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Abstract 

Loss of DNA mismatch repair (MMR) in mammalian cells, as well as having a 

causative role in cancer, has been linked to resistance to certain DNA damaging 

agents, including clinically important cytotoxic chemotherapeutics. MMR-deficient 

cells exhibit defects in G2/M cell cycle arrest and cell killing when treated with these 

agents. MMR-dependent cell cycle arrest occurs, at least for low doses of alkylating 

agents, only after the second S-phase following DNA alkylation, suggesting that two 

rounds of DNA replication are required to generate a checkpoint signal. These results 

point to an indirect role for MMR proteins in damage signalling where aberrant 

processing of mismatches leads to the generation of DNA structures (single-strand 

gaps and/or double strand breaks) that provoke checkpoint activation and cell killing 

Significantly, recent studies have revealed that the role of MMR proteins in mismatch 

repair can be uncoupled from the MMR-dependent damage responses. Thus, there is a 

threshold of expression of MSH2 or MLH1 required for proper checkpoint and cell-

death signaling, even though sub-threshold levels are sufficient for fully functional 

MMR repair activity. Segregation is also revealed through the identification of 

mutations in MLH1 or MSH2 that provide alleles functional in MMR but not DNA 

damage responses and mutations in MSH6 that compromise MMR but not apoptotic 

responses to DNA damaging agents. These studies suggest a direct role for MMR 

proteins in recognizing and signaling DNA damage responses that is independent of 

the MMR catalytic repair process. How MMR-dependent G2 arrest may link to cell 

death remains elusive and we speculate that it is perhaps the resolution of the MMR-

dependent G2 cell cycle arrest following DNA damage that is important in terms of 

cell survival. 
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1. Introduction. 

The DNA mismatch repair system (MMR) repairs base mismatches after DNA 

replication, inhibits recombination between non-identical DNA sequences and 

provokes both checkpoint and apoptotic responses following certain types of DNA 

damage. Defects in MMR are associated with an increased risk of cancer as cells 

deficient in MMR have a ‘mutator phenotype’ in which the rate of spontaneous 

mutation is greatly elevated. The importance of MMR in mutation avoidance is 

highlighted by the finding that inherited mutations in MMR genes cause Hereditary 

Non-polyposis colon cancer (HNPCC), while somatic mutations of MMR genes and 

epigenetic silencing of MLH1 expression are observed in a significant proportion of 

sporadic cancers (1) (2). The MMR system also plays a key role in cell killing in 

response to alkylating agents, the nucleotide analogue 6-thioguanine and the anti-

neoplastic drugs cisplatin and carboplatin. MMR-deficient cells are around 100 times 

more resistant to killing by alkylating agents and are 2-4 fold more resistant to killing 

by cisplatin.  

Much effort has gone towards understanding the mechanisms of MMR, what DNA 

modifications are recognised by MMR, how MMR system couples to cell killing 

mechanisms and, more recently, the search has begun to reveal novel therapies that 

kill tumour cells irrespective of their MMR status or are selective for MMR-deficient 

cells that are resistant to existing chemotherapies. This review will cover recent 

advances looking to address the mechanisms involved in MMR-dependent cell cycle 

checkpoint activation and cytotoxic responses.  

The reader is directed to recent papers that provide in-depth analyses of MMR 

mechanisms and highlight advances in our understanding of the biochemistry of 

MMR (3,4)  
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2. Recognition of DNA damage by MMR. 

Mismatch recognition is mediated by one of two heterodimers of MutS homologues. 

hMutS-α (heterodimer of hMSH2 and hMSH6) binds to mismatches and small 

insertion/deletion loops, whereas hMutS-β (heterodimer of hMSH2 and hMSH3) 

recognizes larger insertion/deletion loops (2, 5-9).  A heterodimer of MutL 

homologues, hMutL-α (hMLH1 and hPMS2 heterodimer), is also essential for 

functional MMR, although the exact role it plays in the repair process is unclear. 

2a. Alkylating agents and nucleotide analogues. 

Cytotoxicity of mono-functional alkylating agents, among them anti-cancer agents 

such as temozolomide, requires a functional MMR.  Mammalian cells proficient in 

MMR are generally around 100-fold more sensitive to alkylating agents than MMR-

deficient counterparts (reviewed in 10,11). The model alkylating agents, N-methyl-N 

'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU) and their 

analogues in clinical use, temozolomide and dacarbazine, produce mainly N7-

substituted bases but are cytotoxic as a result of methylation of the O
6
 position of 

guanine in DNA to form O
6
-methylguanine (O

6
-meG). O

6
-meG can be inactivated by 

the suicide enzyme O
6
-meG methyltransferase (MGMT) that catalyses a direct 

reversal of base methylation (10,12).  Resistance to these agents is associated with 

loss of expression or function of MMR genes, particularly in the absence of MGMT 

(13,14). The persistence of O
6
-meG causes cytotoxicity in an MMR-dependent 

fashion: in the absence of a functional MMR, DNA damage accumulates but does not 

trigger cell death. For this reason, the accumulation of O
6
-meG in MMR-deficient 

cells has been named alkylation or methylation 'tolerance', rather than resistance (10). 

Tolerance to O
6
-meG is associated with cross-tolerance to the base analogue and anti-

metabolite 6-thioguanine (6-TG). The methyl-donor S-adenosylmethionine 
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methylates 6-TG to form S
6
-methylthioguanine (S

6
-meG) in a non-enzymatic reaction, 

which is incorporated into DNA and is structurally similar to O6-meG (15). 

The role of MMR in tolerance to alkylating agents can be explained by the 

recognition and binding of O
6
-meG and S

6
-meG by hMutS . Both O

6
-meG and S

6
-

meG can direct mis-incorporation of T during DNA synthesis. Recognition of these 

mispairs by components of the mismatch repair system leads directly to activation of 

signalling cascades which lead to a prolonged G2 arrest (16) and eventual cell death, 

although the mechanism of  the resulting cell cycle arrest and cell killing are not fully 

understood (see sections 3-5).  

2b. Cisplatin 

Cisplatin [cis-diamminedichloroplatinum
 
(II), CDDP], one of the most commonly 

used anti-cancer
 
drugs, has also been reported to give rise to lesions that are 

recognised by, but not processed by, the MMR system (17-19). The purified hMSH2 

protein binds to DNA containing cisplatin adducts with high affinity and can 

specifically recognize DNA containing a single 1,2-d(GpG) adduct (18).  The binding 

of hMSH2 to DNA containing platinum adducts is selective showing high affinity for 

adducts of clinically effective platinum drugs such as cisplatin but not for trans-

platinum adducts (17). 

The cytotoxic
 
effect of cisplatin is primarily due to its well-described formation

 
of 

adducts with DNA (20,21) which leads to replication arrest, cell cycle checkpoint 

activation and sustained G2 arrest and, if the damage is too severe, cell death. 

However, it is not clear if MutS-α would gain access to 1,2GpG adducts in vivo as 

other proteins are known to bind to cisplatin adducts with high affinity (20,21) and 

other DNA repair pathways such as NER and recombinational repair mechanisms, 

following replication stalling, are primary mechanisms of repairing cisplatin adducts 
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in DNA.  Indeed it can be argued that the 1,3 intra-strand crosslink is the more 

important therapeutic lesion since it is repaired less efficiently than the 1,2 intrastrand 

crosslink and its persistence may lead to replication stalling. 

Tumour cell lines selected in vitro for cisplatin resistance were often found to have 

lost expression of MLH1 or MSH2 (22-24). Cell lines that have lost expression of 

MLH1 or MSH2 are around 2-4 fold more resistant to cisplatin (25-30). Low-level 

resistance is sufficient to allow enrichment of MMR-deficient cells following repeat 

rounds of cisplatin treatment (29,31) and a reduced response to drug in xenografts 

models (29,32). Restoration of MMR in drug resistant MMR-deficient cell line 

models by complementation of the defective gene by chromosome transfer or reversal 

of epigenetic inactivation restores sensitivity, arguing that the differential sensitivity 

is due to MMR activity rather than a mutator phenotype allowing accumulation of 

resistance mutations at loci throughout the genome. Isogenic cell line models using an 

inducible MLH1 expression system confirms that re-expression of MLH1 confers 

low-fold sensitivity to cisplatin (30). 

A number of reports have suggested that MMR deficiency is associated with clinical 

outcome to platinum-based chemotherapy. However, most of these studies suffer from 

small size and lack of statistical power making their interpretation difficult. However, 

there are now several reports in initially chemosensitive tumour types such as 

testicular, ovarian and breast cancer that cisplatin or carboplatin based chemotherapy 

selects for loss of MMR during treatment of patients and is associated with acquired 

resistance (33,145-146). This emphasises the importance of separating intrinsic 

markers of tumour prognosis from acquired clinical drug resistance. The predominant 

mechanism for the loss of MMR in acquired resistance of ovarian tumours appears to 
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be loss of MLH1 expression due to CpG-island methylation and epigenetic silencing 

(22,33). 

Despite these observations, other reports disputing the involvement of MMR in 

cisplatin resistance have emerged in the last few years. It has been suggested that the 

widely used ovarian cancer cell line, A2780, contains a small pre-existing population 

of cells that do not express MLH1 and also harbour a mutation in p53 and that it is 

this p53 mutation and not loss of MMR that makes the most significant contribution 

to cisplatin resistance (34-36). In a similar vein, it is now apparent that a major 

mechanism of inactivation of MMR during drug selection is CpG island methylation 

and transcriptional silencing of MLH1. However, multiple loci become 

simultaneously methylated in these drug resistant variants and MLH1 may be only one 

of several genes whose inactivation can influence drug sensitivity. 

Genetic evidence has also emerged from mice with targeted disruptions in Msh2 (37) 

that question the role of MMR in cisplatin resistance. Mouse embryonic stem cells 

with deficiencies in Msh2 have similar responses to cisplatin (38). However the 

exposure of these cells to low doses of cisplatin resulted in a 2-fold difference in 

survival in clonogenic assays in cells that had lost Msh2 expression and most of the 

surviving clones maintained this resistance level upon further exposure to the drug 

(38). These workers extended their analyses to generated ES cells in which Msh2 

could be inactivated and re-activated de novo using the cre-lox system. Again they 

found no relationship between cisplatin sensitivity and MMR status of the cells (38). 

However, these studies are at odds with other reports in mice that demonstrate an 

association between loss of one or more MMR genes and resistance to cisplatin in 

vitro and in vivo (reviewed in 39,40) and so may reflect variations in MMR 

dependency depending on cell types examined.  
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2.c Other DNA damaging agents.  

The response of cells to other DNA damaging agents has also been reported to be 

influenced by the MMR status of the cell (reviewed in 11). The isogenic 293T cell 

line model derived by Jiricny and colleagues, differing only in MLH1 expression (41), 

was used to test MMR-dependence for sensitivity to IR, topoisomerase inhibitors, 

cross-linking agents (mitomycin C, psoralin/UV and CCNU), MNNG and cisplatin.  

Their evidence supports a role for loss of MMR only in resistance to alkylating agents 

and cisplatin (30). 

3. Models of MMR-dependent DNA damage signalling 

Models have been proposed to explain how DNA damage recognised by MMR 

proteins can lead to cell cycle checkpoint activation and cell death. In one model 

MMR plays an indirect role by initiating futile cycles of DNA repair as damage on the 

template strand is repeatedly processed (42) leading to the generation of double strand 

breaks that are cytotoxic. Another model suggests a direct signalling role for MMR 

proteins i.e. DNA damage is recognised by MMR proteins and, in turn, MMR 

proteins recruit other proteins that relay a signal that permits activation of one or more 

cell cycle checkpoints. In this review we will describe the experimental evidence 

supporting or contradicting these models. In addition we will describe further 

refinement of these models. For instance, recent evidence favours a direct signalling 

role for MMR proteins through both p53-dependent and p53-independent pathways 

(see below). However the details of direct signalling pathways and how they are 

distinguished from the events of normal mismatch repair are unclear. Further studies 

favour an indirect role for MMR proteins in damage signalling: aberrant processing of 

mismatches leads to the generation of DNA structures (single-strand gaps and/or 

double strand breaks) that provoke checkpoint activation and cell killing (43-45). 

 8
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How MMR-dependent G2 arrest may link to cell death remains elusive and we 

speculate that it is perhaps the resolution of the MMR-dependent G2 cell cycle arrest 

following DNA damage that is important in terms of cell survival. 

 4. Checkpoint signalling 

Cell cycle progression is constantly monitored to ensure that the correct sequence of 

events in the process of cell division is achieved and that cells with DNA damage do 

not replicate. Replication and DNA damage checkpoints stop or slow down cell cycle 

traverse and so re-establish the correct order of cell cycle transitions after repair of the 

damage. If repair cannot be effected then the cell is committed to die. For each phase 

of the cell cycle one or more checkpoints have been identified and individual proteins 

may have overlapping or distinct functions in the different checkpoints and indeed, as 

is the case for ATR and Chk1, essential roles in normal division cycles (46,47). 

The initial activation of the protein
 
kinase cascade in response to DNA damage is not 

fully understood, although several protein
 
kinases, such as ataxia telangiectasia, 

mutated (ATM) and ATM-
 
and Rad3-related (ATR), as well as Chk1 and Chk2 are 

established as principal components involved in sensing and responding to replication 

stress and DNA damage (48-50). A simplified general model of response to DNA 

damage is emerging (Figure1). On one hand, arresting DNA replication leads to the 

generation of single-strand DNA (ssDNA) gaps that lead to the recruitment of the 

ATR/ATR interacting protein (ATRIP) complex to these gaps, most likely through 

Replication protein A (RPA) binding to the ssDNA. On the other hand, DNA damage 

leading to double strand breaks results in direct activation of ATM and subsequent 

replication fork arrest, thereby leading to ATR activation. These pathways, however, 

often act in concert depending on the damaging agent and its delivered dose (51).  

 9



MMR-dependent DNA damage signalling 10

The main targets of ATM/ATR-dependent checkpoint signalling in G2 are cyclin B1 

and cdc25C- key regulators of the mitotic kinase cdc2 (52). The activation of cdc2 at 

the end of G2 leads to a commitment of the cell to undergo mitosis and inhibition of 

this kinase following DNA damage plays a key role in the cellular response to 

genotoxic insults. A recent study identified that there are two distinct G2 checkpoints 

associated with DNA damage induced by IR (53). One checkpoint is the response to 

DNA damage in cells that are already in G2 at the time of irradiation and reflects the 

failure of these cells to progress to mitosis. This checkpoint is rapidly engaged but 

transient, ATM-dependent and relatively independent of the dose of IR used. By 

contrast, the later-acting checkpoint is ATM-independent, dose-dependent and 

represents the accumulation of cells in G2/M that had been in G1 or S-phase at the 

time of DNA damage. This later checkpoint is typically what is measured by bulk 

staining of cellular DNA with propidium iodide after DNA damage (53).  Importantly, 

the late G2 checkpoint is not effected by the earlier G2 checkpoint and G2 

accumulation following DNA damage occurs in cells that do or do not activate the 

earlier G2 checkpoint (53). 

The cytotoxicity of alkylating agents is associated with a MMR-dependent 

accumulation of cells in G2 through signaling mechanisms that are not absolutely 

dependent on wild-type p53 functions (16,28,54,55). Cells defective for MMR do not 

arrest in G2 following exposure to alkylating agents and are resistant to the cytotoxic 

effects of these agents. The G2 checkpoint, and sensitivity to alkylating agents, can be 

restored by transfer of human chromosome 3, the normal location of MLH1, or 

chromosome 2, the normal location of MSH2, into cancer cell lines lacking functional 

MLH1 or MSH2 respectively (56,57).  
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Recently, the MMR system has been shown to be required for establishing G2 

accumulation in response to treatment with low doses of SN1alkylating agents and 6-

TG  (41,45). Furthermore, low doses of MNNG induce a G2 arrest that is ATR-

dependent but not dependent on ATM (45). The cells accumulate in G2 after the 

second S-phase following treatment. This suggests that two rounds of DNA 

replication are required for the generation of the checkpoint signal. Both Caffeine and 

UCN-01, drugs that inhibit ATM/ATR and Chk1 respectively, can abolish the MMR-

dependent G2 arrest. However, the effect is only dependent on ATR, not on ATM, as 

decreasing ATR expression, or that of its downstream partner Chk1 using RNA 

interference strategies, prevented the G2 arrest. Checkpoint activation was 

accompanied by the formation of nuclear foci containing ATR, phosphorylated γ-

H2AX, RPA and other DNA repair proteins. These foci persist after DNA damage 

and the authors suggest that they may represent sites of irreparable DNA damage that 

ultimately signal cell killing (45). This report expands on earlier studies and confirms 

that cells treated with MNU or MNNG arrest only after the second S-phase following 

exposure to the drug (41,43).   

It is not clear why cells treated with MNNG do not arrest after the first S-phase 

following mismatch generation and recognition by MMR system. It has been 

proposed that mismatch recognition takes place and the resulting processing leads to 

the generation of intermediate structures, nicks and/or single-strand gaps in the DNA 

that are not sufficiently frequent and/or sizeable to activate checkpoint pathways. In 

the subsequent S-phase, these single-stranded gaps opposite the O
6
-meG residues 

would be further processed to generate DSBs leading to collapse of the replication 

forks and ATR-dependent checkpoint activation. These DSBs would require to be 

repaired by recombination and could lead to sister chromatid exchanges and other 

 11



MMR-dependent DNA damage signalling 12

chromosomal aberrations. Notably, it has been reported that treatment of MMR-

proficient cells with methylating agents increases the frequency of SCEs  (43,58).  

In a follow-on study, Kaina and colleagues suggest that ATM might protect cells from 

the cytotoxicity of MNNG by permitting efficient repair of secondary damage 

resulting form MNNG exposure (SCEs and other chromosomal aberrations) that 

otherwise would promote cell killing (59). The number of chromosomal aberrations 

detected in the ATM-/- cells was significantly greater than ATM+/+ cells only after 

the second mitosis after MNNG treatment (59).  When this study is viewed in the light 

of the results of Stojic et al.(45), who found that the downstream target of ATM, 

Chk2, was activated only 48hr. after MNNG treatment in MMR-competent L-

α+ cells, there appears to be a clear interrelationship between MMR/ATR-dependent 

cell cycle arrest and ATM/Chk2 signalling following treatment with low doses of 

MNNG or TMZ: such cells can only complete a successful mitosis if the damage 

provoking G2 arrest is repaired by DSB repair, principally by recombination 

controlled by ATM (11).  

However, the model above is at odds with some key aspects of other earlier studies, 

one of which described a G2 arrest following the first S-phase after MNNG treatment 

(60) and another that demonstrated a rapid activation of ATM following MNNG 

treatment (61). Significantly, the study by Adamson and co-workers used relatively 

high concentrations of MNNG (10 and 25µm respectively). Jiricny and colleagues 

have argued that such high concentrations of drug might result in other DNA repair 

pathways, for example BER, processing alkylation damage leading to rapid activation 

of ATM/ATR-dependent checkpoint responses (11). 

There remains one outstanding discrepancy between the findings of Jiricny and 

colleagues and a recent study (62). Wang and Qin found that ATR and its interacting 
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partner, ATRIP, co-immunoprecipitate with MSH2 from HeLa cells and function to 

regulate the phosphorylation of Chk1 and SMC1 (structural maintenance of 

chromosome 1) and for activation of an S-phase checkpoint that is independent of 

ATM (62). Their data support a model where MSH2 and ATR function to regulate
 

signalling pathways in response to MNNG that branch: phosphorylation/activation
 
of 

Chk1 by ATR requires checkpoint proteins Rad17 and replication
 
protein A and leads 

to activation of an S-phase checkpoint. The other branch constitutes phosphorylation 

of SMC1 by ATR, which is independent
 
of both Rad17 and RPA. This demonstrates 

that the signalling
 
pathway leading to SMC1 phosphorylation is distinct from that

 

mediated by Chk1 with the phosphorylation
 
of SMC1 being required for cellular 

survival following MNNG treatment but not for checkpoint activation.   

A recent report has also highlighted a genetic link between mismatch repair and ATR 

demonstrating that ATR haploinsufficiency results in a high degree of genetic 

instability and accelerated tumourigensis in cells that are defective for MMR (63). 

This suggests that monoallelic ATR gene inactivation may be positively selected for 

during tumour formation as this would drive further genetic instability in a MMR-

deficient background (63). This would provide a rationale for the observed ATR 

mutations in tumours deficient for MMR (64,65). Fang et al also reported a 

constitutive association between ATR-ATRIP and MLH1 and suggest that MutL 

complexes function as DNA damage sensors or processing factors for coupling 

damage to ATRIP-ATR-mediated responses and that MMR/ATR interactions may be 

involved in maintaining the fidelity of recombination (63). 

An alternative or additional role for ATM in the MMR-dependent G2 checkpoint has 

also been postulated. A recent study has demonstrated that the early-acting ATM-

dependent G2 checkpoint is lost in MMR-deficient (Msh2
-/-

) MEFs when treated with 
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cisplatin (66).  This suggests that Msh2-dependent processes are rapidly engaged to 

trigger the transient, early G2 checkpoint. These authors propose that this is consistent 

with post-translational regulation of MMR in the acute response to DNA damage 

(66). Other reports support this assertion, demonstrating a role for MSH2 in activation 

of the early G2 checkpoint and recombinational repair following low-dose IR (67), 

while other reports have provided evidence that the nuclear accumulation and 

efficient mismatch recognition by MutS-α is regulated by phosphorylation (68,69) 

and that there is a rapid redistribution of MutL-α to the nucleus following DNA 

damage (70).  

Like the ATM/ATR kinases, activation of stress-activated protein kinases, in 

particular p38, can also promote G2 arrest by delaying cdc2 activation via p53/p21-

dependent and independent mechanisms (71,72, reviewed in 73), most likely through 

activation of the downstream kinase MAPKAP kinase-2, that these authors suggest 

may be a ‘Chk3’ DNA damage effector kinase (74).  

A recent study using both pharmacologic
 
and genetic approaches revealed that 

p38α is necessary for the linkage of methylating
 
agent-induced DNA damage to the 

G2 arrest in glioma and colon cancer cell lines treated with Temozolomide  (75).  

These authors also demonstrated that processing of O
6
-meG lesions by the MMR 

system was critical for p38α 
activation in response to methylating agents, because 

only MMR-proficient
 
cells exhibited Temozolomide-induced p38α activation and G2 

arrest, and
 
only after selective depletion of O

6
-meG repair capacity (75).

 
The exact 

nature of the DNA damage that triggers the biphasic p38
 
activation following TMZ 

exposure and the pathways that link
 
this damage to p38 activation remain unclear. 

Interestingly, p38α appears to act downstream or independently of Chk1 and Chk2 as 

these checkpoint kinases remained active (phosphorylated) following 
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pharmacological blockade of p38 or diminution of p38α expression using RNA 

interference, even though cdc2 inhibition was relieved, most likely through restored 

cdc25C activity (75). The outcome of p38 blockade was, however, mitotic catastrophe 

and so it is possible that p38 may have a role in proper recovery from G2 arrest and/or 

the subsequent mitosis.  

A failure to activate p38 in response to cisplatin treatment correlates with resistance to 

cisplatin (76,77) and this is consistent with the idea that p38 family members play a 

role in cisplatin-mediated cell killing.  It has also been shown that cisplatin treatment 

leads to phosphorylation of histone H3 at Ser10 and that this phosphorylation is 

dependent on p38 activity (78). Phosphorylation of serine 10 of histone H3 is 

associated with mitotic and meiotic chromosome condensation (79-81). Although the 

exact role of this histone phosphorylation is not understood, these data suggest that 

there may be a direct link between H3 Ser10 phosphorylation and cisplatin 

cytotoxicity.  

Another study, examining MMR-dependent cell cycle arrest mediated by 6-TG 

revealed a role for PKB/Akt, that plays a role in the completion of G2 and M during 

an unperturbed cell cycle (82), both in overcoming the cell cycle arrest and cell killing 

associated with 6-TG exposure (83). Three direct targets for PKB that are likely to 

play a role in the PKB-mediated abrogation of 6-TG induced G2 arrest have been 

identified. In the first case, BRCA1, which is a substrate for PKB (84), and which is 

also known to interact with MMR proteins (85,86) and play a key role in G2 arrest 

following DNA damage (87,88). In the second case, it has been shown that activated 

PKB can inhibit Chk1 by direct phosphorylation on Ser280 and this impairs Chk1 

kinase activity in response to IR or replication stress (treatment with hydroxyurea) 

(89). It has also been shown that dephosphorylation of an ATR site of Chk1 is 
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essential for recovery from G2 arrest, at least in S.pombe (90), and most likely in 

human cells. 

5. Cell Death Signaling and MMR 

Alkylating agents, including those in common use as cancer chemotherapeutic agents, 

kill cells mainly through apoptosis resulting from the cellular response to 0
6
-MeG 

(43,91). Two opposing DNA repair pathways govern cytotoxicity, one by direct repair 

of 0
6
-MeG via an alkyltransferase, O

6
-meG methyltransferase (MGMT) (92) the other 

via mismatch repair.  

As the apoptotic response to alkylating agents is strictly dependent on MMR, it has 

been argued that recognition or processing of DNA damage by MMR proteins is 

required for induction of p53 and/or p73 and subsequent apoptotic events. 

Conversely, loss of expression of MMR leads to tolerance of alkylated DNA and may 

lead to reduced competence for activation of apoptotic pathways.  

The tumour suppressor p53 is rapidly stabilised in MMR-dependent manner in cells 

following exposure to alkylating agents (17,93,94). However, induction of apoptosis 

in MMR-proficient cells does not appear to require wild-type p53 function (41,94), 

although there may be a degree of cell-type specificity in the choice of apoptotic 

programme utilised in response to 0
6
-MeG as other workers have examined 0

6
-MeG-

dependent apoptosis in rodent cells, CHO cells and normal human lymphocytes and 

found that the extrinsic ‘death receptor’ pathway and p53 are crucial components of 

the apoptotic response to MNNG and Temozolomide  (43,95,96).  

A recent report sought to address the relative roles of the mitochondrial and death 

receptor pathways in response to 0
6
-methylguanine (97). There was a MutSα-

dependent activation of caspases-2, -3, -8, and -9 in response to MNNG exposure. 

However, using specific caspase inhibitors, they observed only a minimal requirement 
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for these proteases in the cell death program triggered by 0
6
-MeG mispairs which they 

also reported to be strictly dependent on mitochondrial death signaling but not death 

receptor signaling. Significantly, overexpression of either Bcl-2 or Bcl-Xl could 

effectively block apoptosis but could not prevent loss of clonal survival of the cells 

demonstrating that the cells ultimately do die but not by apoptosis (97). Non-

apoptotic, MMR-dependent cell death has also been reported for MNNG (41,45) 

although the ultimate response to alkylating agents is likely to be complex with the 

demise of the cell a result of either apoptosis, mitotic catastrophe or senescence-like 

state and, with high doses of alkylating agents, by a regulated form of necrotic death, 

which may or may not be MMR-dependent (98,99). So, it appears that mismatch 

repair status, rather than p53 status, is a strong indicator of the susceptibility of cells 

to alkylation-induced cell death. 

For cisplatin, it has been reported that cells are killed following drug treatment 

through signalling pathways that are regulated by MMR and p53 acting largely 

independently to promote cell killing (34, 100,101). A prominent role has been 

established for an MMR-dependent signalling pathway that requires the tyrosine 

kinase c-Abl. Cisplatin exposure leads to activation of c-Abl and JNK kinases and 

resultant stabilisation of the p53 family member p73 in a MMR-dependent manner 

with subsequent cell death by apoptosis (102). In addition, recent studies have 

confirmed the importance of p73 for cell killing after DNA damage (103) and in 

chemoresistance (104).  

The p73 gene encodes carboxy-terminal splice variants that are pro-apoptotic 

isoforms (transactivation-competent; TA) as well as variants that lack the 

transactivation domain, so called ∆N isoforms, that are anti-apoptotic (105). The ∆N 

isoforms are thought to act by blocking transactivation of target genes of both TAp73 
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and p53 (106). All forms of p73 are phosphorylated and stabilised by c-Abl, 

suggesting that the outcome to c-Abl activation i.e. cell death or survival, might be 

dictated by the ratio of TAp3/delta-p73 isoforms in the cell (107).   

The transcription factor E2F1 directly transactivates p73, causing transcription of p53 

target genes in a p53-independent manner, and apoptosis. E2F1 is released from pRb 

during G1 exit, and so the induction of p73 can occur only in early S phase. It will be 

interesting to see whether c-Abl-induced apoptosis via p73 is dependent on released 

E2F1, which would explain why Abl induces apoptosis only after pRb 

hyperphosphorylation in early S phase.  

Another report has demonstrated that, in response to cisplatin exposure, PMS2 can 

directly bind and stabilise p73 and enhances its pro-apoptotic activity, thus providing 

a direct link between MMR and apoptotic signalling (108). Work from our laboratory, 

demonstrating a direct interaction between MLH1 and c-Myc, support the suggestion 

of a direct link between MMR and apoptotic signalling (109). Indeed, p73 and c-Myc 

have been shown to interact directly (110,111), so it could be argued that p73/Myc 

and MLH1 may form part of a signaling pathway/module involved in  determining 

cell fate in response to DNA damage. 

Although MLH1 expression is required for c-Abl activation and subsequent p73 

stabilisation it is not known how MLH1 accomplishes this (112). Recent reports 

demonstrate that post-translational modifications, including phosphorylation and 

acetylation, which appear to be tightly coupled with p300-dependent acetylation 

(113), in which prior c-Abl-mediated phosphorylation is a pre-requisite, enhances 

p73-dependent transcriptional activation of pro-apoptotic genes. Recent work has 

established that recognition of c-Abl phosphorylated Y99 of p73 by Pin1, an enzyme 

that mediates cis/trans isomerisation of proteins at phosphoserine-proline or 
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phoshothreonine-proline motifs, promotes the conformational changes in p73 that lead 

to its stabilisation (114). Pin1 has been implicated in the G2-M transition of the cell 

cycle most likely through its interaction with a number  of mitotic phosphoproteins, 

including Polo-like kinase-1 (Plk1) and cdc25C (115).   

Other workers have demonstrated that p73-α is negatively regulated by 

phosphorylation in G2/M, most likely by cyclin B-cdc2 (116,117). In addition, 

another report has demonstrated that Chk1, but not Chk2, interacts with and 

phosphorylates p73- α on ser 47 in vivo, and that phosphorylation of p73 by Chk1 is 

associated with enhancement of p73 transactivation capacity (118,119).  

Cell cycle and DNA-damage dependent activation of p73 then appears to be crucial to 

coupling the G2 checkpoint in response to DNA damage to cell killing.  What role, if 

any, MMR/MLH1 plays in control p73 post-translational modifications in response to 

alkylating agents and cisplatin merits further investigation. 

6. Expression-level effects of MMR proteins and separation-of-function mutants.  

While the role of individual protein components in the process of mismatch repair 

(MMR) has been studied extensively, much less is known about the regulation of 

MMR, although it does appear to occur mainly at a post-translational level as RNA 

for MMR components appear to be constitutively expressed throughout the cell cycle. 

However, recent findings suggest that the established effect of Bcl-2 to stimulate 

mutagenesis is likely due to the ability of this protein to suppress MSH2 gene 

expression by preventing the inactivation of pRB and subsequent release of E2F 

transcription factors that activate MSH2 transcription (120). In addition, hypoxia-

inducible factor (HIF-1α) can also hinder transcription of MSH2 and MSH6 by 

displacing c-Myc from the promoter of both MMR genes (121), although this study, 

conducted using HCT116 cells, is at odds with an earlier study in mouse and other 
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human, tumour-derived cell lines, that reported a specific decrease in MLH1 mRNA 

only in response to HIF-1α induction (122)  

At the level of protein expression, cells lacking one partner in a heteroduplex involved 

in MMR also express low levels of the other partner, in spite of normal levels of 

RNA, suggesting that MMR protein stability is coupled tightly to the stability of its 

cognate partner (41,123-126). Heterodimer formation by MMR subunits also serves to 

provide an additional level of control as dimerisation of MLH1 and PMS2 appears to 

regulate the nuclear import of the heterodimer (70). 

There is a growing body of experimental evidence indicating that the level of 

expression of MMR proteins can influence the cellular response to cytotoxic drugs. 

Cells expressing reduced levels of MLH1 or MSH2 have almost normal levels of 

MMR activity, do not display microsatellite instability but are more tolerant to DNA 

damaging compounds. This has important implications for the treatment of cancers 

that are not defective for MMR but are compromised for MMR-dependent responses 

following DNA damage. 

There is no evidence for haploinsufficiency for MMR repair in humans and tissue 

from people heterozygous for MLH1 or MSH2 does not exhibit MSI (127,128). 

However, an examination of lymphoid cells from HNPCC patients heterozygous for 

MSH2 express around half of the normal level of MSH2 and, while these cells are not 

significantly compromised for MMR, they are resistant to Temozolomide (129).  

Two recent papers also reveal dominant effects of mis-sense mutations in Msh2 (130) 

and Msh6 (131). Cells from mice expressing an Msh2 mis-sense mutation (G674A) 

were MMR-deficient but retained a normal apoptotic response to DNA damaging 

agents but the mice were highly cancer prone (130). Similarly, mice with an Msh6 

mis-sense mutation (T1217D; Msh6
TD

) are also cancer-prone. 
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This suggests that defect in MMR alone is sufficient to drive tumourigenesis in these 

mice, albeit with a delayed tumour onset with respect to the corresponding 

homozygous-null mice, indicating that the MMR-dependent damage response 

function could protect from the early occurrence of tumours (130,131). 

In both rodent and human cell lines engineered to express a MMR protein for which 

they are defective, albeit at a relatively low level, the resulting cells are MSI stable 

but are compromised in their responses to DNA damaging drugs. One group has 

shown, using independent gastric carcinoma cell lines, that microsatellite instability is 

associated with genetic alterations to MLH1 or MSH2 but not with relatively low 

levels of expression of these proteins. However, responses to alkylating agents were 

compromised in the cell lines expressing low levels of MLH1 or MSH2 (132,133). 

These authors suggested that MMR proteins may function in distinct ways in 

mismatch repair and responses to alkylating agents.  Similarly, human colon cancer 

cell lines that re-express low levels of ectopic MSH6 corrected MSI but did not 

restore sensitivity to alkylating agents again suggesting that MMR proteins function 

beyond the mismatch repair pathway to determine the outcome following DNA 

damage  (134). 

Mouse embryonic stem cells engineered to express 10% of the wild-type level of 

Msh2 are competent for MMR, reverse their mutator phenotype and suppress 

homologous recombination yet are as tolerant to MNNG as Msh2
-/-

 cells (135). 

Methylation tolerance is also associated with a low level of MLH1 expression. Using 

a derivative of the Human embryonic kidney cell line 293T engineered to express a 

doxycycline-regulated allele of MLH1 Jiricny and colleagues demonstrated that low 

levels of MLH1 could correct MMR in the 293T cell but the cells remained as tolerant 

to MNNG as the parental line (41). 

 21



MMR-dependent DNA damage signalling 22

Another recent report demonstrated that MLH1 D132H variant is associated with 

susceptibility to sporadic colorectal cancer but these cancers do not display MSI 

(136). This variant of MLH1 has attenuated ATPase activity and the authors speculate 

that this may result in uncoupling MMR from apoptosis mediated by MLH1 in 

response to chemotherapy (136). 

The revelation that the MutS-α complex from the Msh6
TD

 mice can bind to damaged 

DNA and mediated apoptotic signalling in response to cisplatin, MNNG and 6-TG 

exposure supports the ‘signalling’ model where MutS α is a direct damage sensor and 

excision and processing of damaged DNA is not required for a MMR-dependent 

apoptotic signal (131). This is at odds with the experimental evidence reviewed in 

section 4, which suggests that recognition of DNA damage is not sufficient for cell 

checkpoint activation and killing. How do we reconcile these apparent discrepancies? 

One possibility is that MMR-dependent cell killing is biphasic, with an early phase 

apoptotic response that is not dependent on mismatch processing, and a late-phase 

mitotic catastrophe that is dependent on prior checkpoint activation and cell cycle 

arrest. Another possibility, supported by emerging experimental findings, is that 

MMR proteins function in DNA damage response pathways in addition to MMR 

(Figure 2) or another possibility is that there may be different processing steps and 

outcomes from normal mismatch repair compared with repair/processing of DNA 

damage, even though both are conducted by the MMR system.  

The studies described above have important implications for clinical examination of 

MSI and its use to govern the course of therapy for patients. If MMR capacity can be 

significantly reduced without affecting MMR efficiency, but does compromise the 

lethal processing of drug-induced DNA damage, then this may suggest that cancer 
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cells not displaying MSI may still have a compromised MMR-dependent apoptotic 

response with implications for the outcome of cancer chemotherapy. 

7. But how does G2 arrest relate to cytotoxicity? 

Given that the recent findings discussed above have revealed that the G2 arrest in 

response to alkylating agents is strictly dependent on mismatch repair activity, yet 

parallel studies have revealed that the role of MMR proteins in the repair process can 

be uncoupled from the MMR-dependent cell killing response, it is unclear precisely 

how G2 arrest relates to cytotoxicity. The absence of a simple correlation between the 

extent and duration of G2 arrest and cell killing by methylating agents suggests that 

cell cycle arrest reflects the processing by MMR of both lethal and non-lethal DNA 

damage (55). Both sub-lethal and lethal doses can induce cell cycle checkpoints that 

are indistinguishable, suggesting again that it is not checkpoint activation per se that 

is important but how the checkpoint is resolved that determines the cell’s fate, or 

more correctly, if the damage sustained can be corrected prior to or just after mitosis 

in the next G1 phase or is tolerated (i.e. does not provoke mitotic catastrophe) during 

mitosis and into the next G1 phase.  

The possible outcomes following MMR-dependent G2 arrest  are complicated. The 

prolonged arrest is associated with the appearance of cells that display a senescence-

like phenotype while another population appears to recover from G2 arrest but 

undergo mitotic catastrophe. A third subgroup represents cells that successfully 

resolve G2 arrest and complete mitosis and remain viable (75). Hirose et al suggested 

that inhibiting p38-α may have a dual effect: inhibiting senescence, and therefore 

permitting apoptosis, and also inhibiting the ability of the cells to recover from an 

aberrant mitosis (75).  
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A lot of attention and interest has gone towards unravelling the sequence and details 

of phosphorylation of protein substrates that activate cell cycle checkpoints. Recently 

attention has turned to unravelling the mechanisms that control the de-

phosphorylation of checkpoint proteins and restarting cell cycle traverse. A number of 

findings point to Chk1 kinase as a key regulator of checkpoint maintenance and 

resolution and subsequent mitotic exit (137-141) and recent studies have begun to 

reveal phosphatases that regulate Chk1 and other checkpoint proteins involved in 

checkpoint resolution and mitotic progression (90,142-144). Investigating the possible 

role of MMR proteins in maintenance and resolution of the G2 checkpoint and the 

subsequent mitosis after recovery from DNA damage may prove fruitful. 
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Figure 1. A simplified general model of responses to DNA damage. Genotoxic 

stresses results in the generation of single-stranded gaps in the DNA (e.g. DNA 

replication arrest) and/or double-strand breaks (DSBs). The appearance of critically-

long single strand DNA (ssDNA) gaps leads to the recruitment of the ATR/ATR 

interacting protein (ATRIP) complex, most likely through Replication protein A 

(RPA) binding to the ssDNA. On the other hand, DNA damage leading to double 

strand breaks results in direct activation of ATM through dissociation of inactive 

dimers via an intra-molecular phosphorylation of Ser1981 of ATM. Checkpoint 

pathways bifurcate at the level of Chk1 and Chk2 to influence both cell cycle arrest, 

maintenance and resolution of arrest as well as DNA repair and cell killing. Although 

presented as parallel and exclusive, these pathways often act in concert depending on 

the damaging agent and its delivered dose and there is a degree of cross-talk between 

components of the branches. 

Figure 2.  MMR-dependent and MMR-independent DNA damage signalling. 

Evidence has accumulated demonstrating that G2 arrest and cell killing in response to 

alkylating agents arises from MMR-dependent processing of mismatched bases to 

generate ssDNA gaps and DSBs depending on the concentration of the alkylating 

agent and, perhaps, the duration of exposure to DNA damaging agent. However, 

recent results have revealed that the role of MMR proteins in mismatch repair can be 

uncoupled from the MMR-dependent damage responses: there is a threshold of 

expression of MSH2 or MLH1 required for proper checkpoint and cell-death 

signaling, even though sub-threshold levels are sufficient for fully functional MMR 

repair activity. In addition, recent genetic analyses suggest a direct role for MMR 

proteins in recognizing and signaling DNA damage responses that are independent of 

the MMR catalytic repair process. 
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