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Higher plants have evolved intimate, complex, subtle, and relatively constant
relationships with a suite of microbes, the phytomicrobiome. Over the last few
decades we have learned that plants and microbes can use molecular signals
to communicate. This is well-established for the legume-rhizobia nitrogen-fixing
symbiosis, and reasonably elucidated for mycorrhizal associations. Bacteria within
the phytomircobiome communicate among themselves through quorum sensing and
other mechanisms. Plants also detect materials produced by potential pathogens
and activate pathogen-response systems. This intercommunication dictates aspects
of plant development, architecture, and productivity. Understanding this signaling via
biochemical, genomics, proteomics, and metabolomic studies has added valuable
knowledge regarding development of effective, low-cost, eco-friendly crop inputs
that reduce fossil fuel intense inputs. This knowledge underpins phytomicrobiome
engineering: manipulating the beneficial consortia that manufacture signals/products
that improve the ability of the plant-phytomicrobiome community to deal with various
soil and climatic conditions, leading to enhanced overall crop plant productivity.
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Background

Most energy in the terrestrial biosphere enters it through photosynthesis (Imhoff et al., 2004)
carried out by plant leaves (Luo et al., 2006). Non-photosynthetic organisms with reliable access
to plant energy are in an advantaged situation. Under natural conditions higher plants are always
associated with a complex and relatively constant microflora (Rout and Southworth, 2013; Turner
et al., 2013a). Terrestrial plants release ∼20% of photosynthetically fixed carbon as root exudates,
resulting in an energy rich rhizosphere (Kuzyakov and Domanski, 2000), and a rich, generally
compositionally consistent phytomicrobiome (Bulgarelli et al., 2012; Hirsch and Mauchline, 2012;
Lundberg et al., 2012). These exudates vary among species, specific genotypes within species,
stages of plant development and growing conditions, and influence the composition of the
rhizomicrobiome (Bascom-Slack et al., 2012; Marasco et al., 2012; Badri et al., 2013a,b; Turner
et al., 2013a,b; Chaparro et al., 2014).

Phytomicrobiome associations are analogous to the animal microbiome (Koenig et al., 2011);
microbiome diversity, stability, and resilience play a large role in human health and disease (Cho
and Blaser, 2012). Plants have likely had associated microbes since they colonized the land, almost
half a billion years ago; roots of the first terrestrial plants were almost certainly less sophisticated
than those that followed, making these early plants more in need of microbial assistance
(Knack et al., 2015). Fossil endomycorrhizal associations occur in the early Devonian period,
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demonstrating association of plant roots with fungal elements of
the rhizomicrobiome (Taylor, 1995; Bonfante and Genre, 2008;
Porras-Alfaro and Bayman, 2011). Mycorrhizal relationships
are sophisticated and their presence >400 million years ago
indicates that the phytomicrobiome had already been developing
for some time; it seems likely that bacterial associations have
been present for at least as long. As plants adapted to and
spread through diverse terrestrial environments, evolving to grow
under a range of conditions, it is probable that their associations
with microbes also evolved. This community of microbes is
the phytomicrobiome (Smith and Zhou, 2014), with its root
associated (Hirsch and Mauchline, 2012; Lundberg et al., 2012;
rhizomicrobiome), above ground associated (Rastogi et al., 2012,
2013; Badri et al., 2013b; Kembel et al., 2014; phyllomicrobiome)
and interior (Berg et al., 2014; endosphere) components.
Even “lower plants” such as Sphagnum sp. have complex
phytomicrobiomes, including highly specific associations with
diazotrophs (Bragina et al., 2013).

Hence, a plant growing in nature is not a single organism; it is
a community: a holobiont (Hartmann et al., 2014). While a plant
growing in isolation can be very useful for research purposes, it is
an anomaly. Like the human microbiome, the phytomicrobiome
constitutes an underappreciated biological aspect (physiology,
genome, metabolome, etc.) of plants. Plants and their associated
phytomicrobiome affect each other in various and subtle
ways (Berendsen et al., 2012); a field-grown plant is a meta-
organism (Berg et al., 2013), having a persistent and regulated
relationship with its phytomicrobiome. The composition of
the phytomicrobiome is regulated by numerous biotic and
abiotic factors including the complex matrix of plant–microbe
and microbe–microbe communications. This communication is
carried out through the release of signaling compounds, the
forms and functions of which are currently being elucidated.
This new understanding can be exploited to: (1) develop new
approaches to crop growth promotion, (2) optimize related
fermentation and formulation processess, and (3) develop novel
and more consistent biocontrol mechanisms for field crops (East,
2013).

The Phytomicrobiome and Plant Growth

There has been an upsurge in phytomicrobiome publications; this
community of microbes is now seen as key to the growth and
health of plants (Schmidt et al., 2014); there is still a great deal
to be learned about the composition and nature of interactions
among members of this community, and its interactions with the
host plant.

Microbes associate with the phyllosphere (as both epi-
and endophytes, of leaves and stems), rhizosphere and
reproductive structures such as flowers, fruits and seeds. In
grape, Pseudomonas and Bacillus spp. colonize the epidermis and
xylem of the ovary and ovules, while Bacillus spp. colonize berries
and seed cell walls (Lugtenberg and Kamilova, 2009; Compant
et al., 2010a,b). Nitrogen-fixing plant growth promoting
rhizobacteria (PGPR; Loiret et al., 2004; Quecine et al., 2012; e.g.,
Acetobacter diazotrophicus, Pantoea agglomerans 33.1) associate

with plant roots (Pisa et al., 2011), and stems of sugarcane
(Velázquez et al., 2008), residing in the apoplast in a low-
nitrogen, high-sucrose environment (Dong et al., 1994). Other
nitrogen-fixing bacteria (Azotobacter, Enterobacter, Bacillus,
Klebsiella, Azospirillum, Herbaspirillum, Gluconacetobacter,
Burkholderia, Azoarcus) are found in grasses such as rice
and maize (Von Bulow and Dobereiner, 1975; James, 2000;
Baldani et al., 2002; Boddey et al., 2003; Santi et al., 2013).
Phyllomicrobiome communities influence plant development
and ecosystem function, while the host controls aspects of
phytomicrobiome composition and function. Environmental
factors are known to alter biosynthesis of many metabolites
within plants; specific members of the rhizomicrobiome also
alter plant development, growth, and composition. Treatment of
leaves with specific phyllomicrobiome components suppresses
feeding by insect larvae (Badri et al., 2013b). The distribution
and community composition of microbes in the phyllosphere is
thought to be somewhat random, whereas plants create niches
in the rhizosphere and endosphere to accommodate specific
microbial communities (Lebeis, 2015).

The rhizomicrobiome is comprised of diverse root endophytes
(Gaiero et al., 2013), some of which are PGPRs. Compositionally
the rhizomicrobiome is dynamic in time and space, in
response to environmental conditions, the presence of other
soil organisms, soil physical conditions, plant species and
genotype and interactions between a specific microbe and a
specific plant type. The best characterized microbes in the
rhizomicrobiome are the PGPR. These include bacteria in the
soil near plant roots, on the surface of plant root systems,
in spaces between root cells or inside specialized cells of root
nodules; they stimulate plant growth through a wide range
of mechanisms (Gray and Smith, 2005; Mabood et al., 2014),
such as: (1) nutrient solubilization (particularly phosphorus –
Boddey et al., 2003; Kennedy et al., 2004; Trabelsi and Mhamdi,
2013), (2) production of metal chelating siderophores, (3)
nitrogen fixation (Vessey, 2003; Bhattacharyya and Jha, 2012;
Drogue et al., 2012), (4) production of phytohormones, (5)
production of 1-aminocyclopropane-1-carboxylate deaminase,
(6) production of volatile organic compounds, (7) induction
of systemic resistance [induced systemic resistance (ISR) and
systemic required resistance (SAR) – Jung et al., 2008b, 2011], and
(8) suppression of disease through antibiosis (Bhattacharyya and
Jha, 2012; Spence et al., 2014). It has also been shown that “signal”
compounds produced by bacteria in the phytomicrobiome
stimulate plant growth (Prithiviraj et al., 2003; Mabood et al.,
2006a; Lee et al., 2009), particularly in the presence of abiotic
stress (Wang et al., 2012; Subramanian, 2014; Prudent et al.,
2015). In the broadest sense PGPR include legume-nodulating
rhizobia. PGPR reside outside plant cells (extracellular – ePGPR)
or, like rhizobia, live inside them (intracellular – iPGPR; Gray
and Smith, 2005). Application of PGPR to crops, except for
rhizobia, hasmetwithmixed results in the field, causing increased
growth sometimes and not others (Nelson, 2004). Elements of
the phytomicrobiome also assist plants in dealing with abiotic
stress. The Arabidopsis phytomicrobiome, for instance, can sense
drought stress and help the plant maintain productivity (Zolla
et al., 2013). Further, mycorrhizal associations enhance crop
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salinity tolerance (Porcel et al., 2012; Ruiz-Lozano et al., 2012).
At a time when we are looking to crop plants to provide
biofuels and other bioproducts while still feeding the world’s
growing population, against a background of climate change,
understanding and developing technologies that can increase
overall plant productivity is imperative (Ragauskas et al., 2006;
Babalola, 2010; Dutta and Podile, 2010; Beneduzi et al., 2012;
Orrell and Bennett, 2013).

Newer deployments of PGPR and/or arbuscular mycorrhizal
fungi (AMF) consortia that promote crop productivity by
mimicking, or partially reconstructing, the phytomicrobiome are
being developed. Application of a PGPR consortium (Bacillus
amyloliquefaciens IN937a, Bacillus pumilus T4, AMF Glomus
intraradices) to greenhouse tomato resulted in full yield with
30% less fertilizer (Adesemoye et al., 2009). Co-inoculation of
B. japonicum 532C, RCR3407 and B. subtilis MIB600 increased
biomass for two soybean cultivars (Atieno et al., 2012). Co-
inoculation of B. japonicum E109 and Bacillus amyloliquefaciens
LL2012 improved soybean nodulation efficiency. Phytohormone
production by B. amyloliquefaciens LL2012 improved nodulation
efficiency for B. japonicum E109 (Masciarelli et al., 2014).
A consortium of B. megaterium, Enterobacter sp., B. thuringiensis
and Bacillus sp., plus composted sugar beet residue, on Lavandula
dentata L. helped restore soils by increasing phosphorus
availability, soil nitrogen fixation and foliar NPK content
(Mengual et al., 2014).

Signaling in the Phytomicrobiome

The complex community formed by the plant and its
phytomicrobiome is carefully orchestrated; there is signal
exchange among the various microbes involved, and also
between the host plant and the microbe community (Engelmoer
et al., 2014). These signals regulate aspects of each other’s
activities and the community overall. Microbial chemical
signals can help plants initiate immune responses to harmful
pathogens or allow the entry of beneficial endophytes (Hartmann
et al., 2014). Microbe associated molecular patterns (MAMPs)
play a key role in plant immune response and antibiotic
secretion in microbes. Plant associated Bacillus strains have
been shown to down-regulate MAMP-regulated immune
response including antibiotic secretion in the presence
of plant root exudates to better facilitate root infection
(Lakshmanan et al., 2012). Bacteria can also interfere with
signaling between plants and other microbial strains. LCOs are
similar in structure to chitin and can be cleaved by bacterially
produced chitinases, thus interfering with plant microbe
symbioses (Jung et al., 2008a). Other aspects plant–microbe
symbiosis follow pathways similar to pathogen infection (Barea,
2015).

Signaling compounds produced by plants include a variety
of root exudates such as primary metabolites (carbohydrates,
proteins, organic acids, etc.) and secondary metabolites
(flavonoids, phenol, phytohormones, etc.). Plants often excrete
more of these signaling compounds in response to stress.
PGPR-to-plant signaling compounds include phytohormones,

acyl homoserine lactones, phenols and peptides and can
also act as microbe to microbe signals (Barea, 2015). Root
exudates signal and recruit specific microbial communities.
Secretion of malic acid in Arabidopsis thaliana in response
to foliage pathogen attack stimulates the formation of
beneficial biofilms in the rhizosphere (Rudrappa et al.,
2008).

That plants and microbes use signal compounds to
communicate during establishment of beneficial plant-microbe
interactions (Desbrosses and Stougaard, 2011), is well-described
for the legume-rhizobia nitrogen fixing symbiosis (Oldroyd
et al., 2010; Giles et al., 2011; Oldroyd, 2013), and somewhat
elucidated for mycorrhizal associations (Gough and Cullimore,
2011). In the legume-rhizobia relationship the plant releases
flavonoid signals to rhizobia (Hassan and Mathesius, 2012)
or, in some cases, jasmonate signals (Mabood et al., 2006a,b;
Mabood et al., 2014), followed by rhizobial production of
lipo-chitooligosaccharides (LCOs) as return signals (Oldroyd,
2013). The LCOs are bound by LysM receptors, which have
kinase activity (Antolin-Llovera et al., 2012), changing root
hormone profile (Zamioudis et al., 2013) and triggering
development of root nodules. Plants also communicate with,
or otherwise influence the phytomicrobiome, affecting its
composition and structure (Delaux et al., 2012; Badri et al.,
2013a; Bálint et al., 2013; Peiffer et al., 2013; Turner et al., 2013b;
Venkateshwaran et al., 2013; Chaparro et al., 2014; Evangelisti
et al., 2014). Bacteria also communicate among themselves
(Cretoiu et al., 2013); quorum sensing via N-acyl homoserine
lactone (Teplitski et al., 2000) is well-characterized, and there
are likely other, as of yet unknown, mechanisms (Lv et al.,
2013). Quorum sensing signals can trigger immune responses
and changes in hormone profiles in plants, leading to growth
responses (Hartmann and Schikora, 2012). Quorum sensing
in the phytomicrobiome will be the subject of an upcoming
Frontiers in Plant Science theme volume (Plant responses
to bacterial quorum sensing signal molecules, topic editors
Schikora A, Hartmann A, and Munchen HZ). This sort of
signaling almost certainly occurs in the phytomicrobiome.
Plants also detect materials produced by potential pathogens
and respond by activating response systems (Tena et al., 2011).
Phytomicrobiome intercommunication in the rhizosphere
dictates aspects of above-ground plant architecture and above-
ground symbiotic/pathogenic microbial communities (Segonzac
and Zipfel, 2011; Tena et al., 2011). Similarly, pathogen or
herbivore attacks above ground can effect microbial community
composition in the rhizosphere. Above ground injury has been
shown to stimulate the production of signaling compounds in
plant roots (Lakshmanan et al., 2012). Greater photosynthetic
rates under elevated CO2 conditions have been shown to
change microbial community composition in the rhizosphere
(Berlec, 2012; He et al., 2012). Understanding plant responses
to microbial signals via proteomics (Elmore et al., 2012; Nguyen
et al., 2012; Rose et al., 2012) and metabolomics (Watrous et al.,
2012; Zhang et al., 2012) studies has added valuable knowledge
toward developing effective low-cost and eco-friendly practices
to reduce fossil-fuel dependent crop inputs, leading to interest in
phytomicrobiomes engineered to enhanced plant growth under
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variable soil and climatic conditions, improving global crop
productivity.

Surprisingly, LCOs are also able to stimulate plant growth
directly (Souleimanov et al., 2002; Prithiviraj et al., 2003; Almaraz
et al., 2007; Khan et al., 2008; Wang et al., 2012); confirmed
by Oláh et al. (2005) for root growth in Medicago truncatula,
Chen et al. (2007) for accelerated flowering (a typical response
to stress) and increased yield in tomato, and stimulation of
early somatic embryo development in Norway spruce (Dyachok
et al., 2002). Enhanced germination and seedling growth, along
with the mitogenic nature of LCOs, suggest accelerated meristem
activity. Products based on LCOs are now used to treat seed
sown into several 10s of million ha of crop land each year,
largely corn and soybean. A similar jasmonate product is
now available. The effects of LCOs are much greater when
stress (salt, drought, cold) is present than under optimum
conditions (Smith, 2009, 2010; Subramanian et al., 2009, 2010,
2011; Schwinghamer et al., 2014; Subramanian, 2014; Prudent
et al., 2015). Thuricin 17, a bacteriocin produced by Bacillus
thuringiensisNEB17 isolated from soybean roots, improves plant
growth and resilience to stress (Schwinghamer et al., 2014;
Subramanian, 2014). Inhibition of legume nodulation, and of
overall plant growth, by stressful conditions can be overcome
by LCOs (nodulation – Zhang and Smith, 1995, 2002; plant
growth – Schwinghamer et al., 2014; Prudent et al., 2015);
Estévez et al. (2009) showed that at least one rhizobial strain
produce different LCOs when grown under salt stress, and
that salt stress itself can induce the nod genes of this strain
(Guasch-Vidal et al., 2013).

Future Directions

We now understand that the phytomicrobiome is a complex,
structured and dynamic community with a relatively constant
set of potential members, whose relative abundances can shift
within plant species and their genotypes, and in response
to both abiotic conditions and plant development, leading
to dynamism in the communications among the microbial
community and the host plants. Methods, such as high
throughput genotyping, are allowing us to determine the
taxonomic diversity of the phytomicrobiome (Hirsch and
Mauchline, 2012; Peiffer et al., 2013; Turner et al., 2013b).
A better understanding of plant signaling may also become
a tool for investigating community composition of the
phytomicrobiome. Root exudates play an important role in
the formation of microbial communities in the rhizosphere
and can be useful in predicting community compositions
(Berg et al., 2014). Correlations between phytomicrobiome
bacterial diversity and host growth, mortality, and function
suggest that incorporating information on plant–microbe
associations will improve our ability to understand plant
functional biogeography and drivers of variation in plant and
ecosystem function (Kembel et al., 2014). It has even been
suggested that beneficial effects of the phytomicrobiome could
be enhanced through plant breeding, developing genotypes
that encourage best membership in the phytomicrobiome

(Bakker et al., 2012). More effective methods to study plant
MAMP receptors are being developed (Wittulsky et al.,
2014) and could lead to ways to engineer plant recognition
receptors.

Novel methods of manipulating signaling in the
phytomicrobiome could lead to crop production practices
that are less reliant on non-renewable resources and crops
more resilient in the face of stresses (Marasco et al., 2012),
most crucially, those associated with climate change. Plant
stress response seems to play an important role in the
release of signaling compounds in the rhizosphere but
the specifics of this interaction are still unclear. A better
understanding of the relationship between environmental plant
stress and signaling could help in developing technologies
that utilize plant signaling in crop stress alleviation (Barea,
2015).

Recent developments have shown that temperature
(Schwinghamer et al., 2014) and water stress (Prudent et al., 2015)
can influence plant microbe communication. Environmental
factors likely play an important and underdescribed role in
signaling in the phytomicrobiome. Variable environmental
factors may account for some of the inconsistency observed
in field trials of microbial products that previously yielded
favorable results in laboratory conditions. A more complete
understanding of how plant–microbe communication is
influenced by environmental factors will likely be useful in
achieving more consistent results with agricultural microbial
products.

Despite being at an early stage in understanding these
communities, it is clear that there is considerable potential
for application of coordinated microbial consortia to crop
agriculture and, thus, to enhancing global food security. While
advances in methods and technologies in microbiology used
to investigate non-culturable microbial strains have led to a
stronger focus on a community level approach to plant–microbe
interaction research (Berlec, 2012; Rastogi et al., 2013), isolated,
culturable microbial strains are still required for most plant–
microbe signaling research, particularly if the research is aimed
at developing commercial microbial products. Culturable strains
are needed both to produce a consistent product and to verify
growth promotion through plant growth trials. There are clear
opportunities for development of products for more sustainable
agronomic production systems (Kloepper et al., 2004; De-la-
Peña and Loyola-Vargas, 2014). A range of PGPR have been
identified, and even developed into products utilized in crop
production. Signaling compounds that directly stimulate plant
growth or improve stress tolerance have great potential because
they can be produced by microbes in a controlled bioreactor
rather than in variable field conditions as with inoculants.
The global market for biostimulants has been projected to
reach $2.241 million by 2018 and to have a compounded
annual growth rate of 12.5% from 2013 to 2018 (Calvo et al.,
2014). Products based on multispecies consortia may address
consistency in performance observed in single species inoculants.
Industry is working to harness the knowledge surrounding the
phytomicrobiome, to quickly bring sustainable, consortia-based
products to production agriculture.
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