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SUMMARY

The lungs serve the primary function of air-blood gas exchange in all mammals and in terres-
trial vertebrates. Efficient gas exchange requires a large surface area that provides intimate
contact between the atmosphere and the circulatory system. To achieve this, the lung contains
a branched conducting system (the bronchial tree) and specialized air-blood gas exchange
units (the alveoli). The conducting system brings air from the external environment to the
alveoli and functions to protect the lung from debris that could obstruct airways, from entry
of pathogens, and from excessive loss of fluids. The distal lung enables efficient exchange of
gas between the alveoli and the conducting system and between the alveoli and the circulatory
system. In this article, we highlight developmental and physiologicalmechanisms that specify,
pattern, and regulate morphogenesis of this complex and essential organ. Recent advances
have begun to define molecular mechanisms that control many of the important processes
required for lung organogenesis; however, many questions remain. A deeper understanding of
thesemolecularmechanismswill aid in the diagnosis and treatment of congenital lung disease
and in the development of strategies to enhance the reparative response of the lung to injury
and eventually permit regeneration of functional lung tissue.

Outline

1 Introduction

2 Embryonic origins of the lung

3 Formation of the distal respiratory tree

4 Regulation of lung size and shape

5 Perspectives

References

Editors: Patrick P.L. Tam, W. James Nelson, and Janet Rossant
Additional Perspectives on Mammalian Development available at www.cshperspectives.org

Copyright # 2012 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a008318
Cite this article as Cold Spring Harb Perspect Biol 2012;4:a008318

1

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


1 INTRODUCTION

Lung development is commonly divided into five stages
(embryonic, pseudoglandular, canalicular, saccular, and
alveolar) (Figs. 1 and 2). The embryonic stage begins
with the specification of progenitor cells in the foregut.
Subsequent stages include morphogenesis of the proximal
and distal conducting airways, formation of alveoli, and
differentiation of cell types that are required for region-
specific functions of the lung, such as protection from for-
eign substances (particles and pathogens), efficient move-
ment of air into and out of the lung, and efficient gas
exchange with the circulatory system (Thurlebeck 1995;
Deutsch and Pinar 2002; Harpole and Aloia 2005; Joshi
and Kotecha 2007; Warburton et al. 2010).

This review is intended to complement other reviews
(Warburton et al. 2005, 2010; Cardoso and Lu 2006;Maeda
et al. 2007; Cardoso and Kotton 2008; Morrisey and Hogan
2010; Domyan and Sun 2011; Rawlins 2011; Rock and
Hogan 2011) by highlighting the key signaling pathways
that regulate communication between epithelium, mesen-
chyme, and mesothelium during the early stages of lung
development.

2 EMBRYONIC ORIGINS OF THE LUNG

The embryonic foregut gives rise to the respiratory tract,
esophagus, stomach, intestine, liver, gallbladder, and pan-
creas. Development of the respiratory tract is initiated at
embryonic day 9–9.5 in the mouse (Balfour 1881; Ten
Have-Opbroek 1981; Kaufman 1992), 11–11.5 in the rat
(Merei et al. 1997; Qi and Beasley 2000; Williams et al.
2003), and 22–26 in human (Dubreuil et al. 1936; Jeffrey
1998; Sadler 2010). The first morphogenetic event is the
formation of the laryngotracheal grooves on the ventrolat-
eral walls of the primitive foregut, which marks the forma-
tion of the tracheal diverticulum. The rostal (proximal)
region of this “lung field” gives rise to the trachea and
pharynx, and the caudal (distal) region gives rise to bulges
(bronchial buds) that form the right and left bronchi (Fig.
1A). The bronchial buds follow a branching program that
forms the proximal conducting airways and distal alveoli
(Fig. 1B). Simultaneously, formation of the tracheoesopha-
geal groove initiates septation of the foregut, allowing fu-
ture independent elongation of the tracheal and esophageal
tubes (Spooner and Wessells 1970; Williams et al. 2003).

The epithelial components of the lung and trachea arise
from ventral endoderm, which are of distinct embryonic
origins from the dorsal esophageal endoderm (Perl et al.
2002b; Brown and James 2009).Mesenchymal components
of the respiratory tract also have distinct origins. Distal
lung mesenchyme (mesenchymal, mesothelial, and vascu-
lar components of the lung that are distal to the terminal

bronchioles) arises from the somatopleure rather than
from centripetal growth of tracheal mesenchyme. In con-
trast, tracheobronchiolar mesenchyme (which gives rise to
the connective tissue, cartilage, and smooth muscle com-
ponents of the trachea and conducting airways and the
proximal pulmonary vascular system) arises from splanch-
nic mesoderm (Brown and James 2009).

2.1 Transcription Factors and Signaling Molecules
Interact to Pattern the Foregut and Specify
Where the Lung and Trachea Will Form

The foregut is composed of an endodermal tube that is
surrounded by mesenchyme and mesothelium (Fig. 1).
Both endoderm and mesoderm contain patterning infor-
mation, and both tissues are required to specify and initiate
lung organogenesis. Explant experiments show that in the
absence of mesoderm or mesoderm-specific signals, endo-
derm does not autonomously form a patterned branched
structure. Tissue recombination experiments show that sig-
nals from the mesenchyme are essential for the formation of
the lungbuds and all subsequent stages of lungdevelopment.
However, unspecified mesoderm from a variety of sources
can initiate bud formation from the foregut, whereas distal
(terminal bud) bronchial mesenchyme is required to induce
later lung-specific epithelial branching (Spooner and Wes-
sells 1970; Hilfer et al. 1985). Thus, mesenchyme derived
from the developing lung contains additional information
not found within the less differentiated mesenchyme.

Key regulatory molecules, which interact to pattern
the foregut, specify the primary lung field, and regulate
initial budding, are expressed in both mesoderm and en-
doderm. These factors include homeobox transcription
factors (Hox), retinoic acid (RA), retinoic acid receptors,
and mesenchymal- and endodermal-derived growth fac-
tors (Fig. 3A). Hox genes are expressed along the anteri-
or–posterior axis in both endoderm and mesoderm and
are proposed to have a primary role in the patterning of the
foregut (Lazzaro et al. 1991; Bogue et al. 1996; Sakiyama
et al. 2000). Hoxb5 and Nkx2.1 (thyroid transcription
factor 1, Ttf1) are expressed in the primary lung field and
are required for subsequent stages of lung development.
Hoxb5 is expressed in mesenchyme where it could regulate
the expression of secreted factors that pattern the underly-
ing endoderm (Krumlauf et al. 1987). However, inactiva-
tion of Hoxb5 alone does not affect primary lung bud
formation (Rancourt et al. 1995), making it likely that
functional redundancy exists with other Hox genes that
have overlapping expression patterns with Hoxb5 (Bogue
et al. 1996).

Nkx2.1 is one of the earliest markers of the lung endo-
derm (Lazzaro et al. 1991;Minoo et al. 1999).Nkx2.1 is first
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expressed in the ventral endoderm of the foregut at E9.5
(Fig. 1A), and is also expressed in the developing thyroid
and brain.Mice lackingNkx2.1 still form a trachea and lung
buds; however, the buds fail to branch, and endodermal
differentiation and expression of markers of differenti-
ated lung epithelial cells fail to occur (Minoo et al. 1999).

Mechanisms that regulate where Nkx2.1 is expressed are
poorly understood; however, signaling through the Wnt/
b-catenin pathway in foregut endoderm is required for
Nkx2.1 expression and maintenance of respiratory fate
(Harris-Johnson et al. 2009). More recently, it was shown
that the Wnt ligands, Wnt2a (Wnt2) and Wnt2b, are
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Figure 1.Morphogenesis of the bronchial tree. (A) The embryonic stage of lung development includes specification
of the primary lung field and formation of lung buds (primary bronchi) and trachea. The foregut tube is composed of
endoderm, mesoderm, and the mesothelium (purple line). The mesothelium is an epithelial-like cell layer of
mesodermal-derived cells that lines the surface of visceral organs within the coelomic cavity. Lung buds appear on
the ventral (V) foregut at the 24 somite (24S) stage (E9.75 in themouse). Before the appearance of lung buds, Nkx2.1
is expressed in ventral foregut endoderm (blue), marking the primary lung field. The tracheoesophageal groove
(arrowhead) initiates septation of the anterior foregut and esophagus. The mesothelium associated with the lung
buds (pink) will eventually give rise to the visceral pleura. Corresponding somite stages and embryonic ages are
indicated. Arrowhead indicates the tracheoesophageal groove. Dashed line indicates the plane of cross section shown
below and on the right. v, ventral; d, dorsal. (Adapted from Spooner and Wessells 1970). (B) Branching morpho-
genesis continues throughout the pseudoglandular stage (E10.5-E16.5 in the mouse) and gives rise to conducting
airways and alveolar sacs. (C) Primary lung lobes are formed by domain branching mechanisms and secondary
subdivisions are formed by planar bifarcations. Domain branching regulates the temporal formation of buds along
the proximal (p)–distal (d) axis (1–5) and their position on a circumferential axis (c). Domain branching is followed
by orthogonal and planar bifurcations (1b) leading to iterative expansion of the endodermal structure of the lung.

Development of the Lung

Cite this article as Cold Spring Harb Perspect Biol 2012;4:a008318 3

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


expressed in ventral foregut mesenchyme at the develop-
mental time when the lung is specified (Monkley et al.
1996; Zakin et al. 1998; Goss et al. 2009). Inactivation of
b-catenin (Ctnnb1) in endoderm, or inactivation of the
mesenchymal ligandsWnt2a andWnt2b, resulted in com-
plete absence of lung development (Fig. 3B,C) (Goss et al.
2009; Harris-Johnson et al. 2009).

In addition to Wnt2a and Wnt2b, fibroblast growth
factor 10 (Fgf10) is expressed in mesenchyme adjacent to
the sites of lung bud formation. Following formation of the
primary lung buds, FGF10 is absolutely required for their
initial outgrowth and survival (Bellusci et al. 1997; Min
et al. 1998; Sekine et al. 1999; Weaver et al. 2000). FGF10
signals to FGF receptor 2b (FGFR2b) in foregut endoderm
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Figure 2. Stages of lung development. (A) The pseudoglandular stage (mouse E10.5 to 16.5; human E52 toweek 17)
begins with formation of secondary bronchi and includes formation of conducting airways, a primitive capillary
plexus, and differentiation of mesenchyme to form smooth muscle. Histologically, this stage is characterized by
glandularlike structures separated by abundant mesenchyme. (B) The canalicular stage (mouse E16.5 to 17.5;
human wk 17 to 28) is characterized by thinning of the distal epithelium to form primitive pulmonary acini
(terminal sacs), early differentiation of type I and type II pneumocytes (alveolar epithelial cells), and continued
angiogenesis and juxtaposition of capillaries with the respiratory epithelium to increase gas exchange surface area.
Mesenchyme in the canalicular stage is still relatively abundant. (C) In the saccular stage (mouse E17.5 to postnatal
(P) day 5; humanwk 28 to 36), the terminal epithelial sacs continue to separate and become enveloped by capillaries.
Type II pneumocytes begin to produce surfactant and continue to differentiate into type I pneumocytes. The
submesothelial and subepithelial mesenchyme becomes thinner and contains more differentiated cells, including
bronchiolar and vascular smooth muscle. (D) During the alveolar stage (mouse P5 to 30; human wk 36 to 40), the
terminal epithelial sacs continue to form primary and secondary septa, creating mature alveoli.
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(DeMoerlooze et al. 2000; Abler et al. 2009). Because of the
importance of FGF10 for the earliest stages of lung devel-
opment, themechanisms that regulate the timing, location,
and activity of FGF10 are clearly critical (Fig. 3B,C).

T-box transcription factors (Tbx) 2, 3, 4, 5, and HoxA5
are expressed in foregut and lung mesenchyme, whereas

Tbx1 is expressed in foregut endoderm (Chapman et al.
1996; Aubin et al. 1997; Gibson-Brown et al. 1998). The
domain of Tbx4 overlaps with that of Fgf10, and inactiva-
tion ofTbx4 results in loss of Fgf10 expression and failure to
form lung buds (Sakiyama et al. 2003). In addition toTbx4,
other mesenchymal factors that may directly regulate Fgf10
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Figure 3. Signaling pathways regulating respiratory derivatives of the foregut. (A) Mesenchymal and endodermal
molecules that pattern the foregut and lung field. (B) Signaling molecules and key transcription factors that regulate
lung bud formation. (C) Signaling networks within and between endodermal and mesodermal components of the
foregut that regulate lung bud formation. (D) Signaling molecules that regulate morphogenesis of the trachea and
esophagus.
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expression includeWnt/b-catenin, Hoxb5, and RA signal-
ing (Wang et al. 2006; Volpe et al. 2007; Chen et al. 2010;
Goss et al. 2011).

Bone morphogenetic protein 4 (Bmp4) is expressed in
ventral foregut mesenchyme at E9 (19 somite) (Weaver
et al. 1999; Li et al. 2008; Danesh et al. 2009). At this stage,
the primary role of Bmp4 is to promote proliferation of
anterior foregut mesenchyme (shown by conditional inac-
tivation of Bmp4 with Foxg1-Cre1). In subsequent stages of
development, Bmp4 expression is restricted to endoderm
(see below). During the embryonic stage of lung develop-
ment (E9–E10.5), Bmp4 signaling is required for epithelial
tube elongation but not for initial formation of the lung
bud or specification of endoderm (expression of Nkx2.1)
(Li et al. 2008). However, Bmp4 signaling may restrict for-
mation of lung buds because inactivation of BMP receptors
1a (Bmpr1a, Alk3) and 1b (Bmpr1b, Alk6) in anterior ven-
tral foregut endoderm (Shh-Cre2) resulted in ectopic lung
bud formation (Domyan et al. 2011). Inactivation of only
Alk3, in respiratory epithelial cells at a slightly later time
using surfactant protein C (Sftpc) regulatory elements
(Sftpc-rtTA/TetO-Cre,3,4 Sftpc-Cre5), resulted in decreased
epithelial proliferation and reduced branching (Eblaghie
et al. 2006; Sun et al. 2008). As discussed below, a conse-
quence of loss of BMP signaling in foregut epithelium is
tracheal agenesis.

Sonic hedgehog (Shh) is expressed in the ventral foregut
and tracheal diverticulum (Fig. 3B,C) (Litingtung et al.
1998). A primary role for hedgehog signaling in the E9
foregut is to promote mesenchymal proliferation and sur-
vival (Litingtung et al. 1998; Motoyama et al. 1998). Em-
bryos lacking Shh show delayed formation of the primary
lung buds and subsequent failure to branch (Pepicelli et al.
1998). The phenotype (failure to form primary lung
buds) of mice lacking the hedgehog pathway transcription
factors, Gli2 and Gli3, is more severe than that of mice
lacking Shh (Motoyama et al. 1998). This suggests that
other hedgehog molecules are involved or that Gli2 and
Gli3 have additional hedgehog-independent functions
(Motoyama et al. 1998). Additionally, Gli2 activator func-
tion and Gli3 repressor function may compensate for each

other. Analysis of independent functions of Gli transcrip-
tion factor signaling in the embryonic and early pseudo-
glandular stages indicate that Gli2 increases, and Gli3
decreases, Wnt2b expression (Pepicelli et al. 1998; Li et al.
2004). Possibly owing to the combined activator and re-
pressor activities of Gli2 and Gli3, embryos lacking Shh
have little effect on Wnt2b expression.

RA signaling is also essential for lung bud forma-
tion (Desai et al. 2004, 2006). Mice lacking retinaldehyde
dehydrogenase 2 (Raldh2), but supplemented with RA
fromE7.5 toE8.5 to allowembryodevelopment toprogress,
fail to develop lungs and do not express Fgf10 in foregut
mesenchyme (Wang et al. 2006). Themechanisms bywhich
RA signaling regulates Fgf10 expression are complex and
indirect and appear to be mediated through Wnt and
Tgfb signaling pathways (Fig. 3C). The Wnt antagonist,
Dkk1, is expressed throughout the foregut, but is excluded
from the primary lung fields. In the foregut lung fields, RA
signaling functions to suppress Dkk1 expression in meso-
derm and endoderm. This allows increased Wnt signaling
and up-regulation of Fgf10 (Chen et al. 2007, 2010). RA
signaling also suppresses Tgfb signaling in lung field mes-
enchyme (Chen et al. 2010). In mice that lack Raldh2, par-
tial rescue can be achieved by activation of Wnt signaling
(Chenet al. 2007);however, complete rescue requires simul-
taneous suppression of Tgfb signaling and activation of
Wnt signaling (Chen et al. 2010). These studies suggest
that both activation of Wnt signaling and suppression of
Tgfb signaling are required for Fgf10 expression in foregut
mesenchyme and that RA signaling functions to coordinate
the activity of these pathways (Chen et al. 2010).

2.2 The Trachea and Esophagus Form by Septation
of the Foregut Tube

Soon after formation of the primary lung bud, the foregut
begins to separate dorsoventrally into two parallel tubes,
the esophagus and trachea (Figs. 1A and 3D). SHH and
BMP signaling are required for growth of the trachea and
separation of the tracheal and esophageal tubes. The tran-
scription factor,Nkx2.1, is also required for septation of the
trachea and esophagus, and mice lacking Nkx2.1 form a
common tube between the pharynx and stomach (Minoo
et al. 1999). The BMP antagonist, Noggin, is expressed in
dorsal foregut mesenchyme where it opposes the activity
of BMP4 (Fig. 3D). Bmp4 is expressed in ventral foregut
mesenchyme (Weaver et al. 1999; Li et al. 2008) and inac-
tivation of Bmp4 (Foxg1-Cre) resulted in agenesis of
the tracheal tube (Li et al. 2008). However, in these condi-
tional knockout embryos, at the 20–22 somite stage
(E9.25), anterior endoderm still expressed Nkx2.1, show-
ing that BMP4 signaling is not required for respiratory

1FoxG1-Cre is expressed in the foregut endoderm as early as E8.5 and in
endoderm and mesenchyme by E9.5 (Li et al. 2008).
2Shh-Cre contains a GFP-Cre fusion gene inserted into the Shh locus (Harfe
et al. 2004). In the lung, the Shh-Cre allele is expressed exclusively in endoderm.
3The Sftpc-rtTA transgene targets expression of the reverse tetracycline trans-
activator protein (rtTA) tomost lung endodermby E10.5 (Perl et al. 2002a). In
the presence of doxycycline, rtTA can activate tetracycline response elements
(TetO) (Valencik and McDonald 2001).
4The TetO-Cre transgene allele allows tetracycline-regulated expression of Cre
recombinase (Perl 2002b).
5The Sftpc-Cre transgene drives Cre expression in lung endoderm (Okubo
et al. 2005).
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epithelial specification, but is required for outgrowth (Li
et al. 2008). Inactivation of Bmpr1a and Bmpr1b in endo-
derm (Shh-Cre) resulted in a similar tracheal agenesis
phenotype (Domyan et al. 2011). In embryos lacking endo-
dermal BMP receptors (BMPRs), expression ofNkx2.1was
significantly decreased in the anterior foregut endodermby
E10.5, consistent with a requirement of BMP signaling to
maintain respiratory lineage differentiation. At this stage,
the single endodermal tube lacked tracheal identity and
expressed esophageal markers (Li et al. 2008).

Mice lackingNoggin (Nog2/2) have increased BMP sig-
naling and show a phenotype opposite to that seen in the
BMP pathway loss-of-function mutants. Seventy percent of
mice lackingNoggin develop esophageal atresia or a trache-
al–esophageal fistula (Que et al. 2006). Consistent with
BMP signaling promoting the respiratory lineage, Nog2/2

mice show decreased growth of the esophagus, expanded
expression ofNkx2.1, and formation of cartilage in the pos-
terior common gut tube. Thus, BMP signaling functions to
promote respiratory cell fate in foregut endoderm.

Shh is expressed in the ventral foregut and at the highest
levels in the tracheal diverticulum (Fig. 3B–D) (Litingtung
et al. 1998). Shh2/2 embryos fail to form a distinct esoph-
agus and trachea owing to failure to form the tracheoeso-
phageal septum. In Shh2/2 embryos, the common tube
that extends to the stomach has predominantly tracheal
morphology (Litingtung et al. 1998; Pepicelli et al. 1998;
Miller et al. 2004). In the Shh2/2 mutants, mesenchymal,
but not endodermal, Bmp4 expression is decreased. At later
stages, Shh functions downstream from Fgf10 and Fgfr2b to
regulate patterning of Sox9 expression and formation of the
cartilaginous tracheal rings (Fig. 3D) (Milleret al. 2004;Park
et al. 2010; Sala et al. 2011). Shh thus functions at multiple
levels to promote respiratory fate in the foregut and regulate
the separation between the esophagus and trachea.

3 FORMATIONOF THEDISTAL RESPIRATORY TREE

3.1 Stereotyped Branching Patterns in the Primary
Lung Lobes

The lung is subdivided into primary lobes or domains that
are formed from branches off the primary bronchi. The
branching pattern that forms these major subdivisions
of the lung shows left–right asymmetry and is species spe-
cific. In humans, the left lung is composed of an upper
(superior) and lower (inferior) lobe, whereas the right
lung has a superior, middle, and inferior lobe (Gray
2000). In the mouse, the left lung is composed of only
one lobe and the right lung is divided into four lobes: the
caudal, cranial,middle, and accessory lobes. The patterning
of these major divisions of the lung is regulated by a type of
branching called domain branching (Metzger et al. 2008b).

The mechanisms that specify where domain branches
will occur are not known; however, it is likely that this type
of branching uses mechanisms that are distinct from those
that control subsequent, more repetitive types of branch-
ing (Metzger et al. 2008b; Warburton 2008). Studies of the
architecture of airway branch points revealed that there are
two modes of domain branching coupled with a “period-
icity generator” that specifies when a new branch will form
and the spacing between branches (Metzger et al. 2008b).
The first mode of domain branching regulates the location
of buds along the proximal–distal axis, and the second
mode regulates the position of buds on a circumferential
axis (Fig. 1C). These mechanisms are discussed in more
detail in Ochoa-Espinosa and Affolter (2012).

The left–right asymmetry of the lung that results from
domain branching is ultimately controlled by earlier devel-
opmental mechanisms that regulate asymmetry of the em-
bryonic axes (genes include nodal, Lefty1 and 2, Pitx2, Hfh4
(Foxj1), and Gli2). Other genes act later in development to
implement the asymmetric developmental program (Car-
doso and Lu 2006; Warburton et al. 2010). Defects in some
genes result in randomization of left and right sides of the
body plan while maintaining asymmetry, whereas defects
in other genes lead to loss of asymmetry (isomerization).
For example, the lungs of Shh2/2 embryos fail to branch
beyond formation of the right and left primary lung buds,
resulting in symmetric single left and right lobes (Pepicelli
et al. 1998). Development of the lungs ofGli22/2 embryos
progresses farther than that of Shh2/2 embryos, but still
only form a single right lobe (Motoyama et al. 1998). In-
terestingly, loss of hedgehog interacting protein (Hip1), a
negative regulator of hedgehog signaling, also results in a
lung with only single left and right lobes instead of the
normal four-lobed right lung (Chuang et al. 2003). Hip1
is expressed in mesenchyme, distal to where a branch will
form. The underlying mechanism appears to be increased
hedgehog signaling and suppression of Fgf10 expression in
distal tip mesenchyme (Fig. 3B,C). In contrast to embryos
with defects in the hedgehog signaling pathway, embryos
lacking Pitx2 have four-lobed lungs on both the right and
left side (Kitamura et al. 1999).

Even though the specificmolecules that pattern branch-
ing have not been identified, it is clear that the formation
of the initial domain branches and all subsequent branches
are dependent on the expression of Fgf10 in mesenchyme
distal to the branch point. Therefore, understanding the
mechanisms that regulate where Fgf10 is expressed is thus
critical for understanding how the bronchial tree is
patterned (Warburton 2008). The primary sites of Fgf10
expression are hypothesized to be partially under the con-
trol of Hox family transcription factors, which are ex-
pressed in specific patterns throughout foregut and lung
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mesenchyme. In support of this idea, Hoxb3-b5 are ex-
pressed in foregut mesenchyme at E9.5 in the region where
the lung buds will form (Fig. 3A), and Hoxb2–b5 are ex-
pressed in mesenchyme surrounding budding epithelium
(Bogue et al. 1996). In an explant culture system, knock-
down of Hoxb5 showed that it functions to localize the
expression of Fgf10 in mesenchyme, and that it may also
control Fgf10 signaling through regulation of extracellular
matrix molecules (Volpe et al. 2007). In addition to Hox

genes, the transcription factors Tbx4 and Tbx5 are required
for Fgf10 expression in lung field mesenchyme (Cebra-
Thomas et al. 2003; Sakiyama et al. 2003). RA, which is
required for Fgf10 expression and formation of the primary
lung buds, must be down-regulated in distal tip mesen-
chyme for Fgf10-dependent secondary branching to occur
(Malpel et al. 2000).

3.2 Molecular Mechanisms Regulating
Branching Morphogenesis

The formation of the terminal branching pattern of con-
ducting airways uses the two domain-branching mecha-
nisms (proximal–distal and circumferential), and also
implements two types of tubular bifurcations (planar
and orthogonal) (Metzger et al. 2008b). The precise mech-
anisms that specify which modes of branching will occur
are not known. However, it is clear that these patterning
mechanisms must regulate intrinsic and extrinsic signals
that specify the location of branch points through the reg-
ulation of epithelial proliferation, cell shape, cell division
planes, and movement. These cellular events are controlled
by the dynamic interaction of signaling molecules, inhib-
itors, receptors, and the extracellular matrix within a
“signaling center” comprised of distal airway epithelium,
surrounding mesenchyme, and the overlying mesothelium
(Fig. 3A) (Cardoso 2000; Warburton et al. 2005; Cardoso
and Lu 2006; Morrisey and Hogan 2010).

One “hard-wired” genetic program that could guide the
stereotyped branching pattern of the lung may involve
specification of regional identity of lung mesenchyme by
Hox transcription factors (Bogue et al. 1996). During early
pseudoglandular stage development (E10.5–E14.5), there
are two patterns ofHoxb gene expression.Hoxb3 andHoxb4
are expressed in proximal and distal lung mesenchyme,
whereas Hoxb2 and Hoxb5 messenger RNA (mRNA) are
only expressed in distal lung mesenchyme (Bogue et al.
1996). Sakiyama showed that expression domains of
Hoxb6–Hoxb9 correspond to the morphological subdivi-
sions of the air sacs along the proximodistal axis and that
dorsal and ventral pulmonarymesenchyme, demarcated by
Hoxb6 expression, have different inductive capacities to-
ward the tracheal epithelium (Sakiyama et al. 2000). Future

genetic experiments in which multiple Hox genes are inac-
tivated will be required to determine the extent to which
they influence branching patterns of the respiratory tree.

3.2.1 Progenitor Cells Positioned along the
Proximodistal Axis Give Rise to Differentiated
Cells in the Alveoli and Conducting Airways

Lung epithelial progenitor cells are thought to reside in the
distal tip region of the developing respiratory bud (Rawlins
et al. 2009). As the lung matures and daughter cells assume
more proximal positions along the respiratory tree, they
differentiate into multiple cell types that populate the dis-
tal (alveolar) and proximal (conducting) airways (Rawlins
et al. 2008; Rock and Hogan 2011). The alveolar compart-
ment contains type II pneumocytes (also called alveolar
epithelial type 2 cells, AEC2) that are the primary source
of surfactant proteins. Type II cells also give rise to type I
pneumocytes (also called alveolar epithelial type 1 cells,
AEC1), which are marked by the expression of aquaporin
5. Type I pneumocytes are thin cells that constitute the
majority of the alveolar surface area (98% in the mouse)
and function to mediate efficient gas exchange with juxta-
posed capillary endothelial cells (Stone et al. 1992). The
conducting airways are lined by Clara, ciliated, neuroendo-
crine and basal cells. More proximal conducting airways
also contain mucus-producing goblet cells. Clara cells ex-
press secretoglobulins such as Clara cell secretory protein
(CCSPor CC10); neuroendocrine cells produce neuropep-
tides such as calcitonin. During development, a Clara-like
cell can give rise to both ciliated and neuroendocrine cells,
and the ratio of these two cell types is governed by Notch
signaling (Tsao et al. 2009). In mature lungs, cells with
progenitorlike properties include type II alveolar epithelial
cells, cells located in the bronchoalveolar duct junction
(BADJ) and the basal cells along conducting airways (Gian-
greco et al. 2002, 2009; Kim et al. 2005).

3.2.2 Autocrine and Paracrine Signals Interact
to Regulate Epithelial Cell Proliferation

Lung epithelial cells express receptors for FGF10 (Fgfr2b),
BMP4 (Bmpr1a/Alk3 and Bmpr1b), the canonical Wnt li-
gand, Wnt7b (Fzd10), and the noncanonical Wnt ligands,
Wnt5a (Fzd2) (Wang et al. 2005; Eblaghie et al. 2006;
Zhang et al. 2008) and Wnt11 (Lako et al. 1998). Of these,
the BMP signaling pathway has been shown to regulate ep-
ithelial proliferation during pseudoglandular stage lung
development. During this stage, Bmp4 expression is re-
stricted to the epithelium at the tip of the lung buds (Weav-
er et al. 1999; Jang et al. 2010). Conditional inactivation
of Bmpr1a, expression of BMP antagonists, or conditional
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haploinsufficiency of Bmp4 in lung epithelium (Sftpc-Cre)
results in decreased epithelial proliferation and increased
apoptosis (Weaver et al. 1999; Eblaghie et al. 2006). Thus,
BMP4 functions as an autocrine growth factor for lung
epithelium. Extrinsic regulation of BMP4 signaling appears
to be mediated by the BMP antagonists, Noggin (Nog) and
Gremlin (Grem1), which are expressed in adjacent mesen-
chyme (Weaver et al. 1999, 2003; Shi et al. 2001). Knock-
down of Grem1 in explant cultures with antisense oligo-
nucleotides resulted in increased epithelial proliferation
and increased differentiation (expression of Sftpc) (Shi
et al. 2001). Gremlin 1 knockout mice (Grem12/2) die at
birth with defects in alveolar septation, as well as a multi-
layered epithelium (Michos et al. 2004). Noggin knockout
mice (NogLacZ/LacZ) have abnormal truncations of lung
lobes but no other reported lung phenotypes (Brunet
et al. 1998;McMahon et al. 1998;Weaver et al. 2003). Func-
tional redundancy betweenGrem1 andNoggin has not been
investigated.

Wnt signaling also regulates epithelial proliferation, al-
though indirectly. Mouse embryos that are null for Wnt7b
show decreased epithelial and mesenchymal proliferation
primarily in the region of the distal epithelial tip without
any increase in cell death (Rajagopal et al. 2008). Wnt7b
likely signals to epithelial Fzd10 and mesenchymal Fzd1
(Wang et al. 2005). The pathway through which canonical
Wnt7b signaling regulates epithelial proliferation appears
to be mediated through mesenchyme. Inactivation of
epithelial b-catenin did not affect epithelial proliferation
but rather impaired distal differentiation (Mucenski et al.
2003). Furthermore, Bmp4 expression was normal in the
epithelium of lungs lacking Wnt7b or epithelial b-catenin
(Mucenski et al. 2003; Shu et al. 2005). However, inacti-
vation of mesenchymal b-catenin resulted in decreased
epithelial proliferation, probably through derepression of
mesenchymal noggin and resulting inhibition of Bmp4 sig-
naling (Fig. 4A) (Yin et al. 2011).

Wnt5a is expressed in lung epithelium and adjacent
mesenchyme and at highest levels around the distal tip
(Li et al. 2002). Wnt5a signals through the noncanonical
receptor Fzd2 (Sato et al. 2010). Inactivation of Fzd2 or
Gata6 (which regulates Fzd2) resulted in increased epithe-
lial proliferation, increased Bmp4 expression, and increased
canonical Wnt signaling (Fig. 4B) (Bellusci 2008; Zhang
et al. 2008). However,Wnt5a2/2 lungs showed no change
in epithelial proliferation or apoptosis during pseudo-
glandular stages (E13.5) (Li et al. 2005), but increased pro-
liferation during saccular stages (E18.5) (Li et al. 2002).

FGF10 signaling enhances epithelial proliferation (Bel-
lusci et al. 1997; Weaver et al. 2000; Ramasamy et al. 2007);
however, this activity is independent of PI3K and p-Erk
activation (Metzger et al. 2007; Tang et al. 2011). Therefore,

the effects of FGF10 on epithelial proliferation may be me-
diated through other FGFR signaling pathways (such as
gPLC) or indirectly through FGF10/FGFR2b-induced in-
creases in the expression of Bmp4 (Lebeche et al. 1999;
Weaver et al. 2000; Hyatt et al. 2004), a known regulator
of epithelial proliferation.

3.2.3 Secreted Morphogens Have a Key Role
in Regulating Epithelial Branching and
Differentiation

FGF10 signaling to FGFR2b is required for formation of
epithelial buds throughout embryonic and pseudoglandu-
lar stages of lung development (Figs. 3C and 4B) (Min
et al. 1998; Sekine et al. 1999; Ramasamy et al. 2007; Abler
et al. 2009). Studies on the mechanisms of bud formation
indicate that initial bud outgrowth occurs independent of
proliferation and then, after bud initiation, proliferation
increases in distal epithelium (Nogawa et al. 1998). Con-
sistent with this, FGF10 has been shown to induce chemo-
taxis toward the source of FGF10, as well as having some
mitogenic activityon lung epithelial explants (Bellusci et al.
1997; Weaver et al. 2000; Hyatt et al. 2004; Li et al. 2005).
FGF10 also promotes distal cell fate, and inactivation of
FGF10/FGFR2b signaling leads to expansion of proximal
cells that express Sox2 and loss of distal epithelial cells that
express Sox9 (Abler et al. 2009). It is not known whether
this effect on epithelial differentiation is direct or mediated
through another pathway. Consistent with the lattermodel,
FGF10 signaling is required for epithelial canonical Wnt
signaling (Ramasamy et al. 2007), which functions to reg-
ulate distal epithelial differentiation (Mucenski et al. 2003).

FGF9 signaling also contributes to epithelial branching
(Fig. 4C). Although epithelial-expressed FGF9 signals to
lung mesenchyme (see below), it also can signal directly
to lung epithelium where it affects epithelial morphology
andpromotes branching (delMoral et al. 2006a;White et al.
2006; Yin et al. 2008, 2011). Effects of FGF9 on branching
could be mediated through induction of Dkk1 expression
and inhibition of Wnt signaling in distal lung epithelium
(del Moral et al. 2006a). Canonical Wnt signaling within
lung endoderm is required for distal epithelial differen-
tiation and branching (Mucenski et al. 2003; Shu et al.
2005) and inhibition of Wnt signaling by overexpression
of Dkk1-blocked distal epithelial differentiation and fibro-
nectin expression (De Langhe et al. 2005). Interestingly,
fibronectin is essential for formation and stabilization of
the branch cleft (Sakai et al. 2003).

FGF signaling is negatively regulated by Sprouty (Spry)
genes and Spry1, 2, and 4 are expressed in distal tip epi-
thelium, adjacent to where Fgf10 is expressed in mesen-
chyme (Fig. 4B) (Zhang et al. 2001; Hashimoto et al. 2002).
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Inactivation of Spry1 and/or Spry2 results in increased
branching, differentiation toward distal airway cell types,
and epithelial dilation (Tefft et al. 1999; Taniguchi et al.
2007; Tang et al. 2011). Inactivation of Spry2 and Spry4
resulted in epithelial dilation and increased mesenchyme
(Taniguchi et al. 2007). In contrast, overexpression of Spry2

suppressed branching and occasionally led to the agenesis
of entire lung lobes (Mailleux et al. 2001).

The expression pattern of Fgf10 is dynamic and spa-
tially restricted to distal mesenchyme by SHH signaling
(Bellusci et al. 1997; Pepicelli et al. 1998; Lebeche et al.
1999). SHH also promotes Wnt2a expression in distal
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mesenchyme, and Wnt2a promotes mesenchymal differ-
entiation and Fgf10 expression (Goss et al. 2011). FGF10/
FGFR2b signaling is, in turn, required to maintain Shh

expression (Fig. 4B) (Abler et al. 2009). In distal mesen-
chyme, RA negatively regulates Fgf10 expression and RA
must be down-regulated distally for normal branching
(Fig. 3C) (Malpel et al. 2000). NoncanonicalWnt signaling
also regulates epithelial branching. Embryos that lack
Wnt5a (Wnt5a2/2) have increased branching and in-
creased expression of Fgf10, Bmp4, and Shh, whereas
embryos that overexpress Wnt5a have reduced epithelial
branching (Fig. 4B) (Li et al. 2002, 2005).

3.2.4 Regulation of Cell Shape and Polarity Is
Necessary for Epithelial Morphogenesis

Initiation of bud formation requires changes in cell shape,
polarity, and cell–cell interactions. Several factors have
been identified that regulate cell shape, polarity, and adhe-
sion. FGF10 signaling to distal epithelium activates PI3K/
Akt to induce expression of the Ets transcription factor Elf5
(Metzger et al. 2007). Although overexpression of Elf5 dis-
rupts branching and suppresses distal epithelial differenti-
ation (Metzger et al. 2008a), it is not knownwhether Elf5 is
necessary for epithelial morphogenesis. The mitogen-acti-
vated protein (MAP) kinase, p38a, is localized specifically
in the distal endoderm and inhibition of p38a impairs
epithelial budding. p38a can be activated in response to
FGF10 and it functions to inhibit E-cadherin expression.
Down-regulation of E-cadherin is necessary for budding,
and budding can be in-hibited by overexpression of E-
cadherin (Liu et al. 2008). Although inhibition of Erks
(expressed throughout lung epithelium) also prevented
FGF10-induced budding, the mechanism is independent
of regulation of E-cadherin, and likely due to the effects of
Erk signaling on cell shape and spindle polarity (Liu et al.
2008; Tang et al. 2011). The protein tyrosine phosphatase
and transcriptional coactivator, eyes absent (Eya1) and the
homeobox gene, Six1, are also expressed in distal epitheli-
um (El-Hashash et al. 2011a,b). Embryos lacking Eya1 or
Six1 have severely hypoplastic lungs. However, during the
mid to late pseudoglandular stage, they show increased
mesenchymal proliferation and decreased epithelial prolif-
eration. In the epithelium, one function of Eya1 is to reg-
ulate cell polarity and the plane of cell division during
branching (El-Hashash et al. 2011c).

Several additional factors have been identified that
function to fine-tune the branching process. These include
netrin 1 and netrin 4, Celsr1, and Wnt5a. The guidance
molecules, netrin 1 and netrin 4, are expressed in non-
branching (proximal) endoderm and are excluded from
the distal tip. The netrin receptor, DCC, is expressed in

the basal–lateral membrane of proximal endoderm and
on the apical surface of distal tip epithelium. The netrin
coreceptor, Unc5b, is also expressed in distal epithelium.
Netrin signaling inhibits FGF10-induced pErk, effectively
preventing ectopic budding and fine-tuning the shape of
the bud (Liu et al. 2004). Loss-of-functionmutations in the
planar cell polarity genes, Celsr1 and Vangl2, result in re-
duced lung epithelial budding and abnormal epithelial cell
morphology (Yates et al. 2010).Celsr1 colocalizes with lam-
inin in regions where bud growth is constrained and thus
may be important for bud bifarcation or stabilization of the
cleft between branches (Yates et al. 2010). Lung epithelium,
in Celsr1 and Vangl2mutants, has an impaired response to
FGF10, resulting in lung hypoplasia.

3.3 Molecular Mechanisms Regulating
Mesenchymal Growth and Differentiation

The mesenchymal compartment of the developing lung
gives rise to the lung vasculature (endothelial cells, peri-
cytes, and vascular smooth muscle), bronchial smooth
muscle, myofibroblasts, and interstitial fibroblasts. Lung
mesenchyme is also essential for regulating the patterning
and extent of epithelial branching and is a key determinant
in regulating the overall size and shape of the lung. Proxi-
mo–distal patterning of the lung may be, in part, intrinsic
to lung mesenchyme because mesenchymal protrusions
occur even in the absence of FGF10/FGFR2b signaling
and epithelial branching (Abler et al. 2009).

Lung mesenchyme is not homogeneous, and histo-
logical criteria and molecular markers subdivide it into
submesothelial (SMM) and subepithelial (SEM) domains
(White et al. 2006). Submesothelial mesenchyme ismarked
by expression of Wnt2a, and subepithelial mesenchyme
expresses Noggin (Fig. 5A,B) (Levay-Young and Navre
1992; Bellusci et al. 1996; Weaver et al. 2003; Yin et al.
2008). Progenitor cells for bronchial smooth muscle and
interstitial fibroblasts are located in the distal tip sub-
mesothelial mesenchyme (Mailleux et al. 2005), whereas
vascular endothelial cells are first observed between sub-
mesothelial and subepithelial zones (Fig. 5C,D) (Partanen
et al. 1996; Hall et al. 2000; White et al. 2006, 2007). Neu-
ronal components of the lung are derived from migrating
neural crest cells that begin to populate foregut mesen-
chyme before formation of the lung bud and continue to
enter the lung during early pseudoglandular development
(Tollet et al. 2001).

3.3.1 FGF and Wnt Signals Regulate Lung
Mesenchyme Development

Fgf9 is a critical regulator of lung mesenchyme. Fgf9 is
expressed in the mesothelium and epithelium (Fig. 4)
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(Colvin et al. 1999; delMoral et al. 2006a). In the absence of
FGF9 (Fgf92/2), lungs are severely hypoplastic, resulting
in perinatal death (Colvin et al. 2001; White et al. 2006).
Fgf92/2 embryos show decreased mesenchymal prolifera-
tion and decreased epithelial branching.

FGF9 primarily signals to mesenchymal FGF receptors
(FGFRs) 1 and 2, but also can activate epithelial FGFR
signaling (del Moral et al. 2006a; White et al. 2006, 2007;
Yin et al. 2008). During the early (E12.5) pseudoglandular
stage, mesenchymal FGF signaling and Wnt/b-catenin
signaling function to positively reinforce each other (Fig.
4C) (Yin et al. 2008, 2011). Mesenchymal FGF signaling is
required for expression ofWnt2a, and mesenchymal Wnt/
b-catenin signaling is required to sustain expression of
FGFRs 1 and 2 (De Langhe et al. 2008; Yin et al. 2008,
2009). Consistent with this feed-forward signaling loop,
inactivation of mesenchymal b-catenin also results in de-
creasedmesenchymal proliferation and decreased cyclinD1
expression (Yin et al. 2008).

Inactivation of a conditional allele of Fgf9 (Lin et al.
2006) in mesothelium (Dermo1-Cre6) (Figs. 4C and 5E)
showed that mesothelial-derived FGF9 is primarily respon-
sible for regulating mesenchymal proliferation and has

little influence on epithelial branching. In contrast, inacti-
vation of Fgf9 in epithelium (Shh-Cre) showed that ep-
ithelial-derived Fgf9 influences epithelial branching and
epithelial proliferation but has little effect onmesenchymal
proliferation (Figs. 4C and 5F) (Yin et al. 2011). In Fgf92/2

lung or in lungs in whichmesenchymal b-catenin has been
conditionally inactivated (Dermo1-Cre), lungmesenchyme
cannot be rescued by addition of exogenous FGF9 (Yin
et al. 2008, 2011). This loss of responsiveness of mesen-
chyme is attributable to degeneration of feed-forward FGF-
Wnt/b-catenin signaling and loss of mesenchymal FGFR
expression. Fgf92/2mesenchyme can, however, be rescued
if FGF9 is added along with agents that stabilize b-catenin
(LiCl, BIO) (Yin et al. 2011). In addition tomesothelial and
epithelial Fgf9 andmesenchymalWnt2a,Wnt7b (expressed
in developing epithelium) is also required for lung devel-
opment where it activates mesenchymal and epithelial
Wnt/b-catenin signaling (Rajagopal et al. 2008; Yin et al.
2011). Examination of mesenchymal growth in explant
cultures shows a small response to activation of Wnt/b-
catenin signaling and a large response to FGF9, indicating
that FGF9 signaling is the dominant pathway regulating
mesenchymal proliferation and suggesting that Wnt/b-
catenin signaling primarily functions as a permissive factor
for FGF9/FGFR1c/2c signaling (Yin et al. 2011).

Also observed in lungs lacking mesenchymal FGF
or Wnt/b-catenin signaling was decreased epithelial
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Figure 5. Molecular markers expressed in pseudoglandular stage lung mesenchyme. (A) Wnt2a expression in
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6The Dermo1-Cre knockin allele drives Cre recombinase expression in mes-
enchyme (Yu et al. 2003).
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proliferation, which occurred later in development than the
decreased mesenchymal proliferation. This suggests that
loss of mesenchymal FGF or b-catenin signaling has a pri-
mary effect on mesenchymal proliferation and a secondary
(delayed) effect on epithelial proliferation. A potential
mechanism by which mesenchymal FGF-Wnt/b-catenin
signaling could regulate epithelial proliferation is through
modulation of BMP4 signaling. Two endogenous inhibi-
tors of BMP4 signaling, Grem1 and Noggin, are expressed
in pseudoglandular stage lung mesenchyme (Weaver et al.
1999, 2003; Shi et al. 2001). In lung explant cultures, FGF9
beads suppressNoggin expression (Weaver et al. 2003), and
in embryonic lung that lacksmesenchymal FGForWnt/b-
catenin signaling, Noggin expression is up-regulated (Yi
et al. 2009, 2011). Treatment of lungmesenchymal explants
with SHH also leads to increased Noggin (Weaver et al.
2003).

3.3.2 Smooth Muscle Differentiation Is Regulated
by Factors Intrinsic and Extrinsic to Lung
Mesenchyme

Wnt signaling regulates the progenitor cells that give rise to
bronchial (Wnt2a, Wnt7b) and vascular (Wnt7b) smooth
muscle (Shu et al. 2002;Wang et al. 2005; Cohen et al. 2009;
Goss et al. 2011). Consistent with the role ofWnt ligands in
smoothmuscle development, inactivation ofmesenchymal
Wnt/b-catenin signaling impairs the development of pro-
genitor cells that give rise to bronchial and vascular smooth
muscle (De Langhe et al. 2008; Cohen et al. 2009). Expan-
sion of bronchial smooth muscle progenitors is likely me-
diated by submesothelialWnt2a (Goss et al. 2011), whereas
Wnt7b signaling through Fzd1 preferentially regulates dif-
ferentiation of vascular smooth muscle (Shu et al. 2002;
Wang et al. 2005). Wnt signaling may promote smooth
muscle differentiation by up-regulating the expression of
Pdgfrb (Cohen et al. 2009; Goss et al. 2011), which is re-
quired for normal smooth muscle development. In addi-
tion, FGF9 signaling inhibits and BMP4 signaling pro-
motes bronchial smooth muscle differentiation (Weaver
et al. 2003; Mailleux et al. 2005; White et al. 2006; Yi
et al. 2009), and SHH signaling is important for the for-
mation of bronchial and tracheal (but not vascular)
smooth muscle, and possibly for the survival of vascular
smooth muscle (Pepicelli et al. 1998; Li et al. 2004; Miller
et al. 2004; van Tuyl et al. 2007).

3.3.3 Coordination of Vascular and Epithelial
Development

Lung vascular development occurs concurrently with
epithelial branching morphogenesis (Gebb and Shannon
2000; Schachtner et al. 2000; Parera et al. 2005). During

early pseudoglandular development, the primitive capil-
lary plexus expands by angiogenesis (sprouting from pre-
existing vessels) and is maintained at a constant distance
from the epithelial ducts (deMello et al. 1997; Hall et al.
2000). VegfA is essential for vascular development, and
vascular development is required for normal epithelial
branching (Lazarus et al. 2011). In explant culture, VegfA
is sufficient to stimulate neoangiogenesis (Healy et al.
2000), to increase mesenchymal Flk1 (Vegfr2)-positive cells
and, by poorly understood mechanisms, to promote epi-
thelial branching morphogenesis (Del Moral et al. 2006b;
Lazarus et al. 2011). Inhibition of VegfA (overexpression of
secreted Vegfr1) reduces vascular development and impairs
epithelial development, resulting in malrotation of dorso–
ventral branches and inhibition of orthogonal bifurcations
(Gerber et al. 1999; Ng et al. 2001; Zhao et al. 2005; Lazarus
et al. 2011). In the absence of blood vessels, Fgf10 expres-
sion domains were expanded and Shh and Sprouty2 levels
were increased, suggesting that the vasculature actually
plays a key role in coordinating epithelial morphogenesis.

During early pseudoglandular stage development, Veg-
fA is expressed throughout lung mesenchyme, and endo-
thelial cells are localized between submesothelial and
subepithelial domains (Fig. 5C) (White et al. 2007). Slight-
ly later, the capillary plexus is drawn toward the epithelial
tubes coincident with increased expression of epithelial
VegfA (Healy et al. 2000; White et al. 2007). During the
saccular stage (E18.5),VegfA expression becomes restricted
to a subpopulation of cells that line the saccular walls, and
VegfA protein is localized in distal lung epithelial cells
where it serves as a chemotactic signal for the vasculature
(Healy et al. 2000; White et al. 2007; Ahlbrecht et al. 2008).

In addition to VegfA, FGF9, SHH, and Wnt/b-catenin
signaling regulate vasculogenesis. FGF9 suppresses vascu-
logenesis but does not directly affect endothelial cell devel-
opment (del Moral et al. 2006a). Rather, FGF9 indirectly
regulates capillary plexus density through regulation of
mesenchymal (but not epithelial)VegfA expression (White
et al. 2007). SHH is required for normal vasculogenesis and
endothelial cell survival and functions independent of
FGF9 (Miller et al. 2004; van Tuyl et al. 2007; White et al.
2007). Wnt7b is required for formation of the smooth
muscle component of the major pulmonary vessels (Shu
et al. 2002).

3.4 MicroRNAs Regulate Epithelial and
Mesenchymal Gene Expression to
Fine-Tune Lung Development

MicroRNAs regulate mRNA stability and translation and
have important roles in fine-tuning development. Dicer1,
and other enzymes required to process microRNAs, are
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expressed in pseudoglandular stage distal mesenchyme and
epithelium (Lu et al. 2005). Inactivation of a conditional
allele of Dicer1 throughout lung epithelium (Shh-Cre) re-
sulted in the formation of large epithelial pouches, reduced
epithelial branching, and mesenchymal thickening (Harris
et al. 2006), phenotypes that were first evident at E12.5.
Later in development (E13.5), increased epithelial cell
death was observed. Examination of the expression pat-
terns of genes that could directly affect epithelial morpho-
genesis identified increased expression of mesenchymal
Fgf10 (Harris et al. 2006). However, because Dicer1 was
specifically inactivated in epithelium, it is likely that epi-
thelial microRNAs regulate an epithelial gene that encodes
a factor that signals to mesenchyme that regulates Fgf10
expression. The two most likely candidate genes are Fgf9
and Shh.

Many microRNAs are differentially expressed during
lung development (Williams et al. 2007; Bhaskaran et al.
2009; Carraro et al. 2009; Dong et al. 2010). Several of these
microRNAs have been identified as important for lung
development and the pathogenesis of lung cancer and other
lung diseases. miR-127 is expressed at highest levels in
saccular stage lung development. Overexpression of miR-
127 in explant cultures of pseudoglandular stage lung
caused decreased branching and enlarged terminal buds
(Bhaskaran et al. 2009). miR-17 and its paralogs, miR-
20a and miR-106b, are expressed in epithelium and mes-
enchyme during pseudoglandular stage development. In-
hibition of these three miRNAs in epithelial explants
impaired FGF10-induced budding. Mapk14 and Stat3 are
direct targets of miR-17 and are thought to regulate expres-
sion of E-cadherin (Carraro et al. 2009). Transgenic over-
expression of the miR-17-92 cluster (miR-17-5p, -17-3p,
-18a, -19a, -19b, -20a, and -92a) under the control of Sftpc
regulatory elements enhances the proliferation and self-
renewal of embryonic lung epithelial progenitor cells and
delays their differentiation (Lu et al. 2007, 2008). Mouse
embryos lacking the miR-17-92 cluster showed severely
hypoplastic lungs at E18.5, but without specific defects in
branching morphogenesis (Ventura et al. 2008). The
miR302/367 cluster is a direct target of Gata6 in early pseu-
doglandular stage airway epithelium. After E12.5,miR302/
367 expression declines. Inactivation of miR302/367 activ-
ity results in decreased epithelial proliferation and en-
hanced differentiation (Tian et al. 2011). miR302/367
functions to repress expression of the tumor suppressor,
Rbl2, and the cell-cycle regulator, Cdkn1a, as well as the
polarity factors, Tiam1 and Lis1 (Tian et al. 2011). miR17-
92 also targets Rbl2 (Lu et al. 2007). These microRNAs
thus function to coordinate endodermal proliferation,
differentiation, and apical–basal polarity (Lu et al. 2008;
Tian et al. 2011).

4 REGULATION OF LUNG SIZE AND SHAPE

Mechanisms that regulate the size and the shape of the lung
are a particularly intriguing problem. As discussed above,
there are multiple genetically encoded factors that deter-
mine the overall lobulation pattern of the lung and that
even specify the stereotypic location and orientation of
the first several generations of branches. However, the
structure of the lung is sufficiently complex, such that
additional extrinsic factors must also modulate its devel-
opment. For example, throughout the later stages of em-
bryonic development and beyond, the shape of the lung
conforms precisely to that of the thoracic cavity, whereas
lung explants grown in vitro take on amore rounded shape.
Thus, constraints imposed by the thoracic cavity must act
to shape the lung.

4.1 Extrinsic Factors that Regulate Lung Size

Changes in intrathoracic pressure have been considered as a
mechanism that could regulate growth of the lung and even
sculpt the lung to the contour of the thoracic cavity. During
development, fetal respiratory movements and intratra-
cheal fluid production produce pressure changes within
and around the developing lung. Fetal respiratory move-
ments have been detected as early as E14.5 in the mouse
(Abadie et al. 2000) and at 10 wk gestation in human (de
Vries et al. 1986).

The importance of fetal mechanical forces on lung de-
velopment has been shown by tracheal occlusion, which
increases intratracheal pressure, or in mice congenitally
lacking muscle activity, which prevents fetal breathing
movements. Increased intratracheal pressure resulted in
increased branching, proliferation, and branch elongation.
These effects are dependent on intact FGF10/FGFR2b sig-
naling (Unbekandt et al. 2008). Mice lacking the myogenic
factors MyoD and/or Myf5 had hypoplastic lungs, de-
creased epithelial proliferation, increased apoptosis, and
failure to fully differentiate type I and type II pneumocytes
(Liu and Post 2000; Inanlou and Kablar, 2005a,b; Baguma-
Nibasheka et al. 2007).

Mechanical stretch stimulates lung epithelial cell pro-
liferation and promotes cell maturation (Liu and Post
2000). One mechanism is through the regulation of Rho
activity. Rho, a GTPase that promotes the phosphorylation
of myosin light chain kinase (MLCK), activates the Rho-
associated kinase (ROCK), inhibits MLC phosphatase, and
stimulates cytoskeletal contractility (Olson 2004; Moore
et al. 2005). Inhibition of the Rho/ROCK signaling path-
way in lung explant cultures decreased branching without
affecting cell proliferation (Moore et al. 2005).

Congenital space occupying lesions in the chest, such as
congenital diaphragmatic hernia and cystic adenomatoid
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malformation of the lung, can severely limit lung growth
(Kinane 2007; Robinson and Fitzgerald 2007). Limits im-
posed by the chest wall and diaphragm also limit lung size.
However, in rodents and young children, partial pneumo-
nectomy results in compensatory growth of the contralat-
eral lung to restore respiratory capacity (McBride et al.
1980). Therefore, physical and humeral factors can over-
come intrinsic genetic programs. Additionally, environ-
mental factors, imposed by altitude or pollution, can also
affect lung development and function (Dashdendev et al.
2011).

5 PERSPECTIVES

The origins of chronic lung disease often begin during
embryonic development or early in life. Unraveling the
complex mechanisms that regulate lung development is
therefore essential for understanding the pathogenesis of
developmental, genetic, and acquired lung disease. Prog-
ress is beingmade on elucidating the developmental mech-
anisms that regulate differentiation of the specific cell types
that populate the lung. However, other areas of lung devel-
opment are less well understood. For example, it is not
known how the growth of progenitor cells and their differ-
entiated progeny are coordinated to regulate the overall size
and shape of the lung. These mechanisms are likely to
involve biomechanical factors, such as differential pressure
and stretch of lung epithelium and mesothelium; physical
constraints imposed by the chest cavity; humoral factors
that communicate the oxygen requirements of the organ-
ism to the developing lung (and chest cavity); and intrinsic
genetic factors that have evolved to optimize lung architec-
ture (branching pattern and alveolar surface area) for effi-
cient physiological function.

To design and implement therapeutic strategies to in-
duce lung growth and regeneration will require a compre-
hensive understanding of the identity of progenitor cells
within epithelial and mesenchymal compartments of both
the embryonic and postnatal lung. Manipulation of the
growth and differentiation properties of lung progenitor
cells will be important for both in vivo and in vitro thera-
peutic approaches to lung repair and for understanding
homeostatic mechanisms that are essential to replace dam-
aged cells. To repopulate damaged lung tissue in vivo or
repopulate lung matrix scaffolds in vitro will require large
numbers of cells. This will require understanding the
mechanisms that regulate growth and differentiation of
epithelial and mesenchymal progenitors into the specific
cell types that populate the mature lung and devising
methods to grow and differentiate these cells in vitro. The
ultimate goal of lung developmental studies is to improve
diagnosis of inherited and acquired disease and to learn

how to therapeutically manipulate developmental pro-
grams to reestablish homeostasis, regenerate damaged or
deficient cell populations, and eventually to generate func-
tional replacement lung tissue in vitro for transplantation
in vivo.
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