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Abstract A better understanding of the physiological
effects of guanosine-based purines should help clarify the
complex subject of purinergic signalling. We studied the
effect of extracellular guanosine 50 triphosphate (GTP) on
the differentiation of two excitable cell lines that both have
specific binding sites for GTP: PC12 rat pheochromocyto-
ma cells and C2C12 mouse skeletal muscle cells. PC12
cells can be differentiated into fully functional sympathetic-
like neurons with 50–100 ng ml−1 of nerve growth factor,
whereas serum starvation causes C2C12 cells to differen-
tiate into myotubes showing functional excitation–contrac-
tion coupling, with the expression of myosin heavy chain
proteins. Our results show that GTP enhances the differen-
tiation of both of these excitable cell lines. The early events
in guanosine-based purine signal transduction appear to
involve an increase in intracellular Ca2+ levels and
membrane hyperpolarization. We further investigated the
early activation of extracellular-regulated kinases and
phosphoinositide 3-kinase in GTP-stimulated PC12 and
C2C12 cells, respectively. We found that GTP promotes the
activation of both kinases. Together, our results suggest
that, even if there are some differences in the signalling
pathways, GTP-induced differentiation in both cell lines is
dependent on an increase in intracellular Ca2+.
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Abbreviations
[Ca2+]i intracellular Ca2+ concentration
DAG diacylglycerol
DM differentiating medium
ERK extracellular regulated kinase
GTP guanosine 50 triphosphate
IP3 inositol triphosphate
MyHC myosin heavy chain
NGF nerve growth factor
PI3K phosphoinositide 3-kinase

Introduction

Extracellular purines exert a variety of physiological
functions that influence cell growth, differentiation, and
death [1]. Although a biological role of adenosine-based
purines in the peripheral and central nervous system was
identified several years ago [2], the physiological role of
guanosine-based purines has only recently been established
[1, 3]. Guanosine and its nucleotide, in particular guanosine
50 triphosphate (GTP), were found to play a role in synaptic
transmission. In fact, GTP, like ATP, is stored in synaptic
vesicles and co-released with neurotransmitters in the
synaptic cleft [4]. In addition, GTP, as well as guanosine,
released from neurons and astrocytes has not only a
physiological role but is also involved in pathological
conditions [5]. In this scenario it is interesting to note that
extracellular GTP and guanosine are able to act as trophic
and mitogenic factors in neuronal and glial compartments
[1, 6, 7]. In fact, GTP is able to modulate glial proliferation
and neuron differentiation at the same extent or even more
significantly than the adenine-based nucleotides do [7, 8].

Other excitable tissues, including skeletal muscle cells,
are sensitive to GTP. In fact, extracellular GTP has been
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shown to modulate the development of isometric twitch
tension in frog muscle fibres [9]. Moreover, extracellular
purines affect the behaviour of Paramecium tetraurelia and
Tetrahymena thermophila, inducing backward swimming
[10]. These ciliates are good eukaryotic sensory models in
which to study purinergic signalling. They present mem-
brane binding sites to purine showing physiological
mechanisms of adaptation [11, 12]. Extracellular micromo-
lar concentrations of GTP induced cell membrane depolar-
ization and activate cellular mechanisms of retraction [13,
14]. It was speculated that this behaviour is a kind of
defence mechanism, since GTP or ATP are not toxic to
these cells, but their high concentrations could be inter-
preted as the result of cell lyses consequent from the
presence of dangerous conditions [10].

We studied the effects of extracellular GTP in PC12 and
C2C12 cells, which are models of neuronal and skeletal
muscle cells, respectively [15, 16]. PC12 cells are derived
from a rat pheochromocytoma and differentiate in the
presence of nerve growth factor (NGF; 50–100 ng ml−1)
into a fully functional sympathetic (adrenergic) neuronal
phenotype within 7 days [17]. C2C12 cells are satellite cells
established by subcloning the C2 cell line [18], which was
originally derived from the thigh muscle of a 2-month old
mouse [19]. This diploid continuous cell line is frequently
used as a model to study skeletal muscle differentiation and
function.

In this mini-review we report our studies on the role of
GTP in the differentiation of two excitable cell lines, PC12
and C2C12. Following our previous results showing that
these cells have specific binding sites for GTP [15, 16], we
focused our attention on the biological effects and signal
transduction that GTP induces in these cell lines.

In particular, we examined the effects of GTP on neurite
outgrowth in PC12 cells in the presence or absence of
differentiation-inducing concentrations of NGF. On the
other hand, we also investigated the effect of GTP on
skeletal muscle differentiation, analysing the expression of
myosin heavy chain (MyHC) protein in C2C12 cells
following serum starvation-induced differentiation. Consid-
ering the known specific intracellular pathways activated
during the differentiation processes, we examined the role
of extracellular regulated kinases (ERKs) and phosphoino-
sitide 3-kinase (PI3K) in the effects of GTP on these
differentiating cell lines.

GTP effects on differentiation of excitable cells

In our previous studies we examined the binding of GTP to
the plasma membrane of C2C12 and PC12 cells. On intact
C2C12 cells we found two specific binding sites with
distinct characteristics: high-affinity sites with a Kd of

37.2 ± 13.7 μM and a Bmax of 2.6 ± 0.3 nmol mg−1 protein,
and low-affinity sites with a Kd of 186.5 ± 96.0 μM and a
Bmax of 22.3 ± 3.1 nmol mg−1 protein. On PC12 cells, we
found only one class of specific binding sites, with a Kd of
53.9 ± 10 μM and a Bmax of 2.15 ± 0.12 μM. In both cell
lines, ATP and UTP were unable to displace or compete
with GTP binding [15, 16].

We expected that the early events in GTP signal
transduction would include an increase in [Ca2+]i. In
PC12 cells, GTP induces a slight influx of calcium through
L-type calcium channels, resulting in a robust and long-
term increase in [Ca2+]i due to release of intracellular
calcium from ryanodine-sensitive stores [20]. The GTP-
induced [Ca2+]i increase had different kinetics in C2C12
cells than in PC12 cells. Specifically, GTP-stimulated
C2C12 cells showed an increase in [Ca2+]i primarily due
to release from intracellular stores [16].

Using purinoceptor antagonists (suramin, Basilen Blue,
PPDAS, and NF023), we established that, on both cell
lines, GTP activates a receptor belonging to the P2 class
and, in particular, a metabotropic-like one [15, 16, 20]. In
PC12 cells GTP enhances protein kinase C activity,
suggesting the involvement of phospholipase C in the
nucleotide signal transductive mechanism [15]. Moreover,
overnight incubation of PC12 cells with pertussis toxin, an
inactivator of Gi/0 proteins, reduced their response to GTP,
confirming the participation of a P2-class receptor in the
effects of GTP [20].

In C2C12 cell line, other evidence showed the metabo-
tropic feature of the GTP-activated receptor. In fact, suramin
and Basilen Blue prevented GTP binding to the C2C12
membranes and blocked GTP-induced [Ca2+]i rise [16]. In
addition, this last GTP-induced effect is mediated by calcium
release from the internal store, a mechanism triggered by
phospholipase C activity and inositol triphosphate (IP3) and
diacylglycerol (DAG) production, usually due to metabo-
tropic purinoceptor activation in these cells [21].

However, in C12C12 myoblasts, there was also a
component of Ca2+ influx in the GTP-induced increase in
[Ca2+]i. Therefore, given their similar Kd values, we predict
that the sites on C2C12 and PC12 cells have common
properties.

Because of the involvement of [Ca2+]i in the electro-
physiological properties of the plasma membrane in cells
differentiating towards an excitable phenotype, we investi-
gated whether the GTP-induced increase of [Ca2+]i altered
the membrane polarization in single cells. We carried out
video-imaging analysis of cells incubated with Fura and
DiBAC4, which are fluorescent dyes used to monitor
[Ca2+]i and membrane polarization, respectively [22]. We
found that GTP caused an increase in [Ca2+]i and, only a
few seconds later, hyperpolarization of the plasma mem-
brane in both PC12 and C2C12 cells [20, 23].
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Based on the results of these experiments, we hypoth-
esized that the observed hyperpolarization in both cell types
is due to a Ca2+-induced outward K+ current. Indeed,
emptying the Ca2+ stores in C2C12 cells with thapsigargin
or blocking calcium influx in PC12 cells with nifedipine
eliminated the GTP-induced increase in [Ca2+]i as well as
the K+ current. Moreover, 10 μM clotrimazole, a specific
inhibitor of the Ca2+-activated K+ channel, blocked GTP-
dependent hyperpolarization [20, 23].

However, the GTP-dependent hyperpolarization via
Ca2+-activated K+ channel modulation probably had a
complex role. In PC12 cells Ca2+-activated K+ channel
modulation probably had little trophic importance because
inhibiting the GTP-dependent hyperpolarization with clo-
trimazole did not prevent GTP-induced neurite outgrowth
[20]. On the contrary, the pharmacological blockade of
membrane hyperpolarization prevented the ability of low-
and high-affinity GTP binding sites to activate C2C12
differentiation [23].

Under the appropriate environmental conditions, C2C12
and PC12 cell lines can be differentiated into excitable
phenotypes, namely, muscle and neuron, respectively. The
differentiation of C2C12 cells is induced by simple serum
starvation and is characterized by proliferation prior to
the establishment of a post-mitotic state, followed by the
expression of MyHC proteins and cell fusion [24]. The
differentiation of PC12 cells into a sympathetic phenotype
requires the presence of a specific differentiating factor,
namely NGF [17].

We next investigated the role of GTP on both NGF-
induced differentiation of PC12 cells and serum starvation-
induced differentiation of C2C12 cells. We assessed the
differentiation in these cells by measuring two specific
markers: neurite outgrowth in PC12 cells and MyHC
protein expression in C2C12 cells. We found that GTP
enhances NGF-induced neurite outgrowth in PC12 cells
and that it increases the amount of MyHC proteins after cell
proliferative boost in differentiating C2C12 cells. In both
cellular models these effects were blocked by metabotropic
purinoceptor antagonists as well as those used pharmaco-
logically to inhibit the GTP-induced increase in [Ca2+]i [20,
23].

We further examined the signalling events involved in
the early stages of GTP-induced differentiation. We
primarily considered the possible GTP modulation of
well-known key steps in PC12 and C2C12 differentiation
without groping in the complex intracellular signalling
pathways.

In PC12 cells, activation of ERK1/2 is known to
participate in the initial phases of NGF-induced differenti-
ation by activating the expression of early genes involved
in cell cycle arrest and differentiation [25]. We therefore
examined the phosphorylation of ERK1/2 in PC12 cells

stimulated with NGF in the presence or absence of GTP.
We found that extracellular GTP caused a relatively long-
term increase in NGF-induced phosphorylation of ERK1/2
[20].

PI3Ks, a family of lipid kinases that induce signals by
phosphorylating the hydroxyl group at the 3-position of
phosphoinositides, are directly involved in the process of
myogenesis. PI3Ks regulate a number of physiological
functions, including membrane trafficking, cell adhesion,
actin rearrangement, and cell growth [26]. Activation of
PI3Ks occurs downstream of both G-protein-coupled
receptors and receptor tyrosine kinases (e.g., insulin and
insulin-like growth factor I receptors). In particular, PI3Ks
are required for myotube formation in C2C12 cells [27]. To
examine the role of PI3Ks in GTP-induced muscle
differentiation, we examined the effect of the PI3K inhibitor
LY294002. This compound prevented an otherwise effec-
tive concentration of GTP from increasing the fusion index
of MyHC-positive C2C12 [28]. This result supports the
notion that PI3K is involved in GTP-induced differentiation
of C2C12 cells.

Conclusions and perspectives

Based on the results presented here, we developed the
following model for the common GTP-induced signalling
events (Scheme 1).

As shown in the scheme, on both neuronal-like PC12
and muscle-like C2C12 cells, extracellular GTP binds to
specific, P2Y receptor-like sites. This induces an increase in
[Ca2+]i that, in turn, causes membrane hyperpolarization
through K+ channels. However, the kinetics and the source
of the Ca2+ are different in the two cell lines. In particular,
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Scheme 1 Scheme of the GTP signal transduction pathway in PC12
and C2C12 cells. RyR ryanodine receptor, IP3 inositol triphosphate,
G G-protein, PLC phospholipase C, DA diacylglycerol
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in PC12 cells, the [Ca2+]i increase is derived from an initial
influx of Ca2+ from the extracellular compartment, which
induces Ca2+ release from intracellular ryanodine-sensitive
stores. This leads to the activation of ERKs, which en-
hances neuronal differentiation. In C2C12 cells, effective
concentrations of extracellular GTP provoke an increase in
[Ca2+]i due to release from intracellular IP3-sensitive stores.
This enhances the expression of MyHC in C2C12 myo-
blasts and commits them to fuse into multinucleated
myotubes, probably via a PI3K-dependent signal transduc-
tion mechanism.

Considering that this study is far from depicting the
complete puzzle of GTP signal transduction pathways
and that a lot of upstream and downstream steps between
[Ca2+]i rise and ERK or PI3K regulation should be inves-
tigated, our in vitro models present interesting plasticity and
easy handling for further in-depth studies. At present, our
attention is also focused on two aims. One concerns the
potential role of GTP as intercellular signal between neuron
and skeletal muscle fibres, not only in their synaptic
transmission but also as a regulating trophic factor. The
other aim, on the other hand, investigates whether GTP is
able to influence nuclear activity and modulate specific
target genes. This could confirm the functions of GTP, not
only as an extracellular molecule regulating cytoplasmic
activity and cell adaptation, but also as a full trophic factor.
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