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Abbreviations
AKT v-akt murine thymoma viral

oncogene homolog 1
JAK Janus kinase
LIFR Leukemia inhibiting factor
MAPK Mitogen-activated protein kinase
OSM Oncostatin M
OSMR-
beta

OSM receptor-beta subunit

PI3K Phosphoinositide 3-kinase
PTMs Post-translational modifications

STAT Signal transduction and activator of
transcription

Introduction

Oncostatin M (OSM), belonging to the IL-6 family of cyto-
kines (Heinrich et al. 2003), was first reported and purified
from U937 monocytic cells (Zarling et al. 1986; Ensoli et al.
1999; Hasegawa et al. 1999). In normal physiological condi-
tion, OSM is associated with multiple biological processes
and cellular responses including growth, differentiation, and
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inflammation However, anti-proliferative activity of OSM
against breast cancer cell line generated the interest of bio-
medical community on this molecule (Douglas et al. 1997,
1998). OSM was also found associated with pathological
conditions such as proliferation of ovarian cancer cells (Taga
and Kishimoto 1997), prostate cancer 22Rv1 cells (Hoffman
et al. 1996), up-regulation of the ER chaperone Grp78/BiP in
the liver cells, atherosclerotic lesions, ischemic heart disease
and rheumatoid arthritis (Linsley et al. 1990; Dunham et al.
1999). The dual role of OSM in either inducing or inhibiting
the proliferation of various types of cells called upon the
scientific community to investigate role of OSM in various
physiological and experimental contexts in detail. However,
diverse molecular level information pertaining to OSM sig-
naling is not available in a centralized resource. Therefore, we
have systematically gathered and curated molecular informa-
tion from literature and created a public resource for OSM
induced signaling events. We integrated OSM signaling path-
way into NetPath (Kandasamy et al. 2010), which is a public
resource of human signaling pathways.

OSM is known to mediate its biological effects by bind-
ing to two distinct heterodimers of gp130 with either leuke-
mia inhibiting factor receptor (LIFR) or OSM receptor-beta
(OSMR-beta) (Thoma et al. 1994). Former heterodimer
between gp130 and LIFR is called type I receptor complex
and the latter between gp130 and OSMR-beta is called type
II receptor complex. Type I receptor can bind to either OSM
or leukemia inhibiting factor, whereas type II receptor has
more affinity towards OSM (O’Hara et al. 2003). The
binding of OSM to either gp130/OSMR-beta or gp130/
LIFR induces the activation of Janus Kinase family mem-
bers through tyrosine phosphorylation (Tanaka and Miyajima
2003). The activated JAK family members in turn induce the
activation of Signal Transduction and Activator of Transcrip-
tion (STAT) proteins (Schaefer et al. 2000). Alternatively, the
activated receptors can also activate mitogen-activated protein
kinase (MAPK) pathway (Van Wagoner et al. 2000) and
PI3K/AKT pathways (Arita et al. 2008). It was also reported
that OSM bring about ligand-induced receptor degradation of
gp130, OSMR-beta, and LIFR before enhancing the synthesis
of the receptor subunits (Blanchard et al. 2001).

Materials and methods

Literature search was carried out using ‘oncostatin’ as a
keyword. The interpreted information regarding OSM sig-
naling cascade was recorded in ‘PathBuilder,’ a software
utility developed by Kandasamy and colleagues to annotate
signaling pathways (Kandasamy et al. 2009). In order to
generate an OSM specific signaling pathway, we have con-
sidered only those reactions that are specifically initiated by
OSM stimulation. Molecular reactions initiated by OSM in

combination with other cytokines were thus, not considered
in the signaling cascade depicted here. We considered Net-
Path annotation criteria, as previously described in (Goel et
al. 2011; Nanjappa et al. 2011; Raju et al. 2011a) to generate
the OSM signaling cascade and for categorizing the in-
volved reactions into protein-protein interactions, post-
translational modifications (PTMs), protein activation-
inhibition reactions, protein translocation events and gene
regulation events. In case of PTMs, we have mapped site
and residue information of the PTMs given in the litera-
ture to specific and longest isoform of the corresponding
protein as given in the RefSeq database. In addition to the
NetPath criteria, we applied more stringent NetSlim crite-
ria to choose more confident and core pathway reactions,
among larger set of OSM pathway reactions (Raju et al.
2011b). Using this subset of pathway reactions, we
depicted a core signaling cascade map of OSM, using
‘PathVisio’ (http://www.PathVisio.org).

After an initial round of internal review, we uploaded
OSM signaling pathway information into NetPath. Further,
we requested the ‘Pathway Authority,’ who has considerable
expertise on OSM signaling, for expert opinion. The path-
way authority, in this case SKL, who is also a co-author in
this manuscript, has reviewed the listed reactions pertaining
to the OSM signaling cascade. We have incorporated sug-
gestions and opinion of the pathway authority.

Results and discussion

The information pertaining to OSM signaling was found
in over 1,100 scientific research articles. A manual anal-
ysis through the available and relevant scientific literature
led to the identification of 78 molecules involved in the
OSM signaling cascade reactions. Among these, 78 mol-
ecules were part of 35 protein-protein interaction and 54
PTM events. OSM signaling pathway was also found to
regulate the expression of 322 unique genes in humans.
Stimulated by OSM signaling pathway, 8 proteins were
found to be translocated between different sub-cellular com-
partments. We provided these pathway reactions and their
associated descriptions in NetPath (http://www.netpath.org/
pathways?path_id0NetPath_114). The molecule page in Net-
Path was made dynamic and informative by linking repre-
sented molecules to external repositories including HPRD
(Goel et al. 2012; Prasad et al. 2009), OMIM (Hamosh
et al. 2005), Entrez Gene (Maglott et al. 2005) and Swiss-
Prot (Boeckmann et al. 2003). A graphical depiction of
OSM pathway reactions chosen by NetSlim criteria is
provided in Fig. 1. The OSM reaction map can also be
accessed at NetSlim through the link provided (http://
www.netpath.org/netslim/NetSlim_114).
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Fig. 1 Schematic representation of Oncostatin M signaling pathway- NetSlim (http://www.netpath.org/netslim/NetSlim_114) map generated to
graphically represent the different reactions induced by OSM in various cell types
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Role of OSM in inhibiting and inducing proliferation

OSM was observed to promote and inhibit cell proliferation
in different cell types. It was found that OSM employs
different downstream elements to bring about these effects.
Studies pertaining to OSM induced inhibitory effects in
MCF-7 cell lines revealed a STAT3 activated module of
signaling. This activation of STAT3 by OSM was in turn
found to influence various genes associated with migration
and cell differentiation (Zhang et al. 2003). In human prox-
imal tubule cells, OSM was found to have anti-fibrotic
effects, through the attenuation of transforming growth fac-
tor -β1 initiated events and inhibition of CTGF expression
(Sarkozi et al. 2011). In case of SKOV3 ovarian cancer cell
line, proliferating effect of OSM have been traced to the
phosphorylation and activation of STAT3, MAPK1/2 and
p38 signaling cascade (Li et al. 2011). However, prolifera-
tive effects of OSM on OSA cell lines were shown to be
associated with activation of STAT3, Src and JAK2 cascade
and to increased expression of MMP2 and VEGF genes,
which in turn associates OSM with tumor invasion and
angiogenesis (Fossey et al. 2011).

Role of OSM in other pathological conditions

OSM has been associated with multiple sclerosis of micro-
glia and astrocytes through upregulation of associated mol-
ecules including intercellular adhesion molecule-1 in human
cerebral epithelial cells (Ruprecht et al. 2001). Regulation of
transcription of LDLR gene by OSM has been associated
with the regulation of blood cholesterol level. OSM was also
reported to utilize JAK/STAT and MAPK signaling cascades
in HepG2 cells and cause a decreased expression of
PCSK9 gene, which influences LDLR expression in liver
(Cao et al. 2011). Albasanz-Puig and colleagues demon-
strated the dual roles of OSM, brought about through
interplay of STAT1 and STAT3, in both promoting as
well as inhibiting atherosclerosis. OSM had also been
found to inhibit VEGF expression through STAT1,
whereas STAT3 module induced by OSM was found to
increase the expression of VEGF expression (Albasanz-
Puig et al. 2012). The ability of OSM to influence
different genes including CYR1, PGLF and IL6, in vari-
ous cells and cell lines, through either JAK/STAT,
MAPK or CREB signaling cascades, associated OSM to
various pathological conditions in rheumatoid arthritis
(Migita et al. 2011; Tu et al. 2012; Kok et al. 2011).

Role of OSM in repair and remodeling

Studies on adult human cardiac myocytes, fibroblasts and
bone marrow-derived mesenchymal stem cells showed the
recruitment of STAT3 or MAPK1/2 by OSM, which

initiated remodeling in pathological conditions such as ar-
thritis and osteoporosis, as well as aiding in repair of frac-
tures (Weiss et al. 2005; Nicolaidou et al. 2012).

Availability of data

OSM signaling pathway data can be freely downloaded from
NetPath (http://www.netpath.org/pathways?path_id0NetPath_
114) and NetSlim (http://www.netpath.org/netslim/NetSlim_
114), for unrestricted non-commercial use under the adaptive
Creative Commons License (http://creativecommons.org/
licenses/by-nc/2.5). The data available in both the resources
will be periodically updated. We have also submitted OSM
pathway to Wikipathways (http://www.wikipathways.org/
index.php/Pathway:WP2374).

Conclusions

OSM is emerging as an important molecule with potential
clinical and therapeutic values in multiple human diseases.
However, a variety of biological effects induced by OSM
signaling pathway remain poorly defined so far. Therefore,
we tried to gather publicly available experimentally derived
information on OSM induced events and depicted these
molecular events in the form of a signaling pathway. We
believe that OSM signaling pathway information, as freely
available will soon be integrated into various global resour-
ces and gene set enrichment analysis tools, which will allow
discovery of biological processes and pathological condi-
tions where OSM signaling is involved. OSM signaling
pathway developed in this study will also provide a platform
for biomedical community to design further discovery ori-
ented high-throughput studies for this signaling pathway.
OSM pathway map generated by us would aid and acceler-
ate future studies of OSM related processes.
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