
in a few human cancer cell lines, and clinical samples (117,
118). However, the development of STAT5 inhibitor has been
distinctly slower compared to STAT3, but recent years witness
a tremendous effort to fill in this gap (119). For instance,
Wingelhofer et al. demonstrated that STAT5 SH2 domain
inhibitor, AC-4–130 could directly bind and disturb STAT5
activation, dimerization, nuclear translocation, and STAT5-
dependent gene transcription in acute myeloid leukemia (120).
On the other hand, a psychotropic drug, pimozide was reported
to decrease STAT5 tyrosine phosphorylation, induce cell cycle
arrest and cell death in chronicmyelogenous leukemia cells (121).
In fact, several STAT5 inhibitors in development have advanced
to clinical studies and we have summarized these trials inTable 2.

Several natural-derived pharmacological agents have been
used to target aberrant JAK/ signaling pathway by diverse
mechanism(s) including blockage of upstream tyrosine kinases
that can phosphorylate STAT3/5; activation of negative
regulators of STAT3/5 signaling cascade; abrogation of STAT3/5
dimerization, acetylation, and DNA binding (26, 122). However,
these natural-derived STAT3/5 inhibitors have exhibited limited
efficacy in clinical trials so far, and additional studies are
required to clearly establish their utility as a monotherapy or in
combination regimens with existing drugs for cancer patients.
Few important natural-derived STAT3/5 inhibitors have been
summarized in Table 3.

STAT3/5-Targeting RNAi
Inhibition of STAT3 pathway has been studied by several small
molecules through either upstream inhibition of cytokine and
growth factors, inhibition of STAT3 dimerization, inhibition
of STAT3/STAT3 nuclear translocation or inhibition of DNA
binding activity (129). Due to cytotoxicity and limitation of
specificity, progress of pharmacological inhibitors of STAT3 has
been limited. Targeting STAT3 using small molecule inhibitors
or other non-specific methods could trigger many undesirable

adverse effects because STAT3 is also expressed in normal tissues
and involved in many normal cellular processes (64, 130). Thus,
these inhibitors need to be delivered by coupled to delivery agents
to increase specificity and avoid causing unwanted side effects.

RNA interference (RNAi) is a valuable research tool for
analyzing the function of specific genes in cellular and disease
processes and for therapeutic application by specific gene
knockdown (131–133). RNAi can be mediated either by inserting
small interfering RNAs (siRNAs) directly into the cytoplasm of
the host cells or by viral vector expressing short hairpin RNAs
(shRNAs) which are processed intracellularly into siRNAs by
Dicer (134, 135). After the introducing of siRNAs, they will be
integrated into RNA-induced silencing complex (RISC), which
one strand will be removed and the RISC will be guided by the
remaining antisense RNA strand to stop translation of mRNAs
bearing complementary sequences (134). The gene knockdown
can lasts for 1 week in splitting cells and for a few weeks in
non-splitting cells (132).

Konnikova et al. initially transfected human astrocytoma cell
line with STAT3 siRNA, which subsequently led to apoptosis
induction via inhibition of anti-apoptotic genes (Bcl-XL and
Survivin) expression (136). Later they found that similar cell
death was observed in human gastric, primary glioblastoma,
and breast cancer cells after transfection with STAT3 siRNA
(137). On the other hand, Xiong et al. transfected the human
colorectal cancer cell lines SW1116 and HT29 with STAT5
siRNA and the results indicated that STAT5 is involved in
promoting cancer cell growth, cell cycle progression, invasion
and migration by modifying expression of Bcl-2, p16, p21, E-
cadherin, VEGF, MMP, and p27 genes in colorectal cancer (72).
Another study showed that human glioblastoma-astrocytoma
U87 cells transfected with STAT5 targeting siRNA, caused in
particular suppression of STAT5 genes and STAT5 mediated
DNA-binding activity as well as significant inhibition of cell
invasion (138). Overall, STAT3/5 targeting siRNA is proven
to promote apoptosis, cell cycle arrest, and suppress cancer
cell invasion in various carcinoma cell-line models, including
prostate, esophageal, hepatocellular, ovarian, laryngeal, breast,
and colorectal cancer (139–146).

The main challenge to develop siRNA as therapeutics is to
overcome the siRNA poor deliverability because naked siRNA
are susceptible to degradation by extracellular RNases in the
bloodstream and could not pass through cell membranes because
of their largemolecular weight and net negative charge (132, 147).
To overcome the challenges, nanoparticles are commonly used
for the delivery of the naked siRNA since they offer protection to
the siRNA and assist in endocytosis. This review also presents an
update on the current strategies used to deliver STAT3/5 targeting
siRNA using viral vectors and nanoparticulate delivery systems.

OTHER STRATEGIES IN TARGETING
STAT3/5

Viral Vector
Viruses are natural carriers of genetic information. Previous
attempt to transduce B and T lymphocytes using retroviruses
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TABLE 1 | JAK inhibitors in clinical trial (phase I not included).

JAK inhibitor Target of the

inhibitor

Disease in clinical trial Phase of clinical trial ClinicalTrial.gov

(USA) number

Ruxolitinib (INC424) JAK1,2 Myeloproliferative neoplasms (MPN) III NCT00952289

Polycythemia vera (PV) III NCT01243944

Primary myelofibrosis (MF) III NCT02087059

NCT00934544

II NCT01732445

NCT01795677

NCT01787552

NCT01693601

MF, Post-PV, Post-essential thrombocythemia (ET) myelofibrosis III NCT01969838

II NCT01392443

NCT01445769

NCT00509899

MF, Acute lymphoblastic leukemia (ALL), MPN, Myelodysplastic

syndrome (MDS)

II NCT02158858

Graft-vs-host disease (GVHD) III NCT03112603

II NCT02997280

NCT03395340

NCT02953678

Vitiligo II NCT03099304

ALL II NCT02723994

AML/ALL II NCT01251965

Myelomonocytic leukemia II NCT01776723

T-cell ALL II NCT01712659

Multiple myeloma II NCT00639002

CML II NCT01751425

Hodgkin’s lymphoma II NCT02164500

NCT01877005

Atopic dermatitis II NCT02001181

Tofacitinib (CP-690,550) JAK1,2,3 RA III NCT02281552

NCT00853385

II NCT00147498

Psoriasis III NCT01309737

NCT01815424

NCT01186744

NCT01976364

Arthritis, RA III NCT01039688

Ulcerative colitis III NCT01458574

Alopecia areata (AA), Alopecia totalis (AT), Alopecia universalis (AU) II NCT02197455

Kidney transplantation II NCT00658359

NCT00483756

INCB052793 JAK1 Solid tumors, advanced malignancies, metastatic cancer II NCT02265510

AZD4205 JAK1 Non-small cell lung cancer II NCT03450330

TD-1473 JAK1,2,3 Crohn’s disease II NCT03635112

Givinostat (ITF2357) JAK2 MF II NCT00606307

PV II NCT00928707

MPN II NCT01761968

Pacritinib JAK2 MF II NCT03645824

Decernotinib (VX-509) JAK3 RA II NCT01590459

NCT01754935

Baricitinib JAK1,2 GVHD II NCT02759731

Giant cell arteritis II NCT03026504

Lestauritinib (CEP-701) JAK 2 MF II NCT00494585

BMS-911543 JAK2 MF II NCT01236352
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TABLE 2 | STAT5 inhibitors in clinical trial.

STAT5 inhibitor Disease in clinical

trial

Phase of clinical

trial

ClinicalTrial.gov

(USA) number

Pioglitazone CML II NCT02888964

Methotrexate and

sirolimus

ALL II NCT01162551

Tacrolimus GVHD II NCT01927120

Sirolimus

AT9283 Leukemia I NCT01431664

TABLE 3 | Natural-derived STAT3/5 inhibitors.

Inhibitors Target of the

inhibitor

Disease References

Cryptotanshinone STAT3 Prostate cancer (123)

Capsaicin STAT3 MM (124)

Curcumin STAT3 MM (125)

Cucurbitacin I STAT3 Osteosarcoma (126)

Celastrol STAT3 MM (60)

Atriprimod STAT3 MM (127)

Sulforaphane STAT5 CML (128)

had only 27.2% transduction efficiency after a single transduction
(148), however the combination of lentiviral vector system with
LacZ reporter fusion system is able to deliver STAT3 shRNAs
with high level of transduction efficiency with average 85% in
three lymphoma cell lines (131). Yang’s team (149) transfected
human pancreatic cell line, SW1990 with LV-STAT3siRNA
third generation self-inactivating lentivirus vector, significant
decrease of VEGF and MMP-2, decrease of cell growth, and
decrease of invasion ability of the cancer cells were observed
after the transfection. In another study, a single injection of
lentiviral vectors encoding Stat3-targeting shRNA were able
to downregulate Stat3, Survivin, and MMP-2 at the same
time impair tumor cell survival and invasiveness in melanoma
models (150). A lentiviral vector was constructed to co-
express Interferon (IFN) genes and siRNA targeting STAT3
to suppress the proliferation of B16 melanoma cells with
over 95% transduction efficiency (151). Adenoviral vector was
used in transfecting human lung adenocarcinoma A549 cells
with cDNA of carboxyl-truncated STAT5a variant that inhibit
STAT5 isomers-mmediated transcription (152). Due to their
immunogenicity and limited transgenic capacity, viral vectors are
less commonly utilized in STAT3 RNAi delivery compared to
non-viral vectors.

Nanoparticles
Non-viral vectors have the edges of low toxicity, easy to
be synthesized and mild immune response over viral
vectors to introduce siRNA (153). Non-viral siRNA vectors
including liposomes and lipid-like materials, polymers, such
as polyethyleneimine (PEI), poly D, L-lactic-co-glycolic acid
(PLGA), poly (alkyl cyanoacrylate), chitosan and dendrimers,
such as PAMAM, positively charged ionic cell penetrating

peptides (CPP), and siRNA bioconjugates, such as cholesterol,
antibodies, and aptamers (154). siRNA–PLGA/CSO micelles
displayed better cellular uptake and STAT3 gene silencing
effectiveness in SKOV3 ovarian cancer cells in comparison
with siRNA/CSO complexes at the same N/P ratios with
no remarkable differences with lipofectamine 2000 (154).
Conventional transfection carriers including polymers and
cationic lipids have high cytotoxicity although their transfection
efficiency is high. For the cell penetrating peptide based
transfection carriers, their efficiency is lower than that of
existing lipidic agents due to endosomal trapping although
they exhibit better cytotoxicity profiles (155). By incorporating
high molecular weight polyethyleneimine cationic lipids
into membrane bilayers within the cells can stimulate the
introduction of siRNA into the cytoplasm, but it is also
generating reactive oxygen species (ROS) and Ca2+ discharge
(156). Usage of cationic lipids or polymers raised concerns about
their suitability for systemic delivery as the result of serum
instability, carrier aggregation, and cytotoxicity (157–159).
This also lead to investigation of the feasibility of anionic
nanoparticles for siRNA delivery (158). We have summarized
the STAT3/5-Targeting Nanoparticles in Figure 3.

Polyethyleneimine (PEI)
Due to its high toxicity, PEI is not preferable to be utilized
as non-viral vector for siRNA delivery (154). To overcome
the high toxicity and better STAT3 silencing effect, PEI was
modified with stearic acid (StA) to deliver STAT3 siRNA to
induce tumor apoptosis in B16 melanoma cells, it showed higher
potency in STAT3 silencing with a significant induction of IL-6
secretion, 2.5 times higher expression of cellular Caspase3 and
reduction of VEGF production, in comparison to PEI complexes
alone (129). The modification of branched PEI with lipids
will protect siRNA integrity and improve the siRNA delivery
into the cytoplasm (160). The complex of siRNA/PEI/StA
showed significant increase of IL-6 secretion, increase of cellular
Caspase3 activity and reduction of VEGF production compared
to siRNA/PEI (129). PEI also was used in combination with
PLGA (161, 162) and Graphene oxide (163). Graphene oxide was
functionalized with PEI and polyethylene glycol (PEG) to serve
as a plasmid based Stat3 siRNA carrier in the in vivo study of
treating mouse melanoma cell line (163).

Poly L-lactic-co-glycolic Acid (PLGA)
PLGA has been widely used as non-viral carrier in STAT3 siRNA
delivery in different combinations in recent year. Positively
charged Chitosan oligosaccharide (CSO) was added to the STAT3
siRNA-PLGA micelles and the micelles showed high efficiencies
of cellular uptake and STAT3 gene silencing in SKOV3 ovarian
cancer cells (154). Chitosan was chosen as a condensing agent
due to its unique biological activities and when it is fused with
siRNA-PLGA conjugates, it can form smaller particles to increase
the cellular uptake (154). PLGA nanoparticles can be directly
coated with cationic polymers, such as PEI which allow siRNA to
attach on their surfaces (164). Combination of non-toxic PLGA
and PEI nanoparticles could deliver siRNA cross the blood brain
barrier, promoted cell death and arrested cells at G1/G0 stage
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FIGURE 3 | STAT3 siRNA delivery using Polyethyleneimine (PEI), Ploy L-co-glycolic Acid (PLGA), and Inorganic compound, such as gold nanoparticles and

Hydroxyapatite (HAP) nanoparticles to target ovarian cancer cells, malfunctioned dendritic cells, lung cancer cells, melanoma cancer cells, and prostate cancer cells.

STAT3 siRNA delivery using polypeptides, solid lipid nanoparticles, polysaccharide, and aptamer. Poly (ethylene glycol)-b-poly (L-lysine)-b-poly (L-leucine)

(PEG-PPL-PLLeu) is used to target melanoma cells while Triethylamine hybrid nanoparticles (tLypl-hNPs) targets Regulatory T-cells. Legumin-targeting strategy is

employed to targeting breast cancer cells using encapsulated hydrocarbon carrier. Anionic charged siRNA co-assembled with polysaccharide hyaluronan-sulfate

(HAS) to target mouse colon cancer cells. Gint4.T-STAT3 was developed to deliver STAT3 siRNA to PDGFRβ+ Glioblastoma cancer cells. PAMAM Dendrimer was

used to deliver EGFR siRNA and miR-150 to suppress STAT5 expression in colon cancer cells and AML cells, respectively. Polypeptide PEGylated-anisamide-LPH

nanoparticle was used to transfect lung cancer cells with STAT5B targeting non-apeptide, EV.

in vitro and in vivo, lead to notable reduce in expression of IL-
6 and the angiogenic factor and elevate in caspase3 activity in
tumor bearing mice (161). Su’s team developed a novel strategy
to synthesize PEI-coated paclitaxel-loaded PLGA nanoparticles
to target human lung malignant cells and paclitaxel-resistant cell
lines (162). Stat3-enhanced chemoresistance in lung malignant
cells were suppressed by introduction of Stat3 siRNA thus
causing the tumor cells more responsive to paclitaxel (162).

PLGA nanoparticles that containing both STAT3 siRNA, an
immune response modifier (imiquimod, R837) and near-infrared
(NIR) fluorophores (indocyanine green) enable researchers to
monitor the migration of the activated Dendritic cells after the
transfection using real time NIR fluorescence imaging (165).
Other than siRNA, STAT3 inhibitor JSI-124 was chemically
conjugate to PLGA, generated a conjugate which exhibited potent
anticancer and STAT3 silencing in immunosuppressed dendritic

cells (166). The PLGA-JSI-124 conjugate worked best when
combined with Dendritic cells adjuvant CpG (166).

Inorganic Compounds
To enhance the stability and cell uptake, layer-by-layer chitosan
coated gold nanoparticles were used to deliver STAT3 siRNA
and co-deliver Stat3 siRNA and Imatinib (IM) to treat
murine melanoma cells using iontophoresis to strengthen the
localized skin penetration (167, 168). Gold nanoparticles have
demonstrated potential in biomedical application because they
have high biocompatibility, chemically inert, nanosized, versatile
and have longer plasma circulation (169). In the treatment of
melanoma cells, it was the first report to demonstrate in vivo
efficacy studies of non-invasive iontophoretic administration
of anti-cancer agents that was comparable with intratumoral
administration (151). Layer-by layer assembly of polyelectrolytes
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formed a firm entrapment of siRNA and IM at the same time
the electrostatic interactions facilitated adequate slow deliver
of therapeutics (151). Plasmid-based Stat3 siRNA introduced
by CaCl2 modified Hydroxyapatite (HAP) nanoparticles was
able to lower the protein expression of Stat3 and p-Stat3 in
prostate tumor bearing mice at the same time downregulated the
expression of Stat3-associated downstream genes (170). A hybrid
of lipid and polymer vesicles with calcium phosphate as the solid
kernel (CaP@HA) was used to introduce STAT3-specific decoy
oligonucleotides (STAT3-decoy-ODNs) into TRAZ-resistant
HER2-positive breast cancer cells (171). ODNs packaged with
CaP@HA showed significantly increased serum stability, cellular
transfection, synergistic cytotoxicity and apoptosis in vitro
compared to normal ODNs (171).

Polypeptides
Poly (ethylene glycol)-b-poly (L-lysine)-b-poly (L-leucine) (PEG-
PLL-PLLeu) polypeptide micelles was used for co-encapsulating
Toll-like receptor agonist, STAT3 siRNA and OVA antigen to
generate nanovaccine in OVA-transfected melanoma cell line
(172). PMP/OVA/siRNA simultaneously facilitated the cellular
uptake of OVA antigen and siRNA about 3–200-folds, and
decreased STAT3 expression in TADCs over 50% both in vitro
and in vivo (172). Melittin derived peptides, P5RHH could
conjugated with Stat3 siRNA to form nanoparticles with small
size (190 nm in diameter) with negligible cytotoxicity (155).
p5RHH/STAT3 siRNA nanoparticles mediated transfection to
impede malignant cell growth, angiogenesis and foam cell
formation in mouse melanoma cells while maintaining their
size and transfection effectiveness even there are serum proteins
around (155).

tLyp1 peptide-conjugated with PEG-DSPE and triethylamine
to form hybrid nanoparticles (tLyp1-hNPs) for targeting Treg
cells by suppressing of STAT3 and STAT5 phosphorylation at
the same time improve the effect of imatinib (173). Imatinib
(IMT) has been shown to downregulating Treg cell expression
but its application was limited by poor solubility and high
cytotoxicity (174). Treg cell targeted tLyp1-hNPs also showed
improved survival rate, improved tumor suppression, reduced
intratumoral Treg cells, and increased intratumoral CD8+ T cells
against malignant cells in in vivo study when incorporate with
anti-cytotoxic T-lymphocyte antigen-4 (CTLA4) antibody (173).

King and Huang (175) developed EEEEpYFELV (EV), a non-
apeptide that inhibit STAT5b phosphorylation and they delivered
the inhibitor using a PEGylated-anisamide-LPH nanoparticles to
target human lung cancer cells. EV also demonstrated inhibition
effect on the phosphorylation of STAT5a without affecting STAT3
phosphorylation (175).

Solid Lipid Nanoparticles
Curcumin can exert anti-inflammatory effects in colitis by
inhibiting NK-κb activation and STAT3 pathway (176).
A synthetic analog of curcumin, Hydrazinocurcumin
(HC) was synthesized to improve its stability, water
solubility, cell permeability and bioavailability to
surpass curcumin (177). HC were mixed with 1,2-
Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE),

Dipalmitoylphosphatidylcholine (DOPC), Cholesterol
and DOPE-PEG to generate peptide-lipid conjugated HC
nanoparticles to treat breast cancer cell line (178). The study
showed that HC encapsulated nanoparticles effectively convert
tumor associated M2 macrophage to M1 macrophage with
reduced expression of IL-10, TGF-β, p-STAT3, MMP-9, MMP-2,
and VEGF, along with elevated expression of IL-12 (pro-
inflammatory cytokines) in 4T1 murine breast cancer cell
line (178). To enhance targeting capability and solid-tumor
penetration, Legumain-targeting strategy encapsulating HC
were used by adding Legumain-targeted RR-11a into the
liposomal nanoparticles (178, 179). In another study, the
suitability of introducing Curcumin in solid lipid nanoparticles
(SLN-curc) or d-α-Tocopheryl polyethylene glycol 1,000
succinate (TPGS) nanoparticles (TPGS-curc) was investigated
in Hodgkin’s lymphoma in mice, which SLN-curc was more
superior compared to TPGS-curc in term of pharmacokinetic
profile (180).

Non-toxic cationic solid lipid nanoparticles (SLN) was
combined with STAT3 decoy oligodeoxynucleotides (ODN) to
treat human ovarian cancer cells and cellular uptake of SLN-
decoy ODN was comparable to that of Lipo-decoy ODN which is
more toxic (181). SLN-STAT3 decoy ODN complexes increased
expression of cleaved caspase 3, Bax, Beclin-1 and LC3-II and
reduced expression of Bcl-2, pro-caspase 3, Survivin, p-Akt, and
pmTOR in human ovarian cancer cell lines (181). Overexpression
of STAT3 in Non-Small Cell Lung Cancer (NSCLC) patients
is a strong predictor of poor prognosis, cationic solid lipid
nanoparticles (cSLN) were used to deliver RNAi-mediating
plasmid DNA targeting STAT3 in cisplatin resistant lung cancer
cells (182, 183). STAT3 mRNA expression level were lowered by
∼5-fold in chemo-resistant Calu1 NSCLC cells after treatment of
cSLN:plasmid DNA complexes (K2 and K3) (182).

Reconstituted HDL (rHDL) nanoparticles were utilized to
deliver STAT3 siRNA or FAK siRNA to treat human ovarian and
colorectal cancer cell lines (184). Combination treatment with
STAT3 siRNA/rHDL and docetaxel further impede malignant
cell proliferation: Treated the cells with Docetaxel independently
caused no impact on cell proliferation, meanwhile STAT3
siRNA/rHDL monotherapy resulted in 19% reduction of
proliferation (184).

Polysaccharides
Although anionic charged nanoparticles were less commonly
used in siRNA delivery, one research group introduced
anionic siRNA nanoparticles co-assembled with polysaccharide
hyaluronan-sulfate (HAS)mediated by calcium ion bridges (158).
Effective cellular uptake of this anionic siRNA nanoparticles,
together with strong gene silencing was observed in several cell
types, which include murine primary peritoneal macrophages
and human hepatocellular malignant cells (158). Anionic
complexes generated via reversible complexation of siRNA
and calcium ions in solution were able to downregulate
various genes in several cell lines (185). The semi-synthetic
HAS was selected because it has multiple functional groups
available for ligand attachment and it is more stable compared
to non-modified hyaluronan (186). Alginate sulfate (AlgS)
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with STAT3 siRNA were co-assembled and then followed by
bioconjugation of N-acetylgalactosamine (GalNAc) which is
specific to the asialoglycoprotein receptors that are overly
expressed on hepatocytes to produce a novel tumor specific
delivery vector (GalNAc-NPs) (187). GalNAc-NPs enter the cells
through ASGPR-mediated endocytosis, these NPs able to induce
67% reduction in STAT3 mRNA levels at 2.5mM Ca2+ (187).

Aptamers
Aptamers can be introduced into the host cells specifically
through cell-mediated endocytosis, solving probable problems
of other oligonucleotide therapeutics, such as siRNA, shRNA
and miRNA (188). A novel aptamer-siRNA chimera (Gint4.T-
STAT3) was developed to deliver STAT3 siRNA efficiently and
subsequently suppressed the expression of STAT3 in PDGFRβ+

glioblastoma multiforme (GBM) cells, through in vitro and
in vivo studies, demonstrating that this is an effective strategy
(189). Gint4.T-STAT3 possesses good serum stability and reduces
the expression of STAT3 and its target genes (cMYC, MCL-
1, Bcl-2, and Bcl-XL). Moreover, a reduction of pro-caspase
3 and Bcl-XL anti-apoptotic protein levels was also observed
(189). PDGFRβ is a receptor tyrosine kinase (RTK) which is
frequently found in GBM (190). Esposito et al. showed that
Gint4.T is capable of passing through a tri-culture in vitromodel
of hematoencephalic barrier, thus making it a suitable carrier
targeting GBM cancer stem-like cells (189).

PAMAM Dendrimer
Polyamidoamine (PAMAM) dendrimers are one of the
most popular dendrimers. In one study, EGFR antisense
oligonucleotides were encapsulated with PAMAM dendrimers
to targeting colon cancer cell line (191). The expression level
of EGFR was significantly reduced up to 40–50%, consequently
the downstream genes of EGFR pathway, MAPK1, and STAT5
expression were down-regulated (191). Jiang et al. (192)
developed a nanoparticle delivering system by conjugating FLT3
ligand, amidoamine and PAMAM and used this nanoparticle to
deliver miR-150 into AML cells. The inhibition of FLT3 signaling
pathway by this nanoparticle suppress the activity of ERK, AKT
and STAT5 in vivo indirectly (192).

Exosomes
Exosomes are extracellular membrane vesicles with a diameter
of 30–120 nm and containing endogenous proteins, genetic
material, such as DNA, and lipids (193). Recently, Zhang et al.
(194) demonstrated that two exosome subpopulations, Exo-L
and Exo-S contained proteins that are involved in regulating
secretion pathways including IL-2/STAT5 signaling pathways,

suggesting that these nanoparticles have the potential role for
STAT5 targeting treatment.

CONCLUDING REMARKS

In addition to the well-distinguished role of STAT family as
transcription factors in causing inflammation and tumorigenesis,
we have described various strategies used to regulate STAT3/5
transcription activity either through JAK-STAT inhibitor or
RNAi-based targeting system. The findings described in this
review indicate that the current understanding of STAT pathway
has advanced to the point where different kind of therapeutic
interventions are being developed to regulate aberrant activation
of STAT protein in order to control chronic inflammation or
improve prognosis of several cancers. There is still a need to
understand how STAT proteins crosstalk with other signaling
pathways and further improve the drug delivery system if we are
to develop rational strategies tailored to individual cancers. Based
on the progression reported in several studies, STAT3 targeting
siRNA using nanoparticulate delivery systems currently offer
higher specificity with lesser side effect compared to conventional
drug delivery system. These proof-of-concept studies might hold
the potential to becomemainstream strategies in regulating STAT
activation and more works are needed in order to advance these
methods into clinical phase.
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