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Abstract
The signalling pathways utilised by insulin receptor (IR) and IGF receptor to transduce their diverse effects on cellular

metabolism, growth and survival are well established in broad outline, but many details remain to be elucidated. Tyrosine

phosphorylation of IR substrates and Shc initiates signalling via canonical phosphoinositide 3-kinase/Akt and Ras/MAP

kinase pathways, which together mediate many of the actions of insulin and IGFs. However, a variety of additional

substrates and scaffolds have been described that may play roles in modulating the canonical pathways or in specific

biological responses. This review will focus on recent studies that have extended our understanding of insulin/IGF

signalling pathways, and the elements that may contribute to specificity.
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Introduction

Insulin and the insulin-like growth factors (IGFs)
control many aspects of metabolism, growth and
survival in a wide range of mammalian tissues (Nakae
et al. 2001). Insulin/IGF signalling also contributes to
regulation of lifespan (Narasimhan et al. 2009), while
dysregulation of signalling has been implicated in
neoplasia (Pollak 2008). Although insulin and IGFs
play distinct physiological roles, they utilise the same
signalling pathways, involving phosphoinositide
3-kinase (PI3K) and Akt or Ras and MAP kinase,
which mediate responses to many other cellular stimuli.
In large part, stimulus/response specificity must reflect
the levels of expression of receptors and downstream
targets in different tissues together with combinatorial
effects (Dumont et al. 2002). However, it is widely
assumed that specificity is also imparted by differences
in ligand binding and intrinsic signalling capacities of
the insulin and IGF receptors (IGFRs). This review
focuses on recent advances in understanding receptor-
proximal signalling mechanisms, including factors that
may contribute to specificity of insulin and IGF action.
Receptors

The insulin receptor (IR) exists as two isoforms
differing by the presence (IR-B) or absence (IR-A) of
12 amino acids at the carboxyl terminus of the
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a-subunit, as a result of alternative splicing of the
sequence encoded by exon 11. In the type 1 IGFR,
the corresponding sequence is always lacking. IR-B is
the more abundant isoform in muscle, liver and fat.
Insulin binds with similar affinity to both isoforms, but
IGFs, and particularly IGF2, have greater affinity for
IR-A than IR-B such that IR-A is a significant mediator
of IGF2 action at physiological concentrations. Some
studies have indicated that IR-B may signal more
efficiently to metabolic endpoints and IR-A to mito-
genic endpoints (Belfiore et al. 2009). It has been
suggested that IR isoforms localise to different lipid raft
microdomains within which distinct signalling
complexes are assembled (Leibiger et al. 2010a).

Additional complexity arises from hetero-dimer-
isation of pro-receptors, generating insulin/IGF hybrid
receptors. Both IR isoforms can form hybrids with IGFR
as well as with each other. Hetero-dimerisation occurs
with similar efficiency to homo-dimerisation, so that if
one receptor is expressed in excess, the less abundant
is assembled largely into hybrids. Hybrids bind IGFs
with similar affinity to IGFR, but bind insulin with
substantially lower affinity than IR (Belfiore et al. 2009).
It is unclear whether hybrid receptors have a distinct
physiological role.
Receptor structure

The structure of the IR ectodomain explains many
features of ligand binding (Lawrence et al. 2007).
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Relative to the plasma membrane, the ectodomain
has a folded-over conformation in which the two
half-receptors lie anti-parallel and surround a ligand-
binding pocket. The most significant structural
differences between IR and IGFR are in the regions
governing ligand specificity. Attempts to co-crystallise
ligand–receptor complexes have been unsuccessful
but other evidence indicates that high-affinity ligand
binding involves contacts in trans with both half-
receptors (De Meyts 2008). Despite the dimeric
receptor structure, only a single molecule of ligand
can make all the contacts required to bind with high
affinity and binding therefore demonstrates negative
cooperativity, fitting a harmonic oscillator model
(Kiselyov et al. 2009). The contacts made by individual
ligands and kinetics of ligand–receptor interaction
may influence the extent, duration and perhaps even
the nature of receptor activation. Specificity has been
reported in the responses elicited by different ligands
acting on the same receptor (Jensen & De Meyts 2009).
Receptor trafficking

As well as initiating intracellular signalling, ligand-
induced autophosphorylation triggers internalisation
of ligand/receptor complexes, leading to dissociation
and degradation of ligand in the intracellular endo-
some/lysosome system and inactivation and recycling
of receptors (Foti et al. 2004). However, receptor
internalisation may also play an active role in signalling,
particularly via the Ras/MAP kinase pathway to
‘mitogenic’ endpoints (Jensen & De Meyts 2009).
Internalisation and recycling of IGFR may sustain IGF-
induced Akt phosphorylation (Romanelli et al. 2007).
More controversially, it has been reported that IR
signalling complexes are recruited to specific insulin-
inducible gene loci (Nelson et al. 2011) and that
nuclear IGFR binds to chromatin and acts directly as
a transcriptional enhancer (Aleksic et al. 2010, Sehat
et al. 2010). Sumoylation may play a role in nuclear
targeting of IGFR (Sehat et al. 2010), but the pathways
by which active receptors could traffic to the nucleus
are unclear.
Receptor regulation

Internalised receptors are inactivated by phosphotyro-
sine-specific phosphatases, particularly PTP1B, which
is localised to the cytosolic face of the endoplasmic
reticulum (Dube & Tremblay 2005). IR and IGFR
function is regulated by a variety of mechanisms
(Youngren 2007). The membrane glycoprotein PC-1,
an ecto-nucleotide pyrophosphatase and phospho-
diesterase, binds to the IR a-subunit and inhibits
insulin-induced TK activity (Goldfine et al. 2008).
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SOCS proteins induced by cytokine signalling inhibit
tyrosine phosphorylation of IRSs through competition
at the docking site on the IR (Lebrun & Van
Obberghen 2008). The actions of Grb10 and Grb14
adaptors are potentially complex. It is not clear whether
the expression and function of Grb10/14 are regulated
or they act constitutively. Binding of Grb10/14 to
autophosphorylated IR/IGFR (and some other RTKs)
via their Src homology-2 (SH2) domains inhibits TK
activity and IRS phosphorylation (Holt & Siddle 2005).
However, Grb10/14 also protect phosphotyrosines in
the TK regulatory loop from dephosphorylation,
effectively prolonging receptor activation (Nouaille
et al. 2006, Smith et al. 2007). Grb10 additionally
promotes receptor degradation by recruitment of the
ubiquitin ligase NEDD4 (Vecchione et al. 2003, Ramos
et al. 2006), while both Grb10 and Grb14 recruit
additional protein-binding partners with potential
signalling roles (Holt & Siddle 2005). Gene deletion
studies in mice confirm that Grb10 and Grb14 act as
inhibitors of insulin signalling in vivo, with some
specificity that probably reflects their different
interactions and tissue distributions (Holt et al. 2009).
Expression of the Grb10 gene is imprinted from each of
the parental alleles in a tissue-specific manner, and
ablation of individual alleles has distinct effects on
foetal growth (through maternal allele, widely
expressed) and adult behaviour (through paternal
allele, expressed in brain) which may not be dependent
on insulin/IGF signalling (Garfield et al. 2011).
Canonical signalling pathways

The major signalling pathways by which IR and IGFR
regulate metabolism and gene expression, with central
roles for the serine kinases Akt/PKB and MEK kinase,
are well established (Adams et al. 2004, Cohen 2006,
Taniguchi et al. 2006, Laviola et al. 2007). Activation of
these kinases is dependent on the phosphorylation
of IR substrates (principally IRS1 and -2) and Shc,
leading to activation of PI3K and the small G-protein
Ras (Fig. 1).
PI3K/Akt pathway

IRSs are relatively specific substrates of IR/IGFR,
reflecting the role of IRS phosphotyrosine binding
(PTB) and pleckstrin homology (PH) domains in
recruitment by these receptors (White 2002). IRS2
additionally interacts directly with the tyrosine kinase
domains (Wu et al. 2008). Tyrosine phosphorylation
of IRSs creates binding sites for SH2 domains of various
proteins, notably the regulatory subunits of class Ia
PI3Ks and the adaptor Grb2 and also the phosphatase
SHP2 and the Src family kinase Fyn. The sequence
www.endocrinology-journals.org
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Figure 1 Canonical signalling pathways. The principal components of the PI3K/Akt and
Ras/MAP kinase pathways are indicated: receptors (in red), tyrosine-phosphorylated
substrates (in orange), adaptors and transducers (in yellow and grey), serine/threonine
kinases (in green), serine/threonine phosphorylated substrates and downstream
components (in blue) and negative regulators (in purple).
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context of phosphotyrosines determines specificity of
SH2 binding, the three residues immediately down-
stream being particularly important although such
motifs do not fully explain selectivity (Liu et al. 2010).
In terms of downstream signalling, IRS1 appears to
be linked to glucose homeostasis and IRS2 to regulation
of lipid metabolism (Taniguchi et al. 2005, Bouzakri
et al. 2006, Thirone et al. 2006), though the mecha-
nisms underlying this specificity are unclear. IRS1 and
-2 recruit a similar spectrum of proteins including
PI3Ks, although some differential interactions have
been identified (Hanke & Mann 2009). Functional
specificity might also arise from differences in the
kinetics of phosphorylation or the subcellular local-
isation of IRSs.

IRSs are regulated by feedback mechanisms and
crosstalk from other pathways. IRS1 is phosphorylated
on multiple serine/threonine residues by kinases
downstream in the insulin signalling pathway, including
Akt/PKB, S6K1 and glycogen synthase kinase-3 (GSK3),
and in other pathways, including AMPK, PKCs, Jnk and
IKKb (Boura-Halfon & Zick 2009, Sun & Liu 2009). In
general, serine/threonine phosphorylation inhibits
IRS1 function (by promoting degradation, inhibiting
interaction with IR/IGFR or inhibiting association of
SH2 domains) although phosphorylation at certain
www.endocrinology-journals.org
sites can potentiate IRS1 tyrosine phosphorylation.
Serine phosphorylation of IRS2 has been less studied,
but is likely to be equally complex (Fritsche et al. 2011).
Subversion of physiological regulatory mechanisms
by lipid metabolites, adipokines or inflammatory
mediators is believed to contribute to insulin resistance
associated with pathological states, including obesity
(Boura-Halfon & Zick 2009, Sun & Liu 2009). However,
insulin signalling can also be modulated by other
mechanisms and at other sites downstream of IRSs
(Taniguchi et al. 2006, Hoehn et al. 2008, Li et al. 2010).
Such controls may be tissue specific and, because of the
branching nature of insulin/IGF signalling pathways,
selective in terms of the biological responses affected.
Genome-wide scanning revealed multiple negative
regulators of insulin signalling, including previously
uncharacterised proteins as well as diverse phosphat-
ases and kinases (Huang et al. 2009).

Reversible modification of protein serine/threonine
residues also occurs by O-GlcNAcylation, and is thought
to affect a large number of cytoplasmic and nuclear
proteins. The modification potentially provides a
mechanism of crosstalk with phosphorylation, regulat-
ing protein stability and subcellular localisation and
protein–protein interactions (Zeidan & Hart 2010).
Several components of insulin signalling pathways,
Journal of Molecular Endocrinology (2011) 47, R1–R10
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including IRS1, are transiently modified by O-GlcNAc
following insulin stimulation, and this in turn
modulates their serine phosphorylation and attenuates
insulin signal transduction (Yang et al. 2008). IRS1 is
O-GlcNAcylated at multiple sites in close proximity to
SH2 domain-binding motifs (Klein et al. 2009), and
pharmacological elevation of O-GlcNAcylation inhibits
tyrosine phosphorylation of PI3K-binding motifs
(Whelan et al. 2010). O-GlcNAcylation is a nutrient-
and stress-sensitive modification, reflecting depend-
ence on the hexosamine biosynthetic pathway, and it
may contribute to diabetes-associated insulin resistance
(Slawson et al. 2010).

Both IRS1 and -2 possess multiple tyrosines within
YxxM motifs which, following phosphorylation, recruit
the tandem SH2 domains of class Ia regulatory subunits
(White 2002). Both regulatory and catalytic subunits of
PI3Ks exist as multiple isoforms (p85a/p55a/p50a,
p85b, p55g regulatory and p110a, p110b, p110d
catalytic) that are the products of distinct genes
diversified by alternative splicing (Shepherd et al.
1998). Regulatory and catalytic subunits appear to
associate in all possible combinations, subject to their
relative expression. Regulatory subunits are normally
in excess, competing with active heterodimers for
binding to IRSs and antagonising function by other
mechanisms (Taniguchi et al. 2006). Several studies
have suggested that insulin signals primarily via p110a
although the mechanism for such selectivity is unclear
(Foukas et al. 2006, Knight et al. 2006, Sopasakis et al.
2010). However, other studies indicate roles for
both p110a and p110b in insulin signalling, with evi-
dence of functional redundancy or complementarity
(Brachmann et al. 2005, Chaussade et al. 2007, Jia et al.
2008, Tups et al. 2010).

The lipid product of PI3Ks, PtdIns(3,4,5)P3, induces
the activation of protein serine kinase cascades by
co-recruitment to membranes of phosphoinositide-
dependent kinase-1 (PDK1) and its substrate kinases
Akt/PKB and atypical protein kinase Cs (aPKCs), via
their respective PH domains (Mora et al. 2004). PDK1
activates Akt/PKB and aPKC by phosphorylation of
serine/threonine residues in their kinase regulatory
loops (Pearce et al. 2010). Activation of Akt/PKB
additionally requires phosphorylation of a C-terminal
hydrophobic motif, catalysed by a distinct enzyme, most
probably mTORC2 or DNA-PK (Bozulic & Hemmings
2009). The duration and amplitude of Akt signalling
are controlled by PHLPP, a phosphatase that acts
specifically on the hydrophobic phosphorylation motif
(Brognard & Newton 2008).

Activated Akt/PKB phosphorylates multiple sub-
strates and controls a variety of downstream responses
depending on cell type (Manning & Cantley 2007,
Vasudevan & Garraway 2010). In some cases, phos-
phorylation of targets itself regulates activity, while in
Journal of Molecular Endocrinology (2011) 47, R1–R10
others binding of 14-3-3 protein also plays a role
(Johnson et al. 2010). There are three isoforms of
Akt/PKB encoded by distinct genes, and functional
specificity of isoforms has been demonstrated in
signalling to metabolism and growth (Dummler &
Hemmings 2007, Gonzalez & McGraw 2009, Schultze
et al. 2011). Well-established Akt/PKB substrates
include GSK-3, regulating glycogen synthesis; the Rab
GTPase activating protein AS160/TBC1D4, regulating
glucose transport; the Rheb GTPase activating complex
TSC1/2, regulating mTOR and protein synthesis;
FOXO transcription factors, regulating expression of
gluconeogenic and other genes; and BAD, regulating
apoptosis (Manning & Cantley 2007, Vasudevan &
Garraway 2010). Both Akt-dependent and -independent
mechanisms have been implicated in regulation of
adipose tissue lipolysis by insulin (Berggreen et al.
2009, Choi et al. 2010). The precise functions of
aPKCs are less understood (Hirai & Chida 2003, Rosse
et al. 2010).

Enzymatic and proteomic techniques (Cohen &
Knebel 2006, Choudhary & Mann 2010) and bioinfor-
matic tools (Miller & Blom 2009) have been developed
for the discovery and prediction of cellular substrates of
Akt/PKB and other kinases. However, identification of
potential Akt substrates has outstripped their validation
as important physiological targets (Manning & Cantley
2007). The problem is well illustrated by the finding
that allosteric regulation of glycogen synthase by
glucose 6-phosphate, rather than covalent regulation
by the Akt/GSK-3 cascade, is the major mechanism by
which insulin stimulates muscle glycogen synthesis
in vivo (Bouskila et al. 2010).

Activation of Akt/PKB mediates insulin-stimulated
translocation of GLUT4 glucose transporters in muscle
and adipose tissue (Whiteman et al. 2002), although
aPKCz/l can apparently play a similar role (Farese &
Sajan 2010). Whether activation of either kinase is
sufficient for a maximum response is less clear and
additional mechanisms may also be required. These
include actin remodelling mediated by activation of
Rho family GTPases such as TC10 (Chang et al. 2004)
and Rac1 (Ishikura et al. 2008). It is likely that
regulation is exerted at multiple steps of GLUT4 traffic,
including the release or budding of vesicles from their
storage pool, movement to and docking with the
plasma membrane and fusion with the plasma
membrane (Watson & Pessin 2007, Larance et al.
2008). The Akt/PKB substrate AS160/TBC1D4, whose
Rab GAP activity is inhibited by insulin-induced
phosphorylation, has emerged as a key component of
regulation of GLUT4 traffic although its site of action is
uncertain (Sakamoto & Holman 2008, Chen et al.
2011). The Rabs and their effectors that are activated as
a consequence of AS160 phosphorylation have yet to
be conclusively identified (Sano et al. 2008).
www.endocrinology-journals.org
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Figure 2 Additional pathways and components. Some accessory components
of insulin/IGF signalling pathways are indicated: tyrosine kinases (in red), tyrosine-
phosphorylated substrates (in orange), adaptors and transducers (in yellow and grey) and
negative regulators (in purple).
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Ras/MAP kinase pathway

In common with many receptor tyrosine kinases, IR and
IGFR regulate cell growth-related gene expression via
the Ras/MAP kinase pathway (Avruch 2007). The
pathway is initiated by recruitment of the adaptor/
guanine nucleotide exchange factor complex Grb2/Sos
to phosphorylated Shc and/or IRSs. It is unclear
whether Shc-bound and IRS-bound Grb2/Sos
complexes are equally effective activators of Ras, given
the differences in their abundance, subcellular local-
isation and potential co-recruitment of additional
components. In some cells, Shc is the more important
substrate for Ras/MAP kinase activation (Pruett et al.
1995), while in others, IRS-dependent pathways appear
to predominate (Takahashi et al. 1997). Shc and IRSs
may compete in binding to IR/IGFR and in recruiting a
limited pool of Grb2, and this could influence
signalling to ‘metabolic’ versus ‘mitogenic’ responses
(Sasaoka et al. 2001).

Activation of Ras by Sos depends on mutual
proximity and relief of Sos autoinhibition (Gureasko
et al. 2008). Activated (GTP-bound) Ras in turn activates
the kinase Raf, the dual specificity kinase MEK, MAP
kinase/ERK and further downstream kinases (Ramos
2008). Scaffold proteins play a role in co-ordinating this
cascade, and may influence cellular responses through
effects on signal intensity and duration, localisation of
complexes and recruitment of modulatory proteins
such as phosphatases and ubiquitin ligases (Brown &
Sacks 2009). Functional differences between isoforms
of MAP kinase (ERK1/2) and MAP kinase (MEK1/2)
www.endocrinology-journals.org
have been discussed in relation to cell cycle regulation
(Sturgill 2008).
Additional pathways

Various accessory pathways, kinases, adaptor proteins
and scaffolds have been implicated in modulating
IR/IGFR signalling via PI3K/Akt and Ras/MAP kinase
pathways (Fig. 2).
Redox: PTPs and PTEN

Evidence from cellular studies indicates that activation
of IR/IGFR (and certain other RTKs) promotes
generation of reactive oxygen and nitrogen species,
which inhibit protein and lipid phosphatases including
PTP1B and PTEN by reversible modification of active-
site cysteine residues, and thereby potentiate the effects
of tyrosine phosphorylation and PI3K activation (Gold-
stein et al. 2005, Vardatsikos et al. 2009, Hsu & Meng
2010). The NAD(P)H oxidase homologue Nox4 has
been identified as a likely source of insulin/IGF-
stimulated H2O2 generation (Goldstein et al. 2005,
Meng et al. 2008) but the mechanisms coupling
IR/IGFR signalling to Nox4 activation remain obscure.
Evidence from mouse knockout models confirms that
reactive oxygen species enhance insulin sensitivity
in vivo (Loh et al. 2009), although chronic oxidative
stress contributes to the development of insulin
resistance and diabetic complications (Cheng et al.
2010, Giacco & Brownlee 2010).
Journal of Molecular Endocrinology (2011) 47, R1–R10
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CAP/Cbl pathway: IR and glucose uptake

It has been proposed that stimulation of glucose
transport by insulin involves a second pathway in
addition to PI3K/Akt. This Cbl-associated protein
(CAP)/Cbl pathway is initiated by tyrosine phos-
phorylation of the adaptors APS and c-Cbl (Ahn et al.
2004, Hu & Hubbard 2005), leading to assembly of a
signalling complex that is localised to lipid rafts by
CAP and resulting in activation of TC10, a member
of the Rho family of small GTPases (Chang et al.
2004). Effector mechanisms that might link TC10 to
glucose transport include actin remodelling, assembly
of exocyst complexes and generation of PtdIns3P
(Chang et al. 2004, Falasca et al. 2007). However, the
physiological importance of the CAP/Cbl pathway in
IR/IGFR function is uncertain. The pathway does
not appear to operate in skeletal muscle (JeBailey
et al. 2004), knockdown of key components does not
disrupt insulin-stimulated glucose transport in adi-
pocytes (Mitra et al. 2004) and knockout of APS or
c-Cbl in mice actually improves peripheral insulin
sensitivity (Minami et al. 2003, Molero et al. 2004,
Li et al. 2006).
Other phosphoinositides: class II and III PI3Ks,
PIKfyve

In addition to the well-established roles of class Ia
PI3Ks, class II and class III PI3Ks and PIKfyve may play
roles in signalling (Shisheva 2008a, Falasca & Maffucci
2009). Class II PI3Ks, whose in vivo product is PtdIns3P,
have been implicated in regulation of glucose transport
in muscle (Falasca et al. 2007) and gene expression in
pancreatic b-cells (Leibiger et al. 2010b). PIKfyve, which
synthesises PtdIns5P and PtdIns(3,5)P2 and binds to
PtdIns3P via its fyve domain, is phosphorylated by Akt
and may be involved in GLUT4 translocation (Berwick
et al. 2004). Dysfunction of PIKfyve produces endosome
enlargement and cytoplasmic vacuolation (Shisheva
2008b), suggesting a general role in maintaining
subcellular membrane compartments rather than a
specific role in insulin signalling.
Other potential signalling components

It is outside the scope of this brief review to consider in
detail other proteins that may play roles in insulin/IGF
action, many of them more closely associated with
other signalling pathways. However, in addition to
IRSs, Shc, APS and c-Cbl discussed above, Gabs
(Nishida & Hirano 2003) and DOKs (Mashima et al.
2009) are substrates for IR and IGFR tyrosine kinases.
Insulin and IGFs have been reported to activate non-
receptor TKs, including JAKs (Himpe & Kooijman
2009), Src family kinases (Bromann et al. 2004) and
Journal of Molecular Endocrinology (2011) 47, R1–R10
c-Abl (Sirvent et al. 2008). Other proteins implicated in
actions of insulin or IGFs include SH2-B (an adaptor
protein related to APS) (Duan et al. 2004, Li et al. 2006,
Morris et al. 2009), cytohesins (guanine nucleotide
exchange factors for ARF family GTPases; Fuss et al.
2006, Hafner et al. 2006), the scaffold CNK1 (Lim
et al. 2010), the WD repeat protein RACK1 (Kiely et al.
2008, 2009) and b-arrestins (Luan et al. 2009). The
mechanisms of involvement of these proteins in
insulin/IGF signalling pathways are largely speculative
and require further study.
Conclusion

Many details of insulin/IGF signalling remain to be
clarified, including the specific roles of receptor
isoforms and hybrid receptors; the role of accessory
pathways, kinases and scaffolds in modulating or
supplementing canonical PI3K/Akt and Ras/MAP
kinase pathways; the precise mechanisms underlying
the regulated trafficking of GLUT4 glucose transport-
ers; and the feedback and crosstalk mechanisms that
modulate signalling under different physiological and
pathological conditions. In relation to the long-
standing issue of insulin/IGF signalling specificity,
recent studies suggest that ‘IR and IGFR act as identical
portals for the regulation of gene expression, with
differences between insulin and IGF1 effects due to a
modulation of the amplitude of the signal created by
the specific ligand–receptor interaction’ (Boucher et al.
2010). However, mechanisms that might impart a
degree of specificity to insulin and IGF responses are
still being actively considered, focused largely on the
influence of ligand-binding mechanism and kinetics
(Jensen & De Meyts 2009). In spite of the wealth of
information that has accumulated concerning IR and
IGFR signalling pathways in the 25 years since the
receptors were cloned, the precise nature and even
the very existence of receptor-specific signalling
mechanisms remain enigmatic.
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