
Signature Hiding Techniques for FPGA
Intellectual Property Protection

John Lach1, William H. Mangione-Smith1, Miodrag Potkonjak2

Departments of Electrical Engineering1and Computer Science2

The University of California, Los Angeles

Abstract – This work presents the first known attempt to leverage
the unique characteristics of FPGAs to protect commercial
investments in intellectual property. A watermark is applied to
the physical layout of a digital circuit when it is mapped into an
FPGA. This watermark uniquely identifies the circuit origin and
yet is difficult to detect. While this approach imposes additional
constraints, experiments involving a number of large complex
designs indicate that the performance impact is small.

1 Introduction
We have developed and evaluated a method for applying
cryptographically encoded watermarks to digital designs. The
approach is shown to successfully encode long messages on
existing designs of moderate to large complexity with little or no
impact on circuit performance or resource requirements. By using
these messages to encode authorship signatures, we can provide
compelling evidence to establish design ownership.

1.1 Motivation
It is generally agreed that the most significant problem facing
digital IC designers today is system complexity. Complex
systems tend to be assembled using smaller components in order
to reduce complexity as well as to take advantage of localized
data and control flows. This trend toward partitioning enables
design reuse, which is essential to reducing development cost and
risk while also shortening design time. Design reuse has been
employed by systems designers for years; what is new is that the
boundaries for component partitions have moved inside of the IC
packages. These reusable modules are commonly referred to as
Intellectual Property (IP), as they represent the commercial
investment of the originating company but do not have a natural
physical representation.

Direct theft is a major concern of IP vendors. It is possible for
customers, or a third party, to simply sell an IP block as their own
without even reverse engineering the design. Because IP blocks
are designed to be modular and integrated with other system
components, the thief can simply repackage them without
bothering to understand either the architecture or implementation.

This paper presents a novel solution to the risk of direct
misappropriation. The essential idea involves embedding a digital
watermark, which uniquely identifies the creator, in an IP block.
This watermark allows the IP owner to verify the physical layout
as their property, in a way that is likely to be much more

compelling than the existing option of verifying the design against
a registered database.

1.2 Motivational Example
While the concepts developed here can be applied to a wide range
of FPGA architectures, all of the discussion and experimental
work will be conducted in the context of the Xilinx XC4000
architecture [13]. These devices are composed of an array of
configurable logic blocks (CLBs), each of which contains two
flip-flops and two 16x1 lookup tables (LUTs). A hierarchical and
segmented routing network is used to connect CLBs in order to
form a specific circuit configuration.

Figure 1a (left). Original design layout

Figure 1b (right). Watermarked design layout

Consider the case of PREP Benchmark #4, a large state machine,
which can be mapped into a block of 27 CLBs. This mapping
results in 3 unused CLBs, or 3*32=96 unused LUT bits. Each
unused LUT bit is used to encode one bit of the signature. Figure
1a shows the layout of the original design as produced by the
standard Xilinx backend tools, while Figure 1b shows the layout
for the same design after applying the watermark constraints to
the three unused CLBs and re-placing the design. The constrained
CLBs are then incorporated into the design with unused
interconnect and neighboring CLB inputs, further hiding the
signature.

1.3 Technological Issues
The standard digital design flow generally follows these steps:
behavioral HDL, synthesis to RTL, technology mapping, and
finally physical layout involving place and route. Watermarking
can be applied to any level of this design flow and, if developed
properly, will propagate to later stages [2, 6]. However, because a
watermark is fundamentally an optional component of a system
design, any watermark can be removed by reverse engineering a
design to a stage in the flow before the watermark has been
applied. For example, the detailed approach developed here will
be used to watermark a design at the physical level by
manipulating LUTs and interconnect. The IP vendor will then
deliver their technology in the form of a hard macro. If the macro
can be reverse engineered to a netlist, the watermark will be
removed, specifically because it is not a functional part of the
circuit operation. Fortunately, most FPGA vendors have taken a
business position that they will not reveal the specification of their
configuration streams, specifically to complicate the task of

reverse engineering and thus protect the investment of their
customers [10].

1.4 Contributions
This paper presents the first method for protecting Intellectual
Property, in the form of reusable digital circuits, even after the IP
has been delivered in commercial products. By manipulating
hardware resources, we are able to encode relatively long
messages in a manner that is difficult to observe by a third party,
resists tampering, and has little impact on circuit performance or
size. This capability provides three main benefits:

1. It reduces the risk that a watermarked circuit will be stolen,
i.e. used illegally without payment or transferred to a third
party.

2. It reduces the risk that any unmarked circuit will be stolen.
3. It can be used to identify the backend tool chain used to

develop a design, and thus be part of the royalty mechanism
used for CAD tools.

2 Reverse Engineering Techniques
While Xilinx and other FPGA vendors make some efforts to
complicate the task of reverse engineering, it certainly is possible
to recover the configuration specification with a concerted effort.
NeoCAD was able to accomplish this for the Xilinx XC4000
series devices through a directed investigation of the bitstreams
produced by the Xilinx backend tools. Given this information, it
should be relatively straightforward to produce a Xilinx netlist file
and then use commercial tools to move back up the design flow.
Another possible line of attack involves removing the packaging
material and then using a visual inspection tool to produce a
circuit representation of the CLB. A similar approach has
recently been used to produce a complete layout of a 386
microprocessor in approximately 2 weeks [1].

In response to the proven success of the reverse engineering
attacks, we believe that hiding the watermark is necessary but not
sufficient. Any effective watermarking scheme should make the
signature appear to be part of the functional digital circuit to
whatever extent is possible.

3 Related Work
Ad-hoc techniques for the watermarking of text and image
documents have been manually practiced for many centuries.
Modern techniques for signature data hiding in image, video, and
audio signals have received a great deal of attention. A spectrum
of steganography-based approaches for protection of digital
images has been proposed [3, 9, 12].

Recently, a set of techniques for intellectual property protection
through watermarking at the behavioral level down to the physical
layout using superimposition of additional constrains in
conjunction to those specified by the user has been proposed [2, 5,
6]. In this paper, we propose the first intellectual property
protection technique for FPGA designs. Different design phases
(physical synthesis of FPGA-based design vs. behavioral
synthesis) result in very different sets of synthesis and
optimization issues.

Cryptography also has a long history. Two decades ago, the
public-key techniques introduced by Stanford researchers
redefined the field [4]. Many techniques, from both a practical
and theoretical viewpoint, have been summarized in [8].

We use cryptographic techniques to select a subset of FPGA
physical design constraints from a set of constraints that are not
already used for design specification. An additional benefit is that
the cryptographic techniques also provide probabilistic
randomization and therefore protection from added constraints.
For this task, we use the standard cryptography tools from the
PGP-cryptography suite, the secure hash function MD5, and the
RSA/MIT stream cipher RC4 [8].

4 Approach
The global flow of our watermarking system is represented by the
pseudo-code in Figure 2. First, the complete design passes
through the vendor place and route tool in order to get an initial
estimate of the resource constraints. The process terminates if the
available resources are not sufficient to satisfy the watermark
request. In this case, the IP developer has the option of either
mapping into a larger physical area or requesting a smaller
signature. Next, the signature is transformed in order to make it
more difficult to detect and tamper with. Once the signature has
been prepared, it is embedded into the input files of the place and
route tools, through a combination of netlist modifications and
physical constraints. Finally, the modified circuit again is passed
through the vendor place and route tools. If the resulting physical
layout achieves the system performance goals, then the
watermarking process is complete.

Figure 2. Global flow of watermarking system

4.1 Signature Embedding
The first step in signature preparation involves transforming the
signature so that it will appear to have the same statistics as an
actual design. This process can be thought of as an application of
encryption, which generally whitens a signal to match a channel
with Gaussian white noise. However, in this case, the purpose of
whitening the signal is not fundamentally to mask its content but
rather its existence.

The next step in signature preparation involves adding error-
correction coding (ECC). By doing so, we combat the malicious
third party that manages to identify a part of a signature and
attempts to modify or remove it. If the modification is small
enough and localized, the ECC codes will be useful for retrieving
the original signature and providing proof of design tampering.

The final step in signature preparation involves interleaving
multiple ECC blocks. It is possible that a malicious third party
would be able to identify a particular LUT that is non-essential to

1. Read in netlist and desired signature
2. Use vendor tools to place and route unmodified netlist
3. If (not enough spare resources for signature) then exit and

retry with smaller signature
4. Process signature:
5. Pack 8-bit ASCII into continuous 7-bit characters
6. Encrypt signature to match “channel”, i.e. typical design,

spectrum
7. Add error correction coding
8. Interleave ECC-encrypted blocks to combat localized

tampering
9. Embed properly-sized clique
10. Modify netlist and physical constraints to embed prepared

signature
11. Execute vendor place and route tools on modified netlist
12. If (performance is too low) retry with smaller signature else

terminate with success

the device function, and change its programming. If sixteen
consecutive ECC blocks are interleaved, one bit at a time, over a
set of LUTs, then each LUT will only contain one bit from any
ECC block. This interleaving guarantees that the validation
software can successfully retrieve the signature in the face of any
single point fault, i.e. a LUT that has been tampered with.

Embedding the processed signature involves using free LUTs in
an unmarked design. Each LUT in the XC4000 family encodes
16 bits of information, and from our experience most designs have
a large number of unused LUTs. The signature is coded into
LUTs defined by the designer’s signature and a secure hash
function, and the design is placed and routed around the signature.
Since the actual signature is known only to the designers, they are
also the only ones who know the location of the unused LUTs.
Therefore, if the unused LUT location is disclosed for one design,
designs with other signatures are still secure.

4.2 Validation
When the owners of an IP block believes their property has been
misappropriated, they must deliver the configuration in question
to an unbiased validation team. The IP vendor produces a seed
that they claim was used to produce the block. With the seed and
signature, the validation team reverses the signature preparation
and embedding process: identify the CLBs used for hiding the
signature using the functions defined by the secure hash function,
reverse the block interleaving, apply the ECC if necessary,
decrypt the message using a known key, and finally print out the
resulting signature. If the signature matches that claimed by the
IP vendor, then ownership has been established.

5 Experimental Results
We have evaluated the proposed approach by watermarking three
large designs on FPGAs with various signature sizes, from an
extremely small mark to the maximum size given unused LUT
availability.

The overhead of the proposed approach comes in the form of area
(physical resources) and timing. Area overhead is inevitable, as
previously unused LUTs are used to encode the signature.
However, in reality, area overhead does not increase linearly with
the size of the signature. Rather, the calculation of area overhead
involves the realization that place and route tools rarely pack
utilized CLBs into a minimal area. Therefore, area overhead
should be viewed in terms of the area used by the watermarked
design minus the total area of the original design, including
unused CLBs and LUTs.

Timing overhead may arise due to the constraints on placement as
defined by the size and location of the signature. A LUT
dedicated to the signature may impede placement of circuit
components and lengthen the critical path. As the signature size
grows, more constraints are made on the placement of the design,
thus increasing the possibility for performance degradation.

The three designs used to evaluate the approach are a MIPS
R2000 processor core designed for FPGAs, a reconfigurable
Automatic Target Recognition (ATR) system [11], and a digital
encryption standard (DES) design [7]. The MIPS core and the
DES design were both implemented on the Xilinx XC4028EX-3-
PG299, and the ATR system was implemented on the
XC4062XL-3-PG475. For each design, the smallest possible
device was used.

5.1 Results
Experimental results reveal that both area and timing overhead are
low. After each design was placed and routed with no signature
constraints, the number of unused LUTs was calculated and the
circuit timing was noted. The original physical layout statistics
are shown in Table 1. In each case, the designs were laid out such
that the entire FPGA area was being used, with LUTs and entire
CLBs being sporadically unused, illustrating that the place and
route tools do not pack logic with optimum density. Therefore,
there is essentially no area overhead required by the proposed
approach. The approach utilizes free space in the original design
and increases the density of occupied CLBs and LUTs. For tools
that attempt to pack logic with increased density, area overhead
may become apparent depending on signature size.

For each design, incrementally larger signatures were placed in
the FPGA, and the design was placed and routed around the
restricted resources. For each instance, the circuit timing was
noted and compared to the original design. This process was
repeated until the largest possible signature, i.e. one making use of
all unused LUTs, was implemented. The results are shown in
Tables 2-4.

For each table, the top two rows show the size of the watermark,
first in bits and then in number of encoded ASCII characters. The
next row for each design shows the percent resource increase in
terms of the number of used CLBs. As mentioned above, the area
increase for each instance is nearly 0%, but the table reflects the
additional percentage of CLBs actually utilized in the
watermarked design. Finally, the timing degradation for each
instance is shown. Positive percentages indicate a decrease in
performance. The table reveals that timing degradation is small
and even negative in many instances. Relatively small changes in
a circuit netlist or routing constraints can often result in a
dramatically different placement and a corresponding change in
speed. It appears that the impact of watermarking on performance
is well below this characteristic variance, and thus the
performance impact is non-monotonic with signature size.

Figures 3a and 3b are examples of DES layouts. Figure 3a is the
original layout of the design with no watermark constraints. Note
that the original placement does not achieve optimal logic density.
Instead, unused CLBs are dispersed throughout the design. Figure
3b shows the layout with an embedded signature of 4768 bits.

6 Conclusion
As the market for reusable digital designs grows, issues
concerning protection of proprietary designs come to the
forefront. This paper has described a technique that takes
advantage of FPGA flexibility to encode a watermark that is
extremely difficult to detect and/or remove. The watermark
uniquely identifies the design’s origin, thus protecting designers
against misuse or unauthorized distribution. Although the
watermark is applied to the physical layout of the design by
imposing constraints on the backend CAD tools, the area and
timing overhead is extremely low. Experiments have shown that,
even on very complex designs, a watermark can be applied and
validated at this fine-grained level with little to no impact on
design performance and area.

design # used CLBs # spare CLBs min period (ns)
MIPS R2000 756 268 185.007

ATR 1876 214 424.542
DES 875 149 166.293

Table 1. Original physical layout statistics

mark size (bits) 800 1568 2592 3200 3872 4608 5408 6272 7200 8192
ASCII chars 114.29 224.00 370.29 457.14 553.14 658.29 772.57 896.0 1028.6 1170.3
% resources 3.31 6.48 10.71 13.23 16.01 19.05 22.35 25.93 29.76 33.86

% timing -1.04 -0.47 3.17 -7.15 -4.69 1.65 -11.53 2.47 11.95 -5.23
Table 2. MIPS R2000 – Impact of watermark size on resources and speed

mark size (bits) 32 800 1568 2944 4608 5984 6848
ASCII chars 4.57 114.29 224.00 420.57 658.29 854.86 978.29
% resources 0.05 1.33 2.61 4.90 7.68 9.97 11.41

% timing -10.74 3.46 -25.93 -7.99 -13.50 10.25 -1.57
Table 3. ATR - Impact of watermark size on resources and speed

mark size (bits) 32 800 1568 2528 3200 3872 4768
ASCII chars 4.57 114.29 224.00 361.14 457.14 553.14 681.14
% resources 0.11 2.86 5.60 9.03 11.43 13.83 17.03

% timing -22.98 -14.83 -5.07 -1.90 11.05 -11.93 -3.28
Table 4. DES - Impact of watermark size on resources and speed

Figure 3a (left). DES original layout

Figure 3b (right). DES with 4768 bit watermark

Acknowledgements
The authors would like to thank Prof. Brad Hutchings and Peter
Bellows for their assistance. This work was supported by the
Defense Advanced Research Projects Agency of the United States
of America, under contract F30602-96-C-0350 and subcontract
QS5200 from Sanders, a Lockheed Martin company.

References
1. Anderson, R., and Kuhn, M. Tamper resistance - A

cautionary note. Proceedings of the Second USENIX
Workshop on Electronic Commerce. (1996), 1-11.

2. Charbon, E. Hierarchical watermarking in IC design.
Proceedings of the Custom Integrated Circuits Conference
’98. (1998).

3. Cox, I.J. et al. Secure spread spectrum watermarking for
images, audio and video. Proceedings of the Third
International Conference on Image Processing. (1996), 243-
246.

4. Diffie, W. and Hellman, M. New directions on cryptography.
IEEE Transactions on Information Theory. IT-22, 6 (Nov.
1976), 644-654.

5. Hong, I., and Potkonjak, M. Behavioral synthesis techniques
for intellectual property protection. unpublished manuscript.
(1997).

6. Kahng, A.B. et al. Watermarking techniques for intellectual
property protection. Proceedings of the Design Automation
Conference ’98. (1998).

7. Leonard, J. and Mangione-Smith, W.H. A case study of
partially evaluated hardware circuits: Key-Specific DES.
Field Programmable Logic. London, England (1997).

8. Schneier, B. Applied Cryptography: Protocols, Algorithms,
and Source Code in C. New York: John Wiley & Sons
(1996).

9. Swanson, M.D. et al. Transparent robust image
watermarking. International Conference on Image
Processing. (1996), 211-214.

10. Trimberger, S. Personal communication. Xilinx Corporation.
(1997).

11. Villasenor, J. et al. Configurable computing solutions for
automatic target recognition. Proceedings of IEEE Workshop
on FPGAs for Custom Computing Machines. Ed. Arnold, J.
and Pocek, K.L. Napa, CA (1996), 70-79.

12. Wolfgang, R.B. and Delp, E.J. A watermark for digital
images. Applications of Toral Automorphisms. 3 (1996),
219-222.

13. Xilinx. The Programmable Logic Data Book. San Jose, CA
(1996).

	Front Matter

