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Douglas P. Finkbeiner Tongyan Lin

Signals of Particle Dark Matter

Abstract

This thesis explores methods of detecting dark matter particles, with some emphasis on

several dark matter models of current interest. Detection in this context means observation

of an experimental signature correlated with dark matter interactions with Standard Model

particles. This includes recoils of nuclei or electrons from dark matter scattering events, and

direct or indirect observation of particles produced by dark matter annihilation.
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Chapter 1

Introduction

The nature of dark matter is one of the foremost mysteries of cosmology and particle

physics. There is abundant evidence for the existence of dark matter [224, 54], from galaxy

rotation curves to the measurement of cosmic abundances from the Cosmic Microwave Back-

ground (CMB). From structure formation it is inferred that dark matter must have been cold

(non-relativistic) since the time when the photon bath had a temperature T ∼ keV. However,

we know very little about the particle physics of dark matter, in particular its relation to

the Standard Model of particle physics.

Experimental searches for dark matter interactions with Standard Model particles have

rapidly improved in sensitivity in recent years, yielding some unexpected results. Direct

detection experiments in particular strongly constrain WIMP (weakly interacting massive

particle) dark matter, historically the leading dark matter candidate [180]. In addition to

the null results, there have been a number of anomalous excesses in direct detection and

astrophysical data which have some characteristics expected for a dark matter signal, but

are also apparently in contradiction with either the null results or with expectations for a

1
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conventional WIMP.

The DAMA/LIBRA collaboration has detected an annual modulation of the recoil rate

in NaI crystals with the phase expected for dark matter scattering events [48, 49, 53]. More

recently CoGeNT [2, 1] has also claimed to observe recoil events and an annual modulation

consistent with that of DAMA/LIBRA. This annual modulation signal is dramatically incon-

sistent with upper limits from other experiments for elastically scattering WIMPs, however.

Meanwhile, recent cosmic ray, gamma ray, and microwave signals observed by Fermi [196,

3, 109, 5], PAMELA [7], and WMAP [108] have suggested the presence of an unexpected

primary source of e+e− at 10-1000 GeV. In particular, PAMELA has observed a rise in the

positron excess above 10 GeV (recently corroborated by Fermi [5]), while gamma rays and

microwaves observed by Fermi and WMAP are consistent with inverse Compton scattering

and synchrotron radiation of the energetic electrons and positrons observed in PAMELA 1.

While dark matter annihilation in the Milky Way could produce these hard e+e−, the size

of the excess observed is about ∼ 100 times larger than expected for WIMP dark matter.

Furthermore, the absence of a proton excess suggests that dark matter preferentially couples

to electrons or muons rather than quarks.

These signals have provoked much recent work and interest in particle dark matter models

beyond WIMP dark matter. This thesis is concerned with ongoing efforts to observe a

signature of such dark matter models. While the anomalous results discussed above may

turn out to be unrelated to dark matter, they have reminded us how limited our knowledge

really is, and how the data may yield unexpected results. Many of the models considered have

1However, recent work on the Fermi Bubbles [263] has shown that a significant fraction Fermi and
WMAP signals are likely due to transient phenomena such as AGN activity, rather than from dark matter
annihilation.
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novel interactions or are in a different mass range than weak-scale dark matter. In some cases,

additional structure in dark sector leads to interesting new observational signals, or enhanced

signals that previously were thought to be out of experimental reach. It is imperative that

we explore as many avenues as possible in the search to understand dark matter.

1.1 Structure of this thesis

Chapters 2-3 study directional detection of inelastic dark matter (iDM), a model proposed

to reconcile the DAMA/LIBRA annual modulation signal with null results from other direct

detection experiments (as of 2009). The crucial test of the iDM explanation of DAMA – an

experimentum crucis – is an experiment with directional sensitivity, which can measure the

daily modulation in direction. Because the contrast can be 100%, it is a sharper test than

the much smaller annual modulation in the rate.

In Chapter 2 we estimate the significance of such an experiment as a function of the

WIMP mass, cross section, background rate, and other parameters. The proposed experi-

ment severely constrains the DAMA/iDM scenario even with modest exposure (∼ 1000 kg ·

day) on gaseous xenon.

Chapter 3 focuses on the case of magnetic inelastic dark matter (MiDM), in which dark

matter inelastically scatters off nuclei through a magnetic dipole interaction. We explore

a unique signature of MiDM, which allows for the directional detection with an ordinary

direct detection experiment. In MiDM, after the dark matter scatters into its excited state,

it decays with a lifetime of order 1 µs and emits a photon with energy ∼100 keV. Both the

nuclear recoil and the corresponding emitted photon can be detected by studying delayed

coincidence events. The recoil track and velocity of the excited state can be reconstructed
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from the nuclear interaction vertex and the photon event vertex. It is therefore possible

to observe the directional modulation of WIMP-nucleon scattering without a large-volume

gaseous directional detection experiment.

We turn to astrophysical signals of dark matter in the Milky Way in Chapter 4. We

fit the Fermi, PAMELA, and WMAP data to “standard backgrounds” plus a new source,

assumed to be a separable function of position and energy. For the spatial part, we consider

three cases: annihilating dark matter, decaying dark matter, and pulsars. In addition, we

consider arbitrary modifications to the energy spectrum of the “ordinary” primary source

function, fixing its spatial part, finding this alone to be inadequate to explain the PAMELA

or WMAP signals. Dark matter annihilation fits well, where our fit finds a mass of ∼1 TeV

and a boost factor times energy fraction of ∼70. While it is possible for dark matter decay

and pulsars to fit the data, unconventionally high magnetic fields and radiation densities are

required near the Galactic Center to counter the relative shallowness of the assumed spatial

profiles.

In Chapter 5 we study the effect of dark matter annihilation and decay during the epoch

of recombination through its effect on the CMB. Precision measurements of the temperature

and polarization anisotropies of the CMB have been employed to set robust constraints on

dark matter annihilation during recombination. We improve and generalize these constraints

to apply to energy deposition with arbitrary redshift dependence. Our approach also pro-

vides more rigorous and model-independent bounds on dark matter annihilation and decay

scenarios.

Finally, Chapter 6 examines cosmological, astrophysical and collider constraints on light

dark matter. Models of light dark matter have received much interest recently as explana-
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tions of the DAMA/LIBRA and CoGeNT signals. Here light dark matter means thermal

dark matter (DM) with mass mX in the range ∼ 1 MeV−10 GeV. CMB observations, which

severely constrain light symmetric DM, can be evaded if the DM relic density is sufficiently

asymmetric. We determine the minimum annihilation cross section for achieving these asym-

metries subject to the relic density constraint; these cross sections are larger than the usual

thermal annihilation cross section. On account of collider constraints, such annihilation cross

sections can only be obtained by invoking light mediators. These light mediators can give

rise to significant DM self-interactions, and we derive a lower bound on the mediator mass

from elliptical DM halo shape constraints. We map all of these constraints to the parameter

space of DM-electron and DM-nucleon scattering cross sections for direct detection. For

DM-electron scattering, a significant fraction of the parameter space is already ruled out by

beam-dump and supernova cooling constraints.



Chapter 2

Inelastic Dark Matter: An

Experimentum Crucis

2.1 Introduction

Despite decades of direct detection efforts [137], the nature of dark matter interactions

with regular matter remains elusive. The results from the DAMA/NaI and DAMA/LIBRA

collaborations suggest that such interactions may be more intricate than originally expected.

DAMA has observed an annual modulation in NaI crystals for the past decade [48, 49, 53],

with the expected phase for WIMP-nuclei interactions. This claim has long appeared to be

in conflict with non-detections in other experiments [137] for conventional spin-independent

elastic scattering of WIMPs on nuclei. Though recent limits by XENON10 [22, 23] and

CDMS II [11] appear to rule out the DAMA region of parameter space by a factor of 100 in

cross section, DAMA/LIBRA [49] has recently confirmed their previous annual modulation

result and increased the significance to 8.2σ. This conflict has motivated serious discussion

6
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of models beyond the simplest elastic scattering of weak-scale WIMPs, with the hope of

accommodating DAMA as well as the other limits.

At least four approaches have been considered: 1. electron scattering [50]; 2. spin

dependent scattering [268, 45, 242]; 3. light dark matter [60, 147]; and 4. inelastic scattering

[255]. The first hypothesizes that the signal in DAMA is scattering of WIMPs off of electrons.

Significant momentum can be transferred to the electron during the small fraction of the time

(< 0.1%) that it finds itself near the nucleus and at moderately relativistic speeds. However,

this small fraction must be balanced by an uncomfortably large cross section, which is almost

certainly ruled out by early Universe (CMB) constraints.

The spin-dependent scattering argument attempts to circumvent limits from CDMS in

Si for example by positing that the cross section is strongly dependent on nuclear spin.

However, recent experiments [43] have significantly tightened constraints on this scenario,

and the allowed regions require a significant drop in the background in the signal region

[240]. While small regions of parameter space are still allowed, we do not consider this here.

Another suggestion is that the DAMA recoil events are not in the energy range first

suspected. Assuming recoils off of iodine, the quenching factor of 0.09 implies that the

2− 6 keVee observed energy corresponds to a recoil energy of 22− 66 keVr. It has recently

been suggested that “channeling”, i.e. alignment of the recoil with principal directions in

the crystal lattice, creates an effective quenching factor of unity for some fraction of the

events [51]. In this case, there is a small amount of parameter space available for lighter

WIMPs (∼ 5 GeV) still compatible with other limits [61, 227, 240]. In general, light WIMPs

have difficulty with constraints from the energy spectrum of the unmodulated DAMA signal

[73, 113]. While further exploration of light WIMPs may be warranted, we do not consider
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this option here.

2.1.1 The DAMA/iDM Scenario

The inelastic scattering scenario of Tucker-Smith & Weiner [255, 267, 72] takes a different

approach: inelastic dark matter (iDM) has an excited state some δ ∼ 100 keV above the

ground state. The origin of this excited state is unimportant for the present arguments; see

[33] for one realization of this idea. Elastic scatterings off of nuclei are suppressed by at

least two orders of magnitude with respect to the inelastic scatterings, leading to a preferred

energy threshold with few events at low energies. The high sensitivity of e.g. XENON10

to low-energy scatterings (which dominate in the standard elastic scattering models) means

that even a small exposure time (316 kg day) can place record-beating limits on the elastic

cross section. Because iDM does not produce such low-energy events, it is plausible that the

much larger combined exposure time of DAMA/LIBRA and DAMA/NaI (300,000 kg day)

could see the higher energy events invisible in the other experiments.

Models of iDM are simple to construct, for instance a fourth-generation (vector-like)

neutrino, coupling through the Z-boson [267], a mixed sneutrino [255], KK states in RS

theories [101], in composite models [19], or in theories with light mediators [32], see also

[230, 87, 42, 79, 101, 185, 130, 41, 19, 219, 77, 182]. In fact, off-diagonal couplings are very

natural in dark matter theories, with only the small splitting δ remaining to be explained.

In an annual modulation experiment, iDM enjoys an additional enhancement relative to

elastic models because only WIMPs on the high velocity tail scatter. The modulation can

be much larger than the 2-3% expected for elastic scattering, partially compensating for the

fact that the majority of WIMPs are below threshold and do not scatter.
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If the direct detection data from DAMA and others are taken at face value as nuclear

WIMP scattering events, they argue strongly for further experiments designed to test iDM.

The experiment must make predictions beyond the already observed annual modulation so

that a positive result would add substantially to the believability of the result. Such a make-

or-break experiment is known as a “critical experiment,” or experimentum crucis 1. In the

next section we describe such an experiment and discuss the limits obtained.

2.1.2 Advantages of Directional Sensitivity

The DAMA result is compelling enough to motivate further experiments involving iodine

or other nuclei of similar mass. Direct detection experiments generally fall into 3 categories,

based on their background rejection strategy. Some (CDMS II, XENON10, etc.) reject

individual electron scattering events and look for the residual signal from WIMP scattering.

Another strategy for dealing with background is to search for the annual modulation

of the signal (DAMA) brought about by the Earth’s velocity around the Sun, added to

the velocity of the Sun around the Galaxy. The assumption is that the WIMP velocities

are nearly isotropic, and the Sun moves through the WIMPs at roughly 200 km/s. The

Earth moves around the Sun at vorb ≈ 30 km/s in an orbit inclined by i ≈ 60◦ with respect

to the Sun’s velocity, introducing a modulation of vorb cos(i) ≈ 15 km/s. This method

has the virtue of ignoring all steady state instrumental backgrounds, but is vulnerable to

backgrounds that vary with the seasons. Though DAMA has placed stringent limits on

variations in temperature, humidity, radon gas, line voltage, and anything else known to

vary by season [49], this remains a persistent concern.

1The term experimentum crucis was first used by Isaac Newton in a 1672 letter about his Theory of Light
and Colors.
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A third strategy is to use directional information [258]. Because the scattering events

should originate, on average, from a specific direction on the sky (ℓ = 90◦, b = 0◦), a

daily modulation in direction due to the rotation of the Earth is a sharp test of the WIMP

scattering model. As with the annual modulation, many other backgrounds may be expected

to vary on a daily timescale. However, as the Earth orbits around the Sun, the angle between

the Sun direction and the WIMP signal varies from 60◦ (∼7 March) to 120◦ (∼9 September).

Also, any Sun-related oscillation (365.25 yr−1) is orthogonal to the WIMP signal (366.25

yr−1) over one year. This separation allows a much sharper test than the annual modulation

alone, even in the limit of low statistics. Furthermore, directional detectors have excellent

background rejection and can distinguish between recoils of nuclei and other particles by

correlating the length and energy of recoil tracks.

In the context of iDM, a directional experiment has another advantage. The minimum

velocity vmin for a WIMP to scatter with a nuclear recoil of energy ER is:

vmin =

√

1

2mNER

(

mNER

µ
+ δ

)

(2.1)

where µ is the nucleus-WIMP reduced mass mχmN/(mχ +mN) and mχ is the WIMP mass.

Because of the energy threshold, most events result from WIMPs in the high velocity tail of

the WIMP velocity distribution, and therefore most events happen near threshold. This is

advantageous because events at threshold have a sharply peaked angular distribution, making

the directional discrimination even more pronounced. The energy-dependent maximum recoil

angle is

cos γmax(ER) =
vesc − vmin(ER, δ)

vE
(2.2)

Here γ is the angle between the velocity of the Earth and the recoil velocity in the Earth

frame, and vesc is the Galactic escape velocity from the Solar neighborhood. For the bench-
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mark models considered here, γ is constrained to be within ∼100 degrees of the Earth’s

direction. Furthermore, as with annual modulation, the total number of events should

vary through the year in a predictable way. These advantages allow a decisive test of the

DAMA/iDM scenario with modest experimental effort.

In this article, we evaluate the sensitivities for the DAMA/iDM scenario as a function

of WIMP mass mχ, δ, and other parameters. We focus on a set of benchmark models,

given in Table 3.1, that can simultaneously explain DAMA and satisfy constraints from

other experiments [72]. Note that the mχ = 70 GeV benchmark cannot actually explain

the DAMA data because of the predicted asymmetry in the modulation amplitude during

summer and winter. However, we include the benchmark as a worst-case scenario, as there

is flexibility in the WIMP parameters due to the uncertainty in the halo distribution and

astrophysical parameters [208]. These benchmarks give the general features and sensitivities

(within an order of magnitude) of a directional experiment to the available parameter space

of iDM. We find that in most parts of parameter space, 1000 kg days of exposure is sufficient

to confirm or refute DAMA/iDM at high confidence.

2.2 Experimental Setup

Before discussing the specifics of the experiment, we can address a few basic questions

of exposure and energy range. DAMA/LIBRA reports a cumulative modulation in the

2 − 6 keVee range of 0.052 counts per day per kg, (cpd/kg). The quoted energy range is

related to the nuclear recoil energy by a quenching factor q = Eee/ENR ≃ 0.09 for iodine.

Thus, 2− 6 keVee ≈ 22− 66 keVr.

In the extreme case where the modulation is 100% (i.e., no scattering at all occurs in
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mχ δ σn

(GeV) (keV) (10−40cm2)

70 119 11.85

150 126 2.92

700 128 4.5

150* 130 4

Table 2.1: Benchmark models for vesc = 500 km/s, v0 = 220 km/s [72]. In the last row we
have listed the benchmark model for mχ = 150 GeV at vesc = 600 km/s.

the winter), the signal is essentially directional. One would need approximately 400 kg ·

day in the summer to yield 20 events of signal, roughly the number of events needed for an

unambiguous detection at zero background, as we will discuss in Section 3.4.1. Consistency

with other experiments is also possible with ∼ 20% modulation [72], with only 40 kg · day

needed for a clear discovery.

However, this estimate assumes that the signal occurs in an energy range which is de-

tectable at a directional experiment, and this, we shall see, is very unlikely to be the case.

A directional experiment will likely have a higher energy threshold.

The DAMA/LIBRA signal peaks near ER ≈ 3 keVee, after which it falls significantly.

Above 5 keVee, the total modulation is 0.0034 ± 0.0024 cpd/kg, which is consistent with

zero. The signal above 4 keVee yields a signal at DAMA of 0.014 ± 0.004 cpd/kg, which

requires approximately 1400 kg · day of exposure for 20 events. Moreover, it is possible that

the actual signal is at 3.5 keVee and below, and the signal at apparently higher energy is

due to the resolution of the DAMA detector [52].

There is a significant uncertainty in the quenching factor as well. While q = 0.09 is a
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commonly used value, the measurements are uncertain, and values q = 0.10 and slightly

higher are possible. Since the range of WIMP parameters allowed arises from fitting the

DAMA peak, the uncertainty in this factor is hidden from our analyses here. Nonetheless,

the presence of a larger quenching factor would result in a lower range of energies for the

signal. Thus, it is clear that a robust test of the DAMA result involves pushing the energy

threshold as low as possible. While the models that we consider generally do have signal

above 50 keVr, this cannot be guaranteed, especially in situations where form factors might

suppress the higher energy events [19]. In the event the experiments as we describe are

performed and no signal is seen, we would advocate lowering the threshold, even at the cost

of exposure from reduced pressure, to whatever extent possible.

With these important caveats in mind, we can proceed to discuss the details of what such

an experiment would look like.

2.2.1 Experimental Design

Gaseous detectors can resolve the nuclear recoil tracks, which have lengths of several

millimeters at sufficiently low pressures. Several gaseous directional detection experiments

are already underway, including DMTPC [245], NEWAGE [215], DRIFT [67], and MIMAC

[239], which employ time-projection chambers to reconstruct tracks. However, these exper-

iments are typically focused on spin-dependent WIMP-nucleus interactions and use the gas

CF4 as a detector, with the exception of DRIFT, which uses CS2. For a review of the various

detector technologies, see [9, 246, 247].

We suggest using a gas containing xenon or another heavy element. This increases

sensitivity to spin-independent interactions because scattering rates are kinematically highly
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suppressed for lighter nuclei in the iDM scenario, in addition to the overall factor of A2 that

appears in the cross section. However, heavier elements have shorter recoil tracks which are

more difficult to resolve. Furthermore, the gas should allow for good electron (or ion) drift

and also have good scintillation properties (at least for DMTPC). Choosing a gas will involve

some compromise between these properties. We note that for a splitting of δ ∼ 120 keV, A

must be greater than 75 to see any signal for the mass range mχ ∼ 100− 1000 GeV for an

earth velocity of 225 km/s and an escape velocity of 500 km/s.

According to preliminary work of the directional detection experiments mentioned above,

in order to resolve the angles of the tracks, the gas chamber must be at a pressure of around

50 torr. Furthermore if the recoil energies are too low (below ∼ 50 keVr), it is difficult to

detect the sense (head-tail discrimination) of the track, which reduces sensitivity significantly

[218, 100, 154]. The directional resolution of DMTPC is currently estimated to be around

15 degrees at 100 keVr and improves by several degrees at higher energies [110].

The dominant irreducible background is neutron recoils arising from radioactive materials

near or in the detector. Simulations suggest background rejection is excellent for gamma-rays,

electrons, and α’s [257] (see also Fig. 7 of [245]). The DRIFT collaboration has reported on

neutron backgrounds; however, they found a radioactive source (222Rn) inside the detector

[66]. The NEWAGE experiment at Kamioka estimated their primary background to come

from the fast neutron flux which, when shielded by 50 cm of water, would contribute only a

few events per year [264].
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Figure 2.1: Differential rates dR/(dER d cos γ) for the benchmark models given in Table 3.1
for vesc = 500 km/s, as well as for an elastic WIMP. In each case, the differential rate is
normalized so that the total rate is unity. Outside the region indicated by the dashed line,
scattering events are kinematically forbidden.

2.3 Recoil Spectrum

We derive the differential nuclear recoil spectrum in recoil energy ER and cos γ, which is

defined as cos γ = v̂E · v̂R. The Earth’s motion in the halo rest frame is ~vE and the vector

~vR is the nuclear recoil velocity in the Earth’s frame. Let ~v be the incoming WIMP velocity

in the Earth’s frame.
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The single nucleon scattering cross section is:

dσ =
σnmn

2µ2
n

1

v2
dER d cos γ δ(1)

(

v̂ · v̂R − vmin

v

)

(2.3)

where µn is the WIMP-nucleon reduced mass and σn is a reference cross section that is

assumed to be the same for all nucleons. mn is nucleon mass. The minimum velocity vmin

for a WIMP to scatter with a nuclear recoil of energy ER was given in Eq. 2.1.

The differential recoil rate for WIMP-nucleus scattering is

dR

dERd cos γ
= NT

ρχ
mχ

∫

d3v v f(~v + ~vE)
dσ

dERd cos γ
(2.4)

where f(~v), the WIMP distribution in the galaxy frame, is boosted to the Earth frame. NT

is the number of target nuclei per kg and ρχ is the local WIMP energy density. We are now

using the differential scattering cross section dσ for the whole nucleus. Define the constant

κ:

κ = NT
ρX
mχ

σnmN

2µ2
n

(fpZ + (A− Z)fn)
2

f 2
n

. (2.5)

Changing variables to ~v′ = ~v + ~vE gives:

dR

dERd cos γ
= κF 2(ER)

∫

d3v f(~v) δ(1) (~v · v̂R − ~vE · v̂R − vmin(ER, δ)) (2.6)

and F 2(ER) is the Helm form factor given in [198]. This formula is discussed in detail (in

the context of Radon transforms) in [145]. Thus we can see that at fixed ER, the signal

peaks where the delta function is nonzero over the largest portion of the phase space, or

cos γ = v̂E · v̂R = −1. The peak in ER and fixed γ is determined by the competition between

the form factor (which pushes the signal to lower energies) and the inelasticity (whereby the

minimum velocity produces a minimum value of ER).
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Following [72], we use the truncated Maxwell-Boltzmann distribution in the rest of this

work:

f(~v) =
1

n(v0, vesc)
exp

(

−~v2

v20

)

Θ(vesc − |~v|) (2.7)

where n(v0, vesc) normalizes
∫

d3vf to 1. The resulting spectrum is:

dR

dERd cos γ
=

κF 2(ER)

n(v0, vesc)
πv20

(

exp
(

− (~vE ·v̂R+vmin(ER,δ))2

v2
0

)

− exp
(

−v2esc
v2
0

))

× Θ(vesc − |~vE · v̂R + vmin(ER, δ)|) (2.8)

The values we use for the astrophysical parameters are: v0 = 220 km/s, vE = 225 km/s,

vesc = 500 − 600 km/s [256], and ρχ = 0.3 GeV/cm3. The normalized rate spectrum of

several benchmark models is shown in Fig. 3.2.

2.4 Sensitivity

A robust detection of a directional modulation is possible with surprisingly few events,

and does not require use of the rate formulas in the previous section. In fact, a full likelihood

analysis based on the correct model is only a factor of ∼ 2 better than a simple technique,

and for a convincing detection, simpler is better. In this section we assume the detection gas

has A = 127 (for iodine; Xe with A = 131 would be similar) and focus on the energy range

ER ∈ [50, 80] keVr.

2.4.1 Detectability

For a model-independent statistic we follow [218, 153] and use the dipole of the recoil

direction, 〈cos γ〉. This is motivated by the fact that the rate should depend only on cos γ
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Figure 2.2: Exposure to obtain a 5σ measurement of 〈cos γ〉 90% of the time the experiment
is conducted on Earth. The energy range of the experiment is ER ∈ [50, 80] keVr. dRBG

is the background rate; the DAMA unmodulated background rate is indicated by the solid
vertical line at 0.085. The bands shown give the exposures necessary as the rates modulate
throughout a year. Since the annual modulation is asymmetric in summer and winter for
low mass dark matter, the average exposure for mχ = 70 GeV is indicated by the dashed
line. In (a) we show three mass benchmarks from Table 3.1 and in (b) we show the effect
of decreasing the angular resolution of the detector to 60 degrees and of lowering the energy
threshold to 40 keVr. (Darker regions indicate where the bands overlap.)

and ER, so the directional part can be expanded in spherical harmonics.

Our detection criterion is a measurement of 〈cos γ〉 that is 5σ relative to the distribution of

〈cos γ〉 for the same number of randomly distributed events. For a fixed exposure, we generate

many random sets of model data (constrained by the DAMA benchmarks in Table 3.1), and

then demand that 90% of the time the result is 5σ from the null hypothesis. The background

is modeled as uniform in recoil energy and angle. We assume the detector has an angular

resolution of 15 degrees.

In Fig. 3.3(a) we show the exposures necessary for such conditions, as a function of the

background rate, for a few benchmark models. At zero background, roughly 18 events are

needed for all benchmark models, on average. Fig. 3.3(b) shows the effect of decreasing

the angular resolution to 60 degrees and lowering the energy threshold of the experiment to

ER = 40 keVr. Because of the sharp angular profile of the recoil spectrum, a poor angular
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resolution does not significantly reduce the possibility of a detection. However, achieving

an energy threshold of 30-40 keVr dramatically lowers the necessary exposures because the

peak of the recoil spectrum occurs at 30-40 keVr and falls off exponentially.

2.4.2 Parameter Estimation

We also perform a likelihood analysis as a measure of sensitivity of the experiment to

the parameters of the model, assuming perfect energy and angular resolution. From our

analysis in the previous section, we expect this assumption does not affect the results sig-

nificantly. (See also [100], which shows the sensitivity dependence on angular resolution.)

The parameters we consider here are mχ, δ, and σn, which we denote together simply by p.

Define

µ(x; p) ≡ dR

dERd cos γ
(x; p) + dRBG/2, (2.9)

which is the rate (cpd/kg/keVr per cosγ) at a given recoil energy and angle (denoted together

by x) for parameters p. We assume the background rate, dRBG, in units of cpd/ keVr/kg, is

known.

The likelihood is the probability of parameters p given the events {xi}. Given events

{xi}, bin the events such that in each bin there is only 0 or 1 event and label the bins with

one count by {Xα} and the empty bins by {Xβ}. The expected number of counts in a bin is

E(X; p) = Eµ(x; p)∆x (2.10)

where E is the exposure. Then the (log) likelihood is

lnLtot(p) =
∑

α

ln
(

e−E(Xα;p)E(Xα; p)
)

+
∑

β

ln e−E(Xβ ;p) (2.11)
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which is the log of the Poisson probability of obtaining 0 or 1 event in each bin. To find the

expected average lnLtot for a given exposure E and true parameters p0, we compute

lnLtot(p) = E
∫

dx

(

µ(x; p0) lnµ(x; p)− µ(x; p)

)

(2.12)

which is the continuum, noiseless limit of Eq. 2.11. Since we can only compare differences

in log likelihood, in this equation we have subtracted an arbitrary constant in p which takes

care of the units in lnµ(x, p).

In Figs. 2.3-2.9 we show confidence levels of (68, 90, 95, 99, and 99.9%) on the WIMP

parameters for an exposure of 1000 kg · day. To obtain the probability, or likelihood, at a

point in the mχ− δ plane, we either: 1) find the likelihood as a function of σn and maximize

with respect to σn or 2) assume σn is exactly known from some other experiment. We can do

the same also for points in mχ − σn plane and σn − δ plane. The full log likelihood function

lives in the full 3 dimensional parameter space. Here we show possible slices through that

space.

For each possible slice, we have shown several variations on the real WIMP parameters or

experimental parameters. In the default scenario, we consider the mχ=150 GeV benchmark

with Eth=50 keVr, a background rate of dRBG = 10−3 cpd/kg/keVr, and vesc = 500 km/s.

We consider the following independent variations:

• Lower energy threshold (Eth → 40 keVr)

• Higher background (dRBG → 10−2 cpd/kg/keVr)

• Higher escape velocity (vesc = 600 km/s)

• Lower WIMP mass (mχ → 70 GeV benchmark)
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Figure 2.3: Confidence levels for determining mχ and σn, where δ is unknown, with an
exposure of 1000 kg · day. σ0 = 10−40cm2.

• Higher WIMP mass (mχ → 700 GeV benchmark)

In each case, as mχ and vesc vary, σn and δ are adjusted to agree with benchmark fits to

DAMA, using the parameters in Table 3.1. At masses above 250 GeV, there is increasing

tension between the DAMA result and other experiments, notably CDMS. This tension is

highly dependent on the high velocity tail of the WIMP velocity distribution, and can be

alleviated by considering non-Maxwellian velocity distributions, for instance from the Via

Lactea simulation [208, 192]. Thus, we consider these points, but it should be emphasized

that the non-Maxwellian halos generally tend to lead to a larger signal at DAMA (relative to

the other experiments), and thus on a xenon target (because of the similar kinematics), and

thus we expect that our use of a Maxwellian distribution is conservative for these points.
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Figure 2.4: Confidence levels for determining mχ and σn, where δ is known with an exposure
of 1000 kg · day. σ0 = 10−40cm2.

At masses much larger than the nucleus mass, the threshold velocity vmin is independent

of mass and the spectrum depends on mχ only through the local WIMP density ρχ/mχ. In

these regions mχ and σn are completely degenerate since only the combination ρχσn/mχ ever

appears, as a prefactor determining the overall rate. This can be clearly seen in Fig. 2.3,

which shows confidence intervals in the mχ−σn plane. Note that because the contours never

close, we have have imposed the (rather conservative) constraint that mχ < 100 TeV based

on the unitarity bound [155] for a thermal relic.

The effects of the mχ − σn degeneracy can also be seen in the mχ − δ plane, shown in

Fig. 2.5. Here high masses are all equally likely (given a fixed δ) because σn can be adjusted

accordingly.
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Figure 2.5: Confidence levels for determining mχ and δ, where σn is unknown, with an
exposure of 1000 kg · day.

In the δ − σn plane, Fig. 2.7, there is a sharp discontinuity since low masses are favored

at smaller σn and very high masses are favored at high σn. This is because at low scattering

cross section, in order to boost the rates such that it matches the observed number of events,

one can lower δ or adjust the mass to optimize the number of rates. (The scattering rate

is maximized when the mass of the WIMP ∼ the mass of the nuclei.) However, at high

scattering cross section, one can increase δ but only increase the mass to very high masses to

reduce the rates. Though lowering the mass drastically also decreases the rate, the angular

shape at very low masses is very distinct (see Fig. 3.2) and thus unfavored. The cutoff in

Fig. 2.7 at high σn is a result of the unitarity bound on the mass.

These effects can make it difficult to constrain the WIMP mass at low exposures; however,
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Figure 2.6: Confidence levels for determining mχ and δ, where σn is known, with an exposure
of 1000 kg · day.

it is easier to constrain the ratio mχ/σn, which we have shown in Fig. 2.9.

Finally, we note that in these figures we have assumed the earth velocity is unmodulated.

For the benchmark where mχ = 70 GeV, our worst-case scenario, the effects of the annual

modulation in velocity can improve the confidence levels significantly if the experiment is

done during the summer.

The disadvantage of the likelihood analysis is its model dependence. We used the trun-

cated Maxwell-Boltzmann profile, whereas in reality it is likely there is more structure in

the dark matter profile. However we expect the results to roughly be the same for many

more complicated velocity distributions, and in fact can improve for inelastic dark matter,

as mentioned above. Furthermore, because of the velocity threshold due to δ, the inelastic
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Figure 2.7: Confidence levels for determining δ and σ, where mχ is unknown, with an
exposure of 1000 kg · day. σ0 = 10−40cm2.

scenario is not very sensitive to streams because most streams are below the threshold ve-

locity. Anisotropies in the halo profile do not significantly affect the results here. To see the

effect of using less simplistic halo models on the elastic scattering spectrum and sensitivity,

see [16] and [99].

2.5 Conclusions

Motivated by the finding [72] that inelastic dark matter (iDM) is compatible with both

the DAMA annual modulation signal at 22− 66 keVr and limits from other experiments at

lower energies, we have investigated prospects for directional detection in the context of the
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Figure 2.8: Confidence levels for determining δ and σn, where mχ is known, with an exposure
of 1000 kg · day. σ0 = 10−40cm2.

iDM model. We are encouraged by the fact that ZEPLIN-III has also detected a number

of events in the 40− 80 keVr range [197]. This has not been claimed as evidence of WIMP

scattering, but makes it impossible to rule out iDM with such data. In the near future, LUX

2 and XENON100 [31] will have greatly improved sensitivity and lower backgrounds, and will

provide a sharp test of the iDM/DAMA scenario. If these experiments also detect an excess

of events above background in the appropriate energy range, a major effort in directional

detection will be justified.

Directional detection with a gaseous detector containing a heavy gas (e.g. Xe) may not

require the huge exposure times implied by the elastic scattering limits. For a threshold

2http://lux.brown.edu
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Figure 2.9: Confidence levels for determining δ and mχ/σn, where mχ is unknown, with
an exposure of 1000 kg · day, taking σ0 = 10−40 cm2. Over most of the parameter space,
some value of mχ (and therefore σn) can be found to produce enough events for the given δ.
However, in the case of large δ and large mχ/σn, no solution is possible in some cases.

energy of Eth = 50 keVr, we find that exposures of order ∼ 1000 kg · day in a directional

experiment can convincingly refute or support the claims of DAMA in the context of the

inelastic dark matter model. At zero background, roughly 18 events are needed for a clear

detection of WIMP scattering. Even with larger backgrounds, the required exposure is a few

hundred kg · day, over most of the iDM parameter space that can explain both DAMA and

other direct detection experiments. With roughly 1000 kg · day, it is possible to obtain a

measurement of δ > 0 at high significance and also the parameter mχ/σn to within an order

of magnitude.

Furthermore, if it is possible to roughly determine one of the WIMP parameters, for
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example δ ∼ 120 keV, via another experiment, the mass and nucleon scattering cross section

are highly constrained with an exposure of a few hundred kg · day because of the distinctive

shape of the energy-angle recoil spectrum.

Significantly lower exposures are needed if the threshold energy is decreased. As discussed

in Section 2.2, because of the uncertainties in the nuclear recoil energies of the DAMA signal,

it is crucial to reduce the threshold energy as much as possible. For low masses, the recoil

spectrum is sharply distributed in energy and angle. However, typical recoil energies are

smaller. Thus with an energy threshold of Eth = 50 keVr most of the events for mχ = 70

GeV are not seen. With an energy threshold of 100 keVr and mχ = 70 GeV, none of the

WIMP recoils can be seen. Though the required volume increases and angular resolution

decreases when Eth is lowered, we found that a poor angular resolution (∼ 60◦) does not

significantly affect the results, assuming that 3D reconstruction of the track and determining

the sense is still possible.



Chapter 3

Directional Signals of Magnetic

Inelastic Dark Matter

3.1 Introduction

The basic inelastic dark matter (iDM), described in Section 2.1.1, is now tightly con-

strained [244] by the latest results from CRESST [271], ZEPLIN-III [14], XENON [24], and

CDMS. By introducing more ingredients in this model, one can increase the dark matter

scattering rate off the NaI used in DAMA, relative the nuclei used in other direct detection

experiments. In particular, we focus on the fact that iodine is special in having both a

relatively large mass and a relatively large magnetic moment [74]. Inelastic scattering takes

advantage of the large iodine mass.

If dark matter has (weak) electromagnetic moments [35, 232], it can interact through the

charge and magnetic dipole moment of the nuclei. For a summary of the interaction strengths

for various nuclei used in direct detection experiments, see [37]. This type of interaction has

29
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mχ δ µχ/µN τ λ η.15 Angular Rate XENON100

(GeV) (keV) (µs) (m) 10−3(cpd/kg) (non-blind)

70* 123 6.2× 10−3 1.2 0.4 0.23 11.3 1.4

140* 109 2.2× 10−3 12.7 6.2 0.018 2.2 8.1

300* 103 2.0× 10−3 18.0 9.7 0.012 1.7 11.6

70 135 11.2× 10−3 0.26 0.09 0.63 17.6 0.07

140 125 3.2× 10−3 3.9 2.0 0.06 4.4 3.3

300 117 2.5× 10−3 7.9 4.4 0.03 2.6 5.8

70 100 2.5× 10−3 12.6 4.9 0.024 2.7 9.2

140 90 1.6× 10−3 42.2 20.2 0.006 1.3 22.2

300 90 1.6× 10−3 42.2 22.1 0.005 1.0 19.3

Table 3.1: In the first three (starred) rows, we give the best fit benchmark models of MiDM,
with vesc = 550 km/s and v0 = 220 km/s [74]. We also list parameters within the 90% CL
region of each best fit value, for which the lifetime, τ , can be a factor of a few larger or smaller.
λ is the average recoil track length. η.15 is an estimate of the efficiency of XENON100 to
detect delayed coincidence events, as described in Section 3.2.2. The ‘angular’ rate is the
rate for delayed coincidence events with a nuclear recoil in the energy range 10 − 80 keVr,
followed by a photon with δ keVee. This is obtained from multiplying the total rate by η.15.
We also show the expected number of nuclear recoil events for the published XENON100
non-blind analysis.

been used to explain some recent direct detection results [212, 21, 82, 39, 131, 37], including

the positive claim of DAMA. However, there are strong constraints from CDMS [12] and

XENON [24, 28] on this explanation of DAMA.

We focus on magnetic inelastic dark matter (MiDM), because it has a unique and inter-

esting directional signature. Chang et al. [74] showed MiDM could explain both DAMA and

other null results. The model takes advantage of both the magnetic moment and large mass
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of iodine. In MiDM, the dark matter couples off-diagonally to the photon:

L ⊃
(µχ

2

)

χ∗σµνF
µνχ+ c.c. (3.1)

where the mass of χ and χ∗ are split by δ ∼ 100 keV. The off-diagonal coupling is natural

if the dark matter is a Majorana fermion. The excited state has a lifetime τ = π/(δ3µ2
χ) ∼

1 − 10µs, and emits a photon when it decays. This short lifetime makes it possible to

observe both the nuclear recoil and the emitted photon with a meter-scale detector. The

two interaction vertices allow reconstruction of the excited state track. Both the velocity and

angle can be measured, enabling directional detection even without a directional detector.

A dark matter particle with a permanent electromagnetic dipole moment generally can

be constrained by, e.g., gamma-ray measurements, the CMB, or precision Standard Model

tests [148, 251, 141]. However, the strongest bounds tend to come from direct detection

experiments themselves, at least in the 100 GeV mass range. Furthermore, in MiDM, the

inelastic nature of the interaction suppresses interactions with photons and baryons at low

energies. If the dark matter is a composite particle, a low compositeness scale can also

suppress annihilation to photons.

There are some variants of the MiDM idea. In [118], the parameter values were taken

to be mχ ∼ 1 GeV and δ ∼ 3keV. The DAMA signal is produced by the emitted photon.

This explanation evades constraints from other direct detection experiments because such

low-energy electromagnetic events are typically rejected or not seen by other detectors.

It is also possible that the dark matter couples to a new ‘dark’ U(1), with gauge boson

mass mA 6= 0 [161, 231, 21]. Here the dark matter has a large dark dipole. If the dark

gauge boson couples to regular electromagnetic currents, a sizable interaction with nuclei

can be generated. However, the decay rate of the excited state is suppressed because there
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is no direct interaction with the photon. While these ideas are interesting explanations of

the DAMA signals, we do not consider them further because the excited state has a long

lifetime.

We study MiDM benchmarks, given in Table 3.1, which are good fits to the DAMA

annual modulation signal [74]. MiDM models with mχ greater than ∼ 300 GeV are severely

constrained by ZEPLIN-III [14], KIMS [190], and XENON100 [28].

The benchmarks are subject to form factor and velocity distribution uncertainties [208,

192, 201, 270, 18], especially for larger masses. The directional signal prediction can change

wildly depending on the lifetime and rate.

In order to explore the parameter space, we also considered two extreme points within

the DAMA 90% confidence level region found by [74], for each of the three masses. For the

point with highest δ and µχ, the expectation for directional detection is better. The point

with lowest δ and µχ, which would not result in many delayed coincidence events, is in any

case already tightly constrained by the XENON100 non-blind analysis.

In this work, we show that the current generation of direct detection experiments can

observe a directional signal from MiDM. For concreteness we focus on a XENON100-like

detector, for two reasons. First, XENON100 will soon place strong constraints on the MiDM

parameter space, making it the most relevant experiment to consider. Second, we wish to

emphasize the feasibility of detecting a directional signal with experiments that are currently

running.

We compute the distribution of recoil track angles and velocities from MiDM benchmarks.

The sensitivity of XENON100 to the MiDM parameter space depends strongly on the lifetime

of the excited state. For the benchmark lifetimes of ∼ 1−10µs, XENON100 can measure the
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directional modulation at high significance and obtain sharp constraints on the parameter

space with just tens of events. This is achievable with around 5000 kg · day in the energy

range 10− 80 keVr.

3.2 Directional Detection

Directional detection can clearly test whether any signal comes from WIMP interactions

[258]. Due to the Earth’s motion in the Galaxy, there is a “WIMP wind” which is opposite

the motion of the Earth. There is a daily modulation in the angle of recoil tracks in the lab

frame. This modulation depends only on the rotation of the Earth relative to the WIMP

wind, and can be disentangled from the daily rotation of the Earth with respect to the Sun.

The experimental directional detection effort focuses on measuring the nuclear recoil track

with large-volume, gaseous detectors [9, 246, 247].

Angular information is a particularly powerful discriminant of WIMP scattering for iDM

[128, 202]. Because inelastic interactions have a high velocity threshold, the angular distri-

bution of the nuclear recoil tracks is sharply peaked in the direction of the WIMP wind.

There is a kinematic constraint on the recoil angle of the nucleus:

(cos γ)max(ER) =
vesc − vmin(ER, δ)

vE
. (3.2)

Here γ is the angle between the velocity of the Earth and the recoil velocity in the Earth

frame, vE is the Earth’s velocity in the Galactic frame, and vesc is the Galactic escape

velocity from the Solar neighborhood. For typical iDM models considered in the literature,

γ is constrained to be within ∼100 degrees of the WIMP wind [128]. However, because the

signal goes to zero at the bound in Eq. 3.2, the precise location of this kinematic constraint
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can be difficult to pinpoint.

MiDM has better directional detection prospects at XENON100, compared to directional

detection of iDM. Current directional detectors focus on spin-dependent scattering and use

light targets such as CF4 [10, 103, 156, 215]. Thus, they would not see inelastic scattering

events. In the MiDM case, there is also much more event information and thus more sensi-

tivity to the parameter space. One can measure both the velocity (v∗) and the angle (cos γ∗)

of the WIMP recoil track. Once again, this recoil angle is with respect to the Earth’s motion.

The tracks are sharply peaked in angle opposite the motion of the Earth.

For the WIMP recoil angle, there is also an energy-dependent maximum recoil angle,

which we give in Sec. 3.3. The most important bound is on the WIMP recoil velocity,

vmin
∗ (ER) =

∣

∣

∣

∣

(ER(mN/mχ − 1)− δ)√
2mNER

∣

∣

∣

∣

. (3.3)

Here the signal peaks near the kinematic bound because most events occur near the threshold

velocity in Eq. 2.1. Thus having information on both v∗ and ER is an extremely sensitive

probe of the model parameters. There is a remaining degeneracy: if δ and mχ are shifted

in opposite directions, the bound can remain roughly the same. However, one can fit δ

separately from the spectrum of the nuclear recoils, and from the energy of the emitted

photons.

There is also a maximum velocity for the excited state,

vmax
∗ (ER) =

√

(vE + vesc)2 − 2(ER + δ)/mχ, (3.4)

but the rate is exponentially suppressed at this bound.
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3.2.1 XENON100

We model directional detection in XENON100 with a simplified XENON100-like ex-

periment. XENON10 [22, 24] had 316.4 kg· day of data in the energy range 4.5-75 keVr.

XENON100 has a 40 kg fiducial mass, at even lower backgrounds. The initial 170 kg· day

non-blind run already constrains the MiDM parameter space (at low δ).

The XENON100 detector is a cylinder, with a radius of 15.3 cm and a height of 30.6 cm.

The fiducial volume has a radius of 13.5 cm and height of 24.3 cm. The primary scintillation

(S1) and ionization (S2) signals of an event are measured. For more details, see [30]. The

S2 signal is observed 15-140 µs after the S1 signal, for events in the fiducial volume.

The signature of MiDM is two S1 signals separated by roughly .5 µs in time, followed at

least 15 µs later by two S2 signals. The photon event is identified from the second S1 signal

and an S2 peak with energy of ∼100 keVee. At 100 keVee, a photon is clearly distinguishable

from a nuclear recoil by S2/S1. The other event should be consistent with a nuclear recoil.

The time separation of the two S2 signals depends on how the WIMP recoils along the

cylinder axis, z. In XENON10, events with multiple S2 events at different z positions were

rejected.

We refer to the track connecting the two events as the decay track. Events can be

localized to a 3D spatial resolution of 3 mm (though the absorption length for the 100 keV

photon may blur this) and timing resolution of 10 ns. Meanwhile, the track should be at

least 10 cm long. This makes it possible to measure direction and velocity of the decay track

to an extremely high accuracy. The head-tail discrimination of the track can be determined

using timing information and the S1/S2 ratio.

We wish to obtain the χ∗ recoil track from the decay track. However, because the photon
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can travel up to ∼1 cm after emission, this introduces systematic uncertainties. The observed

decay track can be blurred by a few degrees, relative to the χ∗ recoil track direction. This

also introduces an uncertainty in the velocity of the χ∗ of roughly 10%.

There are some specific event geometries that can result in more ambiguous events. For

example, it could be difficult to resolve the two S2 signals if the decay track is perpendicular

to the z axis. Then the two S2 signals arrive at nearly the same time. S2 signals generally

have a time width of ∼ 1µs and the PMT spatial resolution is only ∼2.5 cm. However,

because the drift velocity is 2mm/µs, this is a small fraction of the total solid angle.

Thus directional events are in principle detectable at XENON100. The background for

such delayed coincidence events with both a nuclear recoil and a photon of energy ∼ 100

keV should be extremely low. There are other ‘mixed’ delayed coincidence events from Bi

and Kr contamination, and excitation of metastable states of Xe [30]. However, these have

very different energies and decay times. It may be possible to extend the fiducial volume

when searching for directional events.

3.2.2 Detector Efficiency

The typical decay length is 1 − 10 m in these models, relatively large compared to

XENON100. Thus the WIMP can recoil inside the detector volume, but decay outside

the detector 1. The effective exposure for delayed coincidence events is, in general, lower

than the exposure for nuclear recoils because of this geometric effect. Here we compute the

detector efficiency, as a function of typical detector size, for the MiDM benchmarks.

1The reverse can also happen, similar to the idea in [118]. The rate depends on whether the material
within ∼10m of the Xe detector mostly consists of light or heavy nuclei. Aside from a 20cm layer of lead,
the shielding for XENON100 consists of polyethylene, water, and copper.
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Figure 3.1: The efficiency η for the best-fit benchmarks from Table 3.1. R0 is the size of a
spherical detector. We approximate the XENON100 fiducial volume as a sphere with radius
R0 = 0.15 m, marked by the vertical black line. The thinner lines show the corresponding
results with highest δ, within the 90% CL region of the best fit.

The efficiency is

η(t) =

∫

d3~v∗f(~v∗, t)

∫

dt′

τ
e−t′/τ

(∫

V

d3~x

V
H(t, ~x, ~d, t′)

)

The term in brackets comprises detector effects. The spatial integral is over the detector

volume. H(t, ~x, ~d, t′) is the efficiency for observing a WIMP decay, given that a nuclear

recoil was observed. This depends on the time of the year t, the location of the WIMP-

nucleus interaction inside the detector, ~x, the decay vector, ~d, and the WIMP decay time

(coincidence time), t′. Whether a given WIMP decay track is located inside the detector

depends on the orientation of the detector with respect to the Earth’s velocity, the decay

vector, and the efficiency for the particular event geometry.

The astrophysics and particle physics is captured by the integral over t′ and ~v∗. τ is the

lifetime of the excited state. The distribution of recoils depends on the WIMP recoil velocity

distribution, f(~v∗), and the decay time distribution. We assume that ~v∗ is defined with

respect to the Earth’s velocity vector so that f(~v∗) does not depend on detector orientation.

For the calculation below, we model the detector as a single sphere of size R0. We
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assume that H depends only on the interaction position ~x and the decay length L = v∗t
′.

Here we neglect the smearing arising from the mean free path of the emitted photon, since the

emission is isotropic. There is also no dependence on t or recoil angle in this approximation.

Then the expression for efficiency above can be simplified to

η =

∫

dL g(L)

∫ R0

0

3R2dR

R3
0

H(R,L) (3.5)

where L is the recoil length. The recoil length distribution g(L) is

g(L) =

∫

dv∗
f(v∗)

v∗τ
exp

(

− L

v∗τ

)

(3.6)

where now f(v∗) is the distribution for v∗, not ~v∗. A good approximation is g(L) =

exp(−L/λ)/λ, where λ = 〈v∗〉τ is the average recoil length. Typical λ values are given

in Table 3.1.

We approximate the XENON100 detector as a sphere. The fiducial volume has radius

R0 = 15 cm, with efficiency η.15. Results are shown in Fig. 3.1. The precise efficiency

depends on specifics of the detector, and must take into account the effects mentioned in

Sec. 3.2.1.

3.3 Recoil Spectrum

There are two electromagnetic scattering channels for magnetic dark matter: dipole-

dipole and dipole-charge. In the dipole-dipole scattering case, the dark matter interacts

with the magnetic moment of the nucleus. The matrix element is

|M|2
32πmNm2

χ

= 16πα2mN

(µnuc

e

)2 (µχ

e

)2 SN + 1

3SN

, (3.7)
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for each isotope. We sum over all isotopes, weighted by their abundances [37]. There is, in

general, also a factor of (Sχ + 1)/(3Sχ) for the spin of the dark matter. We take Sχ = 1/2.

In the dipole-charge scattering case, the dark matter interacts with the electric charge of

the nucleus. The matrix element is

|M|2
32πmNm2

χ

=
4πZ2α2

ER

(µχ

e

)2
[

v2 − ER

(

1

2mN

+
1

mχ

)

− δ

(

1

µNχ

+
δ

2mNER

)

]

, (3.8)

where v is the initial velocity of the WIMP in the lab frame. We have again assumed

Sχ = 1/2.

The differential scattering rate for measuring both nuclear recoil energy and WIMP recoil

track is

dR

dERdv∗dx∗
=

ηNTρχ
mχ

∫

d3~v f(~v + ~vE) v
dσ

dERdv∗dx∗
(3.9)

where we have abbreviated x∗ = cos γ∗. The three-dimensional WIMP velocity distribution

is given by f(~v). NT is the number of target nuclei per kg and ρχ is the local WIMP energy

density, which we fix to be 0.4 GeV/cm3 [70].

As in [128], we expand dσ and change variables to ~v′ = ~v + ~vE. The trivial integral over

~v′ imposes the condition

~v′ = ~q/mχ + ~v∗ + ~vE. (3.10)

~q is the recoil momentum of the nucleus. The resulting differential rate is

dR =
ηNTρχ
mχ

d3~v∗d
3~q f(~v′)

( |M|2
64π2m2

χm
2
N

)

F 2[ER]

× δ(1)
(

q2

2mχ

+ ~q · ~v∗ − ER − δ

)

. (3.11)

F 2[ER] is a nuclear form factor which depends on the type of interaction.
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Figure 3.2: Differential rates dR/(dERd cos γ∗dv∗) for (a) mχ = 140 GeV MiDM benchmark
and (b) mχ = 70 GeV MiDM benchmark. The mχ = 300 GeV benchmark looks similar to
the mχ = 140 GeV benchmark. In each case we show three two-dimensional distributions,
where we have integrated over the third variable. All rates are computed assuming scattering
on Xe, and benchmarks are given in Table 3.1. The differential rate is normalized so that
the total rate is unity.

For a xenon target, dipole-charge scattering, Eq. 3.8, dominates. For this we use the

standard nuclear Helm form factor. Dipole-dipole scattering, Eq. 3.7, is roughly 20% of the

total rate. To calculate dipole-dipole scattering a magnetic moment form factor is necessary.

The nuclear magnetic moment receives contributions from both spin and angular momentum.

We use the spin form factor from [237]. The angular momentum component is ∼ 20− 30%

at zero momentum for Xe. Since dipole-dipole scattering is already subdominant for Xe, and

since we do not have accurate angular momentum form factors, we approximate the entire

magnetic moment form factor with the spin component.

We now specialize to the case where f(~v) is a normalized, truncated Maxwell-Boltzmann

distribution, with vesc = 550 km/s [256] and v0 = 220 km/s. We assume vE = 240 km/s on
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average and label the normalization factor of the distribution as n(v0, vesc). The result is

dR

dERdv∗dx∗
=

ηNTρχv∗
mχ

|M|2
32πmNm2

χ

F 2[ER]Θ(1− |xq|)

×
∫

dφ
e−(v′)2/v2

0

n(v0, vesc)
Θ(vesc − |~v′|) (3.12)

with the following definitions:

xq =− (ER(mN/mχ − 1)− δ)

qv∗
, and (3.13)

(v′)2 =v2E + q2/m2
χ + v2∗ + 2vEv∗x∗ + 2xqv∗q/mχ

+ 2vEq/mχ

(

xqx∗ +
√

1− x2
q

√

1− x2
∗ cosφ

)

.

An upper bound on x∗ can be extracted from setting v′ = vesc, with cosφ = −1. The bound

depends on both v∗ and ER.

Finally, the matrix elements are given in Eq. 3.7 or in Eq. 3.8. Note that in the dipole-

charge scattering case we need to replace v in Eq. 3.8 using the energy conservation relation,

mχv
2 = 2ER +mχv

2
∗ + 2δ.

The normalized total rate spectrum of several benchmark models is shown in Fig. 3.2.

3.4 Sensitivity

XENON100 is collecting several thousand kg· day of exposure. We assume a total expo-

sure of 5000 kg· day on a 40.6 kg fiducial target, in a nuclear recoil energy range of 10-80

keVr. This is consistent with scaling up the results from XENON10 and with preliminary

results reported by XENON100.

For the best-fit parameters listed in Table 3.1, this would imply a minimum of ∼ 100 nu-

clear recoils observable by XENON100. Only ∼ 10 delayed coincidence events are expected,
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Figure 3.3: Exposure to obtain a 5σ measurement of 〈cos γ∗〉 90% of the time the experiment
is conducted on Earth. The energy range of the experiment is 10 − 80 keVr. dRBG is the
background rate; a XENON maximum background rate is indicated by the solid vertical line.
The bands shown give the exposures necessary as the rates modulate throughout a year. We
show (a) three mass benchmarks and (b) three mass benchmarks in the 90% CL region with
highest delta, from Table 3.1.

due to the small size of the detector relative to the average recoil track length. Despite these

low efficiencies, a study of the delayed coincidence events is still vastly more informative in

two ways: (a) it establishes a directional signal correlated with the WIMP wind, and (b) it

is much more sensitive to the parameter space.

3.4.1 Directional Detection

We first determine the exposures required to establish a correlation with the WIMP wind.

The average nuclear recoil angle with respect to the Earth’s motion, 〈cos γ〉, is a robust

model-independent statistic for directional detection [218, 153, 128]. Here we use 〈cos γ∗〉,

the WIMP recoil angle with respect to the Earth’s motion. Because of the rotation of the

Earth, on average 〈cos γ〉 or 〈cos γ∗〉 should be consistent with 0 for standard backgrounds.

Because XENON100 has excellent spatial resolution, we assume that the recoil track

angle can be determined to 10 degrees. We compute the exposures required to obtain a 5σ

result for 〈cos γ∗〉 90% of the time. We allow for a uniform (isotropic) background, though
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the XENON100 background should be negligibly low. The results are shown in Fig. 3.3. The

required exposures roughly correspond to a minimum of 16 events at zero background.

3.4.2 Parameter Estimation

The predicted rate for delayed coincidence events at XENON100 is only a few counts per

1000 kg · day. However, the additional recoil track information makes it possible to obtain

an excellent measurement of the model parameters.

We perform a likelihood analysis, as described in [128], over the parameter space of mχ, δ,

and µχ. We compute the (relative) log likelihoods for E kg· day on Xe, with nuclear recoil

energy range 10−80 keVr. We neglect the effects of imperfect angular and energy resolution.

(The XENON100 energy resolution is∼ 10% in this energy range, and we estimate an angular

resolution of 10 degrees.) The log likelihood is

lnLtot(p) = E
∫

dx

(

µ(x; p0) lnµ(x; p)− µ(x; p)

)

(3.14)

where p refers to (mχ, δ, µχ) and x refers generically to the event space of either ER or

(ER, v∗, cos γ∗). p0 are the true model parameters. µ is the rate for parameters p. If there is

only nuclear recoil energy information,

µ(ER; p) ≡
dR

dER

(ER; p) + dRBG, (3.15)

in cpd/kg/keVr for parameters p. We assume the background rate, dRBG is known and

negligibly small.

If there is directional information,

µ(ER, v∗, x∗; p) ≡ η.15(p)
dR

dERdv∗dx∗
(ER, v∗, x∗; p) +

dRBG

dv∗dx∗
,
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Figure 3.4: Confidence levels for determining mχ, δ, and µχ, marginalized over the third
parameter for each two-dimensional slice. We assume an exposure of 5000 kg· day on Xe in
the energy range 10 − 80 keVr. The plots show sensitivity to the MiDM parameter space,
using only delayed coincidence data, for the (a) mχ = 70 GeV benchmark, and (b) mχ = 140
GeV benchmark. (c) shows the sensitivity using only nuclear recoil events, for the mχ = 140
GeV benchmark. The directional information is a better test of mχ and µχ. The case with
mχ = 300 GeV looks similar to mχ = 140 GeV.
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where x∗ = cos γ∗. η.15(p) is the efficiency, for parameters p, at XENON100.

In Fig. 3.4 we show the sensitivity to MiDM parameters if (1) only nuclear recoil infor-

mation is used and (2) if only delayed coincidence events are considered for 5000 kg · day.

We show confidence levels of (68, 90, 95, 99, and 99.9%). We neglect the Earth’s velocity

about the Sun since a livetime of order a year is needed for 5000 kg · day.

Despite the reduction by a factor of 10-50 in events, the directional data is a much

stronger constraint on mχ and µχ. δ can also be determined from the ER data or the photon

energies. In Fig. 3.5 we show the sensitivity to mχ and µχ for the mχ = 140 GeV benchmark,

assuming that δ is already known. The directional information breaks the degeneracy in mχ

and µχ when only nuclear recoil information is used.
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Figure 3.5: Confidence levels for determining mχ and µχ using WIMP recoil tracks, assuming
δ is already measured from the photon energies or nuclear recoil spectrum. Here we take
the mχ = 140 GeV benchmark and assume an exposure of 5000 kg· day on Xe in the energy
range 10− 80 keVr.
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3.4.3 Measurement of Both Recoils

So far, we considered measurement of the WIMP recoil velocity vector from delayed

coincidence events. With a gaseous directional detector, it is also possible to obtain the

recoil angle of the nucleus. Then mχ and δ are highly constrained. For such events there

are 4 equations and 5 unknowns: mχ, δ, and ~v. However, one can obtain δ from the energy

peak of the coincident photons. Then it is possible to measure the WIMP mass and velocity

with just 1 WIMP scattering event. The mass is determined by the following equation:

mχ =
2mNER

2(δ + ER)−
√
2mNER q̂ · ~v∗

. (3.16)

Since ~q and ~v∗ are measured, the initial WIMP velocity ~v is then fixed by momentum

conservation. A direct measurement of the WIMP velocity distribution is then also possible.

3.5 Conclusions

The magnetic inelastic dark matter model has an interesting and previously unstudied

signature at direct detection experiments: a delayed coincident photon with energy δ. Ob-

servation of such photons would also allow current direct detection experiments to become

excellent directional detectors.

Motivated by the MiDM setup, we studied several benchmark model parameters that

can fit the combined DAMA/NaI and DAMA/LIBRA data. Given the rapidly improving

constraints from other experiments, we feel that MiDM is currently the best hope for a dark

matter interpretation of DAMA – and it predicts a low-background signature detectable with

current experiments.

With 5000 kg· day of exposure, XENON100 can detect the angular modulation of the
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recoils and determine the MiDM model parameters. While we focused on benchmarks in

MiDM, we emphasize that such a delayed coincidence signal is worth searching for in general.

Such events, if found, carry much more information than simple nuclear recoils, and would

provide more direct access to the WIMP velocity distribution in our halo.



Chapter 4

Cosmic Ray, Gamma Ray, and

Microwave Signals

4.1 Introduction

Several apparent anomalies in recent astrophysical data hint at a new source of high

energy electrons, positrons, and possibly gamma rays, at the 10 GeV to 1 TeV scale. The

cosmic ray signals observed by Fermi [196, 194, 205, 142] and PAMELA [7] are direct evidence

for these energetic electrons and positrons (e+e−), which would lose their energy primarily

through synchrotron radiation and inverse Compton scattering (IC). If the number density

of these e+e− rises towards the Galactic Center (GC), then this synchrotron and IC could

explain the WMAP microwave “haze” [108] and the Fermi diffuse gamma ray “haze” [109],

respectively.

It is difficult to explain these signals within the conventional diffusive propagation model

and with standard assumptions about the interstellar medium (ISM). In this framework, the

48
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positron signal arises from secondary production from spallation of proton cosmic rays on

the ISM. Assuming that 1. positrons and electrons have the same energy losses, 2. primary

electrons and protons have the same production spectrum, and 3. the proton escape time

decreases with energy, then the predicted positron fraction generically falls with energy, in

contrast to the rising fraction observed by PAMELA. Katz et al. [186] point out these

assumptions can be wrong, and explore alternative scenarios. Indeed, secondary production

at shock fronts could explain the e+ excess [56, 57], but this would also imply an excess of

anti-protons, which is not observed. We will not consider these alternatives further.

We examine here whether a new primary source of e+e− is a viable explanation of the

signals. First, the rise in the positron fraction measured by PAMELA suggests the presence

of a new hard source of positrons [248]. Second, the WMAP “haze” is consistent with a hard

synchrotron signal in the inner galaxy, in addition to a soft-spectrum synchrotron component

traced by Haslam. Though this decomposition is not unique, it is a good fit to the WMAP

data. Third, the Fermi gamma ray “haze” similarly extends to |b| > 30◦ above and below

the plane in the inner galaxy. Neither haze correlates with the morphology of any known

astrophysical objects or the ISM. (See Fig. 4.1.)

Many attempts to explain the data operate by including a new component of high energy

particles and gamma rays originating from one of the following sources:

1. Annihilation of TeV-scale dark matter,

2. Decay of TeV-scale dark matter, or

3. An astrophysical source such as pulsars.

These sources can produce energetic electrons, positrons, and gamma rays. In addition,
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Figure 4.1: Maps of the (a) WMAP haze at 23 GHz and (b) Fermi gamma-ray haze at
5-10 GeV for the region −90 < ℓ < 90 and −45 < b < 45. The gamma-ray haze is
obtained by subtracting the Fermi diffuse model from the data. All maps are centered on
the GC. The data are compared to normalized maps of (c) pulsar synchrotron at 23 GHz
and (d) synchrotron at 23 GHz from dark matter annihilation with an Einasto profile. The
magnetic field has the form of Eq. 4.5 with rB = 6.5 kpc. The morphology of the haze
signals more closely resembles the signals from dark matter than from pulsars. We show the
corresponding results for rB = 4.5 kpc in (e) and (f). Choosing a steeper magnetic field can
change the morphology, but this is not preferred by the Haslam data (see Fig. 4.2). The
region −5 ≤ b ≤ 5 is masked out because we only fit the region b ≤ −5.

the dark matter distribution in the Galaxy is expected to be roughly spherical, providing

at least qualitative agreement with the morphology of the gamma-ray and microwave haze.

Nevertheless, each explanation above has drawbacks.
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While annihilating dark matter may seem natural given a weak-scale WIMP which has a

thermal freeze-out annihilation cross section, this vanilla scenario cannot explain the observed

signals. Boost factors in the annihilation rate, arising from substructure or particle physics

enhancement, of order 100-1000 are typically needed, depending on the annihilation channels

and dark matter mass. Significant model-building effort is also required to explain the lack

of excess in the observed p̄/p flux [6]. For examples, see [88, 89, 32, 83, 209].

In the decaying dark matter scenario, dark matter has the freeze-out annihilation cross

section but also decays with lifetime τχ ∼ 1026 s. These models also must explain why there

is no excess in p̄/p, though no boost factors are required. Examples include [221, 210, 34,

172, 238, 76, 272].

The pulsar explanation is the least exotic, but there are significant astrophysical uncer-

tainties in pulsar distributions and e+e− emission spectra. The Fermi cosmic ray signals can

be explained by the presence of one or more nearby pulsars with hard e+e− emission spectra

[162, 233, 274, 206, 143]. However, pulsars are generally expected to be concentrated in the

disk and it can be difficult to explain the shape of the WMAP and Fermi “haze” signals,

which are much more spherical. See also [184, 159].

In this work we quantify how well each of these three scenarios can explain the data

described above without resorting to model-dependent details of the particle physics or

pulsars. Rather we use the data to determine the best-fit injection spectrum of electrons

and positrons produced by each new source. We also show that a simple modification to the

background electron injection can explain the Fermi e++e− spectrum and the Fermi gamma

ray spectrum but not the rest of the data.

The standard procedure to analyse whether a model can explain the astrophysical signals
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K0 [ kpc2/Myr] δ L [kpc]

Default 0.097 0.43 4

M1 0.0765 0.46 15

MED 0.0112 0.70 4

M2 0.00595 0.55 1

Table 4.1: Typical propagation parameters consistent with low-energy cosmic ray data [106].
We use the “Default” parameters and show the effect of using M1 and MED in Fig 4.5.

is:

pulsar or particle physics model

⇓

spectrum of particles produced by the source

⇓

propagation (e.g., GALPROP)

⇓

comparison with data

Often, one fits a specific dark matter or pulsar model to a subset of the “anomalous” signals

described above. For dark matter, the particle physics model is usually processed through

Pythia [253] to generate a spectrum of e+e−. The injection spectrum is the spectrum of e+e−

produced per unit source times the rate of production of e+e− per source and the spatial

distribution of the source. These injected e+e− are propagated through the Galaxy to obtain

a steady-state solution. The signals are then compared with data.

While some analyses have studied the cases above in a less model-dependent way, the



Chapter 4: Cosmic Ray, Gamma Ray, and Microwave Signals 53

injection spectrum is assumed to have one of a few common forms [89, 38, 276].

In this work we effectively reverse the arrows in the procedure above. We fit the data from

Fermi, PAMELA, and WMAP to expected backgrounds plus a new source which produces

positrons and electrons. We assume the injection of the new source is separable in position

and space. Rather than specifying the spectrum of e+e− injected by the new source, we

fit for this injection spectrum as a function of energy. The shape of the spectrum is the

same everywhere, and the spatial distribution is varied over several conventional models.

Therefore, for our purposes, the three scenarios listed above differ only in their spatial

distributions.

In the pulsar case, the assumption that the pulsar injection is a separable function of

position and energy is a crude approximation that allows us to fit the data without specifying

the details of pulsar physics, since the position dependence of pulsar populations and their

e+e− injection spectra is very uncertain.

In our fits of the injection spectra, we simultaneously account for possible variations in

the conventionally assumed spectrum and spatial distribution of the background injected

electrons, as well as propagation parameters, magnetic field, and starlight densities. This

takes into account the uncertainties in current models of the Galactic backgrounds.

We describe the signals and their expected backgrounds in more detail in the next section.

We then present the overall framework of the analysis. Predictions are computed using

GALPROP, and we allow for variations in the background model. We then present the

best-fit injection spectrum for each of the three scenarios above, as well as the best-fit of the

data to an arbitrary modification of the background electron injection spectrum. Finally we

present injection spectra for linear combinations of these scenarios.
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4.2 Signals

In this section we review the method of computing the signals and standard assumptions

made in modeling the astrophysical backgrounds. However, in our fits we allow for variations

in many of these assumptions. This is discussed in more detail in Sec. 4.3.1.

In the conventional diffusive propagation model, the e− cosmic ray density, dn(~x,E)/dE,

is the steady-state solution to the diffusion and energy loss equation:

∂

∂t

(

dn(~x,E)

dE

)

= 0 (4.1)

=~∇ ·
[

K(E)~∇ dn

dE

]

+
∂

∂E

[

b(E, ~x)
dn

dE

]

+Q(E, ~x)

where the first term represents diffusion, the second term energy loss, and the third term the

source term. K(E) is the diffusion coefficient and b(E, ~x) is the energy loss rate. This equa-

tion holds separately for positrons. For both electrons and positrons, diffusive re-acceleration

and galactic convection are negligible above a few GeV. Those effects are often relevant for

other cosmic rays, which are governed by similar equations. We use GALPROP v50p.1 to

solve for steady state cosmic ray densities. For a review, see [262].

For electrons, the source term includes primary electrons produced by supernovae and

secondary electrons produced by collisions of proton cosmic rays on the ISM. We denote these

sources by Q0(E, ~x). The source term can also include any new source of electrons, Q1(E, ~x).

For positrons, the source term includes only secondary positrons and any new source of

positrons. The spectrum of injected secondary e+e− is determined by the astrophysics of

proton cosmic rays and their interactions.

The injected primary electron spectrum is usually assumed to have the following energy
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dependence:

dN

dE
∝



































E1.6 , E < 4 GeV

Eγe , 4 GeV < E < 2.2 TeV

E3.3 , E > 2.2 TeV

(4.2)

where γe can vary. dN/dE is the spectrum of e− per unit source and is continuous. Eq. 4.2

has often been adopted in the past because the resulting cosmic ray fluxes approximately

agreed with the available data. Though we use this form as a default, we will also fit for an

arbitrary modification to dN/dE.

The number density for the supernovae that inject these electrons is commonly parametrized

as

ns(~x) ∝ rα exp

(

−β
r

r⊙
− |z|

.2 kpc

)

Θ(rmax − r) (4.3)

where r is distance to the center of Galaxy, projected on the galactic plane, and z is distance

perpendicular to the galactic plane. The default GALPROP parameters are α = 2.35, β =

5.56283, and rmax = 15 kpc [261, 204].

The default normalization of the product ns × dN/dE is fixed such that the observed

local flux from the primary electrons satisfies

c

4π

dn

dE
(34.5 GeV, z = 0, r = r⊙) =

3.15922× 10−7(cm2 · sr · s GeV)−1 (4.4)

which is consistent with the flux observed by Fermi.

The diffusion of the injected e+e− is governed by the diffusion coefficient, K(E), and

L, the escape distance out of the galactic plane. K(E) represents the random walk of a

charged particle in tangled magnetic fields, and is approximated as constant in space. It is
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generally assumed that K(E) = K0(E/GeV)δ, where K0 and δ are propagation parameters.

In Table 4.1 we give some commonly used values of K0, δ, and L [106, 102]. Our default

model assumes K0 = 0.097 kpc2/Myr, δ = 0.43, and L = 4 kpc, though we will vary these

parameters later. This choice matches cosmic ray data for protons, the B/C cosmic ray ratio,

and was used in [85].

As injected electrons and positrons propagate, they lose energy. The energy loss rate

b(E, ~x) includes energy loss mechanisms. The path length for an electron or positron los-

ing 1/e of its energy is typically given by ∼
√

KE/b, which is ∼ 1 kpc around 1 GeV

and becomes shorter for higher energies, at least until the Klein-Nishina limit [259]. The

dominant mechanisms for energy loss are IC scattering and synchrotron, where b(E) ∝ E2.

Bremsstrahlung (brem), for which b(E) ∝ E, is sub-dominant above ∼ 1 GeV and is far more

localized to the disk. For a new high energy component of e+e−, we neglect bremsstrahlung.

The IC rate depends strongly on the model for the interstellar radiation field. We use

the default GALPROP model [220] as a baseline. Meanwhile, the synchrotron depends on

the model for the magnetic field. We assume a standard parametrization of the field,

|B| = B0 exp

(

−r − r⊙
rB

)

exp

(

−|z|
zB

)

. (4.5)

r is the distance to the center of the Galaxy, projected on the galactic plane. Typical

parameters are B0 = 5µG, rB ∼ 5− 10 kpc, and zB = 2 kpc. 1 For our default propagation

parameters, the GALPROP synchrotron prediction at 408 MHz best matches the Haslam

408 MHz map if rB ≈ 8.5 kpc; see Fig. 4.2.

This parameterization is consistent with observations of the large-scale (ordered) mag-

1The documentation for GALPROP v50p incorrectly states that their parameter B0 is the magnetic field
in the center of the galaxy.



Chapter 4: Cosmic Ray, Gamma Ray, and Microwave Signals 57

(a)

Haslam 408MHz

 

180 90 0 -90 -180
 

-90

-45

0

45

90

 

0

100

200

300

400

500

600

0

100

200

300

400

500

600

10
-20erg/H

z/s/cm
2/sr

(b)

rB=4.5 kpc
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rB=6.5 kpc
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rB=8.5 kpc
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Figure 4.2: (a) Haslam 408 MHz map. In the other panels we subtract the default GALPROP
model for (b) rB = 4.5 kpc, (c) rB = 6.5 kpc, and (d) rB = 8.5 kpc from the Haslam
map. The GALPROP model is normalized such that the total emission in the region ℓ ∈
[−10, 10], b ∈ [−90,−5] matches the Haslam 408 MHz intensity in the same region. The
constant offset is subtracted from the Haslam 408 MHz data. Note that local features like
the North polar spur are not modeled in GALPROP and hence are not fit.

netic fields at 1-10 kpc [157]. The random component of the magnetic field is assumed to be

proportional to the ordered fields, with a proportionality factor of approximately one [176].

Thus Eq. 4.5 is sufficient for our purposes, since our fits are not sensitive to the detailed

structure of the magnetic fields. We increase or decrease the average strength of the magnetic

fields in the Galactic Center region by decreasing or increasing rB.

The solution to Eq. 4.1 is the steady-state cosmic ray density, which then determines

the photon signals. The gamma ray flux includes decay of π0s produced in proton cosmic

ray collisions with the gas in the ISM, IC scattering of e± on interstellar photons, and

bremsstrahlung of e± colliding with the ISM. The gamma-ray power in a given direction
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scales as:

Pπ0 ∝
∫

ngas(s) np(s) ds , (4.6)

PIC ∝
∫

n∗(s) ne±(s) ds , (4.7)

Pbrem ∝
∫

ngas(s) ne±(s) ds. (4.8)

where s is the coordinate along the line of sight. The ∼23 GHz microwave flux off the

Galactic plane is primarily synchrotron radiation of electrons and positrons

Psynch ∝
∫

|B(s)|2 ne±(s) ds (4.9)

where B is the magnetic field.

A new source such as dark matter or pulsars can inject high energy electrons and positrons

at 10 GeV to 1 TeV. These new sources are included in Q1(E, ~x). Here we solve for the

e+e− injection spectrum which, after propagation, yields the observed cosmic ray spectrum

and gives rise to gamma rays and synchrotron radiation. Our fit will essentially determine

Q1(E, ~x0), where ~x0 is the Earth’s location. The spatial dependence of Q is fixed to be one

of a few conventional models.

These sources can also directly inject photons. There are primary photons from pulsars

which are important at lower gamma-ray energies. Given our energy range of interest, we

do not consider these further.

In the case of dark matter annihilation or decay, generally there are many channels

through which dark matter produces Standard Model particles, which can then decay on

short time scales. The end products are e±, neutrinos, and photons. However, we do not

consider these direct gamma rays any further. These can be produced from π0s, final state
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radiation2 from τ±s or µ±s, or a direct photon channel. For TeV-scale dark matter, these

gamma rays can have higher energies than those observed by Fermi. Furthermore, in the

fits below it is not difficult to produce enough gamma ray signal above 10-100 GeV. In fact,

direct gamma ray production can be rather constrained by observations [90, 226].

4.2.1 Data

We fit to the following data:

• PAMELA J(e+)/(J(e−) + J(e+)) positron fraction, which displays a steep rise from

10-100 GeV [7]

• Fermi (e+ + e−) cosmic ray spectrum, which shows a slight hardening of the spectrum

at a few hundred GeV [196, 194, 205]

• Fermi gamma ray spectrum, which shows a hardening of the spectrum at around 10-

100 GeV, averaged over the haze region −15 < ℓ < 15 and 10 < |b| < 30. Note the

pion signal has been subtracted from the data [109]. Our background models match

the pion component, shown in Fig. 11 of [109]. This is not affected by the inclusion of

new sources of electrons.

• WMAP synchrotron at 23, 33, and 41 GHz averaged over −10 < ℓ < 10 for −90 <

b < −5, in 2 degree bins. We also fit to the same data averaged over 10 < |ℓ| < 30,

which we call the “high ℓ” region of the WMAP data and is incorporated to include

morphological information from the microwave haze. [108]

2In some papers, final state radiation is referred to as internal bremsstrahlung. We use “bremsstrahlung”
exclusively to mean e+e− cosmic rays colliding with the ISM.
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Figure 4.3: The fits in this work are consistent with Fermi observations of the gamma ray
spectrum in the region |ℓ| ≤ 3, |b| ≤ 3. Point sources have been subtracted. Solid colored
lines show the predicted total signal for the best fits of the new sources considered here,
including backgrounds. The dashed lines show the contribution from only the new source.

These data describe the “anomalous signals”, which suggest the presence of a new source of

electrons and positrons, and possibly gamma rays, at roughly 10-1000 GeV.

The Fermi LAT collaboration has provided a reference model for the diffuse emission

[126], a detailed fit that includes a reference GALPROP model for IC and models for a

number of residual local features giving rise to bremsstrahlung at lower energies. Since we

are not studying the detailed structure of the diffuse gamma rays and because IC and pions

dominate at high energies, it is sufficient for us to use GALPROP to model the diffuse

gamma ray emission in the haze region.

We also do not attempt to fit the Fermi gamma-ray spectrum near the Galactic Center

region nor the Fermi isotropic gamma rays. The signal near the GC suffers from large un-

certainties in both the dark matter profile and the astrophysical backgrounds. The isotropic
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signal is extremely sensitive to the halo mass function. Some recent analyses have used these

sets of data to constrain dark matter explanations of cosmic-ray signals, for a variety of dark

matter models and spatial distributions [90, 91, 226, 75, 171]. In Fig. 4.3 we show that for

the best fit spectra and spatial distributions in this work, there is little or no tension between

the predicted total signal and the data in the GC region.

Finally, we also include the following data in order to help regularize the fit at lower

energies and higher energies:

• AMS e+ + e− cosmic ray spectrum below 10 GeV [15]

• HESS e+ + e− cosmic ray spectrum above 900 GeV [8]

Fitting to the data from AMS ensures that the background models are consistent with the

low energy cosmic ray data.

We include systematic errors in our analysis and treat them as statistical errors because

we do not have the full covariance matrix. The energy calibration error of the Fermi data

points is +5%
−10%, but rather than effectively increasing the error bars, we allow for freedom

in the normalization of the background, discussed in the next section. The 15% energy

calibration error has been included in the error bars used for HESS.

4.2.2 Solar Modulation

Though our focus is on high energy data, we ensure that our results are consistent with

the low energy (below ∼10 GeV) cosmic ray data from PAMELA and AMS. However, this

data is extremely sensitive to the very local propagation in the heliosphere. To relate the data

to GALPROP predictions for the local interstellar (LIS) spectrum outside the heliosphere, it
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is necessary to apply solar modulation corrections to e+ + e− spectra. The solar modulation

correction in the force-field approximation is

J⊙(E)

E2 −m2
e

=
JLIS(E + Φ)

(E + Φ)2 −m2
e

(4.10)

where Φ is the solar modulation parameter and J is the differential intensity dn/dE [144].

Because of the uncertainty in the force field approximation, we reduce the weight of the

PAMELA and AMS data points below 10 GeV, effectively multiplying error bars by a factor

of 3. This is adequate to stabilize the fits at low energy.

The solar modulation correction is applied to the GALPROP outputs. We also use the

correction when converting the positron fraction data of PAMELA into a positron flux data,

using the AMS data on the intensity of e+ + e−. This will allow the fit to be linear below.

However, these two data sets correspond to different parts of the solar cycle. We thus

apply an inverse solar modulation correction to the AMS data to obtain the unmodulated

positron intensity. Denoting the solar modulation correction by ŜΦ, then the positron signal

is obtained from

JPAM(e+) =

(

J(e+)

J(e−) + J(e+)

)

PAM

×

ŜΦ−

PAM

(

Ŝ−1
ΦAMS

[

JAMS(e
+ + e−)

]

)

(4.11)

where Φ’s are solar modulation parameters. Φ−
PAM is the solar modulation parameter for

the PAMELA electrons, which we allow to be different from Φ+
PAM for the positrons. This

approximately captures the charge dependence of the solar physics, visible in the time-

dependent positron fraction at lower energies. In the above equation we applied ŜΦ−

PAM
to

the total e+ + e− signal. Because the positrons are at most ∼ 10% of the total flux, this

approximation is justified.
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4.3 Fitting procedure

We fit for the e+e− injection spectrum that, when combined with a background model,

best matches the cosmic ray, gamma ray, and microwave observations. The steady-state

e+e− density is linear in the source function Q(E, ~x), so we take a Green’s function approach

in energy space. The spatial dependence is fixed to be one of a few conventional models in

each of the cases below.

We inject delta functions of e+e− at various energies and compute the signal from each

delta function with GALPROP. Since GALPROP is discretized, in practice this amounts to

propagating an appropriately normalized bin of energy. For each of these delta functions,

GALPROP computes the steady-state e+e− spectrum as well as maps of synchrotron and

IC radiation at various energies. We solve for the linear combination of these outputs that

best matches the data. The best-fit injection spectrum solution is simply the same linear

combination of delta function injections (or in our case, energy bins).

We inject e+e− via the source term Q(E, x) in the propagation equation, Eq. 4.1. For

dark matter annihilation, dark matter decay, and pulsars, the new source function Q1(E, ~x)

of both positrons and electrons can be written as

Q1(E, ~x) =



































dN
dE

〈σv〉0 BF
〈ρ2χ〉
m2

χ

fE
2

, ann

dN
dE

τ−1
χ

ρχ
mχ

fE
2

, decay

dN
dE

τ−1
p np , pulsar.

(4.12)

Here dN/dE is the spectrum of electrons or positrons produced per unit source, normalized

such that all the power per unit source goes into electrons.3 ρχ(~x) and mχ are the energy

3The specific condition can be found in Sec. 4.4.1 for dark matter annihilation and Sec. 4.4.2 for dark
matter decay.
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density and mass of the dark matter. 〈σv〉0 is the thermal freeze-out cross section for

annihilation, 3·10−26cm3/s. BF is a boost factor (from either particle physics or astrophysics

such as substructure enhancement). τχ is the lifetime in the case of dark matter decay. τp

and np(~x) are rate and density parameters associated with pulsar emission rate and number

density. Finally fE = fE(e
++e−) is the fraction of energy going to electron-positron pairs. If

fE = 1, then the total energy of the electrons will be equal tomχ for dark matter annihilation

and mχ/2 for dark matter decay.

We also consider arbitrary modifications to the energy dependence of the background

primary electron injection, Eq. 4.2. To accomplish this, we include an extra source of only

electrons which has the same spatial distribution as the supernovae, Eq. 4.3:

Q1(E, ~x) =
dN

dE
τ−1
s ns , supernova (4.13)

where τs is an arbitrary rate parameter that is fixed by matching to the data.

Because we do not wish to a priori specify model parameters, we instead implement the

scenarios above with the following electron injection:

Q1(E, ~x) =



















































Q1(E, ~x0)
(

ρχ(~x)

ρχ(~x0)

)2

, ann

Q1(E, ~x0)
(

ρχ(~x)

ρχ(~x0)

)

, decay

Q1(E, ~x0)
(

np(~x)

np(~x0)

)

, pulsar

Q1(E, ~x0)
(

ns(~x)
ns(~x0)

)

, supernova.

(4.14)

where the local injection, Q1(E, ~x0) will be determined by the fit (~x0 is our location in the

galaxy). The positron injection is the same, except in the case of the source injection where

there are no positrons injected. Only the spatial profiles distinguish dark matter annihilation,

dark matter decay, or pulsars, in our fits.
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We bin the energies of the new source, Q1(E, ~x), and treat the particles in each energy bin

independently. For example, we generally consider the energy range ∼ 5-5000 GeV with 17

log spaced bins. The propagation of a given injection spectrum is just a linear combination

of the propagation of each of the energy bins.

The problem can be treated linearly because high energy e+e− are a tiny perturbation

to the matter and radiation of the Galaxy. High energy e+e− also almost never interact

with each other or other cosmic rays; they dominantly interact with the ISM, radiation, and

magnetic fields. In GALPROP, the magnetic field is fixed and the usual feedback between

cosmic rays and B field is absent. In this limit, the propagation of the individual energy

bins is independent.

We use this linearity to invert the propagation problem and determine the injected spec-

trum Q1(E, ~x0), given some assumptions about the spatial density of dark matter or pulsars.

Define the vector x by xi = Q1(Ei, ~x0) for energy bin Ei. The injection everywhere else is

determined by the assumed spatial distribution. Also, let bj be the jth data point minus the

galactic background, computed by GALPROP, for that data point.

For each xi, we propagate the injection and obtain a signal Aji. Thus A is a matrix

which maps x to the predicted signal, and the columns of A give the predicted signal from

each energy bin. We wish to compare the signal from the new source, A · x, with the

background-subtracted data, b.

The best fit x is determined by a goodness-of-fit test, which for a linear problem is a

quadratic in the fit parameters:

χ2 = (A · x− b)TC−1(A · x− b) (4.15)

where C is a covariance matrix containing the errors on the data. This is just a quadratic



Chapter 4: Cosmic Ray, Gamma Ray, and Microwave Signals 66

minimization problem. Note that we also include several other parameters in x that allows

us to slightly modify the background predictions and improve the fit. This is described

further in the following subsection.

Finally, it is possible to obtain dN/dE and the other parameters in Eq. 4.12. This will

be possible for the dark matter scenarios with additional constraints on
∫

E (dN/dE) dE

and where dN/dE cuts off. This is discussed more below when we describe the results for

the scenarios above.

4.3.1 Uncertainties

The predictions for the signals discussed in this chapter can have significant theoretical

and astrophysical uncertainty. To capture the effects of these uncertainties, we include

several parameters in the fits that essentially allow for (small) variations in the background

model.

The main uncertainties are in the background primary and secondary e+e− injection,

since we are fitting all the data that could possibly constrain this. (For a more detailed

discussion of uncertainties in the cosmic rays signals, see [105, 252].)

In the primary injection, we allow γe in Eq. 4.2 to vary in discrete steps. We also fit for

an arbitrary normalization factor Np relative to the condition in Eq. 4.4. Usually we find

Np ≈ 1.0 because the condition was chosen to approximately match the Fermi cosmic ray

data. The source spatial distribution for primary electrons, Eq. 4.3, is also uncertain. Rather

than considering the full range of possible source distributions, we simply allow for a different

normalization factor of the primary electron spectrum near the Galactic Center, relative to

Eq. 4.4. Because the diffusion length is ∼ 1 kpc, this will not affect the local cosmic ray
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Figure 4.4: All fit results for the three scenarios, over a 3 × 3 grid in background electron
injection index (γe = 2.45, 2.55, 2.65) and scale for the magnetic field rB = 4.5, 6.5, and
8.5 kpc. These spectra were obtained from non-negative fits; the interpolated local injection
density is plotted. Despite a wide range of assumptions about the background model, the
results remain the same, qualitatively, for each scenario.

signal. This normalization factor, Nh, is fixed by matching the synchrotron background

prediction onto the Haslam 408 MHz synchrotron map [160] for −90 < b < −5, averaged

over −10 < ℓ < 10. The contribution from the new high-energy source is negligible at this

frequency.

As for the secondary e+e−, it was shown in [106] that modifying the propagation pa-

rameters effectively changes the overall normalization of the local steady-state secondary

positron flux by up to an order of magnitude. Thus rather than scanning over a large set

of propagation parameters consistent with all the low energy cosmic ray data, we allow the
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normalization of the secondaries to be a fit parameter, Ns.
4

There are several other adjustable parameters that can improve the fit and allow for

variations in the background model. We give the complete list below. None of these will

change the predictions for other cosmic ray data.

The following parameters characterize the uncertainties of our theoretical models. We fit

for these parameters simultaneously with the injection spectrum, as their effects can also be

treated linearly:

• NIC : The normalization of the background IC signal near the center of the galaxy,

relative to the GALPROP prediction. There are many uncertainties in the starlight

density and spatial variations in the primary electron density near the galactic center.

• ∆S: Zero-points of the WMAP signal. We allow a different one for each data set.

• Ns: Normalization of secondary local electron spectrum, relative to the GALPROP

output for our choice of propagation parameters. This can vary by up to an order of

magnitude given theoretical uncertainties [104, 252].

• Np: Normalization of local primary electron spectrum, relative to Eq. 4.2. As men-

tioned above, this factor does not have to be the same as Nh.

We include these parameters in x, and A is enlarged to include extra columns corresponding

to each of these background signals.

The signals are not linear in the following parameters, so we scan over a discrete set of

these:

4We show the effect of changing propagation parameters on some fits in Fig. 4.5. The result does not
differ significantly relative to the error bars.
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• rB: The r-scale of the galactic B field, where the local B field is fixed to 5 µG. See

Eq. 4.5. We include rB = 4.5, 6.5, and 8.5 kpc, corresponding to B = 33, 18, and 14 µG

in the center of the Galaxy. We used zB = 2 kpc.

• γe: The index of the primary electron injection spectrum above 4 GeV. We include

γe = 2.45, 2.50, 2.55, 2.60, 2.65, and 2.70.

• ΦAMS,Φ
+
PAM ,Φ−

PAM : Solar modulation parameters for AMS and PAMELA, in the

force-field approximation, as described in Section 4.2.2.

Though we allow these to be fit parameters, clearly in reality they have some definite form

independent of our model. In Fig. 4.4 we show the best fit for a grid in rB and γe. Though

the spectra do change, the qualitative features remain roughly the same.

4.3.2 χ2 minimization and regularization

We are minimizing

χ2 = (A · x− b)TC−1(A · x− b) (4.16)

where x is a vector of parameters we fit for, containing the injection spectrum as well as

the normalization parameters and offsets described above. C is a covariance matrix, so

it is symmetric and positive. It can then be shown that the matrix ATC−1A is positive

semi-definite.

Ideally the spectrum we derive is smooth and non-negative. However, the existence of

null (or nearly null) eigenvalues ofATC−1Ameans that there are directions in the parameter

space where we can modify the spectrum by large values with little change to the observed

signals. This corresponds to, for example, changing the spectrum for two neighboring energy
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Figure 4.5: In the left column we show the space of possible solutions within ∆χ2 = ±1 of
the best-fit solution, which was obtained from a non-negative fit. The red lines are the best
fits for (a) dark matter annihilation, (c) dark matter decay, and (e) pulsars. The spectra
shown are interpolated between the bins (marked by red stars). In the right column we show
other best fits obtained from using different propagation parameters, given in Table 4.1,
or a different fitting regulator that enforces smoothness of the solution (from Eq. 4.17).
Our results are robust to very different propagation parameters. The fit for M2 is not shown
because L is only 1 kpc. Since the haze signals extend out to ∼4 kpc or more, it is impossible
for this set of propagation parameters to produce the haze.
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bins by a large positive and negative amount respectively, such that the observed signal

remains nearly the same.

We regularize the spectrum by using only 17 log-spaced bins between 5 GeV and 5000

GeV. We also perform a non-negative quadratic fit following the algorithm in [249]. All of

the fit parameters should be positive except for ∆I which we find is always of the same sign

for our data, so we can choose a convention where it is positive.

To obtain errors on the spectrum, we find the eigenvectors and eigenvalues of ATC−1A.

This allows us to change basis from the parameter space in x to a new parameter space y

where χ2 is separately parabolic in each parameter. The variance of these new parameters

y is determined by computing the allowed shift of each parameter, relative to the best fit,

such that ∆χ2 = ±1. Even though a non-negative constraint was imposed for the best fit,

we consider the entire space of solutions within ∆χ2 = ±1.

Each xi is a linear combination of the yi, so we sum the squares of the contribution from

each yi to find the variance in xi. The quoted error on each xi is the square root of the

variance. Because we are performing a non-negative fit, however, the positive and negative

errors can be different.

In Fig. 4.5 we show the entire range of possible variations of the best fit injection spec-

trum with ∆χ2 = ±1. We add to the best-fit spectrum all possible variations along the

eigendirections, or all independent variations of yi. (We do not show the background nor-

malization coefficients and WMAP offsets, though they are simultaneously varying with the

injection spectrum.)

We also considered several alternative methods of regularization, rather than non-negativity.
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As an example, we can impose smoothness by adding terms to χ2:

χ2
eff = χ2 + η1 (DE · x)T · (DE · x)

+ η2 (D2

E
· x)T · (D2

E
· x) (4.17)

where DE and D2

E
are finite difference and second-difference matrices, respectively. These

matrices only act on the injection spectrum and not the other fit parameters such as nor-

malization factors and WMAP offsets. η1 and η2 are tunable parameters that control the

smoothness of the fit. In Fig. 4.5 we show the best fit using this regulator instead of the non-

negative regulator above. For an appropriate range of η1 and η2 the solution is qualitatively

similar to the non-negative result. Similarly, we tested several other regulation techniques,

such as suppressing variations in nearly null eigendirections. Again, for “reasonable” regu-

lators, the result is qualitatively similar.

4.4 Results

We determined the best-fit injection spectrum for 350 data points from Fermi, PAMELA,

WMAP, AMS, and HESS. There are 29 fit parameters coming from 17 energy bins, 3 normal-

ization factors, 6 WMAP offsets, and 3 solar modulation parameters. Including rB and γe,

then there are 31 fit parameters. Our results are summarized in Table 4.2 and in Figs. 4.7-??.

The details of the fit results for each scenario can be found in the following sections.

In each of the following figures, we show the fits to the

• e+e− flux data from Fermi, AMS, and HESS

• positron flux obtained from combining the AMS and PAMELA data in Eq. 4.11
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SN Ann1 Ann2 Decay Pulsars Ann+ Ann+

Pulsar SN

Einasto α 0.22 0.22 0.12 0.17† 0.17†

γe 2.65 2.5 2.5 2.6 2.6 2.65 2.55

rB [kpc] 8.5 8.5 6.5 4.5 4.5 8.5 8.5

ΦAMS [GeV] 0.52 0.42 0.46 0.46 0.42 0.48 0.48

Φ+
PAM [GeV] 0.08 0.20 0.18 0.04 0.02 0.12 0.18

Φ−
PAM [GeV] 0.0 0.3 0.1 0.3 0.3 0.3 0.1

NIC 1.8 1.3 1.6 2.5 2.6 1.4 1.3

Ns 1.8 0.9 1.4 0.6 0.5 0.9 1.6

Np 1.0 1.1 1.1 1.0 1.0 1.0 0.9

χ2 30* 139 144 129 148 109 110

χ2
red .51 .44 .45 .41 .46 .36 .36

mχ [GeV] 1000 1000 &16000 300 300

BF × fE 70 70 10 10

τχ/fE [s] < 4 · 1026

Table 4.2: Best fit parameters for annihilating dark matter, decaying dark matter, and pulsar
cases to 350 data points. Ann1 and Ann2 had nearly the same χ2 but had different rB so
both results are displayed. In the supernova (SN) injection case there were 91 data points.
We obtained mass, boost factor, and lifetime parameters from the best fit. In the last two
columns we show fit results for linear combinations of these three scenarios. The fit errors
on the normalization parameters N are less than 5-10% and thus are not shown. †For the
combination cases, we fixed the dark matter profiles to have Einasto α = 0.17.

• positron flux fraction J(e+)/(J(e−) + J(e+)) from PAMELA for comparison, though

we did not directly fit to this data
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• WMAP synchrotron data at 23 GHz and 33 GHz, and 23 GHz at high ℓ; the data for

41 GHz and the high ℓ data for 33 GHz and 41 GHz are included in the fit, but not

shown because the fit looks extremely similar to the plots already shown

• Haslam 408 MHz data, used to fix Nh, as discussed in Sec. 4.3.1

• Fermi gamma ray data, where the π0 background has been subtracted [109]

along with the best-fit local injection, E2 Q1(E, ~x0).

Before discussing the fits in detail, we emphasize that the results in Table 4.2 and the

spectra plotted here are not meant to be taken as precise answers but as qualitative guidelines

for the necessary spectra, for each scenario, in order to explain the data. As shown in

Fig. 4.4, the spectra vary with the background model, but the general features remain the

same. Errors and variations in the solution were discussed in Section 4.3.2. In addition, the

effect of changing propagation parameters is shown in Fig. 4.5.

Specific bumps and features in the spectra we find are more likely signs that the smooth

background models we have assumed are not adequate. If there is any large systematic or

unmodeled effect in the Fermi cosmic ray data, for example, it can change the features in

best fit spectrum significantly. In particular, note that the shape of the high energy region

of each spectrum above ∼100 GeV is only constrained by the high energy Fermi cosmic ray

data since the Fermi gamma ray data is primarily only sensitive to the total power in this

energy range. The other data are almost completely insensitive to such high energy particles.

Thus the error bars on these bins are typically the largest. Furthermore, the high energy

spectrum is more sensitive to changes in γe (see Fig. 4.4).

The low energy part of the spectrum is more severely constrained by all of the data.

However, the low energy spectrum is also extremely sensitive to the bumps and features in
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the Fermi cosmic ray spectrum at low energies. This is very likely a sign that some features

in the Fermi cosmic ray spectrum have not been properly included in the background model.

For example, in Fig. ?? we show a fit which allows both dark matter annihilation and an

arbitrary modification to the energy dependence of the supernovae-injected electrons. The

low-energy features can be fit by a modification of the supernova electron spectrum, while

dark matter annihilation is still necessary to explain the signals above 10-20 GeV.

Fig. 4.6 shows the “supernova” fit of the low energy PAMELA data, all of the e+e−

data, and the gamma ray data to a disk-like source with only electrons. This corresponds

to a modification of the background primary electron spectrum and is implemented using

the injection in Eq. 4.14. The best fit spectrum we found is a hardening of the injection

up to 1 TeV. Though this source modification can easily match the cosmic ray or IC data,

the disk-like spatial profile and lack of positrons produced are starkly inconsistent with the

synchrotron signal and the PAMELA data. A new source is required.

4.4.1 Annihilating Dark Matter Results

The form of the injection for annihilating dark matter was given in Eq. 4.14 and Eq. 4.12.

We assume the local dark matter density is ρ0 = 0.4 GeV/cm3 [70].

Conventionally used dark matter halo density profiles are obtained by simulations and

can be approximated by an Einasto profile, with 0.12 . α . 0.22 and α ≈ 0.17 on average

[222]. This does not include substructure effects which can modify the effective spatial profile

used in Eq. 4.12, as in [193].

We allow values of α = 0.12, 0.17, and 0.22, with a core radius of r−2 = 25 kpc. In

practice the shallower profile with α = 0.22 is always the best fit to avoid overproducing
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Figure 4.6: Best fit to a modification of the primary electron injection spectrum, with
χ2
red ≈ .51. Black dashed lines are the background prediction for a model with γe = 2.65

and rB = 8.5 kpc, though in this case we are fitting for the true background. Red dashed
lines give the contribution of the new source injection, and solid red lines are the total. The
gray shaded region is the error estimate on the best-fit injection spectrum. We have not
attempted to fit the PAMELA data or the WMAP haze, which are difficult to produce.

the gamma ray signal. These profiles only differ by a factor of ∼ 2 at .1 kpc from the

center of the galaxy. Though NFW profiles are also commonly used, their signatures can be

approximated by one of these Einasto profile. We also considered spatial profiles which were

Einasto squared times an r1/4 or r1/2 scaling, corresponding to an r dependent cross section

[86]. Using these profiles can improve the χ2 by 5-10, but the injection spectrum does not
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Figure 4.7: Best fit for the annihilating dark matter scenario, with χ2
red ≈ .44. The spatial

profile of the dark matter is Einasto with α = 0.22. Black dashed lines are the background
prediction for a model with γe = 2.5 and rB = 8.5 kpc. Red dashed lines give the contribution
of the new source injection, and solid red lines are the total. The gray shaded region is the
error estimate on the best-fit injection spectrum.

change significantly.

In the annihilating case we found best fits with magnetic fields of rB = 4.5, 6.5, and 8.5

kpc, all with χ2 around 140 and χ2
red ≈ .44. Conventional magnetic field models have rB

closer to 8.5 kpc. Furthermore, in this case, the normalization factors N are ∼1, so that the

model is self-consistent. Thus we show the fit with rB = 8.5 kpc in Fig. 4.7. In Table 4.2 we
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give the fit parameters for rB = 6.5 kpc under the column “Ann2”.

For all three magnetic fields above, we found that an injection index of γe = 2.5 for the

primary electron signal optimized the ratio between the PAMELA and the Fermi e+ + e−

apparent dark matter components. However, for rB = 8.5 kpc the fit does not match the

PAMELA data as well, as an excess of cosmic rays above 100 GeV can produce too many

gamma rays through IC scattering.

We can estimate several model parameters from the best-fit spectrum by relating Eq. 4.14

and Eq. 4.12. To find the dark matter mass, we assume dN/dE cuts off at around mχ.

Though this estimate ofmχ depends on the rather uncertain high-energy part of the injection

spectrum, values of roughly 1 TeV are expected given the turnover in the e++e− data around

600-1000 GeV and the turnover in the gamma-ray spectrum at 100-200 GeV.

Next, dN/dE was defined such that that the total energy of the emitted electrons sums

to the mass of dark matter:
∫

E
dN

dE
dE = mχ. (4.18)

Therefore, integrating the local injection multiplied by energy gives

∫

E Q1(E, ~x0)dE = 〈σv〉0 BF
(ρ0)

2

mχ

fE(e
+ + e−)

2
. (4.19)

Given an estimate of mχ, we can therefore estimate BF × fE(e
+ + e−) in terms of the best

fit local injection and known parameters.

4.4.2 Decaying Dark Matter Results

For the decaying dark matter case, we assume the same range of dark matter density

profiles as in the annihilating case. Again, in practice we will be limited to the case where
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Figure 4.8: Best fit for the decaying dark matter scenario, with χ2
red ≈ .41. The spatial

profile of the dark matter is Einasto with α = 0.12. Black dashed lines are the background
prediction for a model with γe = 2.6 and rB = 4.5 kpc. Red dashed lines give the contribution
of the new source injection, and solid red lines are the total. The gray shaded region is the
error estimate on the best-fit injection spectrum.

α = 0.12. This time a steeper profile is required to produce sufficient synchrotron signal to

fit the WMAP data.

The model parameters can be determined from Eq. 4.12 and Eq. 4.14. We assume dN/dE

cuts off at around mχ/2 this time. Again, this cutoff is rather sensitive to the high-energy

part of the spectrum, which has large error bars, but values of & 2 TeV are expected given



Chapter 4: Cosmic Ray, Gamma Ray, and Microwave Signals 80

1 10 100 1000
Ee [GeV]

0.001

0.010

0.100

E
3  d

N
/d

E
 [G

eV
2 /c

m
2 /s

/s
r]

e+ +e- fluxΦAMS = 0.42
Np = 1.0, Ns = 0.5

1 10 100
Ee [GeV]

0.0001

0.0010

0.0100

E
3  d

N
/d

E
 [G

eV
2 /c

m
2 /s

/s
r]

e+ flux
ΦPAM

+    = 0.02, Ns = 0.5

0.1 1.0 10.0 100.0 1000.0
Ee [GeV]

0.01

0.10

φ e
+
/(

φ e
+
+

φ e
- )

e+ fraction
ΦPAM

+    = 0.02, ΦPAM
-    = 0.34

-40 -30 -20 -10 0
b (degrees)

0

5

10

15

In
te

ns
ity

 [1
0-2

0 er
g/

H
z/

s/
cm

2 /s
r]

WMAP synch 
23 GHz
∆ S = -0.5

-40 -30 -20 -10 0
b (degrees)

0

5

10

15
In

te
ns

ity
 [1

0-2
0 er

g/
H

z/
s/

cm
2 /s

r]
WMAP synch 
33 GHz
∆ S = -0.0

-40 -30 -20 -10 0
b (degrees)

0

5

10

15

In
te

ns
ity

 [1
0-2

0 er
g/

H
z/

s/
cm

2 /s
r]

WMAP synch 
23 GHz, high l
∆ S = -0.8

-40 -30 -20 -10 0
b (degrees)

0

500

1000

1500

2000

In
te

ns
ity

 [1
0-2

0 er
g/

H
z/

s/
cm

2 /s
r]

Haslam 408 MHz
Nh = 0.6

0.1 1.0 10.0 100.0 1000.0
Eγ [GeV]

10-5

10-4

10-3

10-2

E
2  d

N
/d

E
 [M

eV
/c

m
2 /s

r/
s] Fermi IC + brem

NIC = 2.6

10 100 1000
Injection energy [GeV]

-50

0

50

100

150

200

250

Lo
ca

l i
nj

ec
tio

n 
[1

0-3
0 G

eV
/c

m
3 /s

]

Pulsar injection
χ2 =148.2

Figure 4.9: Best fit for the pulsar scenario, with χ2
red ≈ .46. The pulsar profile is given by

Eq. 4.22. Black dashed lines are the background prediction for a model with γe = 2.6 and
rB = 4.5 kpc. Red dashed lines give the contribution of the new source injection, and solid
red lines are the total. The gray shaded region is the error estimate on the best-fit injection
spectrum.

the data.

By definition, dN/dE satisfies

∫

E
dN

dE
dE = mχ. (4.20)
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Again, we integrate the local injection multiplied by energy, giving

∫

E Q1(E, ~x0) dE = τ−1
χ ρ0

fE(e
+ + e−)

2
. (4.21)

This allows us to determine the dark matter lifetime over the energy fraction. However,

note that in many cases, dN/dE does not cut off in the energy ranges we consider and the

spectrum is essentially unconstrained at higher energies. Then we only obtain bounds on

the mass and lifetime.

The best fit is shown in Fig. 4.8. There is no clear mass cutoff in the best-fit spectrum,

so the mass of the particle can be from ∼ 4 TeV to greater than 16 TeV.

Because in the decaying scenario the injected power is proportional to ρχ and not ρ2χ,

generally it is harder to generate enough synchrotron and IC signal. Both of these signals

are in regions at least 5 degrees off of the galactic plane. The steeper dark matter profile

with α = 0.12 is not enough to produce the signals.

We found rB = 4.5 kpc can increase synchrotron near the center of the galaxy, but

this gives a somewhat unconventionally high value of the magnetic field in the GC, 33µG.

Fig. 4.2 shows that rB = 4.5 kpc also gives the poorest fit to the Haslam data, especially

compared to rB = 8.5 kpc. In addition, a somewhat large injection of low energy electrons

and positrons is required. However, for this large magnetic field, the IC signal drops. Thus

the normalization NIC is rather large, NIC ∼ 2.5. Even for fits with rB = 6.5 kpc, it was

necessary for NIC ∼ 2 to obtain sufficient IC signal. This corresponds to rather high starlight

density.

While it is possible that the decaying dark matter can also produce gamma rays directly

or through FSR, these signals are typically at higher energies, above 10-100 GeV. In this

case, the large NIC factor for the background IC signal indicates that there is a depletion of



Chapter 4: Cosmic Ray, Gamma Ray, and Microwave Signals 82

gamma rays at low energies, below 10 GeV.

Though the decaying scenario nominally gives the best χ2 ≈ 130 and χ2
red ≈ .41, the

large normalization factors demand a more self-consistent modeling of backgrounds and

uncertainties in order to fully justify the goodness of fit.

4.4.3 Pulsar Results

The range of types of pulsars, their spatial distributions, and their e+e− spectra is not

well determined. As a crude model, we posit some spatial profile for the number density of

pulsars and assume the spectrum of electrons and positrons has the same energy dependence

everywhere. Generally pulsars are concentrated in the galactic disk, making it difficult to

produce the haze. In Fig. 4.1 we compare the morphology of the synchrotron haze produced

by pulsars to that produced by dark matter. It is possible, however, that certain types of

pulsars have a more spherical distribution [207].

We consider the following range of pulsar profiles, which span those typically used in the

literature. (See [159, 116] for examples and references.) Assume a density profile of the form

np ∝ exp

(

−|z|
zp

)

nρ(ρ) (4.22)

where ρ =
√

x2 + y2 and the origin is at the center of the galaxy. We include profiles with

zp = 0.08, 0.5, and 2 kpc. For the radial profile,

nρ ∝ exp

(

− ρ

4.5 kpc

)

. (4.23)

In practice, the three cases above look nearly identical because of diffusion. Another com-

monly used profile has nρ ∼ ρ exp (−ρ/4.0 kpc). However we do not consider this option
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further because the suppressed density near the center of the galaxy makes it even more

difficult to produce the haze.

Qualitatively, the pulsar results, Fig. 4.9, are rather similar to the decaying dark matter

results, though the fits are even worse because of the disk-like rather than spherical profile.

The best fit has rB = 4.5 kpc with significant low-energy injection and large normalization

factor NIC of 2.6. Though it is possible that pulsars can produce many low-energy gamma

rays, it is unlikely these gamma rays can compensate for the background gamma-ray signal

being 2− 3 times too low. For rB = 6.5 kpc or 8.5 kpc, the pulsar scenario cannot produce

sufficient synchrotron signal.

4.4.4 Combination Results

We fit for linear combinations of annihilation, decay, pulsars, and supernova injections,

which not surprisingly can provide better fits and alleviate the problems of each individual

scenario. However, this extra freedom means that fits are much less constrained and errors in

the spectra. Results of these fits are presented in [199]; the best fit parameters in summarized

in Table 4.2.

4.5 Conclusions

We have thoroughly examined the annihilating dark matter, decaying dark matter, and

pulsar explanations of the recent anomalous cosmic ray, gamma ray, and synchrotron signals.

We investigated whether each scenario can fit all of these data simultaneously. Our analysis

is independent of the particle physics or pulsar model details of each scenario and only de-

pends on the spatial profiles and background models. We determined the necessary injection
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spectrum of electrons and positrons in each case in order to reproduce the data, including

the effects of different background models, propagation models, and solar modulation.

Though decaying dark matter is the best fit, the large normalization factors suggest

that it will be difficult to find a fully self-consistent model with decaying dark matter that

can explain the data, without changing some aspect of our model by a large amount. In

particular, it may be necessary to find either a radiation field model with roughly twice as

much starlight to produce enough IC, a rather large magnetic field of 33µG in the Galactic

center, enormous amounts of low energy electrons or gamma rays injected, a much steeper

dark matter profile, or a combination of these.

Pulsars give the worst fit; the disk-like profile makes it nearly impossible to produce

both the gamma ray and synchrotron signals. Much like the decaying dark matter case, this

suggests that dramatic re-assessments of backgrounds and models are necessary to find a

self-consistent interpretation of the data.

Annihilating dark matter, however, has self-consistent fits with conventional astrophysical

background models. Though we had to choose a somewhat shallower dark matter halo profile

with Einasto α = 0.22, it is still within the current range of profiles found by simulations.

Furthermore, we can satisfy the gamma ray constraints from the GC. The boost factors are

∼ 70/fE, which at first seems much lower than the boost factors of ∼ 1000 often used in the

literature. Several factors enter in this difference: our use of the updated ρ0 = .4 GeV/cm3

rather than ρ0 = .3 GeV/cm3 [70], the relatively hard spectrum allowed by the fit, and our

assumption that the cutoff of the spectrum is mχ. Given these factors, our result of ∼ 70/fE

is typical of the models discussed in the introduction of this chapter. However, the shape of

the spectrum, combined with a lack of π0 or p̄ production, may still be difficult to achieve
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in current particle physics models of dark matter.

Our results should be regarded as qualitative guidelines to injection spectra. The specifics

will necessarily change as both Galactic models and data are refined. The WMAP “haze”

data will be superseded by data from Planck [228], while data from Fermi and PAMELA

will improve. In addition, cosmic ray data from AMS-02 [20] may also soon be available.

If the data does not change substantially, and if current models indeed describe Galactic

propagation and interactions, then the qualitative results of this work will remain valid.



Chapter 5

CMB Constraints on Dark Matter

Annihilation

5.1 Introduction

Measurements of the cosmic microwave background (CMB) in the past decade by exper-

iments including WMAP, ACBAR and BOOMERANG [191, 236, 217], and more recently

SPT, QUaD and ACT [69, 62, 96], have provided an unprecedented window onto the universe

around redshift 1000. With the advent of the Planck Surveyor [228], the successor experi-

ment to WMAP, percent-level modifications to recombination will be observable. Planck has

already completed three sky surveys and begun a fourth, and cosmological data are expected

to be released publicly in 2012-13.

Accurate measurements of the CMB have the potential to probe the physics of dark

matter (DM) beyond its gravitational interactions. In the large class of models where the

DM is a thermal relic, its cosmological abundance is determined by its annihilation rate in

86
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the early universe: the correct relic density (∼ 22% of the energy density of the universe) is

obtained for an s-wave annihilation cross section of 〈σv〉 ≈ 3×10−26 cm3/s during freezeout.

DM annihilation at this rate modifies the ionization history of the universe and has a

potentially measurable effect on the CMB. During the epoch of recombination, DM anni-

hilation produces high-energy photons and electrons, which heat and ionize the hydrogen

and helium gas as they cool. The result is an increased residual ionization fraction after

recombination, giving rise to a low-redshift tail in the last scattering surface. The broader

last scattering surface damps correlations between temperature fluctuations, while enhancing

low-ℓ correlations between polarization fluctuations.

The resulting constraints on the dark matter annihilation rate have been studied by

several authors [225, 139, 254, 80, 138, 170, 140]. These bounds have a notable advantage

over other indirect constraints on dark matter annihilation, in that they are independent

of the DM distribution in the present day, and do not suffer from uncertainties associated

with Galactic astrophysics. They depend only on the cosmological DM density, which is well

measured; the DM mass; the annihilation rates to the final states; and the standard physics

of recombination. Recombination modeling, while not simple, involves only well-understood

conventional physics, and the latest models are thought to be accurate at the sub-percent

level required for Planck data [81, 17].

Current limits from WMAP already significantly constrain models of light dark matter

with masses of around a few GeV and below, if the annihilation rate at recombination is

the thermal relic cross section. Heavier DM is also constrained if the annihilation rate is

enhanced at low velocities or for other reasons is much larger than the thermal relic cross

section at recombination. Models lying in these general categories are also of significant
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interest for their possible connection with experimental anomalies.

The DAMA/LIBRA [47] and CoGeNT [2, 1] direct detection experiments have reported

excess events and annual modulation that may have a consistent explanation as originat-

ing from scattering of O(5 − 10) GeV WIMPs (e.g. [163]). Results from the XENON10,

XENON100 and CDMS experiments are in tension with this interpretation [241, 13], but

there is ongoing debate on the sensitivity of these experiments to the very low-energy nuclear

recoils in question (see e.g. [97, 98]).

The PAMELA [7], Fermi [3], PPB-BETS [266], ATIC [71] and H.E.S.S [8] have mea-

sured electron and positron cosmic rays in the neighborhood of the Earth, and found results

consistent with a new primary source of e± in the 10− 1000 GeV energy range. If the signal

is attributed to dark matter annihilation then the annihilation rate in the Galactic halo

today must be 1-3 orders of magnitude above the canonical thermal relic value [84, 83]. This

has motivated models of dark matter with enhanced annihilation at low velocities [32, 230].

While this enhancement would not be significant during freezeout, it would be effective at

recombination when the typical velocity of dark matter is v ∼ 10−8c [139].

With the release of data from Planck expected in the next two years, models falling

into these categories should either be robustly ruled out, or give rise to a measurable signal

[139, 254, 170]. If no signal is observed, the sensitivity of Planck will allow us to probe regions

of parameter space relevant for supersymmetric models, where the DM is a thermal relic with

mass of several tens of GeV. It is timely to explore improvements to these constraints.

The approach of previous studies has been to specify the energy deposition history (red-

shift dependence) and then calculate the effect on the ionization history and anisotropy

spectrum using public codes such as RECFAST and CAMB. A single parameter describing the
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normalization of the signal is then added to the standard likelihood analysis using CosmoMC,

and bounded by WMAP observations. The redshift dependence has been studied in two

cases: in the “on-the-spot” case, assuming that the amount of energy deposited to the gas

precisely tracks the rate of dark matter annihilation (e.g. [225, 139, 140]), or employing

detailed energy deposition histories for specific models (e.g. [254, 170, 140]). In the first

case, model-independent constraints are obtained, but without a precise way to connect the

bounds to any particular model. The second case only precisely constrains specific models.

While these analyses have been adequate for simple estimates of whether a model is

strongly ruled out, easily allowed, or on the borderline, the upcoming high-precision data

from Planck demand a more careful model-independent analysis. Such an analysis can also be

applied to more general classes of energy deposition histories during and after recombination:

for example, the energy deposited by a late-decaying particle species, decay from an excited

state of the dark matter, or dark matter annihilation in models where the redshift dependence

of the annihilation rate has an unusual form (as in some models of asymmetric dark matter).

In this work we exploit the fact that the effects of energy deposition at different redshifts

are not uncorrelated. Any arbitrary energy deposition history can be decomposed into

a linear combination of orthogonal basis vectors, with orthogonal effects on the observed

CMB power spectra (Cℓ’s). For a broad range of smooth energy deposition histories, the

vast majority of the effect on the Cℓ’s can be described by a small number of independent

parameters, corresponding to the coefficients of the first few vectors in a well-chosen basis.

These parameters in turn can be expressed as (orthogonal) weighted averages of the energy

deposition history over redshift.

We employ principal component analysis (PCA) to make this statement quantitative and
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derive the relevant weight functions, and the corresponding perturbations to the Cℓ spectra.

Our approach in principle generalizes to all possible energy deposition histories. To inves-

tigate the number of observable parameters, we consider generic perturbations about two

physically interesting fiducial cases. We focus primarily on the example of dark matter anni-

hilation, or any other scenario where the power deposited per volume scales approximately as

(1 + z)6 (i.e. as density squared), as an energy deposition mechanism, but also show results

for the case of dark matter decay, or similar scenarios where the power deposited scales as

(1 + z)3.

Our computation of the effects of energy deposition on the CMB anisotropies, and the ap-

proximations we use for estimating the significance of these effects in experimental data, are

described in §5.2. In §5.3 we present our principal component analysis for both “annihilation-

like” and “decay-like” general energy deposition histories1. There are significant degenera-

cies between energy deposition and perturbations to the cosmological parameters, and so we

marginalize over the standard cosmological parameters when deriving the principal compo-

nents2.

We then address the constraints on and detectability of the principal components in cur-

rent and future experiments. Given a Cℓ spectrum observed by an experiment (e.g. Planck),

we can measure the residual with respect to the best-fit standard ΛCDM model, and then

project this residual onto the Cℓ-space directions corresponding to the principal components.

Given any model for the energy deposition history, we can then ask if the reconstructed coef-

1Files containing the results of these analyses are available online at
http://nebel.rc.fas.harvard.edu/epsilon/.

2We test the effect of including additional cosmological parameters (running of the scalar spectral index,
the number of massless neutrino species, and the primordial He fraction) and find no large degeneracy with
energy injection, justifying our neglect of these additional parameters in our main analysis.
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ficients for the various principal components are consistent with the model. Of course, for the

later principal components the effect on Cℓ’s is so small that very little information on their

coefficients can be recovered. In §5.4, we make this statement quantitative, and estimate

the number of principal components whose coefficients could be detectable in Planck and an

ideal cosmic variance limited (CVL) experiment, subject to constraints from WMAP 7. The

CVL case presents a hard upper limit on the number of independent parameters describing

the energy deposition history that can profitably be retained in the analysis. We also dis-

cuss the bias to the standard cosmological parameters, in the case where there is non-zero

energy deposition that is neglected in the analysis; in our framework it is straightforward

to characterize the biases to the cosmological parameters for an arbitrary energy deposition

history.

In §5.5 we present a separate principal component analysis for the more limited case of

conventional GeV-TeV WIMPs annihilating to Standard Model final states. We demonstrate

that in this case, all the effect of dark matter annihilation can be captured by one parameter

only, i.e. the amplitude of the first principal component.

Finally, in §5.6, we estimate the constraints on the principal components obtainable with

current (WMAP 7) and future (Planck, CVL) experiments with a full likelihood analysis

using the CosmoMC code. We employ here the principal components obtained with the Fisher

matrix analysis – which assumes that the effect on the CMB scales linearly with the energy

deposition. We illustrate the range of validity of this assumption for the different experi-

ments considered. We check that the constraints previously obtained with our Fisher matrix

analysis – which assumes Gaussian likelihood functions – are compatible with the ones ob-

tained with the CosmoMC analysis. We check that the constraints on a given energy deposition
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Figure 5.1: Rate of Hydrogen ionization from energy deposition, relative to the number
density of ionized Hydrogen (n0

ion) when there is no energy deposition. The lines shown are
the cases of constant pann and pdec, corresponding to on-the-spot energy deposition from dark
matter annihilation and dark matter decay, respectively.

history can be reconstructed from the constraints on the principal components.

In [127], we also consider the effects on the analysis of changing various assumptions and

conventions, including the effect of additional cosmological parameters and using different

codes to calculate the ionization histories. We find that the only such choice that non-

negligibly modifies the early (detectable) principal components is the treatment of Lyman-

α photons, although the inclusion of additional cosmological parameters can change the

constraints at the ∼ 10% level.

5.2 The Effect of Energy Injection

We begin by considering DM annihilation-like or decay-like energy deposition histories.

The energy injection from these sources scales respectively as density squared and density,
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so these cases cover the generic scenarios where energy is injected by two-body or one-body

processes. It is convenient to express the energy injection as a slowly varying function

of z that depends on the source of the energy injection (e.g. the WIMP model) and a

term containing cosmological parameters. We parameterize the energy deposition histories,

respectively, as,

(

dE

dt dV

)

ann

= pann(z)c
2Ω2

DMρ
2
c(1 + z)6,

(

dE

dt dV

)

dec

= pdec(z)c
2ΩDMρc(1 + z)3, (5.1)

where pann(z) (or pdec(z)) contains all of the information about the source of energy injection

and the efficiency with which that energy ionizes the gas. We generically refer to pann and

pdec as the “energy deposition yield.” For consistency with [140], we express pann(z) in

units of cm3/s/GeV, while the units of pdec(z) are s−1. If the energy injection is due to

DM annihilation, pann = f(z)〈σv〉/mDM [140], where f(z) is an O(1) dimensionless efficiency

factor [254]; if the energy injection is due to DM decay, pdec(z) = f(z)/τ , where τ is the decay

lifetime. Other authors have written pann in units of m3/s/kg [139], or parameterized the

energy deposition in eV/s/baryon [225, 254, 80]. For calibration, the energy deposition from

a 100 GeV thermal relic WIMP with f(z) = 1 corresponds to pann ≈ 3 × 10−28cm3/s/GeV

≈ 1.7×10−7m3/s/kg, or an energy deposition of 2.1×10−24 eV/s/H, assuming the WMAP 7

best-fit cosmology. Throughout this work, we employ the cosmological parameters from [195]

as a baseline: explicitly, ωb = 2.258× 10−2, ωc = 0.1109, As(k=0.002 Mpc−1) = 2.43× 10−9,

ns = 0.963, τ = 0.088, H0 = 71.0 km/s/Mpc.

Energy deposition during recombination primarily affects the CMB through additional

ionizations, as studied in [225, 78]; the modified ionization history then leads to an increased

width for the surface of last scattering, which in turn modifies the temperature and polariza-
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tion anisotropies of the CMB. Electrons and photons injected at high energies – where the

cross section for direct ionization is small – scatter on the CMB and on the gas, partitioning

their energy into (1) many low-energy electrons and photons that efficiently ionize, excite and

heat the H and He, and (2) X-ray and gamma-ray photons that free-stream to the present

day (a detailed study of the relevant processes is given in [254]). It is the first component

(ionization + excitation + heating) that we refer to as “deposited energy”; as shown in [254],

the bulk of the energy injected in photons and electrons/positrons is deposited. Restricting

our attention to this “deposited” component, the scattered electrons from excitations and

ionizations in turn re-scatter, rapidly partitioning their energy between excitation, ioniza-

tion and heating in a ratio that depends on the ambient ionization fraction, but has little

dependence on the initial spectrum of electrons and photons [250]. Thus the effect on the

CMB is completely determined by the redshift dependence of the energy deposition, which

we refer to as the “energy deposition history”; further details of the energy injection are

largely irrelevant. The excitations created by energy deposition can modify recombination

via additional Lyman-alpha photons, but the ionizations have the greatest direct effect on

the ionization history, the surface of last scattering and the CMB anisotropies.

Energy deposition also results in µ-type spectral distortions of the CMB, if energy is de-

posited at redshifts z & 5×104, as well as y-type distortions from energy injected at lower red-

shifts [174, 158, 275]; an order of magnitude estimate of the effect is δργ/ργ ∼ (dE/dt)/H/ργ.

However, the bounds on |µ| and |y| from COBE/FIRAS [132] give a weaker constraint on

DM annihilation by a factor of ∼ 105, compared to the limits from WMAP measurements

of CMB anisotropies.

An alternate approach to studying generic energy deposition histories might be to study
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generic ionization histories [167], since the former can be directly mapped to the latter. We

frame the problem in terms of energy deposition histories because they can be more directly

mapped to physical energy injection models.

Suppose we are interested primarily in a class of energy deposition histories for which

the energy deposition yield p(z) (that is, pann(z) or pdec(z), as appropriate) is not very

rapidly varying. Then we can discretize p(z) as a sum over a basis of N δ-function-like

energy deposition histories, p(z) =
∑N

i=1 αiGi(z). The basis functions Gi(z) are (by default)

Gaussians with σ = ∆z/4, centered on zi (i = 1..N), where ∆z is the spacing between the

zi. They are normalized such that
∫

dzGi(z) = ∆z. For example, in the limit of large N an

energy deposition history with constant p(z) = p0 corresponds to αi = p0 for all i.

If the energy deposition is small enough, the effect on the CMB anisotropy power spec-

trum is linear in the energy depositions at different redshifts,

δCl(p(z)) = δCl(
N
∑

i=1

αiGi(z)) =
N
∑

i=1

δCl(αiGi(z)),

, and in the amount of energy deposition at any redshift,

δCl(
N
∑

i=1

αiGi(z)) =
N
∑

i=1

αiδCl(Gi(z)).

Then the effect of an arbitrary energy deposition history can be determined simply from

studying the basis functions Gi(z). We will assume linearity throughout this work; we

justify that assumption in §5.2.3.

Of course, given any annihilation-like energy deposition history, it can be rewritten in

decay-like form with a strongly redshift-dependent p(z), and vice versa. The basis of Gi(z)

functions can describe any energy deposition history, at least in the large-N limit. However,

the very different “underlying” redshift dependence in the two cases, and the uncertainties
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associated with the annihilation rate at low redshift (due to the onset of structure formation),

motivate us to study different redshift ranges in the two cases.

For each Gi, we can compute the effect on the ionization history and the anisotropy

spectrum in the limit of small energy deposition. We determine ∂CTT
ℓ /∂αi, ∂CEE

ℓ /∂αi,

∂CTE
ℓ /∂αi ∀i, ℓ. In our default analysis we employ the CosmoRec and CAMB codes, with the

prescription for including the extra energy deposition laid out in [78, 225]. If there are N

basis functions and we take nℓ spherical harmonics into account, this yields an nℓ×N transfer

matrix T whose (ℓ, i)th element is,

∂Cℓ

∂αi

=

{

∂CTT
ℓ

∂αi

,
∂CEE

ℓ

∂αi

,
∂CTE

ℓ

∂αi

}

. (5.2)

In this work we focus primarily on annihilation-like energy deposition histories, for which

we restrict ourselves to the 80 < z < 1300 range; as a default, we will take 50 redshift bins

covering this range. At higher redshifts the universe is ionized and so the effect of energy

deposition on the ionization history is negligible, while at lower redshifts the DM number

density becomes so small that the energy injected from annihilation is insignificant, as shown

in Figure 5.1. This in turn justifies our neglect of DM structure formation: while for z . 100,

DM clumps start to form and the annihilation rate no longer tracks the square of the average

relic density, the energy injection is already sufficiently suppressed that the signal remains

negligible.

For DM decay, the signal is not nearly so suppressed at low redshifts, and so we consider

the redshift range 10 < z < 1300. With this expanded redshift range, we switch from

linear to log binning, with 90 bins covering this redshift range3; we take the basis functions

3Log binning can of course also be employed for the annihilation-like case; there is no clear best choice
there, so we will use linear binning as the default but show results for both options. See Appendix A of [127]
for a discussion.
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Gi(ln(1 + z)) to be Gaussians in ln(1 + z), normalized so that their integral with respect to

d ln(1+z) is given by the spacing between the log bins ∆ ln(1+z). With these choices, again

an energy deposition history with constant p(z) = p0 corresponds (in the large-N limit) to

p0
∑

i=1 Gi.

We again ignore structure formation in the decay-like case, where the total power injected

depends only on the average density. The universe is rather transparent to the products of

DM decay and annihilation at these redshifts, so even a very spatially non-uniform distribu-

tion of energy injection would not be expected to cause ionization or temperature hot-spots

(at least for particles injected at weak-scale energies; de-excitation of nearly-degenerate states

or annihilation of very light DM might change this conclusion to some degree). Modeling

of reionization may pose a more significant challenge for analyses relying on low redshifts

(z ∼ 10); note, however, that the transparency of the universe at these redshifts means that

in realistic scenarios (even decay-like scenarios) the bulk of the effect on the CMB comes

from earlier times.

5.2.1 Brief review of the Fisher matrix

The degree to which energy deposition is observable in the CMB can be captured by

the Fisher matrix for energy deposition, denoted Fe, which is obtained by contracting the

transfer matrix T (Equation 5.2) with the appropriate covariance matrix for the Cℓ’s (e.g.
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[179, 265, 269]),

Σℓ =
2

2ℓ+ 1
×















(

CTT
ℓ

)2 (

CTE
ℓ

)2
CTT

ℓ CTE
ℓ

(

CTE
ℓ

)2 (

CEE
ℓ

)2
CEE

ℓ CTE
ℓ

CTT
ℓ CTE

ℓ CEE
ℓ CTE

ℓ

[

(

CTE
ℓ

)2
+ CTT

ℓ CEE
ℓ

]















,

(Fe)ij =
∑

ℓ

(

∂Cℓ

∂αi

)T

· Σ−1
ℓ · ∂Cℓ

∂αj

. (5.3)

For experiments other than the perfect cosmic variance limited (CVL) case, noise is included

by replacing CTT,EE
ℓ → CTT,EE

ℓ + NTT,EE
ℓ , where Nℓ is the effective noise power spectrum

and is given by:

Nℓ = (ωp)
−1eℓ(ℓ+1)θ2 (5.4)

Here θ describes the beam width (FWHM = θ
√
8 ln 2), and the raw sensitivity is (ωp)

−1 =

(∆T × FWHM)2, with all angles in radians. The standard deviation of the parameter αi,

marginalized over uncertainties in the other parameters, is given by σαi
≥ (F−1

e )
1/2
ii . The

parameter αi is then detectable at 1σ if its signal-to-noise αi/σαi
is larger than 1.

So far, we have not taken into account covariance between the standard cosmological

parameters and the energy deposition parameters, but in fact there are significant degenera-

cies between them. In particular, shifting the primordial scalar spectral index ns can absorb

much of the effect of energy deposition [225, 139]. Therefore we must marginalize over the

cosmological parameters, since the naively most measurable energy deposition history may

be strongly degenerate with them and thus difficult to constrain. We parameterize the usual

six-dimensional cosmological parameter space by the following set of parameters: the phys-

ical baryon density, ωb ≡ Ωbh
2, the physical CDM density, ωc ≡ Ωch

2, the primordial scalar
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spectral index, ns, the normalization, As(k = 0.002/Mpc), the optical depth to reionization,

τ , and the Hubble parameter H0.

Using exactly the same machinery as described above for the energy deposition histories,

we determine the derivatives of the Cℓ’s with respect to changes in the cosmological param-

eters, again assuming that these changes are in the linear regime. Then these Cℓ derivatives

are vectors spanning an nc-dimensional subspace of the space of all Cℓ derivatives (where

for the standard parameter set nc = 6); only directions orthogonal to this subspace can

be constrained. We can regard marginalization over the cosmological parameters as sim-

ply projecting out the components of the energy deposition derivatives orthogonal to this

subspace4.

In analogy with Equation 5.3, we now use the derivatives with respect to both energy

deposition and the cosmological parameters to construct the full Fisher matrix,

F0 =







Fe Fv

F T
v Fc






, (5.5)

where Fe is the Fisher matrix for solely the energy deposition parameters, Fc is the Fisher

matrix of the cosmological parameters, and Fv contains the cross terms. The usual pre-

scription for marginalization is to invert the Fisher matrix, remove the rows and columns

corresponding to the cosmological parameters, and invert the resulting submatrix to obtain

the marginalized Fisher matrix F (e.g. [269]). When the number of energy deposition pa-

rameters is much greater than the number of cosmological parameters, it is convenient to

take advantage of the block-matrix inversion,

4See Appendix B of [127] for a detailed explanation of this projection and how it relates to the standard
marginalization prescription.
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F−1
0 =







(

Fe − FvF
−1
c F T

v

)−1 −
(

Fe − FvF
−1
c F T

v

)−1
FvF

−1
c

−F−1
c F T

v

(

Fe − FvF
−1
c F T

v

)−1
F−1
c

(

1 + F T
v

(

Fe − FvF
−1
c F T

v

)−1
FvF

−1
c

)






.

(5.6)

We can now read off the marginalized Fisher matrix as F = Fe−FvF
−1
c F T

v (note that F has

the same units as Fe).

The Fisher matrix approach to estimate detectability is optimistic in the sense that it

assumes the likelihood function is Gaussian about its maximum; for non-Gaussian likeli-

hoods, the significance of a given energy deposition history will generally be smaller, and

any constraints on the amount of energy deposition will be weakened [269]. We verify that

the Fisher matrix method gives results consistent with previous studies of WMAP limits on

constant pann [139, 140].

5.2.2 Experimental parameters

For comparison to the existing literature and constraint forecasting, we consider the

WMAP 5, WMAP 7 and Planck experiments, as well as a theoretical experiment that is

CVL up to ℓ = 2500. The beam width and sensitivity parameters for WMAP and Planck are

given in Table 5.1. We use only the W band for WMAP and the 143 GHz band for Planck,

under the conservative assumption that the other bands will be used to remove systematics.

The effect of partial sky coverage is included by dividing Σℓ by fsky = 0.65.
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Experiment Beam 106∆T/T 106∆T/T

FWHM (arcmin) (I) (Q,U)

WMAP (5 yr, Q band) 29 6.7 9.5

WMAP (5 yr, V band) 20 7.9 11.1

WMAP (5 yr, W band) 13 7.6 10.7

Planck (100 GHz) 10 2.5 4.0

Planck (143 GHz) 7.1 2.2 4.2

Planck (217 GHz) 5.0 4.8 9.8

Table 5.1: Detector sensitivities and beams for different CMB temperature and polarization
experiments. Results for WMAP temperature sensitivity are taken from [177], with the
noise reduced by

√

5/4 (
√

7/4 for WMAP 7) to account for the longer integration time.

The polarization noise for WMAP is taken to be
√
2× the temperature noise. WMAP beam

widths are taken from [46]. The sensitivity and beam width for Planck are taken from the
Planck Blue Book, available at http://www.rssd.esa.int/SA/PLANCK/docs, and assume
14 months of Planck data.

5.2.3 Numerical stability of derivatives and linearity

When dealing with general energy deposition histories, we hope to work in a regime where

the effect of deposition on the CMB is linear, so that the effect of a general energy deposition

history can be described in terms of a linear combination of basis energy deposition histories.

This is the idea behind characterizing the effect of new parameters entirely in terms of the

transfer matrix of derivatives, T , and the Fisher matrix F derived from it. Equivalently,

linearity means it is sensible to speak of a single transfer matrix T largely independent of

the “fiducial” energy deposition history about which the derivatives ∂Cℓ/∂αi are taken (our

default assumption is that this “fiducial” energy deposition is zero). If the energy deposition
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Figure 5.2: The first three principal components for WMAP 7, Planck and a CVL experi-
ment, both before and after marginalization over the cosmological parameters.

history being studied is too great a perturbation away from the fiducial, the first derivatives

will no longer accurately describe its effect on the Cℓ’s, and the Fisher matrix estimate of

its significance will break down. In this subsection we discuss the numerical stability of the

derivatives, and the degree to which they describe the effect of arbitrary energy deposition

histories on the Cℓ’s.

The derivatives used in the Fisher matrix are evaluated at the fiducial cosmology (with

no energy deposition). The assumption of linearity is that these derivatives are still correct

away from the fiducial. For the standard set of six cosmological parameters, the biases to

the cosmological parameters induced by the maximum permitted energy deposition from

WMAP 5 generally lie well within the linear regime.

For large energy deposition, the effect on the Cℓ’s is nonlinear, i.e. not directly pro-

portional to the deposited power as parameterized by the αi; equivalently, the derivatives

about a fiducial large energy depos ition are not the same as for zero energy deposition.

Our polynomial fits for the derivatives, described above, also allow us to check the extent to

which nonlinearity may become important: that is, the extent to which O(α2
i ) corrections
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to the effect on the Cℓ’s are non-negligible.

The amount of energy deposition such that nonlinearities become important depends on

redshift z. This can be estimated by the fractional rate of ionization per Hubble time,

(dnion/dt)/(n
0
ionH(z)), arising from the energy deposition (where dnion/dt is related to

dE/dtdV according to the prescription of [250]). For two fiducial cases this quantity is shown

in Figure 5.1. Conversely, the energy deposition at redshift z such that (dnion/dt)/(n
0
ionH(z)) =

1 gives a measure of what energy deposition is required before nonlinearities may become

significant. For each redshift bin, we use the polynomial fits of δCℓ(αi) to numerically calcu-

late the derivatives at this level of energy deposition. We then find 1% corrections (averaged

over ℓ) to the fiducial derivative (∂Cℓ/∂αi)|αi=0.

5.3 Principal Component Analysis

The effects of energy deposition at different redshifts on the Cℓ’s are highly correlated,

and so the effects of a large class of energy deposition histories can be characterized by a small

number of parameters. Principal component analysis provides a convenient basis into which

energy deposition histories can be decomposed, with the later terms in the decomposition

contributing almost nothing to the effect on the Cℓ’s. It thus allows generalization of con-

straints on energy deposition to a wide range of models (subject to the linearity assumption

discussed above).
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Figure 5.3: The first six principal components for Planck after marginalization, in the case
of (left) annihilation-like redshift dependence with linear binning, (center) annihilation-like
redshift dependence with log binning, and (right) decay-like redshift dependence with log
binning. Note that for decay-like energy deposition histories, the redshift range is extended
down to z = 10 in order to fully capture the effect on the CMB - see §5.2. This larger
redshift range makes linear binning impractical.

5.3.1 The principal components

Having obtained the marginalized Fisher matrix F , diagonalizing F :

F = W TΛW, Λ = diag(λ1, λ2, ...., λN) (5.7)

yields a convenient basis of eigenvectors or “principal components”. W is an orthogonal

matrix in which the i-th row contains the eigenvector corresponding to the eigenvalue λi. If

we compute derivatives for N redshift bins, then the N ×N Fisher matrix has N principal

components. The eigenvectors are orthonormal in the space of vectors {αi}, i = 1..N . Let us

label these vectors ei, with corresponding eigenvalues λi, i = 1..N . Our convention is to rank

the principal components by decreasing eigenvalue, such that e1 has the largest eigenvalue.

Note that the principal components may be significantly different from the unmarginalized

principal components, or the eigenvectors of Fe. Figure 5.2 shows the first three principal

components for WMAP 7, Planck and a CVL experiment, both before and after marginaliza-
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tion, for the annihilation-like case (dE/dt ∝ pann(z)(1+ z)6) with 50 linearly-spaced redshift

bins. We see that while the shapes of the PCs are qualitatively similar, marginalization pro-

duces noticeable changes to the PCs, as does changing from one set of experiment parameters

to another. The differences become more pronounced for higher PCs.

Note that the shapes of the principal components can be affected by a number of other

different factors: choice of binning, choice of ionization history calculator, energy deposition

model, fiducial cosmological model considered, etc. We discuss these effects in Appendix A

of [127].

In Figure 5.3 we show the first six marginalized PCs for Planck, for annihilation-like

(dE/dt ∝ pann(z)(1+z)6) and decay-like (dE/dt ∝ pdec(z)(1+z)3) energy deposition histories.

We show the annihilation-like case with both log and linear binning. We note that the first

principal component is always largely or completely non-negative, and (in the annihilating

case) peaked around redshift 600. The first PC can be thought of as a weighting function,

describing the effect of energy deposition on the CMB (orthogonal to the effect of shifting

the cosmological parameters), as a function of redshift5.

In Figure 5.4 we show the effect on the ionization history for the first three Planck PCs

in the annihilation case, with each PC multiplied by an energy deposition coefficient of

ε = 2× 10−27 cm3/s/GeV to obtain pann(z). Note that this energy deposition is too large to

be strictly in the linear regime; this figure illustrates the shape and size of the effect in the

linear regime, the true effect for this value of ε will be somewhat smaller.

For energy injections that do not greatly change the optical depth, the fractional change

5Note that the shift in the peak position between log and linear binning is to be expected, as one
“weighting function” would be integrated over dz and the other over d ln(1+ z); see Appendix A of [127] for
further discussion.
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Figure 5.4: Fractional change to the ionization fraction xe in the presence of energy depo-
sition, for the first three (marginalized) principal components in Planck. The curve shown
is extrapolated from the linear (small energy deposition) regime, with normalization factor
ε1,2,3 = 2× 10−27 cm3/s/GeV.

to the visibility function can be read off directly from the fractional change to the ionization

history shown in Figure 5.4. Defining the visibility function as g(z) = τ ′e−τ , where τ ′(z) ≡

dτ/dz = neσT c/((1 + z)H) is the probability of scattering per unit redshift, τ is the optical

depth, σT is the Thomson scattering cross-section and ne is the free electron density, the

perturbation to the visibility function is given by ∆g(z)
g(z)

= (e−∆τ − 1)+ ∆τ ′

τ ′
e−∆τ ∼ ∆τ ′

τ ′
= ∆xe

xe
,

provided ∆τ ≪ 1 and so e−∆τ ∼ 1. We have explicitly checked that the effect of the PCs on

the visibility function is almost identical to their effect on the ionization history.

As previously, we have considered “annihilation-like” and “decay-like” energy deposition

histories separately. If both analyses were performed over the same redshift range, then

while the principal components might appear different, they would span the same space of

energy deposition histories. If all principal components were retained, the difference between



Chapter 5: CMB Constraints on Dark Matter Annihilation 107

0 500 1000 1500 2000
l

-60

-40

-20

0

l(l
+

1)
δC

l /
 2

π 
(µ

 K
2 ),

 T
T

PC 3
PC 2
PC 1

0 500 1000 1500 2000
l

-1

0

1

2

l(l
+

1)
δC

l /
 2

π 
(µ

 K
2 ),

 T
E

0 500 1000 1500 2000
l

-0.6

-0.4

-0.2

0.0

0.2

l(l
+

1)
δC

l /
 2

π 
(µ

 K
2 ),

 E
E

Figure 5.5: The mapping of the first three principal components for Planck, after marginal-
ization, into δCℓ space. The PCs are multiplied by εi(z) = 2× 10−27 cm3/s/GeV for all i, to
fix the normalization of the δCℓ’s.

the two would simply be equivalent to a change of basis, and provided sufficient principal

components are retained, this will still be approximately true. However, a particular energy

deposition history may be described by the early principal components much better in one

case than in the other; in particular, energy deposition histories for which the effect on the

CMB is dominated by low redshifts will not be well described by the (first few of the) default

annihilation-like PCs. Thus we present results for both cases.

5.3.2 Mapping into δCℓ space

Let us consider the mapping into δCℓ space of these marginalized principal components.

Applying the transfer matrix T (Equation 5.2) to the eigenvectors yields a set of N vectors

in the space of Cℓ perturbations, δCℓ = Tei = hi. The hi’s should be understood as δCℓ’s

per energy deposition, and have units of Cℓ/p(z).

We can define a dot product on the space of δCℓ’s by

hi · hj =
∑

ℓ

hT
iℓΣ

−1
ℓ hjℓ = eTi Feej (5.8)
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Figure 5.6: The ⊥ components of the first three principal components for Planck, after
marginalization, mapped into δCℓ space. The normalization is the same as for Figure 5.5.
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Figure 5.7: Decomposition of δCℓ from energy deposition with constant pann(z) into parallel
(||) components which can be absorbed by changes in the cosmological parameters, and
perpendicular (⊥) components that cannot be absorbed by such changes. The overall effect
of the energy deposition is suppression of high-ℓ modes, due to the increased optical depth,
and enhancement of low-ℓ polarization modes, as discussed in [225]. The suppression at high
ℓ is clearly seen in the TT and EE spectra; the effect is also present in the TE spectra,
with the peaks of δCTE

ℓ occurring at the troughs of CTE
ℓ , and vice versa. The normalization

here is pann = 2 × 10−27 cm3/s/GeV, comparable to the latest limits from WMAP 7+ACT
[140]. This decomposition depends on the sensitivity of the experiment; the case shown is
WMAP 7 single band.
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We then see that while the PCs are orthogonal, the hi are in general not orthogonal to each

other, nor to the δCℓ’s from the cosmological parameters. They correspond to actual energy

deposition histories, and in general, there is no such history that is precisely orthogonal to

all the cosmological parameters.

However, we may decompose the hi into components parallel and perpendicular to the

space spanned by varying the cosmological parameters, and denote the perpendicular compo-

nents h⊥
i . The projection operator that implements this decomposition is given in Appendix

B of [127]. The h⊥
i vectors are now orthogonal amongst themselves, as well as to the cos-

mological parameters, and their norms are given by the square root of the marginalized

eigenvalues λi. It is these h
⊥
i ’s which determine the detectability of the marginalized princi-

pal components, and which form an orthogonal basis for residuals which cannot be absorbed

by varying the cosmological parameters. The addition of the parallel components, to recover

the hi’s from the h⊥
i ’s, ensures that the hi’s correspond to energy deposition histories, and

so provide an orthogonal basis in redshift space.

In Figure 5.5, we show the mapping of the first three (marginalized) PCs for Planck into

the space of δCℓ’s; in Figure 5.6, we show the components of these δCℓ’s which are orthogonal

to the space spanned by varying the cosmological parameters. Figure 5.7 demonstrates

this projection for a sample DM annihilation model, summing over principal components,

and decomposing the effect on the Cℓ’s into components perpendicular and parallel to the

cosmological parameters.

The eigenvectors of the Fisher matrix {ei} thus provide an orthogonal basis in both

relevant spaces, and their eigenvalues precisely describe the measurability of a “unit norm”

energy deposition history with z-dependence given by the eigenvector. For an arbitrary
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energy deposition history which we now write as

p(z) =
N
∑

i=1

εiei(z), (5.9)

the expected ∆χ2 relative to the null hypothesis of no energy deposition is
∑

i ε
2
iλi. If the

εi coefficients are comparable, the relative sizes of the eigenvalues describe the fractional

variance attributable to each principal component (eigenvector).

A brief comment on unit conventions: we take the {ei} and {Gi} to be dimensionless,

with the units of p(z) (cm3/s/GeV) carried by the coefficients αi, εi. The derivatives (and

transfer matrix) then have units of Cℓ/p(z), and the Fisher matrix and its eigenvalues have

units of 1/p(z)2 (since the covariance matrix Σ has units of C2
ℓ ). Note also that due to the

units of the covariance matrix, the dot product defined above takes two vectors in Cℓ-space

to a dimensionless number (if the vectors have units of Cℓ).

5.4 Detectability

For a general energy deposition history, the PCs provide a basis in which, by construction,

the basis vectors are ranked by the significance of their effect on the Cℓ’s. The measura-

bility of a generic (smooth, non-negative) energy deposition history can thus be accurately

described by the first few PCs6. Equivalently, the coefficients of later principal components

have extremely large error bars, and will be challenging to measure or constrain.

We now outline the method for reconstructing and constraining the PC coefficients, or

6It is in principle possible for the coefficients εi to be zero for i < n for some n, but if n is large this implies a
very unphysical energy deposition history that oscillates rapidly between positive and negative values. While
“negative energy deposition” might perhaps have a physical interpretation in terms of increased absorption
of free electrons, such an interpretation is not at all obvious, and so we focus on smooth, non-negative energy
deposition histories.
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any specific energy deposition history, using the PCA formalism. We investigate the number

of PCs that can generically be measured at ≥ 1σ by Planck and a CVL experiment, for

arbitrary energy deposition, and show results for broad classes of example models. We also

consider the biases to the cosmological parameters that are induced if energy deposition

is present but ignored; we present results for each principal component, so the biases due

to an arbitrary energy deposition history can be immediately calculated. Our estimates of

detectability and the biases will be verified using CosmoMC in the §5.6.

5.4.1 Estimating limits from the Fisher matrix

As mentioned previously, the perpendicular components of the δCℓ’s, h
⊥
i , are orthogonal

with norms
√
λi. They are also orthogonal to the space spanned by varying the cosmological

parameters. Given these results and a measurement of the temperature and polarization

anisotropies, it is straightforward to estimate general constraints on the energy deposition

history from the Fisher matrix formalism. Note that in a careful study, one would instead

use CosmoMC to perform a full likelihood analysis, using the Fisher matrix results only to

determine the optimal principal components, as we demonstrate in §5.6. We outline this

simple method only to help build intuition and to clarify later comparisons between the

Fisher matrix method and the CosmoMC results.

The first step is to extract any residual between the data and the best-fit model using

the standard cosmological parameters; let us denote this residual by RTT,EE,TE
ℓ . Then we

take the dot product (as defined in Equation 5.8) of this residual with the h⊥
i vectors,

normalizing by the corresponding eigenvalues (this normalization is required because the
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h⊥
i ’s are orthogonal, but not orthonormal; see Appendix B of [127]):

ε̄i =
R · h⊥

i

λi

. (5.10)

The resulting ε̄i are the model-independent reconstructed coefficients for the marginalized

principal components. In the absence of energy deposition, we expect them to be zero (within

uncertainties).

The individual 1σ uncertainties on each of these coefficients are 1/
√
λi, in the sense that

if a single coefficient is perturbed away from its best-fit value by 1/
√
λi, the corresponding

energy deposition history will be disfavored at 1σ. Thus it is possible to set a very general

model-independent constraint on each of the coefficients, εi = ε̄i ± 1√
λi

(at 1σ).

Given an arbitrary energy deposition history, we can decompose it into the principal

components, each with its own coefficient, and compare these coefficients εi to the bounds.

For any particular model, a stronger constraint can be set by noting that,

∆χ2 =
∑

i

λi (εi − ε̄i)
2 . (5.11)

This ∆χ2 is relative to the best-fit model including both energy deposition and the standard

cosmological parameters; the ∆χ2 relative to the best-fit standard cosmological model7 is

simply
∑

i λiεi(εi − 2ε̄i).

This method has the usual deficiencies of the Fisher matrix approach: it assumes a

Gaussian likelihood and also linearity of the derivatives, and so can only be used for an

estimate. In §5.6 we will go beyond the Fisher matrix approach and present constraints

derived from a likelihood analysis using CosmoMC: in the same way as this estimate, those

7Of course, if the best-fit energy deposition history is everywhere zero, i.e ε̄i ≈ 0 for all i, these two
quantities are identical.
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limits can be expressed as bounds on (a simple combination of) the PC coefficients, and will

therefore be immediately applicable to a wide range of models for energy deposition.

5.4.2 Sensitivity of future experiments

For an energy deposition history where the sizes of the coefficients, |εi|, are all similar, the

respective detectability of the PCs are given simply by their eigenvalues. Literally taking all

the coefficients to be the same does not give a physical energy deposition history (since the

later eigenvectors are highly oscillatory), but it is in some sense a “generic” scenario: none

of the PCs have coefficients that are fine-tuned to be small, so slight changes to p(z) or the

basis of PCs are unlikely to drastically change the detectability of the different components.

We define detectability of the PCs with respect to this “generic” case; of course, de-

tectability of any particular model depends on the relative sizes of coefficients. We consider

a number of physical examples below to illustrate that, in some sense, the generic case is a

reasonable average over a wide class of models of interest.

As discussed previously, [254] derived a set of energy deposition profiles corresponding

to a range of DM annihilation models. These models provide a convenient set of example

energy deposition histories, although they all have very similar effects on the CMB (see §5.5).

We adapt the code developed in [254] and discussed in detail there to obtain similar physical

f(z) curves for the case of decaying dark matter with a long lifetime.

While the DM itself must have a lifetime considerably longer than the age of the universe,

there could be other metastable species which decay during the redshift range we study

(z ∼ 10 − 1300), or excited states of the dark matter which decay to the ground state +

Standard Model particles (e.g. [129, 41, 130, 93, 44] and references therein). In this case
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Figure 5.8: (a) The sensitivity for Planck (single-band), after marginalization, for various
models subject to constraints from WMAP 7 single-band at 2σ. The models considered
are shown in Figure 5.8. The left figure assumes annihilation-like energy deposition and
the right figure assumes decay-like energy deposition. The top panels show: (1) assuming
p(z) ∝ ei(z) for each PC, (2) the generic case where all PC coefficients have equal magnitudes
|εi| = ε = 2/

√
∑

i λ
WMAP
i , (3) constant p(z), and (4) taking p(z) ∝ f(z), with f(z) from the

models in [254]. For the left figure, the hatched region indicates the range of results from
modifying the analysis slightly, as described in Appendix A of [127]. The bottom panels show
some sample zτ models for asymmetric annihilating dark matter (left) and decaying species
(right), as discussed in §5.4.2 (the labels describe the initial particle mass, and the SM final
state for annihilation or decay), and an extreme case where p(z) = 0 for 200 < z < 900 and
constant outside that range.
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Figure 5.9: Energy deposition history for the models in Figure 5.8 for annihilation-like (left)
and decay-like (right).

the decay rate would cut off exponentially for z < z(τ), although heating and ionization of

the gas could continue for some time after that: we can again obtain detailed p(z) curves

for different decay lifetimes using the methods of [254]. Models of this type provide a simple

class of examples suitable for use with the PCs derived for the case of decaying DM, since

the underlying dE/dt ∝ (1 + z)3 redshift dependence is the same (although for models with

lifetimes short enough that the energy deposition has ceased shortly after recombination,

the PCs derived for the annihilation-like case may work better).

For the annihilating case, asymmetric dark matter scenarios can furnish a similar set

of examples [165, 95, 183, 111, 94, 114]. In such scenarios the DM sector possesses an

asymmetry analogous to that in the baryon sector, and it is this asymmetry which sets the

DM relic density rather than the annihilation cross section. In the minimal case there is

thus no requirement for an annihilation signal in the present day or during the epoch of

recombination, but it is nonetheless possible to have a large late-time annihilation signal,

by repopulation of the depleted component at late times, or by oscillations from the more-

abundant to the less-abundant component [95, 68, 114]. As a simple example, we consider

models where another species decays to repopulate the less-abundant DM state [114], thus
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causing the annihilation to “switch on” as 1− e−t/τ at a characteristic timescale τ (with zτ

being the corresponding redshift). We compute the p(z) curves for a range of τ . Finally, for

both annihilation and decay we consider the constant p(z) case, studied in [78] (for decay)

and [225, 139] (for annihilation), to facilitate comparison with the literature.

Figure 5.8 shows the detectability of the principal components in Planck and the ideal

CVL experiment for these annihilating and decaying models, with the energy deposition

normalized to lie at the 95% limit from WMAP 7. The energy deposition for these models

is shown in Figure 5.9. In the “generic” case, we set the sizes of the coefficients of the

Planck (or CVL) PCs to be |εi| = ε = 2/
√
∑

i λ
WMAP
i . The actual WMAP 7 signal-to-noise

for the model is

S

N
=





∑

i

λWMAP
i

[

∑

j

εje
P lanck
j · eWMAP

i

]2




1/2

and thus depends on the signs of εi, but the generic case is meant to indicate the typical

detectability for a class of models, so we instead use the WMAP 7 constraints to set an

overall scale for |εi|.

We also show the detectability for each PC if p(z) ∝ ei(z), or assuming the energy

deposition history has zero overlap with all other PCs8. As mentioned previously, this is

not a physical assumption (requiring an “energy deposition” oscillating rapidly between

positive and negative values): in such a case the effect on the Cℓ’s is so small that the

normalization of the “energy deposition” could be very large and still consistent withWMAP.

8If the PCs were the same for the different experiments, this would give an upper bound on the de-
tectability of the ith PC, given WMAP 7 2σ constraints. However, the PCs for different experiments are
not orthogonal, ePlanck

i · eWMAP
j 6= δij . A strict upper bound for the S/N of the ith Planck PC is given

by (S/N)Planck
i ≤ 2

√

λPlanck
i

∑

j |ePlanck
i · eWMAP

j /
√

λWMAP
j |, with the analogous result for a CVL exper-

iment. However, this quantity is not very useful as an upper bound; for example, if p(z) is proportional to a
high WMAP PC, the normalization of p(z) is essentially unconstrained, but the detectability for Planck may
be very significant if there is even a small overlap with the first Planck PC.
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Consequently, arbitrarily high PCs can be measured if they are the sole contributors to the

energy deposition history.

We see that models with decay-like redshift dependence and those with annihilation-like

redshift dependence tend to have roughly the same number of measurable parameters. In

both cases, generally 2-3 components are potentially measurable in Planck and up to 5-7 for

a CVL experiment.

As a side note, the improvement of these constraints between WMAP 7 and future

experiments is in large part due to (anticipated) better measurements of the polarization.

In the absence of polarization data (i.e. using the TT spectrum only), we would expect the

constraints to weaken by a factor of ∼ 3 for WMAP 7, ∼ 7 for Planck , and ∼ 14 for a

CVL experiment. Here we have taken the square root of the eigenvalue of the first principal

component as a proxy for sensitivity, which will be approximately true for models with a

non-negligible overlap with the first PC.

5.4.3 Biases to the cosmological parameters

If energy deposition is present but neglected, it can bias the measurement of the cos-

mological parameters by a significant amount. For WMAP, the partial degeneracy between

varying ns and the effects of energy deposition means that the dominant bias is a 1σ nega-

tive shift to ns. The improved polarization sensitivity of Planck largely lifts the degeneracy

with ns, but due to the smaller error bars of Planck other parameters develop non-negligible

biases: at the maximum energy deposition allowed by WMAP 7 at 2σ, Planck parameter

estimates are generically biased at > 1σ for ωc, H0, and As.

Calculation of the biases is exactly complementary to calculating the marginalized Fisher
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Figure 5.10: For the ith PC, the contribution to the bias to cosmological parameters in
WMAP 7 (left panel) and Planck (right panel), relative to the error bars forecast from the
Fisher matrix. The normalization is that of the “generic” case (see discussion in §5.4.2 or
Figure 5.8), where each PC coefficient has the same absolute value and the overall normal-
ization is the maximum allowed by WMAP 7 at 2σ. The total bias for the parameter θ is
∑

i δθi.

matrix. While the marginalization can be understood as projecting out the degeneracies

with the cosmological parameters, the biases are given precisely by the effect of energy

deposition in those degenerate directions. To be precise, suppose that some eigenvector ej

has true coefficient εj 6= 0 and we falsely assume εj to be zero: then each of the cosmological

parameters θi will be shifted by an amount δθi. The matrix of derivatives ∂θi/∂εj, i = 1..nc,

j = 1..N , is given simply by
∑

k

(

F−1
c F T

v

)

ik
(ej)k.

Thus we can partition the biases into the bias per PC, which is shown in Figure 5.10 for

WMAP 7 and Planck. For a generic energy deposition history, the total bias is dominated

by the bias from the first few PCs, consistent with the fact that later PCs are undetectable

and can essentially be neglected in any fit to the data. As expected from [138], the largest

bias for WMAP 7 is to ns.
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5.5 A universal pann(z) for WIMP annihilation

Solutions for the redshift dependence of the efficiency function f(z) (and hence the energy

deposition history pann(z)), for 41 different combinations of dark matter mass and annihi-

lation channel, were presented in [254]. We can use these 41 energy deposition histories,

rather than δ-functions in z, as the input states for a principal component analysis. Here we

summarize the results presented in §V of [127].

After marginalization over the other cosmological parameters, we find that in this case

the first eigenvalue completely dominates the later ones, accounting for 99.97% of the total

variance in WMAP 7, Planck and the CVL forecast. Thus, to a very good approximation, for

any of the DM models studied in [254] (or any linear combination of the final states studied

there), the effect on the Cℓ’s is determined entirely by the dot product of pann(z) with the

first PC, with the ℓ-dependence given by mapping the first PC to Cℓ-space. This conclusion

agrees with the statements in [254, 170] that the effect of DM annihilation can be captured

by a single parameter. The effective f -value of various WIMP annihilation models is just

given by the dot product of their f(z) curves with this first principal component. On our

website, we provide the “universal” f(z) curve for WIMP annihilation, as well as effective

f -values for all models considered in [254].

5.6 CosmoMC Results

Everything we have done so far assumes both linearity and that the Fisher matrix is

an adequate description of the likelihood function. §VI of [127] presents our results of a

full likelihood analysis using the CosmoMC Markov chain Monte Carlo code, in particular
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examining the biases to the cosmological parameters and the detectability of the PCs. To

summarize, there we determine the constraints on parameters using the seven-year WMAP

data [191] (temperature and polarization), for both general energy injection histories and for

the universal pann(z) for WIMP annihilation. We then generate simulated data for Planck and

a CVL experiment using a fiducial cosmological model given by the best fit WMAP7 model,

and show the constraints on the various parameters. In the Planck case, for example, we

have confirmed that the constraints on the first three principal components can be used to

recover the correct limit on a particular energy deposition history.

5.7 Conclusion

Principal component analysis provides a simple and effective parameterization for the

effect of arbitrary energy deposition histories on anisotropies in the cosmic microwave back-

ground. We find that for DM annihilation-like energy deposition histories the first principal

component, describing the bulk of the effect, is peaked around z ∼ 500− 600, at somewhat

lower redshift than previously expected; the later principal components provide corrections

to this basic weighting function.

The principal components, derived from a Fisher matrix approach, are stable against a

wide variety of perturbations to the analysis, including choice of code calculating the ioniza-

tion history, additions to the usual set of cosmological parameters, the inclusion or exclusion

of ionization on helium, the range of included multipoles, and the choice of binning. The

one significant potential change to the PCs arises from how deposited energy is attributed

to additional Lyman-α photons: we have showed the effect of on one hand neglecting this

channel, and on the other of assuming that all the energy attributed to “excitations” is con-
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verted into Lyman-α, which should bracket the true result. We eagerly await a more careful

analysis of this problem.

Within the Fisher matrix formalism, it is straightforward to take into account degen-

eracies with the standard cosmological parameters. We have presented predictions for the

(significant!) biases that would arise in Planck as a result of falsely assuming energy depo-

sition to be zero, for each of the principal components. We have confirmed the previously

noted degeneracy between energy deposition and ns, and to a lesser degree with As, ωb and

ωc, in WMAP data; since our analysis decomposes the biases according to the principal

components that generate them, it is now trivial to compute the biases to the cosmological

parameters for any arbitrary energy deposition history, in WMAP or in mock Planck data.

For a wide range of energy deposition histories, spanning models of dark matter an-

nihilation and decaying species where annihilation or decay can begin or end abruptly on

characteristic timescales shorter than the age of the universe, the coefficients of up to three

principal components are potentially measurable by Planck, for energy deposition histories

satisfying 95% confidence limits from WMAP, opening up the exciting possibility of distin-

guishing different models of energy deposition. For a CVL experiment, up to five coefficients

are measurable.

For the “standard” WIMP annihilation case, principal component analysis on a large set

of WIMP models yields a single principal component eWIMP(z) that describes the effect on

the Cℓ’s of all the models very well; any model is then parameterized simply by the coefficient

of eWIMP(z) (or equivalently, effective f). Our analysis confirms previous statements in the

literature, and we have provided this “universal f(z)” curve for future WIMP annihilation

studies.



Chapter 5: CMB Constraints on Dark Matter Annihilation 122

We performed an accurate MCMC analysis of current WMAP 7 data to impose con-

straints on the measurable principal component amplitudes, and to forecast constraints for

future experiments such as Planck or a CVL experiment. We find good agreement with the

Fisher matrix analysis, although the MCMC analysis is required to accurately predict the

biases on the cosmological parameters. We have illustrated how it is possible to recover the

constraints on an arbitrary energy deposition history from the constraints on the amplitudes

of the principal components. The reconstructed constraints are in very good agreement with

the constraints obtained by directly sampling a specific energy deposition history, confirming

the validity and usefulness of the principal component decomposition.



Chapter 6

Asymmetric and Symmetric Light

Dark Matter

6.1 Introduction

Studies of dark matter (DM) have historically focused on particles with weak scale mass

∼ 100 GeV [54, 180, 119]. The reason is not only the focus of the high energy physics

community on weak scale phenomena, but also because the annihilation cross section for a

Weakly Interacting Massive Particle (WIMP) naturally gives rise to the observed cold DM

relic abundance. This is the so-called “WIMP miracle.”

More recently there has been a broader interest in light DM, with mass mX . 10 GeV.

Part of the reason for this interest is phenomenological. Direct detection results from

DAMA [53], CoGeNT [2, 1], and CRESST [27] claim event excesses that can be interpreted

as nuclear scattering of DM with mass ∼ 10 GeV (although the mutual consistency of these

results is disputed). Meanwhile dark matter with masses of MeV has been studied as a

123
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possible explanation of the INTEGRAL 511 keV line [58, 59, 164, 168, 231, 166, 107].

There is also a theoretical motivation for light DM, as DM with mass mX . 10 GeV

appears in certain classes of models naturally. In supersymmetric hidden sector models, for

example, gauge interactions generate light DM masses and give rise to the correct annihi-

lation cross section [166, 123, 125]. The asymmetric DM (ADM) scenario, where the DM

particle X carries a chemical potential, analogous to the baryons, provides another approach

to light DM (see e.g. [223, 181, 40, 183] and references therein). In these scenarios, both

DM (X) and anti-DM (X̄) particles may populate the thermal bath in the early Universe;

however, the present number density is determined not only by the annihilation cross section,

but also by the DM number asymmetry ηX . Depending on the value for ηX , the DM mass

can be as low as ∼ keV in ADM models [114], though the natural scale for ADM is set by

(ΩCDM/Ωb)mp ≈ 5 GeV.

The purpose of this work is to explore model-independent constraints and predictions for

the asymmetric and symmetric limits of light DM with mass ∼ 1 MeV−10 GeV.1 Although

both phenomenological and theoretical considerations have motivated the study of light DM

candidates, there are still a number of important constraints that should be taken into

account in realistic model building. In general, light thermal DM faces two challenges:

one is to evade bounds on energy injection around redshifts z ∼ 100 − 1000 coming from

observations of the CMB; the other is to achieve the required annihilation cross section

without conflicting with collider physics constraints.

CMB data from WMAP7 strongly limits DM annihilation during the epoch of recom-

1For DM much lighter than ∼1 MeV, DM can only annihilate to neutrinos, new light states that remain
relativistic through matter-radiation equality, or hidden sector forces that decay invisibly. In this case, the
CMB and collider bounds discussed here do not apply.
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bination, and excludes symmetric thermal light DM with mass below ∼ 1 − 10 GeV if the

annihilation is through s-wave processes [140, 170, 127]. The CMB bounds may be evaded

in the symmetric case if DM dominantly annihilates to neutrinos or if its annihilation is

p-wave suppressed. When the DM relic density is asymmetric, DM annihilation during re-

combination can be highly suppressed if the symmetric component is sufficiently depleted,

providing a natural way to resolve the tension from CMB constraints for light DM scenarios.

Unlike the case of symmetric DM, the CMB places a lower bound on the annihilation cross

section for ADM from the requirement of sufficient depletion of the symmetric component.

We calculate the minimum annihilation cross section required in order to evade the CMB

bound and achieve the correct relic density simultaneously.

However, it is difficult to achieve the needed annihilation rate to Standard Model (SM)

particles through a weak-scale mediator. Null results from mono-jet plus missing energy

searches at the Tevatron [150, 149, 36] and the LHC [234, 135] strongly constrain such a

mediator if DM couples to quarks and gluons. Meanwhile, the mono-photon plus missing

energy search at LEP sets limits on the coupling between DM and charged leptons [134] via

such a heavy state. These collider constraints are so strong that the annihilation through an

off-shell heavy mediator is generally insufficient for ADM to achieve the correct relic density

and evade the CMB constraint, if the DM mass is below a few GeV. One way to evade the

collider constraints is to invoke a light mediator with mass much less than ∼ 100 GeV. In this

case, DM can annihilate to SM states efficiently via the light state without conflicting with

collider bounds. Furthermore, if the mediator is lighter than the DM, a new annihilation

channel opens and DM can annihilate dominantly to the mediator directly. In this limit, the

mediator particle may couple to the SM sector rather weakly.
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The presence of the light mediator has various implications for DM dynamics in galaxies

and for cosmology. The light mediator may give rise to significant DM self-interactions (i.e.,

DM-DM scattering); this is true in both the symmetric and asymmetric limits, since the

light state mediates DM-DM interactions as well as anti-DM and DM interactions. These

interactions leave footprints in the DM halo dynamics. There are limits on the DM self-

interaction cross section coming from observations of elliptical DM halos and elliptical galaxy

clusters. We combine these with the relic density constraint to place a lower bound on the

mediator mass ∼ 4× 10−2 MeV− 40 MeV for DM masses in the range ∼ 1 MeV− 10 GeV.

We assume this massive mediator decays to SM relativistic degrees of freedom in the early

universe to avoid the overclosure problem, and derive conditions for thermalization of the

DM and SM sectors.

These astrophysical and cosmological constraints can be applied to the parameter space of

scattering rates in direct detection experiments. We consider DM-nucleon scattering for DM

masses of 1− 10 GeV and DM-electron scattering for DM masses 1 MeV− 1 GeV. In the

case of electron scattering, we combine the astrophysical and cosmological constraints with

bounds from beam dump experiments and supernova cooling, which exclude a large region

of the allowed parameter space. In addition, the predictions are very different dependent on

whether the mediator is heavier or lighter than the DM.

The rest of the chapter is organized as follows. In Section 6.2, we present the relic density

calculation for DM in the presence of a chemical potential. In Section 6.3, we study the CMB

constraint on ADM models and derive the annihilation cross section required to evade the

CMB bound. In Section 6.4, we examine current collider physics constraints on the DM

annihilation cross section. In Section 6.5, we study the elliptical halo shape constraint on
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the mediator mass. In Section 6.6, we map out the parameter space for DM direct detection.

We conclude in Section 6.7.

6.2 Relic Density for Symmetric and Asymmetric Dark

Matter

Our starting point is to establish that the correct relic density of ΩCDMh
2 = 0.1109 ±

0.0056 [195] can be obtained, where we assume that the annihilation cross section 〈σv〉 and

the asymmetry ηX are floating parameters.

In the usual thermal WIMP scenario, the correct relic density is determined by DM

annihilation until freeze-out. For Dirac DM in the symmetric limit, the cold DM relic

density is ΩCDMh
2 ∼ 0.11 (6× 10−26cm3/s) /〈σv〉. DM may also carry a chemical potential

which leads to an asymmetry between the number density of DM and anti-DM. In this

case, when the DM sector is thermalized, the present relic density is determined both by

the annihilation cross section and the primordial DM asymmetry ηX ≡ (nX − nX̄)/s, where

nX , nX̄ are the DM and anti-DM number densities and s is the entropy density. In the

asymmetric limit, neglecting any washout or dilution effects, the correct relic density is

obtained for a primordial asymmetry given by

ηX ≈ ΩCDM

mX

ρc
s0
, (6.1)

where s0 ≈ 2969.5 cm−3 and ρc ≈ 1.0540h2×104 eV/cm3 are the entropy density and critical

density today. In the asymmetric limit, the annihilation cross section is sufficiently large that

the thermally-populated symmetric component is a sub-dominant component of the energy

density today.
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Depending on the strength of indirect constraints on DM annihilation, light DM scenarios

must interpolate between the symmetric and asymmetric limits. We thus require precise

calculations of the present anti-DM to DM ratio r∞ = ΩX̄/ΩX , which controls the size of

indirect signals from DM annihilation. Note that r∞ is related to the absolute relic densities

by

ΩX =
1

1− r∞

ηXmXs0
ρc

, ΩX̄ =
r∞

1− r∞

ηXmXs0
ρc

, (6.2)

and the total CDM relic density is ΩCDM = ΩX + ΩX̄ .

To compute r∞ we solve the Boltzmann equations for nX , nX̄ freezeout in the presence of

a nonzero chemical potential [243]. In this work, we focus on the case where DM is in thermal

equilibrium with the photon thermal bath through freezeout. In general, this assumption

may not hold if there is a weakly coupled light mediator coupling DM to the SM. We leave

the more general case for future work [200], noting that the effects on the relic density are

up to O(10), depending on mX .

The coupled Boltzmann equations for the species n+ = nX and n− = nX̄ are

dn±
dt

= −3Hn± − 〈σv〉 [n+n− − neq
+neq

− ] (6.3)

where 〈σv〉 is the thermally-averaged annihilation cross section over the X and X̄ phase

space distributions [146]. The Hubble expansion rate is H ≈ 1.66
√
geffT

2/Mpl where Mpl ≈

1.22× 1019 GeV is the Planck mass and geff is the effective number of degrees of freedom for

the energy density. If there is a primordial asymmetry in X number, then there is a nonzero

chemical potential µ which appears in the equilibrium distributions as neq
± = e±µ/Tneq. Here

neq is the usual equilibrium distribution with µ = 0, and thus neq
+neq

− = (neq)2.

As usual, we define x = mX/T and Y± = n±/s, where s = (2π2/45)heff(T )T
3 is the

entropy density and heff(T ) is the effective number of degrees of freedom for the entropy
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density. We write the annihilation cross section as 〈σv〉 = σ0x
−n, with n = 0 and n = 1 for

s-wave and p-wave annihilation processes respectively. Then simplifying Eq. (6.3) gives

dY±
dx

= − λ

xn+2

√
g∗
(

Y+Y− − (Y eq)2
)

, (6.4)

where λ ≡ 0.264MplmXσ0 and Y eq ≃ 0.145(g/heff)x
3/2e−x ≡ ax3/2e−x. The effective number

of degrees of freedom is
√
g∗ =

heff√
geff

(

1 + T
3heff

dheff(T )
dT

)

[146].

After being generated at some high temperature, the DM asymmetry is a conserved

quantity, so we have the constraint

ηX = Y+ − Y− (6.5)

which is constant at any given epoch.2 In order to impose this condition on our numerical

solutions, we define the departure from equilibrium ∆ by Y± = Y eq
± + ∆, and instead solve

the (single) equation for ∆.

It is helpful to present approximate analytic solutions in the limit of constant
√
g∗ [243,

152, 175]. Eq. (6.4) can be solved analytically at late times when (Y eq)2 becomes negligible.

In this limit, using Eq. (6.5), we can integrate Eq. (6.4) separately for X̄ and X to obtain

Y±(∞) ≃ ±ηX

1− [1∓ ηX/Y±(xf )] e
∓ηXλ

√
g∗x

−n−1

f
/(n+1)

. (6.6)

These solutions also apply for the symmetric case in the limit of ηX → 0. We take the

freezeout temperature xf = mX/Tf as derived in [152]:

xf ≃ ln [(n+ 1)
√
g∗aλ] +

1

2
ln

ln2
[

(n+ 1)
√
g∗aλ

]

ln2n+4
[

(n+ 1)
√
g∗aλ

]

− (
√
g∗)2 [(n+ 1)ληX/2]

2 . (6.7)

2We assume there is no Majorana mass term for DM, and thus X − X̄ oscillation [114, 95, 92, 64] does
not occur. We also assume there is no entropy production in this case and there are no DM-number violating
interactions at these temperatures.
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Using Y±(∞) given in Eq. (6.6), we can obtain the present ratio of the X̄ to X number

densities:

r∞ ≡ Y−
Y+

(∞) ≃ Y−(xf )

Y+(xf )
exp

(

−ηXλ
√
g∗

xn+1
f (n+ 1)

)

. (6.8)

While we can obtain a precise analytic result for r(xf ) = Y−(xf )/Y+(xf ), it turns out that

the consequence of neglecting the (Y eq)2 in the late-time solution can almost exactly be

accounted for by simply setting r(xf ) = 1. This gives numerically accurate answers over a

wide range of ηX and 〈σv〉 as discussed in [152]. Note that the solution here only converges

when ηXλ is small enough
√
g∗ηXλ < 2xn+2

f .

6.3 CMB Constraints

For both symmetric and asymmetric thermal DM, the DM particles must have a suf-

ficiently large annihilation cross section in order to achieve the correct relic density. This

annihilation may have many indirect astrophysical signatures; among these, the most robust

prediction (or constraint) is the effect of DM annihilation on the cosmic microwave back-

ground (CMB) [225], since the effect only depends on the average DM energy density. We

first summarize recent studies of CMB constraints on DM annihilation, and then discuss

scenarios which naturally evade these constraints for light DM, focusing on the asymmetric

DM scenario.

Energy deposition from DM annihilation distorts the surface of last scattering, which

affects the CMB anisotropies and is thus constrained by WMAP7 data. CMB constraints

become increasingly severe for smaller DM masses: the energy released in DM annihila-

tions scales as ∼ mX(nX)
2 ∼ ρ2CDM/mX , where ρCDM is the average energy density in DM.

This implies the effect of DM annihilation on the CMB scales as ∼ 〈σv〉/mX . Though the
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precise bound depends on the mass and annihilation channels, WMAP7 limits the amount

of annihilation during recombination to below the thermal relic annihilation cross section

if mX . 1 − 10 GeV [254, 139, 140, 170]. Furthermore, Planck data can improve these

constraints by up to a factor of 10.

For self-annihilating DM particles such as Majorana fermions or real scalars, the energy

deposition rate per volume at redshift z is

dE

dtdV
(z) = ρ2cΩ

2
CDM(1 + z)6f(z)

〈σv〉CMB

mX

, (6.9)

where ρc is the critical density at the present time, 〈σv〉CMB is the thermally-averaged an-

nihilation cross section at the epoch of recombination, and f(z) parametrizes the amount

of energy absorbed by the photon-baryon fluid at redshift z, relative to the total energy

released by DM annihilation at that redshift.

The quantity f(z) gives the efficiency of energy deposition at redshift z and thus depends

on the spectrum of photons, neutrinos and e± resulting from DM annihilation. In general,

the dependence of f(z) on z is mild [254], and an excellent approximation is to take f(z) ≡

feWIMP(z) where f is a constant and eWIMP(z) is a universal function for WIMP DM [127].

In addition, to leading order f ≃ (1 − fν) [170], where fν is the fraction of energy going

to neutrinos per annihilation. For DM annihilation channels to charged lepton or pion final

states, f ≈ 0.2− 1; here annihilation only to e± can give f ∼ 1.

There is also some mild mX dependence in f(z) (or f), since the spectrum of DM an-

nihilation products depends on mX . Ref. [254] computed detailed efficiency curves f(z) for

mX > 1−10 GeV, depending on the channel. However, the observed trend is that efficiency

does not depend strongly on mass in the range 1-1000 GeV, and furthermore increases for
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lower mass.3 We will extrapolate results to mX < 1 GeV; we expect this is a conservative

approach.

The WMAP7 limit on DM energy injection at the 95% C.L. can be written as [140]

f
〈σv〉CMB

mX

<
2.42× 10−27 cm3/s

GeV
. (6.10)

This bound4 as given assumes DM particles are self-annihilating, i.e. Majorana fermions

or real scalars. For DM candidates that are Dirac fermions or complex scalars, as in ADM

scenarios, the energy injection rate is

dE

dtdV
(z) = 2ρ2cΩ

2
CDM

r∞
(1 + r∞)2

(1 + z)6f(z)
〈σv〉CMB

mX

, (6.11)

where we have used ρX + ρX̄ = ρCDM and r∞ = ρX̄/ρX . Note there is factor of 2 in the

energy injection rate relative to the self-annihilating case, accounting for the number of

possible annihilations. Comparing Eq. (6.9) and Eq. (6.11), we can translate the bound

given in Eq. (6.10) to the Dirac fermion or complex scalar case:

2r∞
(1 + r∞)2

f
〈σv〉CMB

mX

<
2.42× 10−27 cm3/s

GeV
. (6.12)

We show this constraint for various r∞ values in Fig. (6.1); the dotted black line gives the

thermal relic annihilation cross section in the symmetric case, where we have solved for the

relic density numerically and taken f = 1.

3Above mX ,mφ > 1 MeV, most of the annihilation products rapidly cascade down to lower energies and
the efficiency f is only mildly sensitive to the initial energy spectrum of annihilation products (normalizing for
the total energy). However, photons in the range ∼ 0.1− 1 GeV deposit their energy relatively inefficiently.
For annihilation of sub-GeV scale DM, typically a smaller fraction of the total energy goes into photons of
these energies, which increases the total efficiency slightly. We thank Tracy Slatyer for this point.

4Note: the results of [170] are slightly weaker by a factor of 1.2-2.
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Figure 6.1: WMAP7 95% C.L. constraints on the DM annihilation cross section and mass for
asymmetric dark matter and s-wave annihilation. We show constraints for various values of
r = r∞ = ΩX̄/ΩX , the anti-DM to DM ratio at the present time. The shaded region (blue)
is excluded by the WMAP7 data, with different shades corresponding to different r∞. Along
the horizontal contours of constant r are the values of 〈σv〉 where the correct relic density
can be obtained for an efficiency factor f = 1. The turnover around mX ∼ 10 GeV comes
from the drop in SM degrees of freedom when the universe has temperature ∼ 1 GeV. The
solid red line is the intersection of the WMAP7 and relic density contours: it indicates the
minimum 〈σv〉 needed to obtain the observed relic density and satisfy CMB constraints for
s-wave annihilation.



Chapter 6: Asymmetric and Symmetric Light Dark Matter 134

minimum <σv>

0.01 0.10 1.00 10.00 100.00
mX [GeV]

10-25

10-24

<
σv

>

Ωh2=0.11, r=1

f = 1
f = 0.1

maximum r∞

0.01 0.10 1.00 10.00 100.00
mX [GeV]

10-6

10-5

10-4

10-3

10-2

10-1

100

r ∞

f = 0.1
f = 1

Figure 6.2: (Top) Minimum 〈σv〉 for efficient annihilation of the symmetric component in
an ADM scenario, such that CMB bounds can be evaded, for two different values of the
efficiency f . The black dotted line gives the thermal relic 〈σv〉 for the symmetric case.
(Bottom) The corresponding maximum allowed r∞, the anti-DM to DM ratio at the present
time.

ADM can evade CMB bounds while still allowing s-wave annihilation.5 The CMB bounds

do not completely disappear in the ADM scenario, however, because there is a small sym-

metric component of DM remaining, r∞, the size of which depends on 〈σv〉. Because of the

exponential dependence of r∞ on 〈σv〉, as shown in Eq. (6.8), the CMB constraints lead to

a lower bound on 〈σv〉. This is shown in Fig. (6.1), where we map out the constraints in the

5In the symmetric limit, one can evade the CMB bounds if DM annihilates via p-wave suppressed in-
teractions. Then 〈σv〉CMB ≃ (vCMB/vf )

2 〈σv〉f and since vCMB ∼ 10−8 while vf ∼ 0.3, the annihilation
cross section at recombination is highly suppressed and WMAP constraints are substantially weakened. An
increased branching ratio to neutrinos (smaller f) can also alleviate the tension with CMB data for light
DM.
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〈σv〉CMB and mX parameter space, computing the relic density numerically and applying the

constraint in Eq. (6.10). The solid line (red) gives the resulting lower bound on f〈σv〉CMB.

This lower bound on f〈σv〉CMB translates to an upper bound on the residual symmetric

component, r∞, as shown in Fig. (6.2). We give analytic approximations to these numerical

solutions next.

When r∞ ≪ 1, we can ignore the X̄ contribution to the total relic density, and the

DM asymmetry parameter ηX is set by ηX ≈ ΩCDMρc/(mXs0). For a given ηX , the required

annihilation cross section at freezeout to achieve a particular residual symmetric component,

r∞, can be obtained by rewriting Eq. (6.8) as

〈σv〉f ≃ s0xf

0.264ΩCDMρc
√
g∗,fMpl

ln

(

1

r∞

)

≃ cf × 5× 10−26 cm3/s× ln

(

1

r∞

)

, (6.13)

where cf ≡
(xf

20

)

(

4√
g∗,f

)

is an O(1) factor. We show the numerical result as the horizontal

contours of constant r∞ in Fig. (6.1); for mX < 1 GeV we obtain a good approximation

to the numerical solution by taking cf = 1. On the other hand, the CMB bound on the

annihilation cross section when r∞ ≪ 1 is

〈σv〉CMB <
2.42× 10−27 cm3/s

2f

( mX

1 GeV

)

(

1

r∞

)

. (6.14)

For s-wave annihilation, we take 〈σv〉f ≃ 〈σv〉CMB. Since 〈σv〉f increases with log(1/r∞),

but the CMB bound on 〈σv〉CMB increases with 1/r∞, we can evade the CMB constraints by

decreasing r∞. For a given DM mass, thermal ADM is consistent with the CMB constraints

if r∞ satisfies the following condition,

r∞ ln

(

1

r∞

)

<
2.42× 10−2

f × cf

( mX

1 GeV

)

. (6.15)
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The numerical result for this bound is shown in Fig. (6.2); a good analytic approximation is

given by r∞ < r0/ ln (1/r0), with r0 ≃ 2×10−2(mX/ GeV)/f . Taking f ∼ 1, we can see that

r∞ has to be smaller than 5× 10−3 and 2× 10−6 for mX ∼ 1 GeV and 1 MeV, respectively.

Likewise, we can combine Eq. (6.13) and Eq. (6.14) to place a lower bound on 〈σv〉f :

〈σv〉f
cf × 5× 10−26 cm3/s

& (6.16)



















ln
(

40cff × 1 GeV
mX

)

+ ln ln
(

40cff × 1 GeV
mX

)

, mX . f × 10 GeV.

2 , mX & f × 10 GeV.

Note ifmX is larger than f×10 GeV, the CMB constraints do not apply and the annihilation

cross section is set by the relic density requirement. The analytic approximation in Eq. (6.16)

agrees well with the numerical results, which are shown in Fig. (6.2).

With these constraints on the minimum annihilation cross section, we now turn to dis-

cussing what classes of models can generate the needed annihilation cross section consistent

with collider constraints.

6.4 Light Mediators

Thus far, we have treated the annihilation cross section 〈σv〉 as a free parameter. To

proceed we must specify the physics that generates this cross section. First, DM may an-

nihilate directly to SM particles through heavy mediators with mass greater than the weak

scale. This coupling to the SM implies light DM can be produced in abundance in collid-

ers. We review constraints from missing (transverse) energy searches at collider experiments

and from direct detection experiments, which conflict with the 〈σv〉 required to obtain the

observed relic density. In this case, thermal light DM is ruled out in both the symmetric
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and asymmetric scenarios. Second, DM can annihilate via new light states which have a

mass below the typical momentum transfer scale in the colliders. In this case, the collider

constraint can be evaded. If the new state is lighter than DM, it can be very weakly coupled

to the SM.

6.4.1 Collider and Direct Detection Constraints on Light DM with

Heavy Mediators

In the heavy mediator case, a convenient way to parametrize the DM-SM coupling is via

higher dimensional operators, which is valid if the mediator mass is heavier than the relevant

energy scale. Here we give two typical examples,

O1 :
X̄γµXf̄γµf

Λ2
1

and O2 :
X̄Xf̄f

Λ2
2

, (6.17)

where X is DM, f is a SM fermion, and Λ1,2 are cut-off scales for O1,2. The cut-off scale,

in terms of the parameters in the UV-complete models, is Λ = mφ/
√
gXgf , where mφ is the

mediator mass, and gX and gf are coupling constants of DM-mediator and SM-mediator

interactions respectively.

In the limit of mX ≫ mf , the DM annihilation cross sections at freezeout are given by

〈σv〉1 ≃
N c

f

π

m2
X

Λ4
1

and 〈σv〉2 ≃
N c

f

8π

m2
X

Λ4
2

1

xf

, (6.18)

for O1 and O2 respectively. N c
f is the color multiplicity factor of fermion f , and xf =

mX/T ≈ 20, with T the temperature. Note that the annihilation cross section through O2

is p-wave suppressed. Now we can estimate the limit on the cut-off scales Λ1 and Λ2 by
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requiring the correct relic density

Λ1 . 370 GeV

(

N c
f

3

)
1

4 ( mX

10 GeV

) 1

2

(

6× 10−26 cm3/s

〈σv〉

)
1

4

, (6.19)

Λ2 . 100 GeV

(

N c
f

3

)
1

4 ( mX

10 GeV

) 1

2

(

6× 10−26 cm3/s

〈σv〉

)
1

4

(

20

xf

) 1

4

, (6.20)

where the limit is relevant for both the asymmetric and symmetric cases. Since the annihi-

lation cross section is p-wave suppressed for O2, we need a smaller cut-off scale to obtain the

correct relic abundance. Now we review various constraints on the cut-off scales Λ1,2.

• Direct Detection Constraints

If DM couples to quarks, the operators O1,2 can lead to direct detection signals with

the DM-nucleon scattering cross section: σn1,2
∼ µ2

n/Λ
4
1,2, and µn is the DM-nucleon

reduced mass. For a DM mass ∼ 10 GeV, taking the value of Λ1,2 given in Eqs. (6.19)

and (6.20), we expect the DM-nucleon scattering cross section to be σn1
∼ 10−38 cm2

and σn2
∼ 10−36 cm2. However, the current upper bound on σn from direct detection

experiments for DM with mass mX & 10 GeV is σn . 10−42 cm2 [29], which is much

smaller than the predicted values from requiring the correct thermal relic density. For

DM with mass below a few GeV, the recoil energies are too small and direct detection

bounds are currently very weak or nonexistent.

• Tevatron and LHC Constraints

The DM-quark interactions given in O1,2 can lead to signals of mono-jet plus missing

transverse energy at hadron colliders, while the Tevatron data for this signal matches

the SM prediction well. We require that O1,2 do not give rise to sizable contributions

to this signal. The lower bounds on Λ1,2 are ∼ 400 GeV and ∼ 400 GeV [150, 149, 36]
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respectively, for DM masses mX . 10 GeV that we are interested in. Recent LHC

results give a stronger limit on Λ1 & 700 GeV [135]. Therefore the Tevatron and LHC

searches have excluded both thermal symmetric DM and ADM in the whole range of

light DM if the DM particles annihilate to light quarks through O1 and O2.

• LEP Constraints

If DM particles couples to the electron through O1,2, the mono-photon search at LEP

sets a limit on the cut-off scale: Λ1 & 480 GeV and Λ2 & 440 GeV for DM mass

mX . 10 GeV [134]. Note the limit also applies to the case where DM couples to three

generations of charged leptons universally. One may avoid the limit by coupling DM

only to µ or τ . However this approach usually involves model building complications

and severe flavor constraints.

Thus we conclude that for O1,2, DM does not have the correct relic abundance for sym-

metric DM and ADM due to the combination of direct detection and collider constraints.

The direct detection constraints can be relaxed by suppressing the direct detection scat-

tering cross section; this can happen for example if the scattering off nuclei is velocity

suppressed, notably through an axial interaction. However, the collider bounds are still

severe for higher dimensional operators involving interactions with light quarks or elec-

trons [150, 149, 36, 134, 234, 135].

6.4.2 Light Dark Matter with Light Mediators

One simple way to evade the collider constraints for light DM is to invoke light mediators

with masses much smaller than the typical transverse momentum of the colliders pT ∼
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O(100 GeV) (or the center of mass energy ∼ 200 GeV for LEP). In this limit, the effective

theory approach breaks down and the collider bounds become much weaker [36, 134, 135,

151]. In general, if the mediator mass is much less than the pT probed at colliders, there

exists a large parameter space for light DM scenarios to achieve the correct relic density. We

consider a hidden sector with Dirac DM coupled to a light mediator which could be a spin-1

or spin-0 particle; for ease of notation we always refer to it as φ. We write the Lagrangians

as

LV = gXX̄γµXφµ + gf f̄γ
µfφµ +mXX̄X +m2

φφ
µφµ, (6.21)

LS = gXX̄Xφ+ gf f̄fφ+mXX̄X +m2
φφ

2, (6.22)

where mφ is the mediator mass. We consider two cases for the mediator mass:6 a mediator

with mφ > 2mX and lighter mediator with mφ < mX .

In the case of pT ≫ mφ > 2mX , the DM particles can annihilate to SM particles

through the s-channel process. There is a collider bound on gf because an on-shell me-

diator which decays to XX̄ can be produced, potentially contributing to the mono-jet plus

missing transverse energy signal. Tevatron data has been employed to place an upper bound

on gf < 0.015/
√

Br(φ → XX̄) for mφ < 20 GeV [151], where Br(φ → XX̄) is the branch-

ing ratio of φ decay to the DM pair. In this case the annihilation cross section is given by

〈σv〉V ≃ 4αXg
2
fm

2
XN

c
f/m

4
φ and 〈σv〉S ≃ αXg

2
fm

2
XN

c
f/2m

4
φxf , where αX ≡ g2X/4π. To see

how the collider constraint affects the annihilation cross section in this case, we take the

conservative limit gf . 0.015, setting Br(φ → XX̄) ∼ 1. From the relic density constraint,

6In this paper, we do not consider the intermediate case mφ ∼ 2mX , where there is a resonance in the
s-channel annihilation of X̄X.
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we then obtain an upper bound on the mediator mass,

mφ . 13 GeV
( αX

10−1

)1/4
(

10−25 cm3/s

〈σv〉

)1/4
( mX

1 GeV

)1/2

. (6.23)

This bound7 is consistent with our assumption that mφ ≫ mX .

If mφ < mX , DM can annihilate to the mediator directly and the annihilation cross

section is determined primarily by the hidden sector coupling gX :

〈σv〉V =
πα2

X

m2
X

√

1−
(

mφ

mX

)2

, 〈σv〉S =
9

2

πα2
X

m2
X

T

mX

√

1−
(

mφ

mX

)2

(6.24)

for the vector and scalar mediators respectively. Meanwhile gf determines how the DM

sector couples to the SM sector. As for the collider physics, the production of XX̄ occurs

through an off-shell mediator; since this is a three-body process, the bound is rather weak.

Tevatron data requires gf . 0.2 if the mediator couples to quarks universally [151].

Although gf does not appear to play an important role in the relic density, this coupling

controls the width (lifetime) of φ and is relevant for cosmology. The width Γφ of the mediator

is

(Γφ)V =
4N c

f

3

mφ

16π
g2f

√

1−
(

2mf

mφ

)2

, (Γφ)S = 2N c
f

mφ

16π
g2f

√

1−
(

2mf

mφ

)2

, (6.25)

where the lifetime τφ = Γ−1
φ . In Section 6.2, we assumed the DM particles to be in thermal

equilibrium with the SM thermal bath in the early universe, and in this case the standard

freezeout picture and cosmology apply. Now, we check the condition for thermalization of

the two sectors. If the mediator decay rate is larger than the Hubble expansion rate at

temperatures T > mφ, then the inverse decay processes can keep φ in chemical equilibrium

with the SM thermal bath [122]. At these temperatures, the decay rate is given by Γφ ∼

7Note that in this case there are also strong bounds on mφ from neutrino experiments [107]; however,
we have checked that it is still possible to obtain the correct relic density and that the direct detection
predictions are unaffected.
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g2fm
2
φ/(16πT ), where the factor of mφ/T accounts for the effect of time dilation. In order

for the mediator to stay in thermal equilibrium with the SM thermal bath through DM

freezeout, we require Γφ & H at temperatures T ∼ mX . This gives a constraint on gf :

gf ∼
√

16πΓφ

mφ

≫ 8× 10−8

(√
geff

9

)1/2
( mX

GeV

)3/2
(

100 MeV

mφ

)

. (6.26)

If gf is less than the bound given in Eq. (6.26), the DM sector can have a different

temperature from the SM sector and the standard freezeout calculation can be modified

in a number of ways. We have checked that these effects lead to change in the minimum

annihilation cross section by less than a factor O(10), compared to the results we derived, in

Sections 6.2-6.3. Furthermore, the massive mediator is a late-decaying particle and in the case

where the mediator decays to the SM states, can modify standard nucleosynthesis (BBN).

There are stringent constraints on the hadronic decay of long-lived particles from the 4He

fraction, which requires that the lifetime of the mediator be less than 10−2 s [187, 188, 178].

This leads to a lower bound of gq & 1.6 × 10−11
√

1 GeV/mφ for a vector mediator, where

we take N c
f = 3. For leptonic decay modes, we take the lifetime of the mediator τφ . 1 s,

and obtain a slightly weaker bound, ge & 5×10−11
√

10 MeV/mφ, for a vector mediator with

N c
f = 1.

Finally, we comment on the calculation of the relic density and application of the CMB

constraints in the light mediator case. When mφ < mX , X̄X can annihilate to φφ, but

φ decays to standard model particles rapidly compared to the relevant time scales at re-

combination so that the CMB constraints are unchanged. The only difference between a

heavy mediator and light mediator with large width is whether there is a contribution to the

effective degrees of freedom, g∗, from the light mediator. A slightly higher g∗ in the light

mediator case gives rise to smaller r∞, which in turn weakens the lower bound on 〈σv〉 from
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CMB constraints.

In addition, we have neglected the Sommerfeld enhancement effect. As we will discuss

in the following section, the mediator mass is bounded from below by DM halo shapes; this

limits the size of any Sommerfeld enhancement. In addition, since 〈σv〉 ≈ πα2
X/m

2
X , for

light DM the coupling αX can be much smaller and still satisfy the relic density constraint.

For the DM masses considered here, we have checked that the Sommerfeld enhancement

effect is negligible for s-wave and p-wave annihilation processes at both freezeout and during

recombination, if we take αX and mφ close to their minimum allowed values.

6.5 Halo Shape Constraints on the Mediator Mass

The presence of the light mediator allows for significant DM self-interactions, which

can have non-trivial effects on DM halo dynamics. A number of astrophysical observations

constrain DM self-interactions, for example observations of the Bullet Cluster [211], elliptical

galaxy clusters [214] and elliptical DM halos [120, 121]. Among these, the upper bound

on DM self-interaction from the ellipticity of DM halos is the strongest [120]. DM self-

interactions can erase the velocity anisotropy and lead to spherical DM halos, so the observed

ellipticity of DM halos constrains the DM self-scattering rate. Because the strength of self-

interaction increases as the mediator mass decreases, we can use the elliptical halo shape

constraint to place a lower limit on the mediator mass. Note that in the case of mφ = 0, the

ellipticity of the DM halos then places a strong upper limit on the hidden sector coupling

gX [213]; it is only possible to obtain the correct relic density if mX & 103 GeV [120, 4]8 .

8This limit can be relaxed if the hidden sector is much colder than the visible sector when DM freezes
out. In this case, DM can achieve the correct relic density with a smaller annihilation cross section [124].
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The effect of DM self-interactions on DM halo shapes can be parametrized by the average

rate for DM particles to change velocities by O(1) [121]:

Γk =

∫

d3v1d
3v2f(v1)f(v2)(nXvrelσT )(v

2
rel/v

2
0), (6.27)

where nX is the DM density in the DM halo, vrel = |~v1 − ~v2|, and f(v) is the DM velocity

distribution in the DM halo, for which we take f(v) = e−v2/v2
0/(v0

√
π)3. σT is the scattering

cross section weighted by the momentum transfer: σT =
∫

dΩ∗(dσ/dΩ∗)(1− cos θ∗).

The form of σT depends on the particle physics nature of DM self-interactions and the

relevant momentum scales. If the mediator is lighter than the typical momentum transfer

in collisions, DM particles interact through long-range forces and σT depends on velocity.

In the opposite limit where the mediator is heavy compared to momentum transfer, DM

self-interactions are contact interactions and σT is independent of vrel. In this case, we can

take the σT out of the velocity integrals in Eq. (6.27) and the calculation is straightforward.

We first will derive the upper bound on the DM self-interaction cross section assuming a

contact interaction, and then show that this limit applies in deriving the minimum mediator

mass.

We consider the well-studied elliptical galaxy NGC720 [65, 169], taking our bound from

the observed ellipticity at a radius of 5 kpc. The DM density profile is fit with local density

4 GeV/cm3 and radial velocity dispersion v̄2r = v20/2 ≃ (240 km/s)2. We require the average

time for DM self-interactions to create O(1) changes on DM velocities to be larger than the

galaxy lifetime tg ∼ 1010 years i.e. Γ−1
k > tg. This gives the upper bound

σT . 4.4× 10−27 cm2
( mX

1 GeV

)

(

1010 years

tg

)

. (6.28)

The reader should bear in mind that this is an analytic estimate and detailed N-body sim-

ulations studying a range of elliptical galaxies are required for a robust bound.
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Figure 6.3: Lower limit on the mediator mass from combining relic density and DM self-
interaction constraints. We show the case of a vector mediator; the result for a scalar
mediator is similar and is given in Eq. (6.31). We consider DM self-interaction constraints
from elliptical halo shapes and elliptical cluster shapes. Bullet cluster constraints do not give
a lower bound on mφ. The dashed red line indicates the bound on the mass from elliptical
halo shapes if CMB bounds are also applied, assuming efficiency f ≈ 1.

Other astrophysical constraints have been derived for σ/mX , assuming a hard sphere

scattering cross section σ. A similar bound derived from shapes of elliptical galaxy clusters is

(σ/mX . 10−25.5 cm2(mX/ GeV)) [214]. Specifically, this estimate is obtained from the inner

regions of the galaxy cluster MS2137-23, at a radius of 70 kpc with dark matter density ∼

1 GeV/cm3. Cosmological simulations of cluster-sized objects support this estimate within

an order of magnitude [273]; however, the bound is still based on a single cluster. There

is also a bound derived from the Bullet Cluster (σ/mX . 2× 10−24 cm2(mX/ GeV)) [211],

reproduced in simulations of the collision by [235]. Note that this result is not derived from

the shapes of the merging clusters but from requiring that the subcluster does not lose a
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significant fraction of its mass in passing through the larger cluster; however, we have found

that the bound is too weak in this case to give a minimum mediator mass.

For the vector and scalar interactions considered here, the force is described by a Yukawa

potential V (r) = ±αXe
−mφr/r. Depending on the mediator, and whether we are in the

asymmetric limit, the sign may be positive or negative. For the vector case, we have both

XX interactions (+) and XX̄ interactions (-) unless we are in the asymmetric limit. For the

scalar case, the sign is always negative. However, in the limit of a contact interaction, the

sign of the potential does not matter. The momentum transfer cross section for scattering

through t and u-channel processes in the Born approximation is

σT ≈ 4πα2
Xm

2
X

m4
φ

, (6.29)

which is subject to the bound in Eq. (6.28). We have assumed a contact interaction,

mXvrel/mφ ≪ 1; we will justify later that this is a valid assumption in deriving the bounds

below.

On the other hand, the relic density constraint places a lower bound on the annihilation

cross section 〈σv〉 & 10−25cm3/s for light DM and thus on αX :

αX |V & 5× 10−5

( 〈σv〉
10−25cm3/s

)1/2
( mX

GeV

)

,

αX |S & 11× 10−5

( 〈σv〉
10−25cm3/s

)1/2
( mX

GeV

)(xf

20

)1/2

, (6.30)

for vector and scalar coupling respectively. Note that we assume mφ < mX and take the

annihilation cross sections in Eq. (6.24).

Since αX cannot be arbitrarily small, mφ cannot be made arbitrarily small. Combining



Chapter 6: Asymmetric and Symmetric Light Dark Matter 147

the bound on αX with Eq. (6.28), we obtain a lower bound on the mediator mass:

mφ|V & 7 MeV

( 〈σv〉
10−25cm3/s

)1/4
( mX

GeV

)3/4

,

mφ|S & 11 MeV

( 〈σv〉
10−25cm3/s

)1/4
(xf

20

)1/4 ( mX

GeV

)3/4

(6.31)

for the vector and scalar mediator cases, where we take the elliptical galaxy with tg =

1010 years. Note that because the bound on mφ scales as σ
−1/4
T in the contact interaction

limit, the result is not very sensitive to the precise bound on σT .

In deriving the above bound on mφ, we have assumed that mφ ≫ mXvrel and that the

Born approximation is valid. Now we check that the bound given in Eq. (6.31) is consistent

with these assumptions. The condition mφ ≫ mXvrel is satisfied for 1 MeV < mX <

10 GeV, since from Eq. (6.31) we have mφ/mX ∼ 10−2(mX/ GeV)−1/4 but vrel ∼ 10−3. In

this limit the Born approximation is valid if the following condition is satisfied

mX

∣

∣

∣

∣

∫ ∞

0

rV (r)dr

∣

∣

∣

∣

=
mXαX

mφ

≪ 1. (6.32)

From Eq. (6.30), we can see vrel ≫ αX in the DM mass range we are interested in, and thus

this condition is also satisfied if mφ ≫ mXvrel. We emphasize that we cannot extrapolate

the lower mass bound given in Eq. (6.31) to mX & 50 GeV because the Born approximation

breaks down. For these higher masses, in general one has to solve the scattering problem

numerically [63]. In the classical limit wheremXvrel ≫ mφ, there is a fitting formula available

in [189] for the transfer cross section, which has been used to study self-interactions via a

light mediator for DM masses greater than ∼ 100 GeV [121, 173, 122, 203].

In Fig. (6.3) we show the lower limit onmφ for the vector case, including the result derived

from the more conservative bounds from elliptical cluster shapes. We also show the slightly
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stronger result if we take the CMB constraint on the cross section,9 given in Eq. (6.16).

There is a turnover for the elliptical cluster bounds because the contact interaction limit

breaks down; here we use the full cross section, again in the Born approximation, given in

[121]. The bounds from the Bullet Cluster, which we derive following [120], do not give rise

to a lower bound on mφ.

6.6 Direct Detection

Given the experimental effort needed to detect DM directly, it is important to map

out the parameter space of direct detection cross sections, subject to the astrophysical and

cosmological constraints we have discussed. Current experiments are not sensitive to DM-

nucleon scattering if the DM mass is below ∼1 GeV because of the energy thresholds. It has

been suggested that DM-electron scattering may provide an alternative way for the detection

of light DM [112]. We consider DM-nucleon scattering for mX & 1 GeV and DM-electron

scattering for 1 MeV . mX . 1 GeV.

We compute the range of allowed elastic scattering cross sections within the framework of

light DM annihilating via hidden sector mediators, assuming mediator couplings to electrons

or light quarks. We consider both lighter mediators, mφ < mX , and heavier mediators, where

we focus on the case mφ ≫ mX . When mφ < mX the mediator can be very weakly coupled

to the SM, and so the scattering cross sections can be much smaller than when mφ ≫ mX .

However, there is still a lower limit on the cross section coming from the lower bounds on the

couplings of the mediator to the DM and SM fermions, αX and gf respectively. The lower

bound on αX is derived from requiring that relic density and CMB constraints are satisfied.

9In the scalar case, annihilation is p-wave suppressed and thus CMB constraints don’t apply.
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We consider two possible lower bounds on gf : from requiring the thermalization between the

DM and SM sectors, or from requiring decay of the mediator before BBN. When mφ ≫ mX

the lower limit on the cross section arises purely from the relic density and CMB constraints.

Meanwhile, we obtain upper bounds on the electron scattering cross section from the

combination of halo shape bounds and requiring that the mediator does not significantly

affect the electron anomalous magnetic moment. Including supernova and beam dump con-

straints on the dark force coupling [55] then carves out a nontrivial part of the parameter

space for electron scattering.

Fig. (6.4) summarizes our results for the case where the mediator is a vector. We show the

possible DM-nucleon (left panel) and DM-electron (right panel) scattering cross sections as

a function of DM mass. The green shaded region is the parameter space for mφ < mX which

is allowed by the constraints from the relic density, BBN, and DM halo shape constraints;

in the electron case we include beam dump and supernova cooling constraints. The lighter

green area is set by the additional assumption that the mediator has large decay width

and thus that the two sectors are in thermal equilibrium. In the nucleon scattering case,

mφ ≫ mX is ruled out by CRESST-I and XENON10. In the electron scattering case, the

red shaded region gives the allowed cross sections for mφ ≫ mX . In the following sections

we derive these results and present more details.

6.6.1 Nucleon Scattering

We first consider nucleon scattering in the mass range 1 GeV . mX . 10 GeV, taking

universal couplings to the light quarks given by gq. The DM-nucleon scattering cross section
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Figure 6.4: (Left) Nucleon scattering through a vector mediator. The green shaded region
indicates the allowed parameter space of direct detection cross sections. The lighter green
region imposes the bound of thermal coupling between the two sectors (“large width”) while
the larger shaded region only requires mediator decay before BBN. Also shown is the lower
bound for the heavy mediator (mφ ≫ mX) case. (Right) Electron scattering through a vector
mediator, for mφ < mX (green) and mφ ≫ mX (red); the intersection of the two regions
is shaded brown. We show the projected sensitivity of a Ge experiment, taken from [112].
Beam dump, supernova, and halo shape constraints apply here and carve out the region of
large σe at low mX . For more details, see the text. In the lighter green region, the condition
of thermal equilibrium between the visible and hidden sectors is imposed.

is given by

σn = 4αXg
2
n

µ2
n

m4
φ

, (6.33)

where µn is the WIMP-nucleon reduced mass, and gn = 3gq is the φµ-nucleon coupling

constant. The upper bounds here are set by results from direct detection experiments, in

particular CRESST-I [26] and XENON10 [25]. We have taken a contact interaction; this is

a good approximation over much of the parameter space because the momentum transfer is

generally less than the minimum mediator mass allowed by the ellipticity of DM halos, as
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discussed in Section 6.5. We note that momentum-dependence can be relevant for scattering

off heavier nuclei such as xenon if we take mφ to be close to this minimum value, and thus

can change the upper limit from XENON10 [133, 117, 115]. However, the lower limit is

obtained in the limit that mφ ≈ mX and thus momentum dependence will not be important.

We therefore consider the bounds on a contact interaction for simplicity.

To determine the lower limit on this cross section, we bound αX and gq from below

in the case that the mediator is lighter than the DM, mφ < mX . For thermal DM and

masses mX > 1 GeV, a lower bound on αX is determined primarily by the relic density.

As described in Section 6.3, CMB constraints are only important in this mass range if φµ

decays dominantly to electrons, for which the efficiency factor is f ∼ 1. For φµ coupling

primarily to quarks, f ≈ 0.2 and CMB bounds don’t apply above mX ∼ 2 GeV. Then the

minimum annihilation cross section is 〈σv〉 ≈ πα2
X/m

2
X ≈ 10−25cm3/s, giving a bound of

αX & 5.2× 10−5(mX/ GeV). Requiring thermal equilibrium between the hidden and visible

sectors, we take the bound on gq in Eq. (6.26), with
√
geff ≈ 9. Combining the limits above

results in a lower bound on the nucleon scattering cross section:

σn & 10−48cm2 ×
( mX

GeV

)4
(

GeV

mφ

)6
( µn

0.5 GeV

)2

. (6.34)

Since mφ < mX , this quantity is saturated for any mX if we set mφ to its maximum value of

mφ ∼ mX . This bound is indicated by the “Large width” line in Fig. (6.4). Coincidentally,

the lower limit here is similar to the best achievable sensitivity for WIMP-nucleon scattering

if the dominant irreducible background is coherent scattering of atmospheric neutrinos off

of nuclei [260, 216, 136]. However, these studies focused on WIMP DM; for light DM, solar

neutrinos become much more important and the best achievable sensitivity may be several

orders of magnitude weaker.
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The lower bound on σn given in Eq. (6.34) is derived by requiring the two sectors be in

thermal equilibrium. We may relax this assumption, and just demand the mediator decay by

nucleosynthesis. This gives gq & 1.6× 10−11
√

1 GeV/mφ, as discussed in Section 6.4.2. For

such gq the two sectors are decoupled through freezeout; then the relic density calculation is

slightly more complicated and depends on the thermal history of the sectors. The change in

the relic density then modifies the bound on αX . We have checked that the full calculation

generally only changes the bound on αX by an O(1) factor [200], so here we take the bound

on αX from the large φ width case for simplicity. In this limit, the lower bound on σn is

given by

σn & 5× 10−54cm2 ×
( mX

GeV

)

(

GeV

mφ

)5
( µn

0.5 GeV

)2

(6.35)

labeled as “Decay before BBN” in Fig. (6.4).

For reference, we also give the lower bound on the cross section in the case where mφ ≫

mX . Here DM annihilation occurs directly to SM final states through φµ, with annihilation

cross section 〈σv〉 = 4αXg
2
nm

2
X/m

4
φ. Since the same combination of parameters enters in

both the annihilation cross section and the nucleon scattering cross section, we can directly

apply the relic density constraint to obtain

σn & 5× 10−37 cm2

(

1 GeV

mX

)2
( µn

0.5 GeV

)2

. (6.36)

This is the “mφ ≫ mX” line in Fig. (6.4). However, this scenario is ruled out by the direct

detection limits on the cross section.
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Figure 6.5: (Left) Constraints on mediator mass mφ and coupling to electrons ge for mφ <
mX . The shaded region is excluded from electron anomalous magnetic moment, beam dump
experiments, and supernova cooling [55]. The red dashed line shows the ge value used to
derive the corresponding red dashed line (“C”) in the right plot. (Right) Constraints on
electron scattering from Fig. 6.4. The boundaries A, B, and C are discussed in more detail
in the text.

6.6.2 Electron Scattering

We consider scattering off electrons for DM in the mass range 1 MeV < mX < 1 GeV.

The DM-electron scattering cross section is

σe = 4αXg
2
e

µ2
e

m4
φ

. (6.37)

The lower bound on the scattering cross section can be derived in the same way as in the

nucleon case, taking mφ < mX . Here both CMB and relic density constraints apply, since

mX < 1 GeV and the energy deposition efficiency f ≈ 1 for decay to electrons. We take

the bound on the annihilation cross section in Eq. (6.16) with cf ≈ 1, giving a lower limit
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on αX :

αX & 4× 10−7
( mX

10 MeV

)

√

ln

(

40 GeV

mX

)

. (6.38)

As in the nucleon case, a lower bound on the DM-electron scattering cross section can

be derived by assuming that the hidden and visible sectors are in thermal equilibrium.

Analogously to Eq. (6.34), we find

σe & 3× 10−51cm2 ×
( mX

10 MeV

)4
(

10 MeV

mφ

)6
( µe

0.5 MeV

)2

√

ln

(

40 GeV

mX

)

, (6.39)

where we take
√
geff ≈ 3.

Again, it is possible that the DM sector thermal bath evolves independently from the SM

sector and in this case we only require the mediator to decay before BBN. From Section 6.4.2,

we take the bound ge & 5× 10−11
√

10 MeV/mφ. The minimum scattering cross section is

σe & 3× 10−53 cm2
( mX

10 MeV

)

(

10 MeV

mφ

)5
( µe

0.5 MeV

)2

√

ln

(

40 GeV

mX

)

. (6.40)

If the annihilation goes through a heavier mediator mφ ≫ mX , we derive the strongest lower

bound on the scattering cross section by applying CMB and relic density constraints:

σe & 4× 10−39 cm2

(

10 MeV

mX

)2
( µe

0.5 MeV

)2

ln

(

40 GeV

mX

)

. (6.41)

For electron scattering there are no direct experimental bounds on σe. However, for mφ <

mX , there are bounds on σe arising from indirect constraints, namely halo shape bounds and

from searches for new light gauge bosons [55]. The halo shape constraint requires that the

self-scattering cross section satisfy σT/mX < 4.4×10−27cm2/ GeV with σT ≃ 4πα2
Xm

2
X/m

4
φ.

If mφ < mX then constraints on new light gauge bosons rule out parts of the (mφ, ge)

parameter space; we show beam dump, supernova cooling and electron anomalous magnetic
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moment constraints10 in Fig. (6.5) (left panel). Here we make use of the convention in [55],

where ge = ǫe, with the kinetic mixing parameter ǫ ≡ ǫY cos θW and e electric charge. The

solid line (and shaded region) indicates the constraint.

As a simple application of the constraints discussed above, we derive the upper bound

on the cross section by rewriting σe:

σe =
4µ2

e√
4πmX

√

σT

mX

(

ge
mφ

)2

. 3.5× 10−35 cm2
( µe

0.5 MeV

)2
√

10 MeV

mX

. (6.42)

Here we have applied the halo shape constraint and taken (ge/mφ)
2 . 10−1e2/ GeV2, arising

from measurements of the electron anomalous magnetic moment [229].

To explain more complicated constraints on the (mX ,σe) plane from the supernova cooling

and beam dump experiments for mφ < mX , we show again the allowed parameter space for

electron scattering cross sections, but highlight boundaries of the constraints by labeling

“A”, “B”, and “C” in the right panel of Fig. (6.5). We can map excluded regions on the

(mφ, ge) plane to these constraints:

• Constraint “A”:

For mφ < mX . 8 MeV, supernova plus beam dump constraints require ge . 1.3 ×

10−9. This places a stringent upper bound on the cross section, which we derive by

taking mφ to its minimum value of mφ = 2me ≈ 1 MeV, and then setting αX to the

maximum value allowed by halo shape constraints: αX < 9.5 × 10−6
√

10 MeV/mX .

10In general there are also constraints from low-energy e+e− colliders, fixed target experiments, and
neutrino experiments [107]. We find these do not significantly affect our results. In the case of kinetic
mixing, bounds from measurements of the muon anomalous magnetic moment also apply. We do not include
them in this work.
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This upper bound is then

σe . 6× 10−45 cm2
( µe

0.5 MeV

)2
√

10 MeV

mX

. (6.43)

Note that the constraint changes somewhat if we also consider mφ < 1 MeV. In this

case, supernova cooling constraints still require ge . 1.3× 10−9 but halo shapes allow

for a somewhat smaller mφ. As a result, the upper bound is slightly weaker if we allow

mφ < 1 MeV: σe . 6× 10−44 cm2 (µe/0.5 MeV)2 (10 MeV/mX)
−2.

• Constraint “B”:

This constraint applies for the large width case. In contrast with constraint A, taking

(mφ, ge) = (1 MeV, 1.3× 10−9) is in conflict with the condition of thermal equilibrium

between the two sectors if the DM mass mX & 5 MeV. Furthermore, for mX &

20 MeV, the region (mφ ∼ 20 MeV, ge ∼ 3 × 10−8) opens up. These competing

effects lead to the kink in line B.

• Constraint “C”:

For mX & 8 MeV, then supernova and beam dump constraints allow a region of larger

ge: for example, (mφ ∼ 8 MeV, ge ∼ 6× 10−4) is now allowed. The red dashed lower

bound on ge in the left panel of Fig. 6.5 then gives rise to the constraint “C”. The lower

bound on the cross section here comes from setting mφ ∼ mX , applying the red dashed

lower bound on ge, and setting αX to its minimum value from CMB constraints.

We make two final notes. First, in the heavy mediator case, the beam dump constraints do

not apply and the CMB constraints are in general much stronger. As a result, the high σe,

low mX region which is excluded in the light mediator case is again allowed indicated by the
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light red shaded region in Fig. (6.4). Second, if we remove the constraint mφ > 1 MeV, φ

will decay invisibly, and only the supernova constraints are relevant. Then a small region of

parameter space with ge ∼ 1.3× 10−9 and mφ < 1 MeV opens up, as discussed above under

constraint “A.”

We have verified the bounds discussed above by performing a general scan of the hidden

sector parameter space. Fig. (6.6) illustrates our method. We begin by mapping out the

parameter space of (mφ, ge) and require either large φ width or φ decay before BBN. We

combine this with the constraints in [55], given by the solid curve in the top panels of

Fig. (6.6). In doing so, we impose the limit 1 MeV < mφ < mX for the case of mφ < mX

and mφ > 2mX in the case where mφ ≫ mX . The lower limit of mφ > 1 MeV is imposed

in order to allow for φ decay to electrons. If the halo shape constraint gives a stronger

lower bound on mφ, then we take (mφ)min,halo < mφ < mX for the mφ < mX case, where

(mφ)min,halo is minimum mediator mass allowed by the halo shape constraint. This generates

the sampled points in (mφ, ge) that we have shown. For a fixed (mφ, ge), a range of values

for αX is allowed, giving rise to a range of allowed scattering cross sections. We sample

random αX values, subject to the halo shape constraint and the relic density constraint as

in Eq. (6.38). This then gives a randomly sampled σe value, which we indicate by the color

of the point in Fig. (6.6). For a fixed mX value, because of the range of allowed mφ and αX

values, excluded regions in ge do not directly map to an excluded region in σe. An excluded

region in σe only arises if a sufficiently large region of ge is excluded, as shown in the left plot

of Fig. (6.6). We thus verify the possible values of σe in this way, imposing all the constraints

self-consistently.
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Figure 6.6: For fixed mX and a mediator with mass mφ < mX , we generate random values
of (mφ, ge) allowed by beam dump, supernova, ae, and BBN constraints. We show a sample
of allowed points in the (mφ, ge) parameter space; the solid curve is extrapolated from the
constraints in [55], also shown in left panel of Fig. (6.5). For each (mφ, ge) point, we then
sample the allowed αX satisfying halo shape and relic density constraints, and compute the
corresponding elastic scattering cross section σe. The color of the point is determined by
σe. (Left) mX = 20 MeV, where the minimum mediator mass is mφ = 1 MeV. (Right)
mX = 100 MeV, where the minimum mediator mass mφ & 3 MeV is set by halo shape
constraints.

6.7 Conclusions

Given the unknown nature of DM, it is important to carry out broad-based studies of

models of DM. In this chapter, we have examined constraints on thermal DM with mass

1 MeV . mX . 10 GeV, a mass range interesting for numerous phenomenological and

theoretical reasons. We considered bounds from cosmology, colliders and astrophysics, and

derived implications of these constraints on direct detection.

CMB constraints on DM annihilation present the most serious challenge for light thermal

DM, excluding symmetric thermal relic DM with s-wave annihilation if mX . 1− 10 GeV.

Two natural ways to evade this constraint are to have a DM number asymmetry or velocity

suppressed annihilation. In the asymmetric case, we found the constraint on the annihilation



Chapter 6: Asymmetric and Symmetric Light Dark Matter 159

cross section such that the symmetric component efficiently annihilates away; the minimum

cross section is larger than the usual thermal relic cross section by a factor of a few, depending

on the mass.

Achieving this minimum cross section is difficult if annihilation occurs through a weak

scale (or heavier) mediator. Collider and direct detection constraints have forced the presence

of relatively light mediator states in the hidden sector in order to achieve the correct relic

abundance and evade the CMB bounds. On the other hand, we found that the DM halo

shape bounds on DM self-interactions require that the mediator is not too light. We examined

constraints from elliptical galaxy NGC720 and elliptical clusters, and derived a lower bound

on the mass of the mediator particle.

We also calculated the range of scattering cross sections allowed within this scenario.

Although the lowest bound which is cosmologically consistent is well below the reach of any

current or envisioned direct detection experiments, we showed that several cosmologically

interesting benchmarks could be reached. For example, in the case of scattering off nucleons,

a hidden sector in thermal contact with the SM at T ∼ mX can be ruled out if an experiment

can reach cross sections with σn . 10−48cm2. In the case of scattering off electrons, the

scenario where mφ ≫ mX can be probed by direct detection. Beam dump and supernova

constraints carve out a significant fraction of the available parameter space if mφ < mX .



Chapter 7

Conclusions

We have explored direct detection of dark matter through its scattering off of standard

model particles and indirect detection of dark matter through its annihilation or decay. In

considering the direct detection of dark matter, we focus on two classes of models proposed as

explanations of the DAMA/LIBRA annual modulation signal: inelastic dark matter and light

dark matter with mass 1 MeV to 10 GeV. We show that directional detection experiments

provide a powerful test of inelastic dark matter models. We map out the parameter space of

elastic scattering cross sections for light dark matter, subject to astrophysical and collider

constraints.

Dark matter annihilations or decay to high energy electrons and positrons give rise to

gamma ray, cosmic ray, and microwave signals. We present a model-independent fit of recent

anomalous signals in PAMELA, Fermi, and WMAP data to dark matter annihilation. Anni-

hilations can also be observed indirectly in the cosmic microwave background, and we derive

model independent constraints on the annihilation rate during the epoch of recombination.
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