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Signaling pathways and therapeutic interventions in gastric
cancer
Zi-Ning Lei1,2, Qiu-Xu Teng2, Qin Tian1, Wei Chen1, Yuhao Xie 3, Kaiming Wu1, Qianlin Zeng1, Leli Zeng1✉, Yihang Pan1✉,
Zhe-Sheng Chen 2,3✉ and Yulong He1✉

Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in
diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively
asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence
rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis,
treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/
HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression,
metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise
diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk
factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of
signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies,
including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC,
particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the
integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
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INTRODUCTION
Gastric cancer (GC) remains one of the most common cancer types
worldwide. According to the GLOBOCAN 2020 report, the global
morbidity and mortality of GC rank fifth and fourth, respectively,
with more than one million newly diagnosed cases and
approximately one fatal case in every 13 cancer-related deaths.1

More than 95% of GC cases are adenocarcinomas.2 Men are twice
as likely as women to suffer and die from GC.3 Despite a decline in
the global prevalence and death rate of GC, rates remain high in
Eastern Asian countries, which account for more than 70% of
newly diagnosed and death cases of GC in the world.1,4 Notably, in
both low-risk and high-risk regions, the incidence of GC is elevated
in populations younger than 50 years, which may be linked to
increased obesity and gastric microbiome dysbiosis associated
with modern lifestyle.5 Thus, many challenges remain in
controlling GC.
GC is generally categorized as cardia and non-cardia subtypes,

which arise from the upper stomach and the mid-distal stomach,
respectively. Each subtype has distinct epidemiological character-
istics and risk factors.6 Non-cardia GC is more prevalent in Eastern
Asian populations, while cardia GC is more common in Western
countries.7 Chronic infection by Helicobacter pylori (H. pylori) is the
dominant risk factor for the development of non-cardia GC.8 H.
pylori infection, however, is generally not associated with cardia
GC and may even reduce the risk of cardia GC in some

populations.9 The molecular mechanism of H. pylori infection-
mediated GC has not been completely elucidated. Prolonged H.
pylori infection is thought to lead to chronic gastritis, where gastric
acid secretion is inhibited by inflammatory mediators such as
tumor necrosis factor-α (TNF-α) and interleukins. The loss of gastric
acidity further exacerbates H. pylori infection and inflammation,
causing parietal damage, ulcers, and atrophy of the stomach.10,11

Other contributors to non-cardia GC development include
smoking tobacco, drinking alcohol, and consuming salt-
preserved food or red/processed meat, which can cause destruc-
tion of stomach mucosa and enhance persistency of H. pylori
infection.12–14 These factors are also associated with cardia GC,15

whereas obesity and gastroesophageal reflux disease are recog-
nized as risk factors specifically linked to cardia but not non-cardia
GC.16 In addition, infection with Epstein–Barr virus (EBV) is an
important etiological agent responsible for ~10% of GC, frequently
in male patients and the cardia subtype.17 EBV infection can
promote the hypermethylation of tumor suppressor genes,
inflammation of gastric mucosa, and immune evasion of the host,
resulting in gastric carcinogenesis.18 As sustained infection with H.
pylori and EBV can cause chronic inflammatory stress in the
stomach, there is emerging attention to GC risk and co-infection
by both pathogens, since H. pylori co-infection with EBV increases
the occurrence of GC19,20 and may stimulate aggressiveness of
GC.21
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In addition to environmental and lifestyle factors, genetic
aberrations (including gene mutations, chromosomal alterations,
transcriptional dysregulations, and epigenetic modifications) are
indispensable co-contributors in GC carcinogenesis.22 Approxi-
mately 10% of GC cases have a familial aggregation profile, and
1–3% have a confirmed hereditary mutation.23 The major type of
hereditary GC is the autosomal dominant hereditary diffuse gastric
cancer (HDGC) characterized by diffuse histopathological features.
HDGC is frequently associated with a loss-of-function mutation in
the Cadherin-1 (CDH1) gene encoding E-cadherin, which is
essential for cell–cell adhesion and maintenance of the epithelial
cell phenotype. E-cadherin also plays vital roles in signaling
pathways that regulate cell survival, proliferation, migration, and
invasion.24,25 The link between the CDH1 gene mutation and the
diffuse type of GC was first identified in a large Aboriginal family in
New Zealand in 1998 by Guilford and colleagues.26 Molecular
genetic testing for the CDH1 gene mutation is a recommended
approach for confirming the diagnosis and family studies of
HDGC.27

The treatment and prognosis for GC largely depend on cancer
staging, which is usually evaluated using the American Joint
Committee on Cancer (AJCC) tumor-node-metastasis (TNM)
system. This system describes the extent of tumor invasion into
the gastric wall layers (T category), the spread of the tumor to
nearby lymph nodes (N category), and the migration of cancer
cells to other organs (M category).28 The overall staging of GC is
assigned from large staging groups after the combination of the
TNM information, ranging from earliest stage 0 (carcinoma in situ)
to stages I through IV; the larger number, the more advanced the
cancer is with the larger extent of spread.29 Surgery is the primary
approach for treating GC in all stages, especially for those in the
early stage.30 Chemotherapy or chemoradiation is the main
therapeutic intervention applied either before surgery to shrink
the tumor or after surgery to kill any remaining cancer cells.31 For
advanced GC patients with unresectable local cancer, recurrence,
or metastasis, chemotherapy is usually the first-line treatment to
control cancer progression for as long as possible, and a
combination of chemotherapy with targeted therapy, immu-
notherapy, or radiation therapy may be adopted.2

Because GC is morphologically heterogeneous, decisions about
therapy and predictions for patient survival rely on histopatholo-
gical classifications. The traditional Lauren classification has been
widely used in clinical practices since it was introduced in 1965.
This classification divides GC into intestinal type with glandular
growth pattern, diffuse type with poorly cohesive cells, and mixed
type.32 The intestinal-type GC occurs more commonly in men and
the elderly and is associated with H. pylori-related chronic gastritis
as well as gastroesophageal reflux disease. The diffuse-type GC,
usually with poorer clinical outcomes, is more prevalent in women
and the younger populations and is more relevant to dysfunction
in cell adhesion, as found in CDH1-mutated hereditary cases.33 The
other broadly used histology classification is the World Health
Organization (WHO) guidelines issued in 2010 and updated most
recently in 2019, which characterizes GC as papillary, tubular,
mucinous, and poorly cohesive types followed by several
subdivisions under each category.34 Japanese pathologists also
use the Nakamura classification or the Japanese Gastric Cancer
Association (JGCA) classification, which can distinguish differen-
tiated tumors from undifferentiated tumors.35,36 Although the
histopathological classifications provide recommendations for
surgery and chemotherapy selections, they are insufficient to
guide personalized treatments for GC patients.
With the recent advances in genome analysis, biomarkers have

been identified with clinical importance for GC diagnosis,
treatment, and prognosis. These include molecules in growth
factor pathways (e.g., the human epidermal growth factor
receptor 2 (HER2)), regulators of the cell cycle and apoptosis
(e.g., the tumor protein p53 (encoded by TP53 gene)), cell

adhesion factors (such as E-cadherin), immune checkpoint control
modulators programmed death 1 and programmed death-ligand
1 (PD-1/PD-L1), and other molecules relevant to DNA, RNA,
exosome, or epigenetic modifications.37,38 HER2 is the first
clinically used molecular biomarker for GC patients. Approximately
one-fifth of GC cases are HER2-positive, and determination of
HER2 expression using immunohistochemistry (IHC) and fluores-
cence in situ hybridization (FISH) is mandatory for patients
diagnosed with advanced GC.39 In 2010, the international
Trastuzumab for Gastric Cancer (ToGA) phase III clinical study
showed that the HER2 monoclonal antibody trastuzumab co-
administered with cisplatin plus capecitabine or fluorouracil (5-FU)
had better therapeutic outcomes compared to chemotherapy
alone.40 Later in the same year, trastuzumab was approved by the
United States Food and Drug Administration (FDA) as the first
targeted drug used in combination with chemotherapeutic drugs
for first-line treatment of HER2-positive metastatic GC.
To facilitate further development of personalized therapies for

GC, molecular classifications have been introduced. Two large-
scale, comprehensive genome-wide and molecular analyses on
gastric tumors resulted in two major molecular classifications that
partially overlap and complement. One proposed by The Cancer
Genome Atlas (TCGA) research network in 2014 classified GC into
four subtypes: EBV-positive (EBV+), microsatellite instable (MSI),
genomically stable (GS), and chromosomal unstable (CIN).41 The
Asian Cancer Research Group (ACRG) in 2015 classified GC into
MSI, microsatellite stable or epithelial-mesenchymal transition
(MSS/EMT), MSS positive for TP53 (MSS/TP53+), and MSS with loss
of TP53 (MSS/TP53−) subtypes.42 Comprehensive molecular
characterization of these GC subtypes shows clinical implications
for GC treatment and prognosis (Table 1).43,44 With the develop-
ment of immunotherapy in cancer management, the molecular
classifications of GC have helped predict patients’ responsiveness
to immunotherapy. Subgroups of GC patients with EBV+, high
degree of MSI, or high burden of mutation are more likely to have
a survival benefit from anti-PD-1 drugs like nivolumab and
pembrolizumab.43

The identification of biomarkers and molecular classification
have also provided important clues to improve early diagnosis and
therapeutic interventions for rare GC types with unique histo-
pathological characteristics, such as gastric signet-ring cell
carcinoma (GSRCC). GSRCC is classified into diffuse, undifferen-
tiated, and poorly cohesive types, noted for their poorly cohesive
single cells and absence of gland formation.45 There are many
clinical challenges in the diagnosis and treatment of GSRCC.
GSRCC exhibits distinct epidemiology, oncogenesis processes, and
therapeutic sensitivity profiles compared to other subtypes of
diffuse GC.46,47 Moreover, GSRCC cases are frequently diagnosed
at an advanced stage, in part because of the impracticality of
using endoscopy and the lack of pathological tests for early stage
screening.48 The regimen for treating GSRCC is still controversial,
and overtreatment with chemotherapy may occur with detri-
mental results because of this lack of adequate predictive
biomarkers.49 Since mutations in the CDH1 gene50 and high
CLDN18-ARHGAP 26/6 fusion51 have been reported in GSRCC
patients, GSRCC is considered a GS subtype of TCGA molecular
classification,49 and the high CLDN18.2 expression found among
advanced GSRCC patients has provided a novel therapeutic option
of CLDN18.2-targeted therapy.52 In addition, high MSI was found
in 3.5% of GSRCC, and this specific group of GSRCC patients may
benefit from immunotherapy using PD-1 inhibitors.53,54

Since the first successful gastric resection in the 1880s, there
has been tremendous progress in diagnosis and therapeutic
strategies (Fig. 1) and significant improvements in patient survival
in the long combat against GC. However, because GC is often
asymptomatic until it progresses to higher malignancy levels,
cases are often diagnosed at advanced stages, leading to
unsatisfactory prognosis and high recurrence rates. The 5-year
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survival rates are as high as 68–80% for stage I GC, and then
decrease sharply as the diagnosed staging becomes advanced, to
46–60% for stage II, 8–30% for stage III, and only 5% for stage IV.55

Resistance to chemotherapy and targeted drugs contributes to
poor survival in GC.56,57 Therefore, identifying new biomarkers for
early diagnosis and therapeutic selectivity and sensitivity is the
main challenge in GC management. The modern molecular
classifications support the important roles of signaling pathways
like EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell
adhesion signaling molecules in GC tumorigenesis, progression,
metastasis, and therapeutic responsiveness. Four targeted drugs

and two immune checkpoint inhibitors have already been
approved by the FDA for GC treatment. Still, the relative
significance of these signaling pathways in GC, their temporal
activation and interaction with GC risk factors, and crosstalk
among them is not well understood. There has been increasing
attention to signaling pathways and the identification of novel
therapeutic targets in GC research. In this article, the regulatory
roles of signaling pathways in GC and potential biomarkers or
therapeutic targets are reviewed. Furthermore, the current GC
treatment and the development of signaling pathway-based
targeted or immunotherapies will be discussed.

Fig. 1 Timeline of selected key findings and significant therapy developments in gastric cancer. The major milestones for risk factor
identification, classification and staging, and therapy developments for GC are listed. Chemotherapy regimens: FAM: fluorouracil (5-
FU)+mitomycin C+ doxorubicin; FAMTX: methotrexate+ 5-FU+ doxorubicin; ECF: epirubicin+ cisplatin+ 5-FU; TPF: docetaxel+ cisplatin+
5-FU; FLOFOX: oxaliplatin+ 5-FU+ leucovorin; XELOX: capecitabine (Xeloda)+ oxaliplatin; S-1: tegafur (5-FU prodrug)+ 5-chloro-2,4-
dihydroxypyridine (CDHP)+ oteracil potassium (Oxo), in a molar ratio of 1:0.4:1. EBV Epstein–Barr virus, TCGA The Cancer Genome Atlas, ACRG
Asian Cancer Research Group. This figure was created with Biorender.com

Signaling pathways and therapeutic interventions in gastric cancer
Lei et al.

4

Signal Transduction and Targeted Therapy           (2022) 7:358 



SIGNALING PATHWAYS IN GASTRIC CANCER AND
THERAPEUTIC IMPLICATIONS
MAPK signaling pathway
The mitogen-activated protein kinase (MAPK) signaling pathway is
one of the most complicated cellular pathways involved in GC
progression, including proliferation, migration, invasion, and
metastasis.58 MAPKs are a large family of serine/threonine protein
kinases that are responsible for cellular response to multiple
extracellular stimuli.59 Each canonical single MAPK cascade
pathway consists of at least three core kinases: MAPKKKs, MAPKKs,
and MAPKs.60 The MAPK signaling pathway is shared by five
cascades, which are accordingly named after the components of
each MAPK tier: the extracellular signal-related kinases ERK
(ERK1/2), Jun amino-terminal kinases (SAPK/JNK1,2,3), p38-MAPK
(p38α, p38β, p38γ, and p38δ), ERK5, and ERK3/4.61

The MAPK/ERK signaling cascade is triggered by binding of
extracellular factors to receptors including tyrosine kinases (RTKs),
EGFR, and G protein-coupled receptors (GPCRs), and is sometimes
triggered by vascular endothelial growth factor and its receptor
(VEGF/VEGFR). Under physiological conditions, MAPK signaling is
triggered through the activation of RAS proteins (KRAS, HRAS, and
NRAS), a family of small guanine triphosphatases (GTPases) that
integrate signals from a collection of upstream factors.62 RTK-RAS
signaling pathway alterations are reported in about 37% of GC.63

In its GTP-bound activated condition, RAS undergoes a conforma-
tional shift in the switch I and II regions, which facilitates
interactions with a variety of downstream effectors, including
the RAF family of kinases (ARAF, BRAF, and CRAF).64,65 BRAF
mutation occurs in all types of cancers and up to 11% in GC.66

Once activated, RAF kinases phosphorylate and activate MEK1/2
kinases, which in turn activate ERK1/2 kinases.67 ERK1/2 are vital
sensors of proliferation, differentiation, and survival signals.68

Elevated p-ERK1/2 is an independent prognostic factor of poor
survival in GC cases.69 The activated ERK1/2 kinases then
phosphorylate a series of substrates that conduct critical biological
processes.68,70 In GC, the MAPK/ERK pathways are involved in the
regulation of cell motility by coordinating the activity of MMPs,
cell adhesion, and EGFR-induced disassembly of focal adhesions,
thus governing cell migration and invasion.59,71 Generally, the
ERK3/4 MAPKs are considered atypical because of the absence of a
tyrosine residue and the presence of the Ser-Glu-Gly motif in their
activation loop.72 ERK5 can be activated by growth factors and
oxidative stress and is essential for cell survival, normal develop-
ment of the early embryo, and the vascular system.73

The JNK subgroup of MAPKs is encoded by three distinct genes:
MAPK8 (which encodes JNK1), MAPK9 (which encodes JNK2), and
MAPK10 (which encodes JNK3).74 The JNK1/2 subtypes are
ubiquitously expressed, whereas JNK3 is expressed primarily in the
heart, brain, and testis.75,76 JNKs are activated by stress signals and
proinflammatory stimuli such as heat shock and oxidative stress.
MKK4 and MKK7 kinases are the upstream regulators of JNKs.
Activated JNKs subsequently phosphorylate downstream c-Jun and
JunD and activate transcription factors.77 An important JNK target is
the transcription factor activating protein-1 (AP-1).78 Activation of
JNKs leads to cell proliferation, apoptosis, or transformation.79

Interactions can occur between JNKs and the other MAPK pathways;
JNK subtypes can activate p38-MAPK, while several upstream
regulators in the p38-MAPK module are shared by the JNK isoforms.
Studies have shown that JNK1/2 is involved in the sensitization of
p38-MAPK inhibition to cisplatin-induced cell death, and the
elevated level of reactive oxygen species (ROS) mediates the
activation of JNK1/2 by P38-MAPK inhibition.80 Compared to wild-
type controls, JNK1 knockout mice showed a significant decrease in
gastric carcinogenesis mediated by N-methyl-N-nitrosourea.81 Con-
sequently, JNK1 is involved in tumor initiation as well as progression
and is a promising target for the prevention of GC.
The p38-MAPK is selectively activated by upstream MAPK kinase

(MKK) 3 and MKK6 kinases.82 The major downstream targets of

p38-MAPK are protein kinases and transcription factors such as
MAPK-activated protein kinase 2 (MK2), mitogen- and stress-
activated protein kinase 1 (MSK1), p53, transcription factor ELK1,
and activating transcription factor 2 (ATF2).83 The p38-MAPK
pathway features a complicated regulation in cancers. Several
studies showed that p38 acts as an oncogenic factor and plays a
key role in pathological events related to tumor progression, such
as inflammation, invasion, and angiogenesis84,85 (Fig. 2). Activation
of the p38-MAPK/AP-1 pathway is positively related to che-
motherapy resistance in human GC cells.86 On the other hand, a
wealth of evidence supports the role of p38-MAPK as a tumor
suppressor, inducing cell apoptosis by way of the activation of
p53.87,88 Cell cycle arrest is another possible consequence of
tumor suppression by p38, carried out by downregulating ERK and
JNK signaling pathways, thus restricting RAS transformation.89

RAS/RAF/MAPK and PI3K/AKT/mTOR signal transduction path-
ways are the most dysfunctional pathways in multiple cancer
types including GC.90,91 RTKs alterations in tumors lead to
activation of both MAPK and PI3K pathways, and targeting the
PI3K pathway was confirmed to promote cancer progression
through MAPK signals and vice versa92 (Fig. 2). RAS mutations are
the most common MAPK alterations observed in human cancer.93

The mutation frequency of KRAS in GC is 6.5%, and PIK3CA is
25%.94,95 Generally, the KRAS mutation is found in intestinal-type
tumors whereas the NRAS mutation is reported to appear in
diffuse and metastatic GC.96 Using pathway-based gene set
enrichment analysis, MAPK/ERK gene features were found
elevated in the intestinal subtype of GC. Genes involved in the
RAS/ERK signaling cascade, including KRAS, EGFR, HER2, and MET,
have been found amplified in a mutually exclusive manner in
about two out of five GC patients.97

Migration and invasion of GC cells mediated by the MAPK/ERK
signaling pathway involves various other factors.98–100 For
example, Spondin 2 (SPON2) promotes the EMT of GC cells by
activation of the MAPK/ERK1/2 pathway and consequently
accelerates the metastasis of GC. Chemerin may act as a pro-
invasive factor via induction of VEGF, IL-6, and matrix
metalloproteinase-7 (MMP-7) in GC, and the process relies on
the phosphorylation of ERK1/2.101 ERK also mediates GC migration
and invasion by regulating the activity of downstream proteins
like MMPs.71 Other studies have demonstrated that RAS/MAPK
signal transduction is involved in the proliferation of GC cells.
Recent studies have shown that epigenetic regulation can affect

GC cell growth and metastasis through MAPK/ERK pathways.102

Micro RNAs (miRNAs) are multipotent in the regulation of various
cellular pathways and play a fundamental role in tumor biology. In
particular, they have been found to regulate MAPKs like ERK1/2
and JNK and to modulate proliferation, survival, and metastasis of
GC cells.103 miR-592 overexpression has been identified to
promote proliferation, migration, and invasion of GC by targeting
Sprouty 2 (SPRY-2) through the MAPK/ERK and PI3K/AKT signaling
pathways.104 In addition to miRNAs, some long non-coding RNAs
(lncRNAs) are involved in tumorigenesis and the progression of GC
mediated by the MAPK/ERK signaling pathway.105 For example,
lncRNA CASC2 suppresses the proliferation of GC cells by
regulating the ERK1/2 and JNK/MAPK signaling pathways.106

HER2 signaling pathway
The frequency of HER2-positive tumors ranges from 4.4% to 53.4%
in gastric/gastroesophageal cancer,107,108 and HER2-positive
tumors are generally associated with more aggressive cancer
and tumor recurrence.109,110 HER2 amplification/overexpression
has been confirmed to play a critical role in GC tumorigenesis and
development,111 and is a therapeutic target and biomarker for GC
patients.112 The HER2 gene, also known as receptor tyrosine-
protein kinase erbB-2, p185, or neu, is located on the human
chromosome 17 (17q12),113 and is a member of the epidermal
growth factor receptor (EGFR) family of receptor tyrosine kinases.
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The EGFR family consists of four members, HER1 (ERBB1, EGFR),
HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4),114 all of which are
identified to participate in regulating tumor cell growth,
proliferation, and migration. Although the four human HER genes
are located on different chromosomes, all of them are composed
of an intracellular domain with tyrosine kinase properties, a
lipophilic transmembrane domain, and a cysteine-rich extracellular
domain containing the ligand-binding pocket.115

EGFR family members exist as monomers on the cell surface, but
dimerize once the ligand binds to the extracellular domain, followed
by the transphosphorylation of intracellular domains.116 The binding
of ligands to the extracellular domain of HER1, HER3, and HER4 leads
to the formation of kinase-active hetero-oligomers.117 Specific ligands
for HER2 have not been identified, though it becomes constitutively
activated following its heterodimerization with other family members
(HER1 and/or HER3),118 thereby triggering different and complicated
signal transduction cascades. Moreover, spontaneous formation of
various heterodimers increases with amplification of the HER2
gene.119 Heterodimers containing HER2 provide a stronger signal
and have significantly higher ligand-binding affinity than homodimers
or heterodimers with other family members. For instance, in several
HER2-induced cancers, the HER2/HER3 dimer, the most potent EGFR
family heterodimer, is indispensable for tumorigenesis and tumor
maintenance.120 Therefore, restricting the dimerization of HER2 with
other EGFR family members, particularly HER3, might provide an
efficient treatment strategy for HER2-positive tumors.

HER1 and HER2 are overexpressed in a heterogeneous manner
in GC. HER3 and HER4 have also been detected in 20.7% and
13.3% of GC, respectively.121 Several studies proved the negative
correlation between high HER3 expression levels and survival of
GC patients.122 HER2 overexpression was also found to be a poor
prognostic indicator in GC.109,123 HER2 overexpression drives
tumorigenesis through the formation of spontaneous receptor
homodimers, or heterodimers with other EGFR family members,
resulting in activated downstream signaling cascades, such as
PI3K/AKT/mTOR and MAPK/ERK1/2.124,125 This promotes tumor
cell proliferation, differentiation, survival, angiogenesis, and
metastasis125–127 (Fig. 2). For example, the HER2/HER3 hetero-
dimers transduce PI3K signaling through direct binding of HER3
and the p85 subunit of PI3K.128

Trastuzumab (Herceptin), the first anti-HER2 monoclonal anti-
body targeting the extracellular domain of the HER2 protein, has
been an acknowledged treatment for both early stage and
metastatic HER2-positive breast cancer for decades.129 Trastuzu-
mab interferes with HER2 signaling in tumors via various
mechanisms: inhibition of dimerization, antibody-dependent
cellular cytotoxicity, receptor internalization and/or degradation,
and suppression of the PI3K/AKT/mTOR signaling cascades.
Trastuzumab was also the first targeted agent approved as
standard treatment for HER2-positive advanced GC based on the
results of the ToGA trial.40 In the ToGA trial, it was found that there
existed primary and secondary resistance to HER2 blockage in GC

Fig. 2 Main signaling pathways and fundamental factors in gastric cancer. The major signaling and crosstalk of MAPK, HER2, PI3K/AKT/mTOR,
HGF/c-Met, p53, Wnt/β-catenin, and NF-κB pathways, as well as their regulatory roles in cellular processes, are illustrated. GPCRs G-protein-
coupled receptors, HGF hepatocyte growth factor, c-MET c-mesenchymal-epithelial transition factor, EGFR epidermal growth factor receptor,
HER2/3/4 human epidermal growth factor receptor 2/3/4, MAPKKKs mitogen-activated protein kinase kinase kinases, RTKs receptor tyrosine
kinases, RAS rat sarcoma, RAF rapidly accelerated fibrosarcoma, MKK mitogen-activated protein kinase kinase, SAPK/JNK jun amino-terminal
kinase, p38-MAPKs p38 group of mitogen-activated protein kinases, MEK mitogen-activated protein kinase kinase, ERK1/2 extracellular signal-
related kinase 1/2, PI3K phosphoinositide 3-kinase, AKT protein kinase B, mTORC1/2 mammalian target of rapamycin complex 1/2, PTEN
phosphatase and tensin homolog, PDK1 phosphoinositide-dependent protein kinase 1, TSC1/2 tuberous sclerosis complex 1/2, p70S6K1
phosphorylation of ribosomal p70S6 kinase 1, 4E-BP1 eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1, NF-κB nuclear factor
kappa-B, GSK3 glycogen synthase kinase 3, BAD Bcl-xl/Bcl-2-asociated death promoter, Casp9 cysteinyl aspartate specific proteinase 9, MDM2
murine double minute 2, p53 tumor protein 53, EMT epithelial-mesenchymal transition, LRP5/6 low-density lipoprotein receptor-related
protein 5/6, CKIα casein kinase Iα, APC adenomatous polyposis coli, TCF/LEF T-cell factor/lymphoid enhancer factor, TNFR tumor necrosis
factor receptor, TLR toll-like receptors, IKK IκB kinase. This figure was created with Biorender.com
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patients. Several potential mechanisms may explain this: alteration
in HER2 dimers; activation of downstream signaling pathways
such as PI3K/AKT, mTOR, and MAPK/ERK; and absence of
downstream regulators or alternative transduction pathway from
the insulin-like growth factor receptor (IGFR).130 In 2017, Deguchi
et al.131 investigated HER2 expression and the occurrence of
phosphatase and tensin homolog (PTEN) loss or PI3K mutation in
264 GC cases and reported the absence of PTEN in 34.5% of HER2-
positive patients. No response was observed in patients with PTEN
deficiency who received trastuzumab. PTEN deficiency and/or
PI3KCA mutation leads to abnormal activation of the downstream
AKT/mTOR signaling cascade, leading to ineffective inhibition of
HER2.132 A peptidomimetic that binds extracellular subdomain IV
and a nucleic-acid aptamer that binds the extracellular domain of
HER2 have been found to downregulate the HER2-dependent
signaling pathways, providing a promising novel treatment of
HER2-positive GC and other tumors.133,134 In brief, a comprehen-
sive understanding of the complicated interplay between the
EGFR family and downstream signaling pathway cascades would
assist in identifying patients who might benefit from EGFR family
targeted therapies.

PI3K/AKT/mTOR signaling pathway
The phosphoinositide 3-kinase (PI3K) pathway plays a key role in
the proliferation and survival of various cancer cells including
GC.135–137 The PI3K/AKT/mTOR signaling pathway promotes tumor
progression in GC through several mechanisms, including the
inhibition of apoptosis, induction of drug resistance, metastasis,
and angiogenesis138 (Fig. 2). PI3K/AKT/mTOR pathway alteration
plays a vital part in resistance to HER2-targeted therapy and
chemoresistance in GC and several other solid tumors.127,139,140

PI3K is a broad family of lipid kinases consisting of three
different classes (I, II, and III) that stand at the top of the PI3K/AKT/
mTOR cascade.141 Class I PI3K is categorized into class IA and IB
and is more tightly related to tumor progression.142 Classes II and
III PI3Ks have been identified to contribute to the regulation of
mTOR activation and autophagy.143 The activation of PI3Ks is
triggered by the binding of a variety of ligands to the oncogenic
receptor tyrosine kinases including EGFR, IGFR, PDGFR (platelet-
derived growth factors receptor), and other growth fac-
tors.135,136,144 Activated PI3K catalyzes the phosphorylation of
phosphatidylinositol diphosphate (PIP2) to phosphatidylinositol
3-phosphate (PIP3), which subsequently interacts with homology
domain-containing proteins on the inner surface of the plasma
membrane, resulting in conformational changes of downstream
proteins.
AKT, also known as protein kinase B (PKB), normally exists in the

cytoplasm.145 Upon activation of PI3K and PIP2, downstream AKT
kinase translocates to the cell membrane, resulting in its
conformational activation.146 AKT contains a central kinase
domain with a threonine residue responsible for binding to the
phosphoinositide-dependent protein kinase 1 (PDK1) and a
C-terminal tail domain responsible for binding to the mammalian
target of rapamycin complex 2 (mTORC2).147 While phosphoryla-
tion by PDK1 at Thr308 is fundamental, the activation of AKT also
relies on phosphorylation by mTORC2 on Ser473.148,149 Phos-
phorylated AKT (p-AKT) plays an important part in the regulation
of intracellular biological processes such as cell growth, survival,
proliferation, apoptosis, EMT, metastasis, and angiogenesis.147 The
lipid phosphatase and tensin homolog (PTEN), a well-known
tumor suppressor gene that encodes a lipid phosphatase, is a
negative regulator of PI3K signal conduction by converting PIP3
back to PIP2.150 PTEN dysfunction leads to constitutive activation
of PI3K/AKT and downstream signaling, thereby stimulating cell
proliferation and survival.151,152

mTOR is a highly conserved serine/threonine kinase that
participates as an effector in the PI3K/AKT pathway.153 mTOR
consists of two distinct functional complexes known as mTORC1

(mTOR, Raptor, and mLST8) and mTORC2 (mTOR, Rictor, mLST8,
and mSIN1).154 Activation of both mTOR complexes is a vital
consequence of RTK-based signaling transduction in tumors.155

The mTORC1 complex controls protein synthesis and cell growth
by triggering the phosphorylation of ribosomal p70S6 kinase 1
(S6K1) at Thr229 and Thr389 and inactivating 4E-BP1 through
direct phosphorylation.156,157 Activated S6K1 acts as a negative
regulator and downregulates the PI3K pathway, subsequently
suppressing adapter molecule insulin receptor substrate 1 (IRS-1),
which obstructs the signaling between insulin growth factor 1
(IGF1) and PI3K.158 The inactivation of 4E-BP1 leads to a release of
EIF4e from the dimer that triggers transcription of multiple
genes.159 Activated AKT can interrupt the stable heterodimer
tuberous sclerosis complex (TSC1/TSC2) by phosphorylating TSC2,
thereby promoting the activity of mTORC1.158 In the progression
of cancer, the activity of the PI3K/AKT pathway is elevated, and
TSC1/TSC2 heterodimer is restrained by activated AKT, leading to
mTORC1 activation and subsequent activation of the downstream
factors (P70S6K1 and EIF4e).160,161 Another important substrate of
AKT is GSK3, which promotes cell proliferation by regulating the
production of cell cycle proteins like cyclin D1.162 AKT deactivates
GSK3 by phosphorylation as well. GSK3 collaborates with mTORC1
by phosphorylating p70S6K1 at Ser371, which enhances mTORC1-
mediated p70S6K1 phosphorylation on Thr389.163 Rictor is a
critical component of mTORC2 and can function as a downstream
substrate of GSK3.164 Alteration of mTORC2/Rictor influences the
structure of actin and promotes cell proliferation by phosphor-
ylating the downstream molecules165,166 (Fig. 2).
The PI3K/AKT/mTOR pathway is frequently altered in GC.108,167

From the TCGA molecular subtypes, most of the GC cases studied
had different degrees of mutations in the PIK3CA gene and
amplification of RTK genes such as EGFR and HER2.41,168,169

Mutations of the PIK3CA gene are likely to be late and isolated
events in GC.95,170 The relationship between PIK3CA mutation and
the prognosis of GC patients is controversial. Some reports identified
that PIK3CA mutation promotes the risk of tumor aggressiveness,
and the mutation in the exon 9 of PIK3CA has been identified as a
helpful indicator for predicting prognosis in EBV-positive GC.171–173

Other studies declared no effective association between PIK3CA
mutations and clinical outcome.174,175

Genomic amplification plays an important part in neoplastic
progression. Amplification in PIK3CA is tightly associated with
tumor progression, prognosis, and the emergence of drug
resistance in GC.176 The amplification of PIK3CA leads to the
elevation of AKT and p-AKT, thereby promoting migration,
invasion, and lymph node metastasis in GC.176 LY294002, one
specific inhibitor of PI3K, has been found to inhibit the activity of
the ATP binding site of PI3K and lead to the reduction of p-AKT,
which was closely associated with the proliferation and apoptosis
of GC cells.177 Recently, APY0202, a small-molecule inhibitor of
PIKfyve, has been found to be involved in inducing repression of
autophagy and cell cycle arrest in an in vitro GC cell model, GC
organoid model, and in vivo xenograft GC model.178

AKT acts as a central character in the activation of the PI3K
axis.179,180 Elevated AKT and p-AKT expression was observed in
over 74% of GC.181 The abnormal expression of p-AKT was closely
related to PI3K and HER2 overexpression, and the high p-AKT level
was identified as a hallmark of tumor progression, metastasis, and
poor prognosis in GC.182,183 Lymphangiogenesis plays a crucial
role in metastasis, recurrence, and prognosis in early GC.184 A
previous study confirmed that p-AKT plays a significant role in the
angiogenesis of GC via VEGF-A activation.185 Subsequently, several
studies proved that inhibition of p-AKT/p-mTOR in vitro leads to a
remarkable decrease of VEGF-C and VEGF-D in gastric tumor cells,
and the authors proposed that lymphangiogenesis of GC might be
efficiently regulated by the AKT/mTOR/VEGF-C/VEGF-D signaling
pathway.186 mTOR can be activated via multiple upstream factors
and acts as a bridge in a variety of downstream signaling
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pathways. mTOR stands at the terminus of the PI3K/AKT/mTOR
signaling cascade and is one of the most independent elements of
the PI3K axis.187 The mutations in upstream regulators from the
different axes, such as EGFR, PI3K, and PTEN, can lead to over-
activation of mTOR.188–190 Aberrant activation of mTOR has been
detected in over 60% of GC cases.191 The dysregulation of mTOR
activity participates in the regulation of GC cell growth and
differentiation.167 In addition, some previous studies have
identified that the expression of mTOR was much higher in GC
tissues than in normal gastric tissues.192 Additionally, a positive
link between elevated mTOR levels and pathological parameters
like invasive depth and lymph node metastasis was found in
GC.193 Therefore, mTOR expression can serve as a biomarker of not
only the diagnosis of GC but also the invasiveness and metastasis
of the tumor, and its prognostic role has been proven by the
negative correlation with five-year survival rates of GC patients in
cohort studies.193,194

The significant contribution of the PI3K/AKT/mTOR signaling
pathway in the progression of GC suggests that this signal axis is a
promising target for cancer therapy. From the results of existing
clinical investigations in GC, the efficacy of PI3K inhibitors, AKT
inhibitors, mTOR inhibitors, and other monotherapy were not as
effective as dual PI3K/mTOR inhibitors or several combination
therapies,195 suggesting that the restriction on the therapeutic
effect by the heterogeneity of GC should be emphasized in
designing new targeted medication regimens.

P53 signaling pathway
The main role of p53 lies in its involvement in the regulation of
DNA repair as well as in the control of the cell cycle, apoptosis, and
differentiation, which is mainly through DNA-protein and protein-
protein interactions.196 It can induce aging or promote cell
apoptosis and DNA repair,197 providing a mechanism to prevent
the accumulation of potentially malignant or defective cells.198 In
vertebrates, p53 can temporarily block the cell cycle by regulating
checkpoints in G1/S and G2/M phases199 and these regulatory
processes are closely related to the transcriptional activation of
related genes by the p53 protein. Cyclins and cyclin-dependent
kinases (CDKs) are the two major proteins involved in cell cycle
progression.200 Functional analysis revealed that Reprimo (RPRM)
is transcriptionally regulated by p53 and serves to arrest the cell
cycle at the G2/M checkpoint, by inhibiting nuclear translocation
of the Cdc2/cyclin B1 complex.201 Significant downregulation of
RPRM has been described in GC cells expressing wild-type p53.202

With DNA damage, the cell cycle is arrested in the G2/M phase as
monitored by p53-mediated downregulation of p21, which
prevents the transmission of mutagenic damage.200

p53 is affected by many non-coding RNAs. For example, miR-
181a can elevate the expression and activity of p53203 by targeting
the tumor suppressor ataxia-telangiectasia mutated (ATM)
gene.204 miR-650 enhances the function of p53 in gene
transcription and promotes cell growth by the upregulating
expression of the inhibitor growth family member 4 (ING4).205

TP53-inducible nuclear protein 1 (TP53INP1) is a key element in
p53-mediated cell death and cell cycle arrest. The upregulation of
both miR-17-5p and miR-20a in GC can promote cell growth by
deregulating TP53INP1 and p21.206 In contrast, miR-499 can
indirectly upregulate p53 and its downstream target p21,
activating caspase-apoptosis pathways.207 Therefore, downregula-
tion of miR-449 observed in GC cells is associated with cell survival
advantages.207 Mutations in some key sites of the p53 gene can
directly lead to abnormal cell proliferation, while polymorphisms
at non-important functional regions of TP53 may also affect GC
tumorigenesis.208 Studies have reported elevated expression
levels of p53 in more than 75% of GC patients, and the mutation
rate of the TP53 gene in all GC patients is ~30%, but it may vary in
patients with different GC subtypes and etiologies.209,210 The
polymorphism of codon 72 of the TP53 gene is closely associated

with gastric carcinogenesis in the US population.211 TP53 gene
mutation is the main reason for the loss of normal function of p53
protein,210,212 which is an important initiating factor for the
occurrence and development of GC. Cell cycle regulators,
especially p16INK4A (cyclin-dependent kinase inhibitor 2A,
CDKN2A), are upregulated by p53 inactivation in precancerous
GC and act as a barrier to disease progression.213 Co-deletion of
CDKN2A and TP53 in dysplastic gastric organoids promotes the
cancer phenotype and also induces replication stress, thereby
exposing susceptibility to inhibitors of the DNA damage
response.213 In humans, folic acid (vitamin B9) supplementation
may play a vital role in the chemoprevention of GC since it can
significantly increase the expression of p53 and decreases the
expression of the Bcl-2 oncogene protein in the gastric
mucosa.214,215

H. pylori infection can promote the accumulation of mutations
in the TP53 gene, which has been reported to occur in 50% of
gastric tumors.216 The proteasomal degradation of p53 may also
be induced indirectly by H. pylori infection.217,218 In response to
genotoxic stress, p53 triggers signaling pathways that lead to
temporary cell cycle arrest, activating the repair process of DNA.219

Inactivation of p53 promotes genomic instability, which is a
hallmark of cancer.220 Thus, inhibition of p53 can be a strategy for
modulating host cell function in response to H. pylori.221 From the
aspect of molecular mechanism, H. pylori can induce aberrant DNA
methylation and downregulate the expression of genes involved
in signal transduction pathways and tumor suppression.222

Previous studies have found that H. pylori infection induces DNA
hypermethylation in the promoter regions of upstream-stimulated
transcription factor genes USF1 and USF2, and inhibits their
expression, which accompanies the development of gastric
precancer.223 These transcriptional factors may act as tumor
suppressors by regulating genes involved in stress and immune
responses, inflammation, cell cycle control, and genome stabi-
lity.224 USF1 also binds to p53 as UV-induced DNA damage occurs
and prevents the interaction between p53 and the E3-ubiquitin
ligase HDM2. This results in p53 stabilization and transient cell
cycle arrest.225,226 In about half of GC patients, USF1 expression is
lower in tumor tissue than non-tumor tissue, and 88% of patients
with low USF1 expression have H. pylori infection.227 Low
expression of p53 closely correlates to low expression of USF1,
and low expression of both is associated with poor prognosis.227

HGF/c-MET signaling pathway
The mesenchymal epidermal transition factor (c-MET), which is
encoded by the proto-oncogene MET, is a transmembrane
receptor expressed on the surface of epithelial and endothelial
cells.228 c-MET belongs to the receptor tyrosine kinase (RTK)
family, and hepatocyte growth factor (HGF) is the specific ligand
for c-Met.229 The canonical pathway is activated when HGF binds
to c-MET, followed by the homodimerization of c-MET and trans-
phosphorylation of its intracellular kinase domains.229 These
changes form a docking site on c-MET that recruits effector
molecules, thus triggering the signals that regulate cell survival,
proliferation, migration, and morphogenesis.230The major down-
stream signaling pathways include Ras/MAPK, PI3K/AKT (Fig. 2),
Wnt/β-catenin, and signal transducer and activator of transcription
3 (STAT3).230,231 There are also many distinct mechanisms of HGF-
independent activation of c-MET (non-canonical activation), such
as the phosphorylation of c-MET mediated by direct binding of
des-gamma-carboxyl prothrombin at the intracellular kinase
domain232 and crosstalk with other signaling pathways.233 While
the HGF/c-MET pathway has important physiological functions in
normal cellular processes, aberrant activation of this pathway is
closely associated with tumor invasion and metastasis in many
types of epithelial cancers, such as lung, breast, kidney, liver,
ovarian, thyroid, and gastrointestinal tract cancers.234 Multiple
mechanisms, which can be related to canonical or non-canonical
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activation or both, may be involved, including gene amplification,
activating mutations, transcriptional modification, overexpression,
enhanced stimulation by autocrine or paracrine HGF, interactions
with other active cell surface receptors, and dysregulations under
certain environmental conditions such as hypoxia and
inflammation.235,236

MET gene amplification, high c-MET expression, and co-
expression of HGF and c-MET have been found to be significant
predictive factors for worse prognosis in GC.237–239 Although MET
gene amplification is relatively rare (4–10%) in GC patients,240

c-MET protein overexpression has been detected in up to 82% of
cases.241 This discrepancy may result from detection methods,
whether c-MET protein detection based on both membranous and
cytoplasmic staining had a more significant correlation with MET
gene amplification, compared to that only on membranous IHC.242

Another important mechanism is the deletion mutation of the MET
gene at exon 14 (METex14del mutation), which leads to delayed
ubiquitination and degradation of c-MET protein.243 In a study of
230 patient specimens, including 42 GC, 13 tumor samples were
found to contain the METex14del mutation, among which all had
MET overexpression but only one had MET gene amplified.243

Notably, MET inhibitors inhibit the growth of patient tumor-
derived cell lines from GC and colon cancer containing the
METex14del mutation, suggesting that METex14del can be a
potential biomarker for gastrointestinal malignancies.243

As an important regulator of many signaling pathways, the
HGF/c-Met axis is closely associated with GC development and
progression, tumor metastasis, and therapeutic response. Over-
expression of c-MET is frequently observed in GC cases with an
increased risk of distant metastasis to the liver244 or perito-
neum.245 Recent studies have discovered that the c-MET signaling
may be involved in H. pylori infection-related GC tumorigenesis
and metastasis. Ito et al.246 found that both canonical and non-
canonical activation of c-MET signaling in GC cells could be
promoted by H. pylori infection through its virulence factor CagA
protein. Furthermore, the phosphorylated active form of c-MET
can be secreted in exosomes by H. pylori-infected GC cells and
transferred to macrophages, which may consequently induce the
pro-tumorigenic phenotype conversion of macrophages promot-
ing tumor progression.247 Additionally, H. pylori infection could
increase the intracellular level of heparinase (HPA), an endoglu-
curonidase found to be carcinomatosis-relevant, leading to the
activation of multiple signaling pathways in human GC cells.248

Hao and colleagues observed that overexpression of HGF and HPA
had a positive correlation with TNM stage, depth of invasion, and
poor prognosis in GC patients.249 Their further mechanistic study
suggested that HGF/c-MET can regulate HPA expression by
activating PI3K/AKT and downstream nuclear factor kappa B (NF-
κB) signaling. HPA can also mediate the shedding of heparin-
binding HGF to enhance HGF liberation, which can jointly induce
tumor metastasis.249 Therefore, the HGF/c-MET axis and HPA may
be effective therapeutic targets for treating H. pylori-related GC.
c-MET has been a well-studied target for cancer treatment and

numerous targeted inhibitors have been developed. Blocking HGF
in cancer-associated mesenchymal stem cells, where HGF is hyper-
produced, may also be a potential GC treatment strategy based on
a recent in vivo study.250 Currently, the precise regulatory
cascades of HGF/c-MET in GC cells have not been fully elucidated.
Utilizing complimentary deoxyribonucleic acid microarray tech-
nology, Koh et al.251 identified several downstream molecules of
HGF/c-MET signaling, including E-cadherin, urokinase plasmino-
gen activator, and Kisspeptin, which are cell invasion and
migration regulators. Moreover, two cell apoptosis modulators,
Jun-B and lipocalin-2, are also recognized as interacting with the
HGF/c-MET pathway.251 Another study demonstrated that the
phosphorylation of RhoA, which is a biomarker highly mutated in
diffuse GC patients, may be dependent on c-MET activity.252

Notably, a c-MET inhibitor prevented GC cell growth only in GC

cells transfected with wild-type RhoA but not Y42 mutant RhoA
in vivo and in vitro. Thus, the combined levels of c-MET and
phosphorylated-RhoA should be used as predictors for prognosis
and patient stratification to optimize targeted c-MET therapy.252

In addition to downstream effectors, upstream regulators of
HGF/c-MET are also important biomarkers and potential targets in
GC. The C-X-C motif chemokine ligand 12 (CXCL12) was found to
induce interaction of c-MET with caveolin 1 in lipid rafts. This
interaction can lead to activation of c-MET, thereby inducing EMT
in GC cells and promoting cell migration. Further analysis in
clinical samples also revealed a positive correlation between the
CXCL12 receptor CXCR4 and c-MET phosphorylation as well as
poor patient prognosis, indicating the clinical importance of the
crosstalk between c-MET and CXCL12 in GC treatment.253 Several
miRNAs have been reported to be involved in GC proliferation and
metastasis by their regulation of HGF/c-MET expression. It has
been reported that miR-1/34a/144/206 directly target the mRNA
of c-MET.254–257 In contrast, miR-15a/16/195 are found to directly
target HGF mRNA.258 These are negative regulators of HGF/c-MET
expression, which are found down-regulated in GC tumors,
implying their potential therapeutic applications to repress HGF/
c-MET-mediated cell proliferation and migration in GC. Other
in vitro studies have indicated that ETS homologous factor (EHF)
may be critical to GC cell proliferation, apoptosis, cell cycle, EMT,
and invasion via the activated c-Met pathway,258 whereas IL-10
secreted by cancer-associated macrophages (CAMs) may be
involved in GC carcinogenesis.259 Nevertheless, the clinical
significance of miRNAs, EHF, and IL-10 in GC diagnosis and
treatment must be further verified.
The HGF/c-MET axis may also be involved in the therapeutic

response of GC. In GC cells with HGF/c-MET activation, excessive
transphosphorylated c-MET molecules are likely to interact with
other receptor tyrosine kinases such as EGFR and HER2 forming
heterodimers, which may allow bypass signaling to provoke
resistance to corresponding targeted therapies.260–262 This pro-
vided a clue that co-inhibition of bypassing pathways may be a
potential therapeutic application in treating GC. MET gene
mutations can change the sensitivity of GC cells to targeted
drugs by affecting the activation of downstream signaling
pathways. Shen et al.263 recognized that GC patients carrying
MET G1163R or D1228Y/N mutations are likely to show resistance
to the TKI drug crizotinib, whereas patients with MET V1092L,
D1228G, or Y1230H mutations could benefit from this targeted
therapy. This indicates that MET mutation analysis may be useful
for designing precision medication for GC.

Wnt/β-catenin signaling pathway
The Wnt/β-catenin signaling pathway is involved in cell prolifera-
tion, migration, and death, and is important for the development
and homeostasis of some tissues.264–266 The β-catenin protein is a
transcriptional coactivator in Wnt pathway, which has been found
to be involved in a number of biological processes of tumor cells,
including proliferation,267,268 anti-apoptosis,269 and infiltration
transfer.270 The Wnt/β-catenin pathway is activated when the
Wnt ligands bind to the seven-transmembrane receptor Frizzled
(FZD) and the low-density lipoprotein receptor-related protein 5 or
6 (LRP5/6).271 The Wnt-FZD-LRP5/6 trimer complex recruits
disheveled (DVL) and axin through the intracellular domains of
FZD and LRP5/6, thereby inhibiting β-catenin phosphorylation and
ensuring β-catenin stability. β-catenin then detaches from
degradation complexes and accumulates in the cytoplasm,
enabling the Wnt pathway to promote cancer progression during
the cell cycle.272–274 Elevated cytoplasmic and nuclear levels of
β-catenin promote the cooperation of β-catenin with T cell factor/
lymphoid enhancer factor (TCF/LEF) transcription factors to
activate the expression of Wnt-responsive genes275 (Fig. 2).
Several mutant component molecules of typical Wnt signaling
lead to aberrant activation of the Wnt/β-catenin pathway,276,277
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which further contributes to the malignant transformation and
invasion of GC.278,279

Upregulation of Wnt-1 ligands has been shown to promote
advanced GC development.280 In contrast, Wnt-2 enhancement is
closely associated with gastric tumor formation, invasion, or
dissemination.281 Studies have found that Wnt-5a can stimulate
the migration and invasion of GC cells, mainly through the
activation of focal adhesion kinase (FAK) and the small GTP-
binding protein Rac.282 Overall, dysregulation of Wnt/β-catenin
signaling is observed in more than half of the patients and is
considered a primary mechanism of GC development.276,283

Although persistent activation of Wnt/β-catenin signaling is
shown to be related to chemoresistance,284,285 the mechanism
remains largely unexplored. Several researchers found that
activation of Wnt/β-catenin signaling can inhibit ferroptosis in
GC cells by attenuating the production of intracellular lipid ROS or
inducing glutathione peroxidase 4 (Gpx4) expression by the direct
binding of β-catenin/transcription factor 7 like 2 (TCF7L2, also
known as T cell factor 4, TCF4) transcriptional complex to the
promoter region of Gpx4.286–288 The latter mechanism was verified
by two studies demonstrating that deficiency in TCF4 promoted
cisplatin-induced ferroptosis both in vivo and in vitro.286,289

Modulating ferroptosis through regulating Wnt/β-catenin signal-
ing may be a potential therapeutic strategy for improving
chemosensitivity in advanced GC.286 Finally, targeting Wnt/
β-catenin signaling may also improve the therapeutic outcomes
of radiotherapy and immunotherapy due to the involvement of
ferroptosis.286,290 A recent study demonstrated that the Wnt/
β-catenin signaling pathway is inversely correlated with the
infiltration of T cells in the tumor microenvironment (TME), and, as
a result, affects the therapeutic efficacy of PD-1 antibo-
dies.289,291–293 It has been found that the disruption of the Wnt/
β-catenin pathway in GC cells inhibited their migration and
invasion.294 Meanwhile, down-regulation of Wnt/β-catenin may
enhance the sensitivity of GC cells to PD-1 antibody.295,296 This
result further suggests that jointly targeting to inhibit β-catenin
and PD-1 jointly may be a potential and effective treatment for GC
patients.
Different mechanisms can facilitate tumor cell survival and

proliferation mediated by activated Wnt/β-catenin signaling in GC.
β-catenin-activated CCL28, which is a mucosae-associated epithe-
lial chemokine, can regulate T cells in vitro.297 In a clinically
relevant mouse GC model established by Helicobacter felis (H. felis)
infection and the carcinogen N-methyl-N-nitrosourea (MNU), using
a Wnt signaling pathway inhibitor iCRT14 to inhibit β-catenin/TCF
activity resulted in decreased CCL28 expression and Treg
expression in the stomach cell infiltration.297 Furthermore, the
anti-CCL28 antibody significantly attenuated Treg cell infiltration
and tumor progression in the H. felis/MNU mouse model.297 This
study extended the previous understanding of the oncogenic role
of the Wnt/β-catenin pathway mainly through its control of cell
proliferation, survival, and differentiation in GC, and confirmed
that the immunoregulatory function of the β-catenin signaling
pathway also plays an important role in tumor progression.297

More importantly, CCL28 blockade exhibits a surprising antitumor
effect by inhibiting Treg cell infiltration, providing a new idea for
the immunotherapy of GC.297,298 E-cadherin, a component of the
β-catenin degradation complex, also plays a crucial role in
negatively regulating Wnt signaling.299 β-catenin is in direct
contact between cadherin and α-catenin, the latter interacting
with the actin cytoskeleton to form tight cell-cell junctions.299,300

As cadherin may maintain the activity and function of β-catenin
on the membrane during EMT by competing with its degradation
mechanism, the ability of β-catenin to bind to cadherin is essential
when the transcription proceeded because cadherin may stabilize
β-catenin on the membrane by competing with its degradation
mechanism during EMT.301,302 In brief, the connection between
cadherin and β-catenin may be one of the mechanisms of the EMT

process in GC,303 and may provide new options for GC diagnosis
or therapeutic interventions in the future.304

NF-κB signaling pathway
The NF-κB family of transcription factors consists of several
members—RelA, RelB, c-Rel, NF-κB1(p50), and NF-κB2(p52)—
which form dimers (homo- and hetero-) and modulate the
expression of a variety of genes.305 The typical dimer refers to
the heterodimer of RelA and p50 subunits.306 The canonical or
classical NF-κB pathway is activated by different receptors,
including tumor necrosis factor receptors (TNFRs), Toll-like
receptors (TLRs), and interleukin-1 (IL-1R). NF-κB is kept inactive
in the cytoplasm bound to members of the IκB family (IκBα, IκBβ,
and IκBγ).307 Upon stimulation, the IκB kinase (IKK) complex is
activated, leading to phosphorylation of IκBα at Ser32 and Ser36
by IκBβ,308 followed by poly-ubiquitination and subsequent
degradation of IκBα by the 26S proteasome (Fig. 2). Degradation
of IκBα sets NF-κB free, and it translocates to the nucleus where it
binds to the promoters of downstream target genes, thus
promoting GC progression.309–311

The NF-κB signaling pathway is one of the most critical cellular
signaling pathways and has an important role in apoptosis and
cell survival.312,313 One of the main functions of NF-κB is regulation
of transcription of inflammatory molecules. NF-κB can regulate the
expression of many inflammatory mediator genes related to
inflammation and immune response, including bcl-2, bcl-xl, cIAP,
BIRC5, TRAF, COX-2, MMP-9, iNOS, and various cell cycle
regulators.314,315 The NF-κB pathway also plays a key role in EMT
and cancer stem cell activities316 and has an important role in
tumor formation and tumor development through its anti-
apoptotic effect. Inhibition of NF-κB signaling can induce
apoptosis and cell cycle arrest in GC cells.317,318 In tumorigenesis
and development, NF-κB is more likely to play a key linking role in
signaling pathways. Proto-oncogene mutation affects upstream
factors of the NF-κB signaling pathway, and these factors activate
the NF-κB signaling pathway and downstream effectors and
initiate gastric carcinogenesis.319 Uncontrolled NF-κB signals lead
to the occurrence of many tumors, and the abnormal activation of
NF-κB in tumors may be one of the main anti-apoptotic factors in
GC cells.319,320 When activated, it can generate strong anti-
apoptotic signals and accelerate tumor development.
At the same time, NF-κB can promote tumor formation by a non-

apoptotic mechanism, by directly stimulating cell proliferation
through the activation of the proto-oncogenes c-myc321 and CCND1
(encoding cyclin D1).322 As a target gene of NF-κB, CCND1
transcription initiated by NF-κB promotes the cell cycle transition
from G1/G0 phase to the S phase, leading to cell proliferation and
transformation into malignant and cancerous cells.323,324 NF-κB can
also upregulate hypoxia-inducible factor 1 (HIF-1), which initiates
gastric carcinogenesis by promoting tumor angiogenesis.325,326

Studies have shown that connective tissue growth factor (CTGF) is
upregulated in clinical tissue specimens of GC.327 In vitro experi-
ments have shown that high expression of CTGF in advanced GC
cells significantly increases tumor metastasis, while RNA
interference-mediated knockout of CTGF significantly inhibits cell
metastasis.328 This process demonstrates the promotive effect of
CTGF on GC invasion and metastasis via the downregulation of
E-cadherin and activation of NF-κB (Fig. 2). Similar studies also found
that the expression of proteinase-activated receptor-1 (PAR-1)
stimulates NF-κB activation, thereby initiating the invasion and
metastasis of GC.329 Additionally, it has been found that NF-κB
activation is associated with the heparanase gene expression in GC
and is significantly correlated with GC invasion-related features such
as lymph node invasion, pathological stage, and depth of
invasion.330,331 Therefore, NF-κB may become a potential therapeu-
tic target for inhibiting GC invasion and metastasis.324

The upregulation of the NF-κB signaling pathway is involved
not only in the occurrence of tumors but is also associated with
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chemoresistance and radioresistance.332,333 NF-κB inhibitors may
enhance the efficacy of antitumor drugs or increase sensitivity.
With the improvement of the rapid detection technology of NF-κB
activity and the understanding of the mechanism of NF-κB
activation, many drugs that inhibit the activation of NF-κB have
been developed. Natural drugs targeting NF-κB have exhibited
potential as chemotherapy for GC.334–337 For example, Ji and
colleagues have reported that tetramethylpyraz, a natural alkaloid,
induces GC cell apoptosis by downregulating NF-κB and cyclin
D1.338 Therefore, screening chemotherapeutic drugs with NF-κB-
targeting effects may be a potential strategy for improving
chemotherapy.

TGF-β signaling pathway
Transforming growth factor-β (TGF-β) is a family of active
polypeptides that are physiologically involved in embryonic
growth and development, stem cell differentiation, wound
healing, and inflammation regulation.339 The secretion disorder
of the TGF-β family is closely associated with the development of
tumors.340 The TGF-β family consists of three forms with similar
biological functions: TGF-β1, TGF-β2, and TGF-β3.340 Among them,
TGF-β1 has the highest expression level.341,342 TGF-β1 is a
multifunctional cell growth factor and a multi-type cell prolifera-
tion inhibitor.343 TGF-β1 can inhibit the proliferation and
differentiation of various cells by binding to its receptors, such
as TGF-β R1.344 It is widely involved in cell morphological changes,
adhesion, metastasis, and apoptosis.345,346 The expression of TGF-
β1 and TGF-βR1 is closely related to the biological behavior and
prognosis of malignant tumors.347 TGF-β1 is the signaling protein
of the DPC4 (SMAD4) gene, a tumor suppressor gene. The Smad4
proteins, which have an important impact on the occurrence,
development, and metastasis of malignant tumors,348 are vital
downstream effectors of the TGF-β signaling pathway.349 TGF-β
ligands bind to membrane receptors to form two types of receptor
heterodimers, type I and II, which can activate downstream Smad2
and Smad3 proteins and then combine with Smad4 to form a
transcription complex in the nucleus, thereby regulating the
transcription of target genes and exerting inhibitory effects on cell
growth.340,350

TGF-β1 is generally considered a negative cell growth regulator
and is strongly correlated with the occurrence and progression of
GC and its clinicopathological features.340 TGF-β1 in normal gastric
mucosa is expressed mainly in the cytoplasm of epithelial cells
and some mucous cells and in the cytoplasm of cancer cells in GC
tissue.351 A retrospective study of 50 patients with GC after
surgery found that the 5-year survival rate of patients with high
TGF-β1 expression was significantly lower than that of patients
with low TGF-β1 expression, indicating that the expression of TGF-
β1 is closely related to the prognosis of GC patients.352 However,
depending on the cell type and physiological environment, TGF-
β1 can exhibit opposite effects. TGF-β1 has a significant growth
inhibitory effect on cells of epithelial origin by preventing cells
from the G1-S phase in vitro,353,354 and TGF-β1 expression is often
reduced or absent in malignant tumors.355 TGF-β1 can also inhibit
the proliferation and induce apoptosis of GC cell lines HSC-39 and
HSC-43 in vitro.356,357 However, the results of another study
showed that TGF-β1 protein was highly expressed in GC and
increased as the differentiation degree decreased, indicating that
TGF-β1 may play a role in the malignant transformation and
proliferation of tumors.358 The high expression of TGF-β1 in GC
cells may also be due to the blockade between TGF-β1 and
receptors, resulting in an accumulation of TGF-β1;359,360 the
elevated TGF-β1 level may promote tumor growth rather than
inhibit it, but it does not lose its inhibitory effect on immune cells
such as NK and LAK, leading to immune escape of cancer
cells.361,362 Both TGF-β and its receptors are highly expressed in
early penetrating GC tissues, which is related to the strong growth
and infiltration ability of this type of GC.363,364

Moreover, the TGF-β signaling is one of the main inducers of
EMT, which may be related to its crosstalk with the AMPK
pathway.350 AMPK activation not only inhibits the EMT process of
GC cells regulated by TGF-β, but also inhibits the production of
TGF-β.365,366 Smad3 was found to play a key role in these two
processes as well. AMPK can inhibit the phosphorylation and the
nuclear translocation of Smad3 protein, thus inhibiting the
transcriptional regulatory functions of TGF-β.366,367 Therefore,
inhibiting the phosphorylation of Smad3 may serve as a new
therapeutic target for GC.

Immune checkpoint signaling pathways
The growth and progression of cancer are directly related to the
suppression of the immune system, where inhibitory immune
checkpoints play a vital role. Immune checkpoints are modulators
of the immune system that either promote (co-stimulatory
molecules) or stop signaling (co-inhibitory molecules) in immune
cells and control their activity, thus, playing a crucial role in
maintaining immune homeostasis in immune cells.368,369 The first
immune checkpoint molecule, cytotoxic T-lymphocyte–associated
antigen 4 (CTLA-4), was discovered by Brunet et al. in 1987.370 its
function was unclear until 1995, when Allison et al. revealed CTLA-
4 to be an important immune checkpoint molecule with great
potential as a target for cancer therapy.371 Immunosuppressive
checkpoint molecules, such as PD-1, CTLA-4, T-cell immunoglo-
bulin and mucin-domain containing-3 (TIM-3), Lymphocyte-
activation gene 3 (LAG-3), and T cell immunoreceptor with Ig
and ITIM domains (TIGIT), are usually expressed on T cells and bind
to their ligands on other cells, thereby triggering negative
regulations on immune signaling pathways and preventing
immune damage.369,372–375 In tumor cells, upregulation of ligands
of these inhibitory immune checkpoints during tumor progression
helps suppress antitumor immune responses and induce tumor
immune escape.369,376 Therefore, targeting immune checkpoints is
a vital approach of immunotherapy in cancer treatment.
Different immune checkpoint molecules and their ligand-receptor

signaling are summarized in Fig. 3a. PD-L1 and PD-L2 are
transmembrane proteins, which are considered co-suppressors of
the immune response. Upon the binding of PD-L1/PD-L2 to PD-1,
the proliferation and cytokine secretion of PD-1-positive T cells are
reduced, while apoptosis is activated. For cancer cells with PD-L1/
PD-L2 expression, attenuating host anti-tumor immune response
provides survival advantages for the cancer cells.377,378 In the CD28/
CTLA-4/B7 co-stimulatory pathway, CD28 is one of the proteins
expressed on T cells that produce co-stimulatory signals required for
the activation of T cells; CTLA-4 proteins located on T cells function
to help keep the body’s immune responses in check; and B7-1/2 are
checkpoint proteins on the membrane of activated antigen-
presenting cells (APC).379 T cells can be activated when the T cell
receptor (TCR) binds to the antigen and major histocompatibility
complex (MHC) proteins on the APC, accompanied by CD28 binding
to B7-1 (CD80) or B7-2 (CD86) on the APC.380 However, when B7-1/
B7-2 binds to CTLA-4, the T cells are inactivated and unable to kill
tumor cells in the body.381 Using an immune checkpoint inhibitor
(an anti-CTLA-4 antibody) to block the binding of B7-1/B7-2 to CTLA-
4 allows the T cells to be activated and kill tumor cells.382 The TIM-3/
galactin-9 and LAG-3/galactin-3 pathways are similar to the PD-1/
PD-L1 pathway. The binding of TIM-3 present on activated T cells to
the ligand galactin-9 on tumor cells blocks the response of
interferon-γ (IFN-γ) -producing CD4+ T helper 1 (Th1) cells and
induces apoptosis of CD4+ and CD8+ T cells, resulting in immune
tolerance.383 TIM-3 may also be co-expressed with PD-1 in tumor-
infiltrating immune cells and act synergistically to mediate effector T
cell depletion and dysfunction.384 LAG-3 on activated T cells is
associated with reduced anti-cancer immune response by inhibiting
CD8+ T cells upon binding to galactin-3 in tumor cells.373 TIGIT is a
co-inhibitory receptor that is highly expressed in the tumor-
infiltrating lymphocytes in various malignant cancers.385 TIGIT can
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downregulate the immune response either by competing for CD155
ligand binding with CD226 thereby reducing the CD266/CD155-
dependent co-stimulation of T cells,386–388 or by directly transmitting
inhibitory signals to effector cells.389 Among these pathways of
immune checkpoints, the PD-1/PD-L1 signaling is the most widely
studied as a diagnostic/prognostic biomarker as well as a
therapeutic target of GC.
Transcriptome analysis of the TCGA subtypes in GC has revealed

that immune cell signaling is significantly upregulated in EBV+ or
MSI subtypes compared to the other two subtypes.390 The different
levels of immunomodulation shown by the four TCGA subtypes
have opened a stratifying strategy for GC patients to maximize
immunotherapy efficacy, while immune cell signaling has gained
extensive attention in GC research. High content of immune cells,
downregulation of genes involved in cytokine/chemokine path-
ways, and upregulation in PD-L1 and/or PD-L2 expressions are
frequently found in EBV+ GC cases.391,392 In contrast, the MSI
subtype is characterized by increased mutation rates and DNA
hypermethylation profiles for DNA mismatch repair genes like
MSH1, MSH2, MSH3, andMLH1, which results in alterations in length
with short, repeated DNA sequences (microsatellites) and
enhanced expression of neoantigens.41,393 Because of the
increased neoantigen recognition and the corresponding expres-
sion of immune checkpoints in the tumor microenvironment, GC of
MSI subtype exhibits high CD8+ T cell infiltration and is more
sensitive to immune checkpoint inhibitors.394,395

Elevated mRNA levels of PD-1, PD-L1, and PD-L2 have been
observed in GC patients.396 Yun et al.397 found that HER2, PD-L1,

and PD-1 gene expressions in GC are related to staging and lymph
node metastasis. The elevated PD-L1 expression is correlated with
certain GC molecular subtypes. Liu et al.398 observed that PD-L1
was expressed in 59.3% of GC patients and correlated with MSI
and EBV+ subtypes. H. pylori-positive gastric tumors have also
been found to have higher PD-L1 expression and T cell hypo-
responsiveness, which is considered one of the carcinogenesis
mechanisms by H. pylori infection.399 During GC initiation and
progression, chronic EBV or H. pylori infection induces immuno-
modulation from a pro-inflammatory state recruiting immune cell
infiltrations to an immunosuppressive microenvironment where
PD-L1 is upregulated in GC cells.400

However, different mechanisms are involved in EBV- and H.
pylori-induced PD-L1 upregulation. In EBV-associated GC, the PD-
L1 expression on tumor cells is triggered by interferon-γ (IFN-γ) via
the JAK2/STAT1/interferon regulatory factor-1(IRF1) signaling
pathway.401 The EBV nuclear antigen 1 (EBNA1), which is a
transcription factor that maintains EBV genome copy number
during cell division, may also be a regulator of IFN-γ-induced PD-
L1 expression.401 Compared to other GC subtypes, EBV-associated
GC displays low expression levels of the PD-L1-targeting miR-200
family, which may also contribute to the high expression of PD-
L1.402

Upregulation of PD-L1 by H. pylori in gastric epithelial cells
primarily involves the activation of upstream signaling pathways
that promote PD-L1 expression. The two major pathways are the
nucleotide-binding oligomerization domain-containing protein 1
(NOD1)-dependent activation of p38-MAPK pathway promoted by

Fig. 3 The immune checkpoint signaling pathways in gastric cancer and regulations on PD-L1 by H. pylori and EBV. a The immune checkpoint
proteins PD-1 on the surface of T cells interact with the ligands PD-L1/PD-L2 on GC cells, or the aberrant CTLA-4 proteins on GC patient T cells
interact with B7 on antigen-presenting cells, resulting in an immunosuppressive microenvironment, providing cancer cells with a survival
advantage. TIGIT on the T cells membrane competes with the activation of CD226 binding to CD155 from the GC cells. Other immune
checkpoint proteins, TIM-3 or LAG-3, interact with galectin-9 or galectin-3 released from GC cells, inhibiting the activation of T cells. b Chronic
H. pylori or EBV infection, which are risk factors of GC, can induce upregulation of PD-L1 in GC cells via various signaling pathways and
microRNAs, promoting immune escape. EBV Epstein–Barr virus, PD-1 programmed death 1, PD-L1/2 programmed death ligand 1/2, CTLA-4
cytotoxic T-lymphocyte-associated protein 4, TCR T-cell receptor, MHC major histocompatibility complex, TIGIT T cell immunoreceptor with Ig
and ITIM domains, TIM-3 T cell immunoglobulin and mucin-domain containing-3, LAG-3 lymphocyte-activation gene 3, IFN-γ interferon
gamma, JAK2 Janus kinase 2, STAT1 signal transducer and activator of transcription 1, IRF1 interferon regulatory factor 1, EBNA1 Epstein–Barr
nuclear antigen 1, MAPK mitogen-activated protein kinase, NOD1 nucleotide-binding oligomerization domain-containing protein 1, SHH
Sonic hedgehog protein, CagA cytotoxin-associated gene A, T4SS type IV secretion system. This figure was created with Biorender.com
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the H. pylori type 4 secretion system (T4SS) components including
the effector protein CagA and peptidoglycan fragments,403 and
the CagA-dependent activation of sonic hedgehog signaling
pathway.404 Infection by H. pylori also negatively affects the
expression of PD-L1 suppressor miRNAs, such asmiR-132 and miR-
200b, which partially contribute to the elevated PD-L1 expression
in H. pylori-positive GC405 (Fig. 3b). The overexpression of PD-L1 on
GC cells inhibits T cell proliferation via the PD-1/PD-L1 inhibitory
signaling and induces Treg differentiation from naive T cells,
leading to immune escape. Paradoxically, several studies have
reported that in advanced GC patients who underwent surgical
resection or resection plus adjuvant chemotherapy, the H. pylori-
positive patients have an improved survival compared to H. pylori-
negative patients.406–411 In a retrospective study involving 49
advanced GC patients, Koizumi et al. observed that the H. pylori-
positive patients had a significantly better prognosis than H.
pylori-negative patients in the population of PD-L1-negative, while
the prognostic difference was statistically insignificant between H.
pylori-positive and H. pylori-negative patients in the PD-L1-
expressing population. The H. pylori-positive/PD-L1-negative
group showed a potential survival benefit even when the dose
of adjuvant S-1 chemotherapy was reduced.411 Since the other
immune-related parameters, including CD4, CD8, TLC, MMR
proteins, and MSI status, did not exhibit a significant correlation
with PD-L1 levels or H. pylori infection, the immune escape
induced by H. pylori-dependent PD-L1 upregulation is likely the
dominant mechanism of tumor cell survival and poor prog-
nosis.411 Therefore, the PD-L1 expression should be taken into
consideration when H. pylori infection is used as a prognostic
factor in GC.
Although PD-L1 overexpression is more likely to be detected in

GC with deeper tumor infiltration and lymph node metasta-
sis,412,413 PD-L1 can be a positive prognostic biomarker. Detection
of PD-L1 or detection of both HER2 and PD-1/PD-L1 in GC may
provide a vital reference for stratifying patients who can benefit
from checkpoint inhibitor immunotherapy or targeted therapy. As
a result, regulatory factors that induce PD-L1 expression have
gained attention in developing strategies to increase immu-
notherapy efficacy. IFN-γ signaling has been shown to be involved
in regulating not only the expression level of PD-L1414 but also the
binding affinity of PD-L2 to PD-1.415 Moreover, PD-L1 expression
can be stimulated by inhibition of autophagy via the IFN-γ
signaling pathway,414,416 implying that pharmacological modula-
tion of autophagy may be a novel strategy for improving the
efficacy of PD-L1 blockade. On the other hand, miR-105-5p was
found as a negative regulator of PD-L1 expression, highlighting it
as a potential biomarker for PD-1/PD-L1 immunotherapy and a
target for combinational regimen.417 However, it should be noted
that taking the timing and site of PD-L1 expression into
consideration is necessary. Kim and colleagues reported that in
the mouse GC model, 5-FU and oxaliplatin reduced the numbers
of myeloid-derived suppressor cells to increase the anti-GC
efficacy of the PD-1 inhibitor and promote tumor infiltration by
CD8+ T cells.418 However, these chemotherapeutic agents might
also mediate induction of PD-L1 expression in tumor cells leading
to tumorigenesis of gastric epithelial cells and tumor
progression.418

Genetic alteration of CTLA-4 in humans has been associated
with GC development;419 however, CTLA-4 may not be a good
target in treating cancer according to the current knowledge. Liu
et al.420 reported that the association of CTLA-4 single nucleotide
polymorphism with noncardiac GC is not significant in a Chinese
population. A recent case report showed hyperprogression of the
lymph nodes and liver lesions compressing the gastric stump from
a 68-year-old patient with stage IV MSI subtype GC after receiving
immunotherapy of durvalumab (PD-1 inhibitor) and tremelimu-
mab (CTLA-4 inhibitor).421 More study is still needed to evaluate
the therapeutic significance of CTLA-4 in GC.

TIM-3 is an independent indicator of poor prognosis in GC
patients and may play an essential role in the progression,
invasion, and metastasis of GC.383,422 TIM-3 expression is induced
on NK cells and tumor-infiltrating T cells during the development
of GC, making it a potential indicator for evaluating the tumor
progression.375,423 Elevated expression of the TIM-3 ligand
galectin-9 on cancer cells has been associated with blood vessel
invasion and TNM stage in GC.374 However, the prognostic value
of galectin-9 remains controversial. Long et al.424 and Jiang
et al.425 reported that low expression of galectin-9 in GC patients
was associated with poor survival, whereas the study from Wang
et al.374 reported that galectin-9 expression negatively correlated
with poor prognosis in GC patients.374 This discrepancy may occur
because of differing functions of galectin-9 in different immune
states of the patients. As the galectin-9 function remains poorly
understood, further research is needed to clarify whether it has a
possible tumorigenic role or tumor-suppressing activity. Therefore,
TIM-3 is thought to be a relatively promising biomarker and
therapeutic target for GC compared to its ligand. In preclinical
studies, TIM-3 inhibitors showed similar effects to PD-1 inhibitors,
and a combination of PD-1 and TIM-3 inhibitors enhances T cell
responsiveness to tumor antigens with synergistic effects,
suggesting that TIM-3 may be a useful target in treating GC
resistant to anti-PD-1 immunotherapy.426,427 The expression of
TIM-3 inhibitory ligands on GC cells might also be potential
biomarkers for predicting the treatment response of PD-1 mAb.428

Targeting PD-1 and TIM-3 combination immunotherapy may have
more therapeutic benefit than mono-immunotherapy for GC
patients.
LAG-3 expression has a remarkable synergistic effect with PD-1

on promoting the immune escape of GC cells, which suggests it
might be a biomarker of poor prognosis.369 Galectin-3, the ligand
of the LAG-3 inhibitory pathway, was also found to be a potential
indicator for poor prognosis in the diffuse type of GC. However, its
utility as a prognostic marker may be population-dependent, since
overexpression of galectin-3 was highly significant in the North
American cohort but not in the Asian cohort.429 Targeting both
LAG-3 and PD-1 has become an important cancer immunotherapy
strategy.372,430 However, the understanding of LAG-3’s mechanism
in GC is still minimal, and many fundamental questions remain
unanswered. Elucidating the mechanism of LAG-3 in more detail
should permit a more rational design for LAG-3-dependent
immunotherapy.
TIGIT overexpression in the tumor microenvironment has been

observed in GC patients, accompanied by upregulation of its
ligands, CD155 and CD112, and is associated with immune escape
led by CD8+ T cell suppression.431 In a co-culture system of T and
GC cells, the TIGIT expressing peripheral blood CD8+ T cells from
GC patients exhibited decreased cellular metabolism and impaired
cell functions, which were mediated by TIGIT/CD155 signaling and
could be reversed by blockade of CD155.386 This suggests that the
TIGIT/CD155 pathway can be a GC prognostic indicator and a
novel immunotherapy target for treating GC. Bioinformatic
analysis revealed that epigenetic regulation (majorly methylation)
of TIGIT can affect the prognosis and immunotherapeutic
responsiveness of GC.432 High TIGIT expression can be utilized
to identify patients who are likely to be sensitive immunotherapy
thereby improving prognosis. On the other hand, TIGIT may be a
potential target for designing epigenetic drugs.433 Since TIGIT and
PD-1 can be highly co-expressed in CD8+ T cells,431 TIGIT is
expected to be a target for potentiating the benefits of anti-PD-1
therapy.

Other signaling pathways involved in gastric cancer
Many other signaling pathways have been identified to be
involved in GC. Briefly reviewed here are recent discoveries of
the signaling pathways relevant to fibroblast growth factors and
corresponding receptors (FGF and FGFR), signal transducer and
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activator of transcription 3 (STAT3), hypoxia-inducible factor-1 α
(HIF-1α), Hedgehog, and Notch. Alterations of signaling molecules
relevant to cell adhesion and cell junction in diffuse-type GC are
also discussed here as distinct molecular characterizations from
other histological subtypes.
The fibroblast growth factor receptors (FGFR) are transmem-

brane proteins expressed widely by different cell types. The FGFR
family has 4 members, namely FGFR1, FGFR2, FGFR3, and FGFR4.
FGFR1 mutations, FGFR2 amplification, and FGFR3 rearrangements
are the most common FGFR alterations found in GC.434 When
bound with fibroblast growth factors (FGF), FGFRs are activated
through phosphorylation of the intracellular tyrosine kinase
domain, which then activates several important cellular pathways,
including the RAS/MAPK, the PIK3CA/AKT/mTOR, and the Janus
kinase (JAK) pathways.435 Activation of these signaling pathways
can affect angiogenesis, cell mitosis, differentiation, proliferation,
and invasive processes.435 Dysregulation of the FGF-FGFR axis has
been thought to contribute to GC carcinogenesis. Overproduction
of FGF presumably promotes communication between epithelial
and stromal cells in the tumor microenvironment, which is critical
for tumorigenesis.434 Alterations of the FGFR gene are commonly
observed in GC patients, which can be a diagnostic biomarker for
GC.436 In a large cohort of Chinese GC samples, the prevalence of
overall FGFR aberrations was 7%.437 In another cohort of GC
samples, FGFR2 amplification was found in 4.1% of samples.432 A
small Hong Kong GC cohort study reported that
FGF18–FGFR2 signaling could upregulate yes-associated protein
1 (YAP1) oncogene expression by activating the MAPK pathway
effector c-Jun.438 Cancers that are co-positive for FGFR2, c-Jun,
and YAP1 alterations are associated with worse clinical outcomes,
indicating the translational potential of FGFR2–c-Jun–YAP1 as a
prognostic predictor and therapeutic target for GC.438 FGF18 has
also been identified as a potential GC prognostic biomarker and
therapeutic target, which can be negatively regulated by miR-590-
5p to inhibit gastric tumorigenesis.439 In addition to tumorigen-
esis, the FGF-FGFR axis can affect GC invasion and metastasis.
Huang et al. reported that upregulation of FGF7/FGFR2 signals can
increase the expression of thrombospondin-1, an extracellular
glycoprotein responsible for cell–matrix and cell–cell interactions,
possibly by activating the PI3K/AKT/mTOR pathway, and finally
lead to enhanced GC cell invasion and migration.440

STAT3 is known to be an oncogene that is hyperactivated in
many types of cancer, including GC.441 The STAT3 pathway is
activated by the binding of an extracellular cytokine such as IL-6 or
an EGF family member such as HGF to the transmembrane
cytokine receptor. Binding triggers the dimerization and transpho-
sphorylation of JAKs, which provide docking sites for STAT3
molecules. The JAK dimers mediate phosphorylation of tyrosine
705 of STAT3, and the activated STAT3 is released from the kinase
complex and subsequently translocates into the nucleus.441 As a
transcriptional factor, nuclear STAT3 regulates the gene expression
of a wide range of genes that are involved in promoting cancer cell
growth, tumor invasion, and chemoresistance.442,443 The STAT3
pathway is significantly involved in the tumor progression and
metastasis of GC. STAT3 signaling was reported to drive EZH2
epigenetic modification, which is associated with advanced TNM
stage and poor prognosis.444 Analysis of patient samples revealed
that increased survivin and STAT3 expression significantly corre-
lated with concurrent H. pylori infection; moreover, their subcellular
localizations are key factors influencing GC progression.445 There-
fore, STAT3 and survivin expressions can be collectively used as
potential prognostic biomarkers and therapeutic targets for GC.
Additionally, JAK2/STAT3 signaling may play a key role in GC EMT
and metastasis induced by IL-6446 or mesothelial-mesenchymal
transition of GC.447 Recent studies on STAT3-related mechanisms in
GC have focused on the regulation by miRNA and long non-coding
RNA (lncRNA). miRNAs and lncRNAs are potential upstream
regulators of STAT that may fulfill their functions as oncogenes

or tumor suppressors by influencing STAT3 expression levels in GC
cells.448–451 Notably, circular RNAs (circRNAs), a non-coding RNA
subclass that serves as competitive endogenous sponges for
miRNAs, thereby negatively regulating miRNAs,452 have been
recognized as potential regulators in GC chemoresistance.453,454

Deng et al.448 recently reported that elevated circVAPA expression
was observed in GC tissues compared to normal tissues; moreover,
circVAPA may promote cisplatin resistance and tumor progression
in GC by modulating miR-125b-5p/STAT3 axis, making it a potential
target for GC treatment.
HIF-1α is the pivotal molecule responsible for cell adaptation to

hypoxia.455 Under hypoxic conditions, the expression of HIF-1α is
upregulated and the inhibition on HIF-1α by hydroxylases is
relieved due to lack of oxygen. The activated HIF-1α translocates
to the nucleus where it acts as a transcription factor exerting
stimulatory or inhibitory regulation on the transcription of target
genes responsible for metabolism, inflammation, vascular home-
ostasis, and tumorigenesis.456 The HIF-1α signaling pathway has
been thought to promote GC progression by mediating tumor cell
proliferation, angiogenesis, EMT, therapeutic resistance, and
inhibition of cell apoptosis.457 HIF-1α expression may be a
predictor of poor overall survival for GC patients.458,459 The HIF-
1α/microRNAs and HIF-1α/lncRNAs axes have been confirmed to
play critical roles in GC progression, metastasis, and chemoresis-
tance. Lin et al.460 showed that hypoxia-induced HIF-1α/lncRNA-
PMAN inhibits ferroptosis of GC cells in peritoneal metastatic GC.
Zhao et al. found that HIF-1α/miR-17-5p axis may contribute to the
tumor growth and metastasis of GC by negatively regulating
programmed cell death 4 (PDCD4).461 On the other hand,
dysregulated miR-27a,462 miR-421,463 and lncRNA-PVT1464 may
be associated with HIF-1α-mediated cisplatin resistance in GC.
Other newly identified HIF-1α-regulating downstream molecules
that are closely related to GC EMT and metastasis include N-myc
downstream-regulated gene 2 (NDRG2),465 CXCR4,466 liver X
receptor α (LXRα),467 and RhoE.468 The underlying mechanism of
HIF-1α-induced angiogenesis in GC may be relevant to the
crosstalk between the HIF-1α pathway and the STAT3 pathway or
β-catenin/VEGF signaling.469,470 HIF-1α has been proven to be a
druggable target, and pharmacologic manipulation of HIF-1α is
under investigation as a novel therapeutic approach to GC.
The Hedgehog signaling pathway not only plays an essential

role in the growth and development of various tissues during
embryonic development but is also an important signaling
pathway necessary for maintaining the homeostasis of recognized
tissues.471 The Hedgehog pathway interconnects with Wnt and
FGF signaling, which is important during embryogenesis and
tissue regeneration.472,473 Through aberrant activation of the
Hedgehog signaling pathway, the upregulation of sonic hedgehog
(SHH) can lead to pathological consequences of multiple types of
cancers, such as gastric, esophageal, pancreatic, and prostate
cancers.474 SHH is expressed in the fundic glands of the human
stomach, and is strongly expressed in embryos.475 The activation
of SHH signaling affects the transcription of cell cycle regulators
such as PTCH1, FOXM1, and CCND2, ultimately modulating cell
proliferation.476,477 PTCH1, an SHH receptor as well as SHH
signaling target, is expressed in parietal and mesenchymal cells.
High expression levels of SHH and PTCH1 are significantly
associated with poor prognosis in GC, and a high expression
level of PTCH1 may be associated with GC progression.478,479

Another SHH signaling target, FOXL1, is also expressed in
mesenchymal cells and may contribute to the functional
maturation of the parietal cell lineage.477 SHH regulates growth
and differentiation within the gastric mucosa through an
autocrine loop and FOXL1-mediated epithelial-mesenchymal
interaction.480 In GC, the upregulation of SHH can indicate an
involvement of autocrine signaling loops and epithelial-
mesenchymal interactions in the regulation of parietal cell lineage
differentiation or maturation.
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The Notch signaling pathway is a highly conserved system that
regulates the function of multiple cell types and plays a crucial
role in cell differentiation, survival, and proliferation. Activation of
the Notch signaling pathway has been observed in tumors. Its
abnormal activation is involved in direct intercellular communica-
tion and plays an essential role in the formation, development,
survival, proliferation, invasion, and metastasis of tumors.481,482

Notch signaling activation is associated with various cancers and
was recently established as a critical pathway regulating gastric
stem cell proliferation and differentiation.483 Notch induces
excessive cell proliferation by upregulating the expression of
nuclear transcription factor NF-κB.484 It also promotes epithelial
cell proliferation and participates in gastric mucosal carcinogen-
esis. The reduction of Notch1 gene expression can inhibit the
proliferation of GC cells and reduce the ability of tumor migration
and invasion.485 Therefore, it is closely related to the occurrence,
development, and metastasis of GC.485 Notch2 can upregulate
PI3K/AKT signaling pathwayto enhance the invasive ability of GC
cells.486 In addition to regulating proliferation, the Notch pathway
regulates the differentiation of gastric antral epithelial cells, acting
in a global manner.481 Therefore, the critical molecular differences
in somatic versus sinus stem cell differentiation regulated by
Notch signaling will be an important area of future research.482,487

Cell junction and cell adhesion proteins play key roles in the
tumorigenesis of diffused GC. E-cadherin (encoded by CDH1 gene)
is an adhesive junction protein. Germline CDH1 gene mutation
leads to HDGC, while somatic mutation of CDH1 is also common in
sporadic diffused GC.41 These findings highlight the key roles of
CDH1 in the formation of diffused GC. CLDN18-ARHGAP fusions are
also common in a subset of diffuse type GC, including GSRCC.51,488

CLDN18 gene encodes Claudin18 protein, a key component of
tight junction, which functions to lock adjacent cells together to
form a barrier between the external and internal environment.489

There are two Claudin18 isoforms, Claudin18.1 and Claudin18.2,
which differ in the first exon of the CLDN18 gene.490 Claudin18.2 is
mainly expressed by differentiated cells rather than stem cells of
the gastric mucosa.490 The expression of Claudin18.2 is main-
tained in a large fraction of GCs. A meta-analysis by Ungureanu
et al.491 demonstrated that Claudin 18.2 expression was observed
in 34.2% of a combined total of 2055 patients in six studies. Xu
et al.52 reported a high expression rate of Claudin 18.2 in
advanced GSRCC patients. In addition, the disruption of cell
polarity in GC exposes the Claudin 18.2 epitope on the surface of
tumor cells, which makes it an ideal target for therapy to have
strong specificity and low toxicity. On the other hand, the ARHGAP
family, represented by ARHGAP26, mediates the hydrolysis of GTP
in RhoA, leading to RhoA inactivation.492 The fusion of CLDN18 to
ARHGAP causes ARHGAP over-expression and over-activation and
RhoA inactivation. A highly prevalent RHOA gene mutation was
also found in recent years by large-scale NGS studies of GC.493

RhoA is a small GTPase-like RAS and plays a key role in regulating
the dynamics of the actin cytoskeleton and cell movement.
However, the role of RhoA in regulating carcinogenesis is
controversial since it is unclear whether RhoA mutation is loss-of
-function or gain-of-function.494 The aberrations of CDH1, RHOA,
and CLDN18-ARHGAP26 are enriched in the GS subset of GC
according to TCGA.41 Understanding the crosstalk of these three
gene aberrations will be key to revealing the mechanisms leading
to tumorigenesis in diffused GC.
Another molecule related to cell adhesion is the trophoblast cell

surface antigen 2 (Trop2) encoded by the TACSTD2 (tumor-
associated calcium signal transducer 2) gene, which is a
transmembrane glycoprotein and calcium signal transducer.495 It
is structurally related to the epithelial cell adhesion molecule
(EpCAM).495 Trop2 was initially discovered in trophoblast cells and
is expressed in many normal human tissues.496 It is involved in
embryonic development and implicated in several oncogenic
signaling pathways, such as ERK/MAPK and NF-κB pathways.497,498

Trop2 has been found to be overexpressed in about half of GC
(47–66% according to two studies).499,500 Trop2 may induce EMT
and metastasis of GC by directly binding to and activating
β-catenin, resulting in the accumulation of β-catenin in the
nucleus to facilitate GC cell migration and invasion.501

The discussed signaling pathways in GC and the identified
biomarkers or potential therapeutic targets are summarized in
Table 2. Studies on molecular mechanisms have led to a better
understanding of how different signaling pathways affect GC
tumorigenesis, progression, metastasis, and resistance to ther-
apeutic drugs. These observations will greatly help to identify new
targets for anticancer drugs and novel biomarkers of diagnosis,
prognosis, as well as personalized treatments for GC patients.

Crosstalk between different signaling pathways in gastric cancer
Studies in the emerging field of systems biology have emphasized
the complexity of signaling webs during tumor progression. p38-
MAPKs activation orchestrates cellular responses by regulating
various downstream targets, such as protein kinases and
transcription factors, including p53. The functional interaction
between p38-MAPKs and p53 appears to occur at multiple levels.
The p53 status can directly affect the outcome of p38-MAPKs
signaling by negative feedback loops in cells with wild-type p53,
altering the biological response of p38-MAPKs activation. Contra-
dictory effects have been reported on the modulation of the p38-
MAPKs pathway in cancer. In accordance with its role in p53
activation, it has been proposed that p38-MAPKs activation could
act as an onco-suppressive pathway; however, there is also
evidence suggesting that p38-MAPK signaling is highly active in
various cancer types and promotes tumor growth.502,503 The
mutant p53 gain-of-function transcriptional target and p38-MAPKs
upstream MKK3 and MAP2K have been reported as targets for
tumor therapy.504,505 In 2021, a study investigating the distinct
molecular landscapes of gastroesophageal adenocarcinoma
(GEAs) patients with different PD-L1 expression levels identified
that tumors with mutations in p53, KRAS, and MAPK pathways
were associated with higher PD-L1 combined positive scores
(CPSs) in the mismatch repair proficiency and microsatellite
stability (pMMR&MSS) subgroup. The data provide potential novel
insights for patient selection according to the status of RAS/MAPK
pathway alterations and p53 mutations and for the development
of rational combination immunotherapies in GEAs.506

Hedgehog signaling is important in the regulation of prolifera-
tion, survival, and growth of various tissues, including the
gastrointestinal tract. Seto et al.507 assessed crosstalk between
MAPK and hedgehog signaling in the control of cell proliferation
in GC. The immunohistochemistry (IHC) results of 35 GC samples
suggested that PTCH expression was significantly associated with
ERK1/2 phosphorylation as well as SHH expression. The RAS/MEK/
ERK signaling cascade positively regulates the transcriptional
activity of glioma-associated oncogene homolog 1 (GLI1), a
nuclear mediator of the Hedgehog pathway, thereby inducing
the expression of hedgehog target genes in GC cells.508 Jayati
et al. found that hedgehog signaling contributes to inducing PD-
L1 expression in GC, and PD-1/PD-L1 inhibition reverses GLI2-
induced tolerance, such that combined inhibition of hedgehog
signaling and immune checkpoints may be suitable for selected
patients.509

PD-1/PD-L1 signaling is regulated by various pathways. In
gastrointestinal stromal tumors (GIST), knockdown of PD-L1
inhibited the expression level of PI3K, p-PI3K, and p-AKT, whereas
the alteration of PI3K/AKT/mTOR pathway blocked PD-1/PD-L1
and attenuated apoptosis of CD8+ T cells.510 Activation of the
PI3K/AKT pathway mediates PD-L1-induced P-gp upregulation in
GC drug resistance.511 Wang et al.416 reported that autophagy
inhibition increased PD-L1 expression by increasing the p62/
SQSTM1 level and activating nuclear NF-κB in GC, which can be
abolished by p62/SQSTM1 inhibition or NF-κB knock down.
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Table 2. The roles and functions of signaling pathways in gastric cancer, and the identified biomarkers as well as potential therapeutic targets

Signaling pathways Roles and functions Biomarkers and potential therapeutic targets

Significant roles in GC Cellular Biological Processes

MAPK signaling
pathway

Prognosis biomarker and related to
chemotherapy resistance

Growth, proliferation, differentiation,
migration, invasion, metastasis,
apoptosis, ROS, cell cycle

CLDN18.2, RTKs, ERK, p-ERK, JNK, p-JNK, p38-
MAPKs, p-p38-MAPKs, MEK, p-MEK, RAS, RAF,
miR29, miR181c, miR-939, miR-592, lncRNA-
MALAT1, lncRNA-CASC2

HER2 signaling pathway Prognosis biomarker and related to
tumor recurrence

Proliferation, differentiation,
migration, survival, metastasis,
angiogenesis

EGFR, HER2/3/4, ERK, p-ERK, PTEN

PI3K/AKT/mTOR
signaling pathway

Diagnosis and prognosis
biomarker, related to
chemotherapy resistance

Proliferation, survival, migration,
invasion, metastasis, cell cycle,
apoptosis, angiogenesis

RTKs, PI3K, AKT, p-AKT, mTOR, p-mTOR, PTEN,
mTORC1/2, p70S6K1, GSK3, PDK1

P53 signaling pathway Prognosis biomarker, related to
tumor recurrence and
chemotherapy resistance

Proliferation, differentiation,
metastasis, cell cycle, apoptosis,
immune response, inflammation

CDK, RPRM, p21, p16, TP53INP1, USF1/2, miR-
17-5p, miR-20a, miR-181a, miR-449, miR-650

HGF/c-MET signaling
pathway

Prognosis biomarker, related to
chemotherapy resistance

Proliferation, survival, hypoxia,
migration, invasion, metastasis, cell
cycle, apoptosis, inflammation

RAS, HPA, CXCL12, CXCR4, miR-15a/16/195

Wnt/β-catenin signaling
pathway

Diagnosis and prognosis
biomarker, related to tumor
recurrence and chemotherapy
resistance

ROS, proliferation, differentiation,
survival, cell cycle, apoptosis,
migration, invasion, immune
response

TCF4, Gpx4, CCL28

NF-κB signaling
pathway

Related to tumor recurrence,
chemotherapy resistance and
radioresistance

Proliferation, survival, invasion,
angiogenesis, metastasis, cell cycle,
apoptosis, inflammation

Bcl-2, BIRC5, TRAF, COX-2, MMP-9,
iNOS, CCND1

TGF-β signaling pathway Prognosis biomarker, related to
tumor recurrence

Proliferation, differentiation,
metastasis, apoptosis, immune
response

SMAD, AMPK

PD-1 signaling pathway Prognosis biomarker, related to
immuno tolerance

Proliferation, survival, metastasis,
apoptosis, immune response

PD-L1/PD-L2, IFN-γ, miR-105-5p

CD28/CTLA-4/
B7 signaling pathway

Immune response CTLA-4, B7-1/2

TIM-3, LAG-3, TIGIT
signaling pathway

Prognosis biomarker, related to
tumor recurrence and immune
tolerance

Apoptosis, immune response Galectin-9, galectin-3, CD-155, CD112

FGFR signaling pathway Diagnosis and prognosis
biomarker

Proliferation, differentiation,
angiogenesis, migration, invasion,
metastasis

RAS, JAK, YAP, miR-590-5p

STAT3 signaling
pathway

Diagnosis and prognosis
biomarker, related to
chemotherapy resistance

Proliferation, invasion, metastasis IL-6, JAK, EZH2, survivin, miR-125b-5p, miR-
143, miR-375, miR-3619-5p, circVAPA

HIF-1α signaling
pathway

Related to chemotherapy
resistance

Proliferation, survival, angiogenesis,
metastasis, cell apoptosis, hypoxia,
metabolism, inflammation

NDRG, CXCR4, LXR, RhoE, HIF-1α/microRNAs,
HIF-1α/lncRNAs

Hedgehog signaling
pathway

Prognosis biomarker Proliferation, differentiation,
cell cycle

PTCH1, FOXM1, CCND2

Notch signaling
pathway

Related to tumor recurrence Proliferation, differentiation, survival,
migration, invasion, metastasis

Jagged1, DLL4, Hes1

MAPK mitogen-activated protein kinase, ROS reactive oxygen species, CLDN18 Claudin 18, RTK receptor tyrosine kinases, ERK extracellular signal-regulated
kinases, JNK c-Jun N-terminal kinases, MEK mitogen-activated protein kinase kinase, RAS rat sarcoma virus, RAF rapidly accelerated fibrosarcoma, CASC2 cancer
susceptibility 2, EGFR epidermal growth factor receptor, HER2/3/4 human epidermal growth factor receptor 2/3/4, PTEN phosphatase and tensin homolog, PI3K
phosphoinositide 3-kinase, AKT protein kinase B, mTOR mammalian target of rapamycin, mTORC1/2 mammalian target of rapamycin complex 1/2, GSK3
glycogen synthase kinase 3, PDK pyruvate dehydrogenase kinase, CDK cyclin-dependent kinases, RPRM reprimo, TP53 tumor protein p53, USF1/2 upstream
stimulatory factor 1/2, HPA human protein atlas, CXCL12 CXC motif chemokine 12, CXCR4 CXC chemokine receptor type 4, TCF4 transcription factor 4, Gpx4
glutathione peroxidase 4, CCL28 chemokine ligand 28, Bcl-2 B-cell lymphoma 2, BIRC5 baculoviral inhibitor of apoptosis repeat-containing 5, TRAF tumor
necrosis factor receptor associated factors, COX-2 prostaglandin-endoperoxide synthase 2, MMP-9 matrix metallopeptidase 9, iNOS cytokine inducible nitric
oxide synthases, CCND1 cyclin D1, SMAD suppressor of mothers against decapentaplegic, AMPK 5′ adenosine monophosphate-activated protein kinase, PD-L1/
PD-L2 programmed death-ligand 1/2, IFN-γ interferon gamma, CTLA-4 cytotoxic T-lymphocyte-associated protein 4, TIGIT T cell immunoreceptor with Ig and
ITIM domains, TIM-3 T cell immunoglobulin and mucin-domain containing-3, LAG-3 lymphocyte-activation gene 3, JAK janus kinase, YAP yes-associated protein
1, IL-6 interleukin 6, EZH2 enhancer of zeste homolog 2, VAPA vesicle-associated membrane protein-associated protein A, NDRG N-myc downregulated gene,
LXR liver X receptor, RhoE rho-related guanosine-5′-triphosphate-binding protein, PTCH1 protein patched homolog 1, FOXM1 forkhead box protein M1, CCND2
cyclin D2, DLL4 delta-like 4, Hes1 hairy and enhancer of split-1
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The extensive crosstalk between TGF-β signaling and other
pathways is a perennial theme of TGF-β research. Several studies
have shown that HER2 signaling interplays intimately with TGF-β/
Smad in regulating mammary epithelial cell biology and breast
cancer progression.512,513 The synergy between the TGF-β and
HER2/RAS/MAPK signaling can induce the secretion of additional
growth factors and cytokines, including TGF-β itself, which in turn
induce EMT and tumor invasion.514,515 Wnt signaling benefits from
extensive crosstalk with other signaling pathways, particularly
TGF-β/bone morphogenic protein (BMP) signaling. Wnt and TGF-β
signaling often interact to ensure normal tissue homeostasis by
modulating the expression of main target genes, and aberrant
signaling conduction in either pathway usually results in
tumorigenesis. Lei et al.516 found that Wnt and TGF-β synergized
in the transcriptional activation of the Wnt target gene encoding
gastrin, a promoter of GC, indicating that Wnt and TGF-β signaling
can cooperate to induce tumorigenesis. Furthermore, the level of
Wnt pathway activation inversely associates with the level of
Hedgehog pathway activation in gastric tissues. Yanai et al.517

demonstrated that the overexpression of glioma-associated
oncogene homolog 1 (GLI1), the nuclear mediator of Hedgehog
signaling, could restrain Wnt transcriptional activity, nuclear
β-catenin accumulation, and proliferation of human GC cells.
Referencing this crosstalk between Wnt and Hedgehog pathways
may be valuable in developing targeted therapy for GC.
The crosstalk of the STAT3 pathway with other tumorigenic

pathways also plays an important role in GC development. In MET-
unamplified GC, HGF derived from cancer-associated fibroblasts
(CAFs) promoted tumor proliferation, migration, and invasion via
the activation of the HGF/STAT3/twist1 pathway. CAFs-derived
HGF can activate IL-6/STAT3/twist1 pathway by upregulating the
expression of the IL-6 receptor.518 Additionally, in vivo experi-
ments revealed that HGF from CAFs promoted tumorigenesis and
metastasis of MET-unamplified GC.518 STAT3/c‐Myc and mTOR/
pyruvate kinase isozyme 2 (PKM2) signaling pathways were
upregulated in human GC. Knockdown of c‐Myc in GC cells
downregulated cell proliferation, and knockdown of both PKM2
and c‐Myc were more inhibitory in GC cells than knockout of c‐
Myc or PKM2 alone. These observations indicate that co-inhibiting
PKM2 and c‐Myc might better antagonize the malignant behavior
of GC and c‐Myc might be considered a potential therapeutic
target for GC.519

Studies have also investigated the crosstalk between down-
stream pathways of integrin and EGFR. By blocking the synthesis
of FAK they detected the effect of crosstalk between EGFR and
integrin signal pathways on the proliferation and invasion in a GC
cell line, SGC7901, and proved FAK to be a key cross point of two
signaling pathways, which makes it a more effective molecular
target for GC therapy.520

Epigenetic modifications involved in different signaling pathways
of GC
Epigenetic alterations refer to the mechanisms of heritable and
reversible regulations on gene expression without changing
genomic DNA sequence. Epigenetic modifications include DNA
methylation, histone post-translational modification, chromatin
remodeling, and change in non-coding RNAs expression. In the
past two decades, many studies have highlighted the active roles
of epigenetic dysregulations in GC initiation and development.
Targeting epigenetic regulators, including the non-coding RNAs,
regulatory genes, and the enzymes involved in DNA methylation
and histone modification--DNA methyltransferases (DNMTs) and
histone deacetylases (HDACs), could be a potential therapeutic
approach.521

DNA methylation is the transfer of a methyl group from the
cofactor S-adenosylmethionine to the C5 position of a cytosine
within CpG islands, which are regions with repeated CG
dinucleotide sequences located at the promotors of most genes.

DNA methylation results in inhibition of gene expression.522 Under
the TCGA classification, EBV-positive and MSI subtypes of GC
tumors generally exhibit a CpG island methylator phenotype
(CIMP) characterized by high DNA methylation levels at multiple
loci, particularly the tumor suppressor genes.41 The CIMP may also
be associated with H. pylori infection.523 In contrast, other GC
subtypes may exhibit global hypomethylation associated with
proto-oncogene activation and genomic instability.524 Alteration
of DNA methylation is considered to be an early event of GC
tumorigenesis, which mostly occurs in genes that regulate cell
cycle (such as CDKN2A, CDKN1B, TP53, SMAD2), DNA repair (such as
MLH1, MSH2), cell adherence (such as CDH1), and cell death (such
as HRAS).524,525 Hypermethylation of CDH1 promotor plays a vital
role in HDGC and is frequently found to accompany CDH1
mutations or loss of heterozygosity as a second hit to inactivate
CDH1.526 Aberrant methylation also affects genes involved in
cancer-related pathways. For instance, hypermethylation of the
DKK3 gene, which is an inhibitory regulator of β-catenin, is
commonly found in GC patients inducing activation of Wnt/
β-catenin and poor survival.527 Hypermethylation of the tumor
suppressor gene ADAMTS9 in GC associates with abnormal
activation of the AKT/mTOR pathway and cancer progression.528

The post-translational modifications of histone, such as
acetylation, methylation, ubiquitination, phosphorylation, and
SUMOylation, are important epigenetic mechanisms for regulating
chromatin structure and gene expression.529 Histone modification
plays an important role in GC development relevant to over-
expression of oncogenes or downregulation of tumor suppressor
genes. Elevated expression of histone deacetylating enzymes
HDAC1 and HDAC2 has been observed in human GC tissue
samples, and correlates with TNM staging and chemoresis-
tance.530 Aberrant upregulation of HDACs is associated with
hypoacetylation of histone, which can lead to downregulation of
tumor suppressor genes. Reduced acetylation levels of histone H3
and H4 have been suggested to be associated with p21
downregulation and GC progression.531,532 Additionally, dysregu-
lation of histone methylation and acetylation is involved in the
progression and EMT of GC by cooperative regulation with PI3K/
AKT and Wnt signaling pathways.533,534

Chromatin remodeling is induced by histone modification and
influences the interaction between chromatin-modifying proteins
and DNA.535 Recent studies have shown that members of the
SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodel-
ing complex family can function as tumor suppressor genes. A
well-studied example is the ARID1A gene. Mutations or deletions
of the ARID1A gene have been detected in 8-25% of GC and are
associated with concurrent gain-of-function mutations of PIK3CA
and microsatellite instability.536,537 Another study by Zhang and
colleagues revealed that ARID1A may function as a suppressor of
GC cell proliferation by modulating PI3K/AKT pathway via
targeting PIK3CA and PDK1. This provides a novel strategy of
using PI3K and AKT inhibitors to treat GC with PI3K and AKT
overexpression due to loss or deficiency of ARID1A.538

Noncoding RNAs (ncRNAs) include lncRNAs, miRNAs, siRNAs,
and PIWI-interacting RNAs (piRNAs). The regulatory, potential
diagnostic, and therapeutic values of certain lncRNAs, miRNAs,
and siRNAs have been discussed in the previous sections or
specific signaling pathways. piRNAs are a class of ncRNAs that
form complexes with PIWI nuclear proteins to cause histone
modifications. Research on the role of piRNAs in GC is still limited.
Several studies have shown differential piRNA expression profiles
in tumors compared to non-tumor tissues, suggesting that piRNAs
can be novel cancer biomarkers. Cheng et al.539 reported that piR-
651 was overexpressed in human GC cells compared to normal
gastric epithelial cells, and individuals at advanced GC stages had
higher expression than those at earlier stages. Furthermore,
restrained growth of two GC cell lines was observed after
inhibition of piR-651, suggesting a potential therapeutic value
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for targeting piR-651. In contrast, piR-823 expression was found to
negatively correlate with GC progression, indicating its tumor-
suppressing function.540 There have been reports that the piRNA/
PIWI complex regulates STAT and AKT pathways in colorectal
cancer and liver cancer;541 however, these interactions have not
yet been reported in GC.
Interplay among different epigenetic mechanisms should be

considered in GC. DNA methylation and miRNAs are involved in
regulatory feedback loops, while siRNAs and piRNAs can regulate
both DNA methylation and histone modification. LncRNAs are
regulated by DNA methylation yet can regulate DNA methylation.
During this process, some lncRNAs interact with miRNAs,542 and
the lncRNA-miRNA-mRNA pathway undergoes another epigenetic
regulatory step before altering target genes in GC tissues.543 A
deeper understanding is needed to establish the foundation for
designing dual or multiple epigenetic-targeting strategies for GC
treatment.

PROGRESS IN THERAPIES FOR GASTRIC CANCER
Current therapies for gastric cancer
Even as chemotherapy, radiation therapy, targeted therapy,
immunotherapy, and other treatment modalities continue to
advance, surgery remains the only radical treatment for GC. The
goal of the procedure is to accomplish radical resection, which
means that the relevant local lymph nodes are eliminated, and the
cutting edge is tumor-free. The two most common surgical
procedures are distal gastrectomy and anastomosis of the
esophagus with the small intestine after total gastrectomy.544,545

The type of procedure for patients who are surgical candidates
depends on the various clinical TNM (cTNM) stages of the tumor28

(Fig. 4). According to the patient’s physical state, individualized
care is required for patients who are unable to undergo surgery.
However, two studies have shown that perioperative treatment,

which contains preoperative neoadjuvant therapy and post-
operative adjuvant chemotherapy, can effectively improve the

5-year survival rate of GC patients.546,547 Preoperative neoadjuvant
therapy not only has good safety, but also significantly improves
the tumor remission rate, R0 resection rate, and 5-year survival
rate without raising the risk of postoperative complications or
mortality, according to the results of the RESOLVE and PRODIGY
clinical trials.548,549 Additionally, the outcomes of two clinical trials,
JACCROGC07 and ARTIST-II, demonstrate that postoperative
adjuvant chemotherapy can induce positive tumor responses,
lower the rate of tumor recurrence and metastasis, and improve
the disease-free survival rate (DFS).548,550

For stage I GC, endoscopic resection, which comprises
endoscopic mucosal resection (EMR) and endoscopic submucosal
dissection (ESD), has demonstrated success for treating early GC
and is thus the primary option unless there is a significant risk
factor, such as lymph node metastasis.551 The criteria for EMR and
ESD have been expanded to include macroscopically intramucosal
(cT1a) differentiated carcinomas >2 cm without ulcer and ≤3 cm
with ulcer, and there is no appreciable difference in long-term
survival, according to the findings of a multicenter, prospective
single-arm research (JCOG0607) in Japan.552 EMR and ESD are
indicated for intramucosal carcinoma with a diameter of <2 cm,
differentiated type, and no ulcer. ESD is indicated for either
intramucosal differentiated carcinoma with a diameter >2 cm and
no ulcer, or intramucosal differentiated carcinoma with a diameter
<3 cm and with ulcer.552

For patients who do not meet the criteria for either EMR or ESD,
gastrectomy combined with regional lymph node dissection D1 or
D2 can be performed by laparotomy or laparoscopy.553 All
perigastric lymph nodes and left gastric artery lymph nodes,
which have the highest risk of metastatic GC, are included in the
scope of lymph node dissection D1.554 Lymph nodes along the
common and proper hepatic arteries, the splenic hilum, and the
splenic artery are all included in the scope of the lymph node
dissection D2.554 According to a Taiwanese randomized clinical
study, patients who underwent gastrectomy combined with
lymph node dissection D2 had a greater chance of survival than

Fig. 4 Current therapies for gastric cancer based on staging. Therapeutic interventions for GC at different stages are illustrated by icons. The
majorly used drugs or regimens of chemotherapy, targeted therapy, and immunotherapy are listed. EMR endoscopic mucosal resection, ESD
endoscopic submucosal dissection. S-1 is an oral agent that is converted to 5-FU in the body, which contains a 5-FU prodrug called tegafur
and the two enzyme inhibitors 5-chloro-2,4-dihydroxypyridine (CDHP) and oteracil potassium (Oxo), in a molar ratio of 1:0.4:1. This figure was
adapted and modified from “Gastric Cancer Staging” by Biorender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
Icons were adapted from Adobe Express

Signaling pathways and therapeutic interventions in gastric cancer
Lei et al.

18

Signal Transduction and Targeted Therapy           (2022) 7:358 

https://app.biorender.com/biorender-templates


those who underwent gastrectomy combined with lymph node
dissection D1.555 To increase the precision of staging and
prognosis, lymph node dissection requires at least 16 lymph
nodes.556

Stage II GC is often treated with laparoscopic gastrectomy
combined with lymph node dissection D2.557 Laparoscopic
surgery has emerged as a superior option to the traditional
laparotomy method. Laparoscopic surgery has been shown to be
safe compared to traditional laparotomy, making it suitable for use
as a standard surgical practice, according to the findings of the
large-scale prospective investigations JCOG0912 and KLASS01
from Japan and Korea.558,559 To improve the tumor remission rate,
adjuvant chemotherapy with XELOX (oxaliplatin plus capecitabine)
or S-1 monotherapy regimens are needed postoperatively.557

Because multiple randomized controlled clinical trials have
demonstrated that increasing radiation therapy does not increase
overall survival (OS) rates following gastrectomy, postoperative
radiation therapy is not advised.560

For Stage III advanced GC, the results of two phase III
prospective randomized controlled clinical trials, CLASS01 and
KLASS02, show that laparoscopic distal gastrectomy combined
with D2 lymph node dissection is safer than traditional
laparotomy, and reduces intraoperative blood loss, speeds up
the recovery of gastrointestinal function, and reduces patient
hospitalization time, with no appreciable difference in long-term
survival.561,562 Preoperative neoadjuvant chemotherapy or che-
moradiotherapy, and postoperative adjuvant chemotherapy are
important for patients with advanced GC.557 Preoperative
neoadjuvant chemotherapy can be administered using a number
of regimens, including the SOX regimen (oxaliplatin plus S-1),563

XELOX (oxaliplatin plus capecitabine), FOLFOX (leucovorin plus
fluorouracil plus oxaliplatin), and FLOT (fluorouracil plus leucov-
orin, oxaliplatin and docetaxel) regimens.564–566 DT45~50.4Gy
coupled with platinum or paclitaxel is used in preoperative
neoadjuvant chemoradiotherapy.567 In most cases, XELOX (oxali-
platin plus capecitabine) or SOX (oxaliplatin plus S-1) are used for
postoperative adjuvant chemotherapy.563,564

Comprehensive therapy is required depending on the patient’s
condition for locally advanced, unresectable GC.568 Concurrent
chemoradiotherapy has been shown in several trials to be more
successful than conventional chemotherapy or radiotherapy in
reducing the tumor resection rate and increasing the remission
rate when the patient is normally in excellent health, and can
prolong the survival time of patients.569 There are three types of
concurrent chemoradiotherapy: (1) DT45~50.4 Gy coupled with
carboplatin and paclitaxel; (2) DT45~50.4 Gy coupled with cisplatin
or oxaliplatin and 5-FU or capecitabine; and (3) DT45~50.4 Gy
coupled with paclitaxel and 5-FU or capecitabine.567,570,571

However, chemotherapy or radiotherapy alone can be used if
the tumor has spread to numerous lymph nodes and the patient
might not tolerate concurrent chemoradiotherapy.572 Patients’
clinical symptoms, such as pain relief and bleeding reduction, as
well as their quality of life, can be improved by radiotherapy.573

Chemotherapy alone can increase the survival rate of patients
with poor overall health condition.574 Currently, 5-FU, cisplatin,
oxaliplatin, paclitaxel, and irinotecan are the most widely utilized
chemotherapy medicines. A phase III clinical trial revealed that the
combination drug’s effective rate and median OS were dramati-
cally increased.575

For Stage IV GC, only systemic antineoplastic medications can
be utilized to extend patients’ lives at this point, because surgery
is no longer an option due to the organ metastases of cancer
cells.576 Chemotherapeutic medicines, molecular-targeted thera-
pies, and immune checkpoint inhibitors are now the most widely
utilized systemic antineoplastic medications. Trastuzumab,40 an
anti-HER2 medicine, and ramucirumab, an anti-angiogenesis
pathway drug, are the two regularly used molecular-targeted
medications. The results of two clinical studies, REGARD and

RAINBOW, demonstrated that patients receiving ramucirumab had
a longer median survival time and OS rate.577,578 In addition, an
immune checkpoint inhibitor PD-1 monoclonal antibody, such as
nivolumab, can be used in the treatment of refractory cancer.46 In
comparison to patients who merely received a placebo and
supportive therapy, participants treated with nivolumab had a
better OS rate, according to a Phase III randomized study
ATTRACTION-2.579

Additionally, supportive care is crucial in the treatment of
advanced GC since it can considerably increase patients’ nutri-
tional and psychological status as well as their survival time.580

Advances in targeted therapy and immunotherapy for gastric
cancer
Currently, the development of new drugs for GC focuses on
targeted therapy and immunotherapy. Although molecular and
cellular evidence suggests many different genes and signaling
pathways play key roles in the initiation and progression of gastric
cancer, only a fraction is druggable. The current druggable targets
reflect the importance of the EGFR/HER2 and c-MET pathways
associated with cell growth, the immune checkpoint pathways
associated with immune escape, and the cell adhesion and cell
junction signaling associated with invasion and metastasis. The
most successful target in GC is HER2, which transduces growth
signaling and induces proliferation, motility, and invasion of cells.
The introduction of immune checkpoint inhibitors, mainly PD-1
antibodies also changed the scheme of GC treatment significantly.
Other druggable targets in GC are growth factor receptors, such as
EGFR, VEGFR, c-MET, and FGFR2, and enzymes involved in
epigenetic regulations like DNMT and HDAC. In addition, a few
membrane proteins that are overexpressed in GC cells, including
Claudin18.2, Trop2, and Mucin 17 (MUC17), are also targeted by
strategies such as antibodies, ADC, bi-specific antibodies, or CAR-T.
These drugs are under fast clinical development, which may
change the picture of GC treatment in the next few years.

HER2-targeted therapies. Drugs targeting HER2, including anti-
bodies, antibody-drug conjugates (ADC), and small-molecule
tyrosine kinase inhibitors, are being developed for cancer
treatment. The monoclonal antibody trastuzumab was the first
agent developed for HER2 targeting and can improve outcomes
among women with HER2-positive breast cancer.581 In GC, the
addition of trastuzumab to standard chemotherapy of HER2-
positive GC may increase the survival of the patients.40

Although widely used, treatment with the HER2 antibody failed
to maintain the control of the tumor, and drug resistance
eventually developed. HER2 ADC was developed to further
enhance the cytotoxicity of HER2 antibodies. Trastuzumab
deruxtecan (DS-8201) is an ADC consisting of an anti-HER2
antibody with the same amino acid sequence as trastuzumab, a
cleavable tetrapeptide-based linker, and a cytotoxic topoisome-
rase I inhibitor exatecan. In a phase II trial, treatment with DS-8201
led to significantly improved response and OS, in comparison to
standard chemotherapy, among patients with HER2-positive
pretreated GC.582 Disitamab vedotin (RC48) is another anti-HER2
ADC containing hertuzumab coupling monomethyl auristatin E
(MMAE) by a cleavable linker. In phase II single-arm trial, disitamab
vedotin showed promising activity with manageable safety in
patients with advanced gastric or gastroesophageal junction
cancer overexpressing HER2.583,584

Zanidatamab (ZW25) is a bi-specific antibody directed against
the two HER2 domains targeted by trastuzumab and pertuzumab,
respectively. Zanidatamab was evaluated in phase I study
(NCT02892123) in heavily pretreated gastroesophageal adenocar-
cinoma patients (including prior HER2-targeted therapy). Zanida-
tamab is well tolerated with promising and durable anti-tumor
activity, both as a single agent and in combination with
chemotherapy, which may be a good candidate drug for
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trastuzumab-resistant GC.585

Small-molecule tyrosine kinase inhibitors targeting HER2 are
also under development for GC treatment. Lapatinib, the first dual
inhibitor of EGFR and HER2, was approved by the US FDA in 2007.
It is suggested for use in combination with chemotherapy for the
treatment of HER2 overexpressing breast cancer.586 In the phase III
TRIO-013/LOGiC trial, lapatinib was tested in combination with
chemotherapy in HER2-positive gastric and esophageal cancer.
Unfortunately, the addition of lapatinib to chemotherapy did not
increase OS.587 In another study, the combination of lapatinib with
perioperative chemotherapy for resectable HER2-positive gastro-
esophageal adenocarcinoma did not improve response.588

EGFR-targeted therapies. Like HER2, EGFR also plays a key role in
various cancer types. Unlike HER2, EGFR is mainly activated
through mutations rather than gene amplification. EGFR gene
mutations, including point mutations and exon 20 insertions, are
driver mutations in non-small cell lung cancer (NSCLC). However,
EGFR mutations in other tumor types including GC are much rarer,
and their clinical significance is unclear. Cetuximab, a monoclonal
antibody targeting EGFR, is effective in treating colorectal cancer.
However, the addition of cetuximab to standard chemotherapy
failed to show any improvement in the survival of GC patients in
the phase III EXPAND trial.589 This study was performed in GC
patients not selected by EGFR status, which may be the reason for
its failure. Another EGFR antibody, panitumumab, also failed in the
phase III trial in unselected GC patients.590 Learning from these
results, researchers tested the anti-EGFR treatment in EGFR-
amplified GC patients. In an early study, researchers identified 19
gastroesophageal cancers with EGFR amplification out of
363 screened patients (5%). The addition of cetuximab to
chemotherapy in this small group of patients resulted in high
tumor response rates.591 Thus, anti-EGFR may be effective in
meticulously selected GC patients. More clinical trials are needed
to prove this preliminary result.

VEGFR-targeted therapies. Blocking angiogenesis has been
attempted in GC treatment with varied results. Angiogenesis is
predominately regulated by VEGF/VEGFR signaling.592 Strategies
for blocking angiogenesis signaling include neutralizing VEGF with
antibodies, blocking VEGF receptors with antibodies, and inhibit-
ing VEGF intracellular activities with small-molecule tyrosine
kinase inhibitors. Unfortunately, targeting VEGF in GC has been
unsuccessful. In the phase III AVAGAST study, bevacizumab, a
monoclonal antibody against VEGF, was tested as first-line therapy
in advanced GC. The combination of bevacizumab with
chemotherapy failed to improve the OS of the patients; however,
bevacizumab treatment was associated with increases in
progression-free survival and overall response rate.593

Targeting VEGFR has achieved positive results in GC. In the
phase III REGARD trial, the VEGFR2 antibody ramucirumab was
tested in advanced gastric or gastroesophageal junction cancer.
Ramucirumab monotherapy showed survival benefits in
patients.577 Apatinib is a selective VEGFR2 small molecule tyrosine
kinase inhibitor approved in China.594 Phase III clinical trial showed
that apatinib monotherapy can increase the OS of repeatedly
treated GC patients.595 Lenvatinib and regorafenib are multikinase
inhibitors with anti-VEGFR activity. These drugs are currently being
tested in combination with immune checkpoint inhibitors to treat
GC in early clinical trials. Some positive initial results have been
observed and the final efficacy needs to be confirmed in larger
clinical trials.596,597

c-MET-targeted therapies. Rilotumumab is a monoclonal antibody
targeting c-MET. In the phase II trial, rilotumumab showed some
anti-tumor efficacy in gastric and gastroesophageal cancer.598

Unfortunately, in the pivotal phase III RILOMET-1 trial, the addition
of rilotumumab to chemotherapy failed to improve the outcome

of gastric and gastroesophageal cancer.599 Currently, research on
c-MET inhibitor drugs mainly focuses on tyrosine kinase inhibitors.
Savolitinib is a selective c-MET tyrosine kinase inhibitor that was
granted approval in China for the treatment of metastatic NSCLC
with MET exon 14-skipping alterations.600 In the VIKTORY umbrella
trial, patients with metastatic GC were assigned to eight different
biomarker groups to receive corresponding targeted drugs as
second-line treatment.601 Savolitinib was assigned to treat
patients with MET amplification. The overall response rate was
50% (10/20). The biomarker-assigned treatment cohort had
encouraging response and survival rates when compared to
conventional second-line chemotherapy.601

FGFR2-targeted therapies. There are two main strategies to target
FGFRs: using TKIs or antibodies. AZD4547 (ABSK091) is an FGFR1/
2/3 inhibitor. The phase II SHINE trial compared AZD4547 with
paclitaxel as second-line treatment for FGFR2 amplified metastatic
GC. Unfortunately, the trial failed to show improved outcome for
those patients.602

Bemarituzumab is a first-in-class monoclonal antibody that
selectively binds to FGFR2b, blocking ligand binding and induces
antibody-dependent cell-mediated cytotoxicity (ADCC). The phase II
FIGHT trial investigated the efficacy of bemarituzumab in the first-
line treatment for metastatic gastric and gastroesophageal cancer
patients. The addition of bemarituzumab to chemotherapy led to a
2-month improvement in progression-free survival (PFS) but failed
to extend the OS. The duration of response was longer in patients
with higher FGFR2b expression.603 This study indicates that
bemarituzumab may be used for the first-line treatment of GC.

Claudin18.2-targeted therapies. Currently, different strategies are
used to target Claudin18.2, including monoclonal antibodies,
bispecific antibodies, CAR-T, and ADCs. Zolbetuximab (IMAB362) is
a Claudin18.2 targeted antibody. The FAST study enrolled
advanced gastric, gastroesophageal junction, and esophageal
adenocarcinoma patients.604 The addition of zolbetuximab to
chemotherapy can improve both PFS and OS. In addition, the side
effects were manageable. The combinination of zolbetuximab and
chemotherapy was generally tolerated. Zolbetuximab is currently
being evaluated in phase III trials (NCT03653507, NCT03504397).
This initial success has attracted more attention to strategies

that target Claudin18.2, especially CAR-T. CT041 is a Claudin18.2
targeted CAR-T drug. In phase I of a clinical trial in patients with
previously treated digestive system cancers, CT041 showed an
acceptable safety profile and encouraging overall response rate
(ORR), as well as a 6-month overall survival rate. These initial
results suggest that CT041 has promising efficacy in treating
GC.605

Trop2-targeted therapies. Sacituzumab govitecan, the first-in-
class anti-Trop2 antibody-drug conjugate (ADC), was approved
by the US FDA in 2020 for the third-line treatment of metastatic
triple-negative breast cancer (TNBC).606 Clinical trials are underway
to expand the use of sacituzumab govitecan in multiple solid
tumors, including GC. In the phase I/II IMMU-132-01 basket trial,
sacituzumab govitecan was tested in refractory metastatic
epithelial cancers.607 Efficacy was seen in several cancer cohorts,
which suggests Trop-2 might be a broad target in solid tumors.
Unfortunately, only five GC patients were included in this study
and efficacy could not be determined. More studies are warranted
to validate the efficacy of sacituzumab govitecan in GC.

Immune checkpoint-targeted therapies and other immunotherapies.
Immunotherapy is a breakthrough in cancer treatment in the last
decade. Immunotherapy in GC has also been progressing very
rapidly. Cancer immunotherapy mainly comprises checkpoint
inhibitors, adoptive immune cell therapy, and cancer vaccine.
Checkpoint inhibitors have been approved to treat various types
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of solid tumors. Other adaptive immune cell therapies and cancer
vaccines are still under clinical investigation in solid tumors.
GCs of MSI or EBV+ subtype according to TCGA classification are

highly immunogenic with high expression of immune check-
points, which makes them good candidates for cancer immu-
notherapy.608 Currently, PD-1 inhibitors have been successfully
applied in GC treatment. The phase III ATTRACTION-2 study
evaluated PD-1 inhibitor nivolumab for repeatedly treated
advanced-stage gastric and gastroesophageal junction (G/GEJ)
cancer.609 According to 2-year follow-up results, OS was sig-
nificantly longer in the nivolumab group regardless of tumor PD-
L1 expression.609 In the phase III KEYNOTE-062 trial, the PD-1
inhibitor pembrolizumab, alone or in combination with che-
motherapy, was tested as first-line therapy in advanced GC. This
trial found that pembrolizumab was not inferior to chemotherapy,
and fewer adverse events were observed.610 Similarly, nivolumab
was also tested as a first-line treatment of advanced gastric,
gastro-esophageal junction, and esophageal adenocarcinoma in
the phase III CheckMate 649 trial.611 Nivolumab with chemother-
apy, compared to chemotherapy alone, resulted in significant
improvements in OS in patients with a PD-L1 CPS of five or
more.611 The PD-1 inhibitor might also benefit HER2-positive GC.
In the phase III KEYNOTE-811 study, pembrolizumab was added to
the standard trastuzumab plus chemotherapy for HER2-positive
gastric or gastroesophageal junction cancer. According to interim
analysis, the addition of pembrolizumab markedly reduces tumor
size and significantly improves objective response rate.612

CTLA-4 is another important checkpoint. The CTLA-4 inhibitor
ipilimumab has been approved in melanoma treatment.613

Unfortunately, targeting CTLA-4 in GC has been unsuccessful. In
a phase II trial in pretreated late-stage GC, ipilimumab was not
superior to supportive care.614 New strategies to combine
inhibitors of PD-1 and CTLA-4 have also been tried. Cadonilimab
(AK104) is a first-in-class PD-1/CTLA-4 bi-specific antibody devel-
oped by a Chinese biotech company. It received marketing
approval from the National Medical Products Administration
(NMPA) of China in 2022 for cervical cancer.615 In a phase Ib/II
study, AK104 was evaluated in combination with chemotherapy
for the first-line treatment of G/GEJ cancer (NCT03852251).
AK104 showed promising activity and manageable safety.616 A
phase III study of AK104 combined with chemotherapy as first-line
therapy for G/GEJ cancer is underway (NCT05008783).
LAG-3 is another inhibitory checkpoint, which can be blocked by

the antibody relatlimab. The combination of relatlimab and PD-1
antibody nivolumab has been shown to be safe and effective in
melanoma.617 Relatlimab in combination with nivolumab is currently
being tested in a phase II clinical trial for the first-line treatment in
patients with G/GEJ cancer (NCT03662659). In another phase Ib
study, relatlimab in combination with nivolumab was tested as an
induction treatment prior to concurrent chemoradiation in patients
with operable E/GEJ cancer (NCT03044613).
Monoclonal antibodies targeting TIGIT can effectively restore T

cell function, exerting an anti-cancer effect.618 Tiragolumab is a
potent TIGIT inhibitor that has entered clinical trials. Study showed
that tiragolumab can enhance the effect of the PD-L1 antibody
atezolizumab in non-small-cell lung cancer.619 Tiragolumab is also
being tested in combination with atezolizumab and chemotherapy
in a phase II, single-arm study for the first-line treatment of HER2-
negative, unresectable, recurrent, or metastatic G/GEJ cancer
(NCT04933227).
Adoptive immune cell therapy is another area of immunotherapy

undergoing rapid development. CAR-T therapy lies at the center of
adoptive immune cell therapy. CAR-T therapy is highly effective in
treating hematopoietic tumors, sometimes leading to the complete
remission of tumors. Several CAR-T therapies have been approved
worldwide so far.620 However, CAR-T therapies have been less
impressive in treating solid tumors, and no CAR-T therapy has been
approved for solid tumors. As discussed earlier, Claudin18.2 targeted

CAR-T is in rapid drug development for GC. Tumor vaccines are still
in early clinical development, and their potential in cancer therapy
needs to be tested vigorously.

Development of targeted therapies under preclinical/early clinical
investigations. Several other targets are under preclinical or early
clinical investigation that hold the potential to change the
treatment of GC in the future. For instance, inhibitors for FAK, a
non-receptor tyrosine kinase that regulates cell adhesion and cell
survival,621 are currently under early clinical investigation. Many
FAK inhibitors have been tested in various cancer types with
disappointing results.621 IN10018 is a FAK inhibitor that showed
robust efficacy in patients with platinum-resistant recurrent
ovarian cancer.622 IN10018 is under evaluation in a phase I trial
in previously treated locally advanced or metastatic G/GEJ
adenocarcinoma (NCT05327231). Interestingly, a recent in vivo
study showed that diffuse gastric cancer with RHO-A mutations
was specifically sensitive to FAK inhibitor.494

Tyrosine receptor kinase (TRK) receptors, encoded by neuro-
trophic receptor tyrosine kinase (NTRK) genes, are predominantly
expressed in neuronal tissue. Fusion of NTRK genes is a driver
mutation;623 however, this kind of mutation is rare (<0.4%) in GC.
The TRK inhibitor entrectinib is approved in the US and Europe for
the treatment of patients with certain types of solid tumors
expressing an NTRK gene fusion.624 GC patients with NTRK fusions
can also be candidates for NTRK inhibitor therapy,625 but the
efficacy of TRK inhibitors in treating GC requires further validation.
DKN-01 is a humanized monoclonal antibody that targets the

DKK1 protein, which modulates Wnt/β-catenin signaling and is a
crucial prognostic factor predicting tumor recurrence and survival
in advanced GC patients.626 The FDA granted an Orphan Drug
Designation to DKN-01 for the treatment of patients with G/GEJ
cancer.627 DKN-01 is also an immunomodulatory combination
partner for the treatment of cancer. In a phase III study, DKN-01 is
under evaluation in combination with PD-1 antibody tislelizumab
for the treatment of patients with locally advanced or metastatic
G/GEJ cancer (the DisTinGuish study; NCT04363801).
AMG 199 is bi-specific antibody targeting CD3 and MUC17 that

was designed to engage CD3+ T cells to MUC17-positive G/GEJ
cancer cells, mediate redirected tumor cell lysis, and induce T cell
activation as well as proliferation.628 A phase I clinical trial is being
conducted to test AMG 199 in patients with MUC17-positive G/GEJ
cancer (NCT04117958).
Strategies targeting DNA methylation and histone modification

to treat GC majorly focus on inhibiting DNMTs and HDACs. Both
DNMT inhibitors (such as 5-azacitidine and decitabine) and HDAC
inhibitors (such as trichostatin A and valproic acid) can re-establish
the expression of the tumor suppressor genes, particularly those
involved in programmed cell death and therapeutic resistance.
This gives them great potential for overcoming resistance by
combination with chemotherapy and radiotherapy in GC treat-
ments.524 In a phase I trial, the DNMT inhibitor 5-azacitidine was
added to the neoadjuvant chemotherapy for GC. The treatment
was well-tolerated with significant clinical and epigenetic
responses.629 5-azacitidine may be worth further investigation in
more clinical trials. In a phase 2 trial, the HDAC inhibitor vorinostat
was added to the standard capecitabine-cisplatin chemotherapy
for first-line treatment of GC. The objective response rate was 42%,
which is acceptable; however, more adverse events were observed
in comparison with the historical data of fluoropyrimidine-
platinium doublet regimens.630 Due to the lack of selectivity and
the incomplete understanding of the pharmacology of these
HDAC inhibitors, side effects are the main considerations.
Comprehensive testing in preclinical models is needed before
HDAC inhibitors can proceed to clinical trials.
As summarized in Table 3 and Fig. 5, the development of

growth factor or growth factor receptor antibodies, small molecule
tyrosine kinase inhibitors, check point inhibitors, and adoptive
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immune cell therapies revolutionized treatment of GC. More novel
therapies developed based on molecular biomarkers and signal-
ing pathways are expected to improve precision medicine for GC.

SUMMARY AND PERSPECTIVES
Compared to chemotherapy, targeted therapy for GC is safer and
more effective. Some molecular-targeted drugs such as trastuzu-
mab and apatinib have also been approved for the treatment of
GC. The development of more effective drugs and the search for
biomarkers with stronger sensitivity and specificity are still major
challenges in the targeted treatment of GC. Owing to the
interpatient and intratumor heterogeneity of GC, developing
personalized therapy for GC patients has been the main demand
in contemporary combat against GC. With the advent of
technologies for genome-wide analysis and the establishment of
novel preclinical models, treatment of GC has been moving
toward precision medicine. The molecular classifications of GC
enable more personalized targeted therapies and immunothera-
pies for GC patients and greater understanding of the molecular
mechanisms underlying GC development, progression, metastasis,
and therapeutic resistance. This has shed light on novel diagnosis/
prognosis biomarkers and potential therapeutic targets. Principal
signaling pathways mentioned here include MAPK, HER2, PI3K/
AKT/mTOR, p53, Wnt/β-catenin, NF-κB, TGF-β, HGF/c-MET signal-
ing pathways, and those involved in immunomodulation. Other
signaling pathways with relatively limited research, such as FGF-
FGFR, STAT3, HIF-1α, Hedgehog, and Notch signaling pathways,
and the cell adhesion/junction-related signaling molecules, have
also been discussed for molecular mechanisms and potential
therapeutic targets. Among the identified targets from the
molecular discoveries, several have at least entered phase II
clinical investigations. These include HER2, EGFR, VEGFR, FGFR2,
Claudin18.2, Trop2, c-MET, and the immune checkpoint molecule
PD-1. However, the molecular mechanisms are generally not
associated with a unique signaling pathway but with crosstalk or
feedback loops. Bypass pathways are critical contributors to
therapeutic resistance when mono-targeted therapy is used.
Therefore, the development and verification of novel combination
regimens are in urgent demand.
The immune checkpoint inhibitor PD-1 monoclonal antibody

has been approved for the first-line treatment of GC. Recently, 18
patients with rectal cancer received nine doses of dostarlimab (a
PD-1 blocker) intravenously for immunotherapy. After 6 months of
treatment, all 18 patients achieved complete clinical remissions.631

This study strongly demonstrates that immunotherapy is the
future trend to treat gastrointestinal tumors. Immunotherapy has
good safety and a durable immune response. With the rapid
development of the high-throughput and whole-exome sequen-
cing for immunologic screening of mutant genes, more
neoantigen-reactive tumor-infiltrating lymphocytes (TIL) will be
identified in GCs, which means more specific immunogenic gene
products can be developed. Therefore, traditional therapy
combined with immunotherapy is the trend in GC treatment.
The timing of immunotherapy, the selection of drug combinations
and combined therapy dose, the management of treating-related
adverse events, and the selection of biomarkers for predicting
clinical efficacy all need further research, but it shows a good
prospect in the treatment of GC.
Although the systematic treatment of GC has evolved rapidly in

recent years, there are still limited drugs available in the clinic.
Innovation is needed to speed up drug development for GC. We
expect breakthroughs to be made in GC therapy by looking deep
into the tumor microenvironment specific to GC, stratifying
patients more precisely using next-generation sequencing (NGS),
and individualizing treatment through organoid-based functional
drug predictions. NGS, like whole-exome sequencing (WES), and
novel technologies, like single cell sequencing for profiling geneticTa
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changes, are the basis for biomarker identification and precision
medicine. However, the complexity of NGS data analysis and its
high cost hinder its application in the clinic. It is important to
lower the cost of clinical NGS sequencing and expand its use to
cover most of the GC patients. This will help the discovery of low-
frequency genetic aberrations and the development of novel
therapies. The complexity of cancer genomics requires fine
stratification of patients to receive corresponding drugs. This
means there are few patients to receive each drug treatment,
which hinders the evaluation of the treatment effect. The umbrella
trial and the basket trial were designed to deal with this issue.632

In an umbrella trial, patients with the same type of cancer are
stratified into different subgroups based on their molecular
profiles, and patients in each subgroup are treated accordingly.
In a basket trial, patients with different types of tumors but the
same targets are grouped. The drug of interest is tested in this
phenotype-heterogeneous but genotype-homogeneous group of
patients. These two novel designs for clinical trials have been used
for new drug discovery and personalized cancer treatment (Fig. 6).
For example, the VIKTORY trial was the largest umbrella trial in GC,
where GC patients were assigned to eight different biomarker
groups based on NGS.601 This study demonstrated the efficacy of
targeted therapy in certain molecular subgroups.
However, biomarker-based precision medicine is restricted by

the low sensitivity and specificity of biomarkers in predicting
sensitivity or resistance to drugs. In addition, most of the patients

lack actionable targets even after extensive biomarker profiling. As
an alternative to biomarker-based drug prediction, functional drug
screening may be a new strategy for cancer precision medicine.
The organoid technology combines stem cell niche and 3D
extracellular matrix (ECM) for in-vitro cell culture. Stem cells can
form organized cell structures resembling their tissue-of-origin at
both cellular and structural levels. When cancer cells derived from
human tumors are cultured under organoid conditions, they can
be expanded and stably passaged like cancer cell lines. The tumor
organoid can faithfully maintain the genotypes and phenotypes of
the original tumor tissue. Most importantly, the tumor organoid
also maintains the sensitivity of the original tumor to drugs. These
features make the organoid an ideal tool for in-vitro functional
drug screening. Observational studies have confirmed the
consistency of organoid-based drug sensitivity to the clinic
response of the patients receiving the same regime.633–635

Researchers around the world, including us, have been trying to
establish patient-derived organoids to guide GC treatment.636–638

It is hoped that organoid-based drug screening will go from bench
to bedside to benefit cancer patients.
Recognition of novel molecular targets has also paved the way for

developing gene therapy as a promising molecular alternative in GC
treatment, including gene silencing approaches to inactivate
oncogenes, replacing defective tumor suppressor genes, introducing
suicide genes, genetic immunotherapy, and so forth. The therapeutic
potential of genetic approaches has been demonstrated in certain

Fig. 5 Overview of targeted therapy and immunotherapy in gastric cancer. The representative therapeutic targets in GC and the
corresponding targeted or immunotherapeutic agents that have entered clinical investigations are depicted. EGFR epidermal growth factor
receptor, MAPK mitogen-activated protein kinase, HER2 human epidermal growth factor receptor 2, PI3K phosphoinositide 3-kinases, FGFR2
fibroblast growth factor receptor 2, VEGFR2 vascular endothelial growth factor receptor 2, FAK focal adhesion kinase, RhoA Ras homolog
family member A, PD-1 programmed death 1, PD-L1/2 programmed death ligand 1/2, ADC antibody-drug conjugate, LRP5/6 low-density
lipoprotein receptor-related protein 5/6, DKK Dickkopf, CTLA-4 cytotoxic T-lymphocyte-associated protein 4, CD3 cluster of differentiation 3,
TIGIT T cell immunoreceptor with Ig and ITIM domains, LAG-3 lymphocyte-activation gene 3, DNMT DNA methyltransferase, HDAC Histone
deacetylases. This figure was created with Biorender.com
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in vitro studies, such as a nanoparticle-delivered siRNA to suppress
oncogene CFL1639 and a CRISPR/Cas9 system-delivered LncRNA
PANDAR (promoter of CDKN1A antisense DNA damage activated
RNA) to interact with p53 and competitively regulate CDKN1A
transcription in GC cell lines.640 Like drug-based therapies, the major
challenge of gene therapy lies in finding a way to circumvent non-
responsiveness, which is caused by immunogenic effects after the
delivery of genetic material. A newly published study reported that
combining p53 mRNA nanotherapy with anti-PD-L1 therapy can
reprogram the immune microenvironment for improved anti-cancer
effects compared to monotherapy.641 This implies that proper
formulation and combination design with an optimized delivery
system will be the key to developing novel targeted therapy,
immunotherapy as well as gene therapy that can circumvent
therapeutic tolerance or resistance.
Beyond any doubt, early diagnosis and effective prevention

strategies are indispensable to reducing the morbidity and mortality
of GC. Lifestyle control and endoscopic screening have been useful
prevention approaches. As H. pylori infection is the dominant risk
factor for GC development, testing for H. pylori and chemo-
eradication have been the primary prevention strategy for GC.642

Additionally, vaccines aimed at eradicating H. pylori are under
development.643 For early medication managements, the identifica-
tion of novel molecular markers driven by the NGS technologies could
improve precision in both diagnosis and therapeutic interventions.
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