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Abstract
Fas ligand (FasL), a member of the tumor necrosis factor
family, initiates apoptosis by binding to its surface receptor
Fas. As a consequence, there is sequential activation of
caspases and the release of cytochrome c from the
mitochondria, with additional caspase activation followed
by cellular degradation and death. Recent studies have shed
important insight into the molecular mechanisms controlling
FasL gene expression at the level of transcription. Nuclear
factors such as nuclear factor in activated T cells, nuclear
factor-kappa B, specificity protein-1, early growth response
factor, interferon regulatory factor, c-Myc and the forkhead
transcriptional regulator, alone or cooperatively, activate
FasL expression. These factors are often coexpressed with
FasL in pathophysiologic settings including human athero-
sclerotic lesions. Here, we review these important advances
in our understanding of the signaling and transcriptional
mechanisms controlling FasL gene expression.
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Introduction

Fas ligand (FasL) was identified in 1993 as a type II
transmembrane protein of 40 kDa belonging to the tumor
necrosis factor (TNF) family. FasL is one of the major effectors
of CD8+ cytotoxic T lymphocytes and natural killer (NK) cells.1

The FasL system has been implicated in a number of
pathogenic states. Soluble forms have been isolated from

patients with large granular lymphocytic leukemia, NK cell
lymphoma1 and a number of nonlymphoid tumor cells.2

Metalloproteinases are believed to be involved in the
proteolytic cleavage of membrane-bound FasL, producing
its soluble form,3 which exists as a trimer.4

The intracellular and extracellular domains of FasL are
located in the N- and C-terminal regions, respectively (see
Figure 1 for FasL structure). FasL also consists of a single
transmembrane domain and an oligomerization domain,
which is required for self-assembly and appears to be well
conserved in all TNF family ligands.5 The receptor-binding
domain is located at the very end of the C-terminus, and
deletion of at least three amino acids from this region is
sufficient to interfere with interactions with its receptor, Fas.5

The proline-rich region in the cytoplasmic domain of FasL
(amino acids 46–65) is responsible for sorting FasL to
secretory lysosomes.6 A putative casein kinase I (CKI) motif
(-SSASS-) has been identified; however, its role in FasL
signaling remains to be determined.7 Additionally, three
potential N-glycosylation sites have also been acknowl-
edged.5

Binding of FasL with Fas triggers the formation of the
death-inducing signaling complex (DISC) by recruiting an
adaptor molecule FADD (Fas-associating protein with death
domain) to the cytoplasmic tail of Fas (C-terminal region).
The N-terminal region or death effector domains (DED) of
FADD are critical for the recruitment of procaspase 8.
Immediately after recruitment, procaspase 8 is proteolytically
processed to its active large and small subunits. At this point,
the death-receptor initiated pathway can diverge in different
cell types. Type I cells (mitochondria independent, Bcl-2
insensitive) induce apoptosis through the death-receptor
initiated pathway to activate procaspase 3.8 In other cell
types (type II), caspase 8 is inadequate to activate procas-
pase 3 and cleaves Bid instead (a cytoplasmic protein) to
activate the mitochondrial pathway with the release of
cytochrome c.8 In type II cells, Fas-induced apoptosis can
also be blocked by prosurvival factors such as Bcl-2. Upon
release, cytochrome c is recruited to Apaf-1 (human homolog
of Caenorhabditis elegans CED-4) followed by the formation
of the apoptosome together with procaspase 9. This complex
then triggers the activation of caspase 3 and the cleavage of a
variety of substrates including DNA repair enzymes, structural
proteins and endonucleases.9 Although the idea of type I and
type II cells has been widely accepted, Huang et al.10 recently
reported opposing data. There is some controversy regarding
the function of the survival factor Bcl-2 on Fas-induced
apoptosis. In this study, transgenic mice expressing Bcl-2 did
not protect lymphocytes or hepatocytes from FasL/Fas-
induced death. These results therefore imply identical FasL/
Fas signaling in both type I and type II cells, and challenge the
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differential role of type I and type II cells in FasL-mediated
death.

Physiological and Pathological Roles of
FasL-Mediated Apoptosis

Regulation of the immune response

The FasL–Fas-mediated death pathway plays a major role in
immune function, particularly in activation-induced cell death
(AICD). AICD is an essential mechanism required to maintain
cellular homeostasis in multicellular organisms. AICD func-
tions to limit the excess proliferation of activated lymphocytes
in the periphery after the elimination of antigen. It is also
required for the elimination and inactivation of autoreactive
thymocytes by negative selection within the thymus. In T cells
and T-cell hybridomas, AICD arises through upregulation of
FasL and Fas expression. T-cell receptor (TCR) triggering or
stimulation by Staphylococcus enterotoxin B superantigen in
T cells induces FasL expression to promote apoptosis by
AICD.11 FasL and Fas are both upregulated in T-cell
hybridomas,12 and antagonists, including soluble Fas and
antibodies directed to FasL, have been demonstrated to
inhibit AICD.13

The role of FasL–Fas in AICD is further demonstrated by
the development of lymphoproliferative disorders in mouse
mutants. Mutants gld/gld and lpr/lpr are defective in the genes
encoding FasL and Fas, respectively. They are also defective
in AICD. Mature T cells from gld and lpr mice have defects in
antigen-stimulated suicide, mediated by the FasL/Fas-
dependent pathway.14 In confirmation, activated T-cell hy-
bridomas also do not undergo cell death in the presence of a
Fas neutralizing antibody. B-cell homeostasis also appears to
be regulated by FasL–Fas interactions. Observations in gld
and lpr mice have demonstrated an accumulation of B cells
and elevated levels of autoantibodies.15 FasL is not ex-
pressed on the surface of resting or activated B cells.16 B
cells, however, can express its receptor, Fas. Deletion of B
cells by FasL on CD4+ T cells has been demonstrated,17 and
a transgenic mouse line expressing Fas only in T cells was
created using lpr mice.18 These mice did not accumulate T
cells but instead produced elevated levels of autoantibodies.
These results suggest that FasL-expressing T cells can kill
Fas-expressing activated B cells.

T-cell-mediated cytotoxicity is also an important factor in
targeting and eliminating potentially harmful cells by apopto-
sis. Cytotoxic lymphocytes (CTL) comprise mainly CD8+
cytotoxic T cells and NK cells, and function to kill target cells
(virus-infected and malignant cells) by two mechanisms. One
pathway of CTL death occurs by calcium-dependent exocy-
tosis of cytolytic granules from CTL. Cytotoxic granules
contain proteins that are required for the destruction of the
target cell including perforin and granzymes (serine pro-
teases) (reviewed in Smyth et al.19). These proteins are
secreted toward the target cell where they can penetrate the
cytoplasm and nucleus of a cell, initiating cytosolic
and nuclear apoptotic changes. The mechanism of
granzyme death is not completely understood. Granzyme A
and B processes however, do initiate DNA fragmentation in
the target cell but require perforin for activity.20,21 The
most potent factor, granzyme B, has been shown to activate
cdc2 (a G2 cell cycle kinase), procaspase 321 and the
cytoplasmic protein Bid (involved in the mitochondrial
apoptotic pathway).22 These actions are sufficient to induce
cell death.

An additional mechanism of CTL cytotoxicity has been
proposed based on the notion that effector T cells from
perforin knockout mice are still capable of inducing cell lysis
and DNA fragmentation.23 This perforin/granzyme-
independent pathway is thought to be because of FasL-
mediated death. FasL is expressed in some CTL,24 and
CTL hybridomas that lyse Fas+ but not Fas� cells suggest a
role for FasL–Fas death in this process.25 Consistent with
these observations and in a granule-independent manner,
activated T cells from gld mice do not lyse Fas+ target
cells.26

Recently, it was demonstrated that Fas engagement
induced disseminated endothelial cell apoptosis in vivo.27

This study provides important immunopathological implica-
tions. Injection of anti-Fas monoclonal antibody (mAb) into
mice produced an increase in endothelial cell apoptosis and
vascular damage in a number of organs. Interestingly, when
allogeneic lymphocytes from wild type, gld- or lpr–deficient
mice were transferred to SCID recipient mice, no lesions were
formed from FasL-deficient gld cells. On the contrary, wild-
type and Fas-deficient lpr recipients displayed vascular
lesions and endothelial cell apoptosis at levels similar to
those observed with anti-Fas mAb.27 These results suggested
that FasL-expressing activated T lymphocytes interact with
Fas-expressing endothelial cells during nonallogeneic im-
mune responses.27 Such responses may include infectious
pathogens and tumors.

FasL has been thought to play an important role in sites of
immune privilege (such as the eye and testis).28 Certain
locations in the body are excluded from immune surveillance,
as they cannot tolerate the damaging effects of inflammation.
The eye and testis are immune privilege sites that have
developed a protective mechanism against such damaging
immune responses. Both the eye and testis constitutively
express FasL.29 For some time, it was believed that FasL
expression resulted in the death of invading Fas+ cells within
immune privilege sites. Evidence for such theories was
provided by mutant mice models. Eyes of gld mice do not
express functional FasL, and when infected with virus, the
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Figure 1 Structure of human FasL. FasL is synthesized as a 281-amino-acid
protein. FasL contains a single transmembrane domain (TM), a proline-rich
domain (Pro-Rich), a self-assembly domain and a putative casein kinase I (CKI)
motif. Receptor binding occurs at the very end of the COOH-terminus. Cleavage
of FasL occurs at site 129/130. * represents potential N-glycosylation sites
(amino acids 184, 250 and 260, respectively). The hatched region denotes
homology to other TNF family members
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eyes were destroyed by inflammation.29 Corneal allografts
from gld mice were also rejected.30 These results provided
evidence that FasL expression in the eye was responsible for
the successful corneal transplants observed in human
patients.

Additional studies provided further confirmation on the role
of FasL in immune privilege. Islets of Langerhans allograft
rejection was prevented with myoblasts engineered to
express FasL in mice.31 Moreover, testis grafts from mice
expressing FasL survived when transplanted into allogeneic
animals.32 On the contrary, grafts derived from mutant gld
mice were rejected.32 Some groups also demonstrated that
cancer cells became resistant to Fas-mediated apoptosis.33

The idea of cancer as a region of immune privilege was also
recognized. There was evidence that tumor cells may have
used FasL as a mechanism of immune evasion . Some tumor
cells express FasL constitutively,34 and FasL from these
cancer cells may have led to apoptosis of infiltrating
lymphocytes. This had been demonstrated by a number of
groups.35,36

FasL has been thought to confer immune privilege,
however recent data implies that this may not be the case.
Restifo37 demonstrated that deficiency of FasL or Fas had no
effect on the pathology of the eye, in an autoimmune uveitis
model.37 Additional conflicting data were observed from a
study conducted by Allison et al.38 In this study, fetal pancreas
grafts from transgenic mice, expressing FasL on their islets b
cells, were transplanted under the kidney capsule of
allogeneic mice. FasL expression failed to protect the grafts
from rejection. Furthermore, granulocytic infiltration was
observed in the pancreata of the transgenic mice.38 These
results suggest that FasL expression may have a proinflam-
matory role and may not protect organ allografts from
rejection.38 Over time several others have demonstrated
FasL expression to cause rejection of transplantations with
extreme inflammation.39 Similar observations were also seen
in experimental tumor systems.39

The alleged role of FasL in immune privilege may have
been because of false-positive data, based on controversial
monoclonal antibodies used in experimental conditions.
Additional controversy regarding the use of Fas antibodies
has been raised.10 Huang et al.10 questioned the validity
of Fas antibodies and how accurately these antibodies
reflected the physiological mechanisms of Fas-induced
apoptosis. Most data on sensitivity to Fas have been
derived from studies using anti-Fas mAbs. To resolve these
significant issues, a number of experiments were performed
to elucidate the effects of Fas inducers on different cell lines.
Huang et al.10 demonstrated that only membrane-bound and
multimerized (aggregated) FasL induced apoptosis reliably.
This was also observed by Janin et al.27 The capacity of
soluble FasL to trigger apoptosis depended on the degree of
soluble FasL multimerization.27 It was also observed
that antibodies to Fas did not dependably mimic FasL.10

They proposed that anti-Fas mAb alone did not sufficiently
support receptor crosslinking, particularly in type II cells.
Type II cells became highly sensitive to crosslinked
anti-Fas mAb.10 Additionally, under certain conditions, mAbs
to Fas could antagonize Fas-induced cell death. Therefore,
studies using anti-Fas mAbs may not provide reliable data,

since they may not accurately imitate the physiological
functions of FasL. Thus, the role of FasL in immune privilege,
tumor counterattack and inflammation needs to be considered
with caution.

FasL-induced death in vascular disease

Apoptosis is not limited to an immune response. Programmed
cell death has also been observed during vascular develop-
ment and interestingly within the arterial wall in atherosclero-
sis, hypertension and restenosis.40,41 Regression of the
thickened arterial wall early in these pathologies by apoptosis
could reduce the neointima.42 Both FasL and Fas are
expressed in the normal and diseased vessel walls.43 Sata
et al.44 demonstrated FasL-induced cell death by an
adenovirus encoding FasL (adeno-FasL). Adeno-FasL in-
duced apoptosis in Fas+ vascular smooth muscle
cells (SMCs) in a paracrine manner and inhibited
neointima formation in rats. Local delivery of adeno-FasL to
proliferating vascular SMCs after balloon injury in rats also
induced apoptosis.44 In addition, a flow-restricted ligation
model of injury, performed by Sata and Walsh45 in FasL-
defective gld mice, displayed greater neointima and enhanced
leukocyte infiltration compared to wild type.45 These results
suggest that the FasL–Fas pathway can function to restrict
inflammation and intimal hyperplasia during vascular remo-
deling.

It has also been proposed that since vascular SMCs
express Fas and inflammatory cells express FasL, FasL–
Fas-mediated apoptotic cell death may contribute to athero-
sclerotic plaque instability.43 SMCs are the principal cellular
components of atherosclerotic plaques capable of producing
the collagen required to maintain tensile strength. It has been
proposed that vascular SMC death within vulnerable regions
of atherosclerotic plaques may lead to destabilization and
plaque rupture.46 Several lines of evidence suggest a positive
role for the FasL/Fas death pathway in atherosclerotic
plaques. Firstly, expression of Fas has been found in
both inflammatory and vascular SMCs.43 Fas+ vascular
SMCs are located prominently within the intima of plaques43

and Fas has also been demonstrated to colocalize with
TUNEL-positive vascular SMCs in regions consisting of CD3+
T-cells and CD68+ macrophages.47 Geng et al.48 also
demonstrated positive staining for FasL in 34 out of 34 carotid
plaques and the majority of this staining was localized
with intimal vascular SMCs. Recently, it was also
concluded that human macrophages induce apoptosis of
vascular SMCs derived from carotid plaque.49 Macrophage-
induced SMC apoptosis was inhibited by a neutralizing
antibody to FasL or Fas–Fc fusion protein, suggesting that
this process may promote plaque rupture.49 In a more clinical
setting, the role of FasL-mediated death in myocardial
infarction was examined by Shimizu et al.50 In this
study, plasma of acute myocardial infarction (AMI) or stable/
unstable angina pectoris (AP) patients were measured for
soluble FasL (sFasL). Shimizu et al.50 demonstrated that
patients with AMI and unstable AP have elevated levels of
sFasL, indicating a role for the FasL–Fas system in vascular
disease.
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Transcriptional Regulation of Fas Ligand

FasL gene expression is controlled by distinct protein–DNA
interactions at the FasL promoter. Transcriptional control of
FasL gene expression has previously been the focus of a
review.51 Transcriptional regulation of FasL since then,
however, has significantly developed and a number of
different factors have been identified to regulate FasL gene
expression. Examples of these include transcription factors
such as specificity protein-1 (Sp1), Ets-1 (homolog of viral
ets), interferon regulatory factor-1 (IFN-1) and inducible cAmp
early repressor (ICER) (Figure 2; see Table 1 for coordinates).
Here we will discuss in some detail the transcriptional
signaling machinery involved in FasL gene expression,
including mechanisms of stress and cytokine-induced ex-
pression. Elucidation of precise mechanisms underlying FasL
gene expression may provide useful molecular insights on the
disease states associated with FasL.

Nuclear factor in activated T cells (NFAT), a member of the
enhancer binding protein family, is critical for the expression of

many cytokine genes52 and is involved in the regulation of
TCR-mediated FasL expression.53 Two NFAT sites have
been identified through DNase I footprinting studies
from nuclear extracts of activated T cells. Both sites are
shown to be of importance, although mutational studies
have demonstrated the distal NFAT binding site to have a
more significant role.53 Human T-cell leukemia virus type I
(HTLV-1)-infected T cells constitutively express FasL. HTLV-
1 induces transcription of FasL through the viral transacti-
vator, tax.54 The previously identified consensus NFAT
binding site53 is required for tax activation, and the NFAT
motif is essential for activation of the FasL promoter by TCR
signals.

Nuclear factor-kappa B (NF-kB) is a ubiquitous transcrip-
tion factor involved in the expression of many genes including
cytokines, growth factors and cell adhesion molecules.55

The inducible form of NF-kB is a heterodimer of NF-kB1 and
Rel A. Inactive NF-kB is found in the cytoplasm in a complex
with an inhibitory protein I-kB. Once activated, NF-kB is
released from I-kB, translocates to the nucleus and activates
target genes.56 Two NF-kB sites have been identified in the
mouse promoter of FasL (FasL-kB1 and FasL-kB2).57 Both
sites were found to bind NF-kB; however, only the FasL-kB1
site was able to activate gene expression.57 NF-kB-depen-
dent upregulation of FasL has also been demonstrated in
apoptosis of etoposide- and teniposide-treated Jurkat T-
cells.58 Moreover, the FasL promoter was responsive to DNA
damage and coexpression with p65 (Rel A) or Fos/Jun.
Mutations in NF-kB and activator protein-1 (AP-1) binding
sites eliminated these responses, indicating a crucial role for
both NF-kB and AP-1 in FasL expression and apoptosis.58

Like NFAT, NF-kB also plays a role in T-cell activation-
induced FasL expression.59 Inhibition of NF-kB activity in T-
cell hybridomas reduced FasL expression and apoptosis upon

Figure 2 Transcriptional regulation of Fas ligand. Nuclear factors activating
transcription of the FasL gene are illustrated in this schematic. Boxes represent
cis-regulatory elements located in the proximal FasL promoter known to regulate
FasL gene expression with indicated transcription factors. References are
provided in the text.

Table 1 Transcriptional regulators of FasL gene expression

Transcription factor Strand Response element Coordinates Reference

NFAT +ve 50-GGAAA-30 �137/�133 53
NFAT +ve 50-GGAAA-30 �270/�272 53,54
NF-kB �ve 50-GGGGACTTTCT-30 �1086/�1076 58
NF-kBa +ve 50-AGGTGTTTCCC-30 �138/�128 57
NF-kBa +ve 50-TGGTCTTTTCCC-30 �440/�429 57
AP-1 +ve 50-TTAGTCAG-30 �1050/�1043 58
Sp1 +ve 50-GGGCGG-30 �280/�275 60,62
Ets-1 +ve 50-GGAA-30 �366/�363 61
Egr-1, Egr-3, Egr-2 +ve 50-GTGGGTGT-30 �215/�208 63
Egr-1, Egr-3 +ve 50-GTGGGCGG-30 �282/�275 65,66
Egr-1, Egr-3 +ve 50-GTGGGTGT-30 �784/�777 65
IRF-1, IRF-2 +ve 50-AAGTGA-30 �221/�216 69
IRF-1 +ve 50-GAGAAGAAGTAAAACCGTTTG-30 �49/�29 70
IRF-1 +ve 50-AGAGAAAGAGAAAGACAGAGG-30 �174/�154 70
c-Myc �ve 30-ATTCTCT-50 �127/�121 76
FKHRL1 +ve 50-TAAATAAATA-30 �897/�888 78
FKHRL1 +ve 50-TAAATAAATA-30 �885/�876 78
FKHRL1 +ve 50-TAAGTAAATA-30 �889/�880 78
ATF-2/c-jun +ve 50-TTGGGTAGCACAGCGA-30 �335/�320 81

Nuclear factors involved in the transcriptional regulation of FasL are listed. Coordinates and sequences corresponding to transcription factor cis-elements (relative to
transcriptional start site) in human FasL proximal promoter are noted
aMouse FasL promoter sequence
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TCR stimulation. Coexpression of p65 (Rel A) on the FasL
promoter induced FasL activity. In contrast, coexpression of I-
kB dramatically reduced inducible FasL promoter activity.59

Unlike inducible FasL expression by DNA-damaging agents,
AP-1 was not required for activation-induced FasL gene
expression.59

A broadly expressed zinc-finger transcription factor, Sp1, is
involved in the transcriptional regulation of many genes and
can influence gene expression by promoter interactions
through architectural support and by chemical modification.
Sp1 has also been identified to be important in the regulation
of FasL gene expression and apoptosis. We recently
demonstrated that inducible FasL gene expression in SMC
involves the zinc-finger transcription factor Sp1, which in turn
is regulated by the atypical protein kinase C-zeta (PKCz).60

Sp1 activated the FasL promoter via a distinct recognition
element, and inducible FasL promoter activation was abro-
gated by expression of the dominant-negative (DN) mutant
form of Sp1. Inducible FasL transcription and apoptosis were
also blocked using DN-PKCz. We also showed that Ets-1
positively activates FasL gene expression in SMC.61 Further-
more, Ets-1 activation of the FasL promoter involved a distinct
recognition element and cooperative interactions with Sp1.61

Using immunohistochemical staining, we found that Ets-1,
Sp1, PKCz and FasL were expressed in smooth muscle-
actin+ TUNEL+ SMCs of human carotid atherosclerotic
plaques.60 The Sp1 element in the FasL promoter overlaps
with an NFAT binding motif. This region (50-GGGCGGAAA-30)
is critical for FasL promoter activity in IL-2 treated T cells.62

Mutation of the Sp1 and/or NFAT sites reduced FasL
promoter activity.62 In contrast, mutation at the early
growth response factor (Egr) site had no effect on FasL
transcription.62

Mittelstadt and Ashwell63 identified a sequence on the
FasL promoter that binds Egr transcription factor family
members termed the FasL regulatory element (FLRE).
Electrophoretic mobility shift assays (EMSA) identified two
activation-induced nuclear protein complexes, Egr-1 and Egr-
3 to bind this region.63 The transcription factor Egr-1 is
implicated in growth, differentiation and apoptosis.64 The
function of Egr-3 on the other hand remains unknown.
Transient overexpression of Egr-3 increased FasL promoter
activity in a cyclosporin A-insensitive manner. In contrast
Egr-1 had no effect.63 Li-Weber et al.65, through DNase I
footprinting, identified an additional two Egr binding sites on
the FasL promoter. Both Egr-1 and Egr-3 were found to
form nucleoprotein complexes at these identified sites.65

Moreover, NFAT was also a component of the inducible-
binding complexes formed. In the same study, Egr-1, Egr-3
and NFAT displayed cooperative and synergistic activation of
the FasL promoter mediated by the three Egr/NFAT regula-
tory elements.65 Egr-2 also showed a positive regulatory role
in FasL transcription.66 Mittelstadt and Ashwell66 demon-
strated that both Egr-3 and Egr-2 induced FasL-promoter-
dependent reporter activity in T-cell hybridomas and HeLa
cells. Egr-3 and Egr-2 also upregulated endogenous FasL
mRNA.66

Regulation of FasL by NFAT via Egr factors has been
established by Rengarajan et al.67 Through Northern, EMSA
and promoter-dependent studies using cells of NFAT-defi-

cient mice, Egr2 and Egr3 were shown to be regulated by
NFAT proteins.67 Primary lymph node cells from mice lacking
NFATp, NFAT4, Egr2 and Egr3 were also used to assess
direct transactivation of the FasL promoter by Egr2 and Egr3,
under the regulatory control of NFAT. Interestingly, expres-
sion of NFAT together with a minimal FasL promoter construct
(containing the FLRE) demonstrated significant induction of
the reporter vector. The fact that coexpression of Egr3
together with the minimal FasL reporter vector bearing a
mutation in FLRE demonstrated near extinction of FasL-
promoter upregulation further supports the notion that NFAT
controls the regulation of Egr2 and/or Egr3 to regulate FasL
transcriptional activity.67 In addition to these studies, Yang et
al.68 recently established the synergistic activation of the
FasL promoter by coexpression of Egr2 or Egr3 and
the human immunodeficiency virus (HIV) transactivator,
Tat. Mutations in FLRE no longer supported this superinduced
activation.68 This study also established that Egr2 and
Egr3 physically interacted with Tat. Interaction with Egr3
was still supported by an amino-acid substitution in Tat that
blocked its transactivation activity; however, this mutation
failed to enhance Egr-dependent regulation of the FasL
promoter.68

TCR-inducible FasL expression is under the direct influence
of the interferon transcription factor family. Deletion and
mutagenesis studies identified a 12 bp sequence in the FasL
promoter containing a putative interferon regulatory
factor (IRF) binding site.69 EMSA demonstrated the formation
of DNA-binding complexes to contain IRF-1 and IRF-2.
Overexpression of either IRF-1 or IRF-2 resulted in FasL
promoter activation, although the activation observed was
more significant by IRF-1 overexpression.69 IRF-1 and
IRF-2 overexpression also lead to an increase in endogenous
FasL mRNA levels in heterologous nonlymphoid cells.
Kirchhoff et al.70 identified two positive IRF-dependent
domains in the FasL promoter. EMSA demonstrated IRF-1
binding to both sites, where IRF-1 overexpression induced
FasL promoter activity. Interestingly, Kirchhoff et al.70

demonstrated that both sites are important in TCR/CD3-
mediated FasL induction, and that viral IRF of human
herpesvirus 8 (HHV8) abolish IRF-1-mediated, and abrogate
TCR/CD3-mediated FasL induction. Thus, inhibition of FasL-
dependent T-cell function may contribute to the immune
escape of HHV8.70

The transcription factor c-Myc dimerizes with Max to form
an active transcriptional complex involved in cell cycle
progression, neoplasia and cell death. Little is known
regarding mechanisms of c-Myc-mediated apoptosis. c-Myc
has been shown to promote apoptosis in fibroblasts.71 Studies
have demonstrated the involvement of c-Myc in AICD of T
cells through the use of antisense oligonucleotides targeting
c-Myc72 and dominant-negative mutant forms of c-Myc or
Max.73 Hueber et al.74 revealed that c-Myc-induced apoptosis
requires functional FasL and Fas, and these findings were
confirmed by Brunner et al.75 Brunner et al.75 demonstrated
that T-cell activation-induced expression of FasL is regulated
by c-Myc. c-Myc has been illustrated to interact directly with
the FasL promoter. A ‘noncanonical’ binding site has been
identified (30-ATTCTCT-50) for c-Myc–Max heterodimers,76

and c-Myc activation of the FasL promoter was abolished
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upon mutation of this binding element.76 Transforming growth
factor-beta (TGFb) also downregulates FasL transcriptional
activity via c-Myc. TGFb1 has been shown to block c-Myc-
induced FasL mRNA and subsequent activation of apoptosis
in T cells.77 This provides a possible mechanism for AICD
downregulation that may allow for clonal expansion during an
immune response.77

Survival factors such as nerve growth factor (NGF) and
insulin-like growth factor 1 (IGF1) trigger a cascade of
events leading to the activation of the phosphatidylinositol
3-kinase (PI3K)–Akt pathway. Akt directly inhibits members
of the apoptotic machinery including BAD and caspase 9.
The forkhead transcriptional regulator-1 (FKHRL1) is a
substrate of Akt phosphorylation.78 The release of survival
factors leads to the phosphorylation of FKHRL1, rendering
it inactive as a transcription factor. Dephosphorylation of
FKHRL1 contributes to FasL upregulation and apoptosis.78

Brunet et al.78 identified three putative overlapping response
elements to FKHRL1 in the FasL promoter. Only two of
these response elements were found to bind FKHRL1.78

Recently, Suhara et al.79 demonstrated that serum
deprivation and treatment of vascular SMC with wortmannin
(PI3K inhibitor) ablated Akt signaling and led to the
upregulation of FasL. Akt suppression also induced
c-Jun N-terminal kinase (JNK) and DN mutants of c-Jun
inhibited FasL promoter activity.79 Induction of FasL by
FKHRL1 was dependent on c-Jun activation.79 Suhara et
al.79 established a positive feedback loop mechanism where
FasL participates in and promotes apoptosis under conditions
of cellular stress.

Stress-Induced FasL Transcription

Environmental stress stimuli such as cytotoxic stress and
DNA-damaging agents can trigger responses that control
cellular processes including repair, cell cycle arrest and
programmed cell death. The induction of FasL gene expres-
sion in T lymphocytes in response to environmental stress has
been shown to be dependent on JNK activation.80 c-Jun
translocates to the nucleus following phosphorylation by JNK.
Within the nucleus it binds to c-Fos forming a complex, AP-1.
The MEKK1 (JNK kinase kinase)-regulated response element
was identified by Faris et al.80 on the FasL promoter. Mutation
of this response element greatly reduced MEKK1-mediated
FasL promoter activation. EMSA demonstrated specific
binding by an AP-1 heterodimer consisting of activating
transcription factor 2 (ATF-2) and c-Jun. Transfection of c-
Jun and ATF-2 mutants (lacking JNK phosphorylation sites)
decreased transcriptional activation of FasL. Faris et al.80 thus
demonstrated that MEKK1, and transcription factors regu-
lated by the JNK pathway play a role in committing
lymphocytes to undergo apoptosis via FasL transcription in
a stress-responsive manner.

JNK to FasL signaling pathways also play important roles in
the induction of neuronal cell death in response to various
stresses.81 Treatment with truncated MEKK1 (MEKK1D) or
NGF withdrawal leads to an increase in FasL transcriptional
activity. The p38 inhibitor SB202190 blocked FasL induction
and c-Jun phosphorylation.81 SB20358 activation induced
FasL expression, and overexpression of mitogen-activated

protein kinase (MAPK) kinase 3b (activator of p38 MAPK) led
to an increase in FasL promoter activity and an increase in
transcript in T cells. In addition, Kasibhatla et al.58 demon-
strated that etoposide, teniposide and ultraviolet-induced T-
cell apoptosis occurs through the activation of FasL. They also
demonstrated that these stimuli activated the JNK pathway.
These responses were abrogated by mutations in AP-1 and
NF-kB, indicating a role for AP-1 and NF-kB in stress-induced
apoptosis.58

Cytokine-Induced FasL Gene Expression

The role of IL-2 in apoptosis is not completely established. In
fact, IL-2 rescues activated T cells from apoptosis by inducing
antiapoptotic genes including Bcl-2.82 Other studies, how-
ever, suggest that IL-2 primes T cells to TCR-mediated
programmed cell death.83 These findings are confirmed by the
observation that IL-2-deficient mice exhibit an increase in
lymphocyte production, uncontrolled T-cell activation and
autoimmunity.84 More recently, Haux et al.85 revealed that NK
cells exposed to IL-2 over 3 days became apoptotic and
released soluble FasL, indicating the involvement of FasL/Fas
in the downregulation of IL-2-activated human NK cells.85 IL-2
also increased transcription and surface expression of
FasL,86 and Xiao et al.62 further demonstrated this by
functional FasL promoter studies. It was found that IL-2-
induced FasL-promoter-dependent expression was mediated
via the Sp1 and NFAT binding motifs.62

Ayroldi et al.87 also demonstrated that transcription of FasL/
Fas is controlled by IL-2 production and that CD2 stimulation
rescued T-cell hybridomas from AICD through a reduction in
IL-2. Ayroldi et al.87 also showed negative regulation of the
FasL/Fas system with the involvement of interleukin-6 (IL-6).
IL-6 was found to inhibit anti-CD3-induced apoptosis in a T-
cell hybridoma line, thus demonstrating a protective effect. IL-
6 did not inhibit IL-2 production, suggesting IL-2-independent
mechanisms of FasL/Fas expression.87 A significant de-
crease was also observed in the anti-CD3-induced expression
of FasL and IL-6 rescued resting T cells from apoptosis, by
activating Bcl-2 expression.88

TGFb, a cytokine that regulates cell growth, adhesion
and differentiation,89 has contradictory actions and its role in
apoptosis is not clear. There are a number of conflicting
studies that demonstrate TGFb to have a negative90 and a
positive role in apoptosis.77 Recently, Genestier et al.77

demonstrated negative regulation of apoptosis by TGFb1
through the transcriptional regulation of FasL. They
showed that TGFb1 inhibited c-Myc expression in T-cell
hybridomas, and a chimeric molecule consisting of c-Myc and
the estrogen receptor’s steroid binding domain blocked FasL
and AICD stimulated by TGFb1.77 Schlapbach et al.91 showed
that TGFb induced Flice-inhibitory protein (c-FLIP) in resting
and activated microglia, and they demonstrated that the
presence of FLIP strongly interfered with FasL-induced
activation of caspase 8 and caspase 3, preventing apopto-
sis.91 On the contrary, TGFb is required for programmed
cell death in the developing mouse limb,92 where levels of
apoptosis were reduced in the interdigital spaces of
the developing limbs of Tgf-beta2�/� Tgf-beta3�/� double
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knockouts. Arsura et al.93 also demonstrated a positive role in
TGFb-induced apoptosis. They showed that TGFb-induced
programmed cell death is preceded by a reduction in c-Myc
expression, which is associated with a decrease in NF-kB
expression.93

Negative Regulation of FasL Transcription

Repression of FasL expression has been demonstrated by a
number of factors including retinoic acid, nitric oxide, vitamin
D3 and the transcriptional repressor ICER. Treatment of T-cell
hybridomas with retinoic acid and glucocorticoids inhibits
FasL upregulation and subsequent apoptosis.94,95 The ability
of retinoic acid to inhibit AICD was enhanced by over-
expression of the retinoid X receptor (RXR).96 The inhibition
of apoptosis was blocked by the dominant-negative mutant
form of RXR.96 Yang et al.96 demonstrated efficient inhibition
of FasL upregulation and T-cell apoptosis by retinoids binding
to their respective receptors.

Recently, Lee et al.95 illustrated the repression of FasL by
retinoic acid, mediated via an NFAT binding element. EMSA
determined a reduction in the ability of NFAT to bind DNA
following retinoic acid treatment and revealed that retinoic
acid blocked the translocation of NFAT from the cytosol to the
nucleus.95 In a similar manner, nitric oxide also inhibited FasL
expression and apoptosis by interfering with the ability of AP-1
to induce FasL expression.97 Moreover, vitamin D3 inhibited
activation-induced apoptosis and FasL gene expression. This
repression was shown to be mediated by a noncanonical c-
Myc binding element.98 In addition, the transcriptional
repressor ICER has also been identified as a downregulator
of FasL expression in T lymphocytes. Bodor et al.99 recently
demonstrated the transcriptional repression of activated
human FasL promoter by ICER, and the involvement of the
proximal NFAT binding element. The study illustrated the
formation of a ternary complex between ICER and the DNA-
binding domain of NFAT via the proximal NFAT element.99

Increased expression of ICER also correlated with a decrease
in FasL expression in both T and NK cells.99 In support of
these observations, Bodor et al.99 illustrated that a proximal
NFAT binding site participates in the downregulation of the
FasL promoter by ICER. Thus, FasL is likely to be controlled
by complex interactions via positive and negative regulatory
factors.

Conclusion

In recent years, a distinct pattern of FasL gene expression has
emerged, involving transcription factor interactions with
distinct promoter elements, protein–protein combinatorial
interactions and phosphorylation. These molecular events
integrate signals from outside the cell to changes in FasL gene
expression, altering cell phenotype and triggering cell death.
Future work should provide a more complete picture of the
signaling, transcriptional and post-transcriptional regulation of
this mediator of cell death.
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