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ABSTRACT.   Let L be an oriented tame link in the three sphere S3.  We
study the Murasugi signature, o(L), and the nullity, tj(L).   It is shown that o(L)
is a locally flat topological concordance invariant and that tj(L) is a topological
concordance invariant (no local flatness assumption here).   Known results about
the signature are re-proved (in some cases generalized) using branched coverings.

0. Introduction. Let L he an (oriented) tame link of multiplicity ju in the
three-sphere S3. That is, L consists of p oriented circles Kx, . . . , K^ disjointly
imbedded in S3. Various authors have investigated a numerical invariant, the
signature of L (notation: o(L)). The signature was first defined for knots (ji = 1)
by H. Trotter [21]. J. Milnor found another definition for this knot signature
(see [12] ) in terms of the cohomology ring structure of the infinite cyclic cover
of the knot complement. In [2], D. Erie showed that the definitions of Milnor
and Trotter are equivalent.  In [15], K. Murasugi formulated a definition of
signature for arbitrary links.

In this paper we investigate the Murasugi signature in the context of branched
covering spaces. To be specific, let Z)4 denote the four dimensional ball with
ó\D4 = S3, and let L C S3 be a link and F C Z)4 a properly imbedded, orientable,
locally flat surface with bF - L C S3. Let M denote the double branched cover
of D4 along F.  Then we show that o(L) is the signature of the four manifold M
(see Lemma 1.1 and Theorem 3.1).  Our proof of Theorem 3.1 contains the
technicalities necessary to show this in the topological category.  Using this view-
point we are able to prove that o(L) is a topological concordance invariant
(Theorem 3.8). We also rederive many of Murasugi's results, generalizing some
of them (see Theorems 3.9-3.16).

The paper is organized as follows: §1 contains the classical definitions of
the signature and nullity of a link. It also deals with necessary background con-
cerning branched coverings.
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352 L. H. KAUFFMAN AND L. R. TAYLOR

§2 contains theorems about the nullity of a link.  The nullity is one plus
the first Betti number of the double branched cover of S3 with branch set all of
L; it is denoted r\(L). We show that nullity is an invariant of link concordance
and isotopy (Theorem 2.6). The section also contains a useful lemma about
double coverings (Lemma 2.8).

§3 discusses the link signature. We show that o{L) may be computed from
various double branched covers (Theorem 3.1) and that it is independent of the
choice of spanning surface used in its definition. A number of specific results
about signature are collected here.  One key to our approach rests in Theorem
3.4 which gives the basic estimate for our inequalities.

§4 contains examples.

1.  Definitions and branched covers. The three-sphere, S3, will be given a
fixed orientation throughout.

Let L he a tame (i.e., locally flat) oriented link imbedded in S3. Choose an
orientable spanning surface F for L; orient F so that bF = L with the chosen
orientation.

The Seifert pairing 6: HX(F) x HX(F) —► Z is defined by the formula
6(a, b) = l(i*a, b). Here /( , ) denotes linking number in S3, and i* denotes the
operation of pushing into the complement of F along the positive normal direction.
Define a pairing/: HX(F) x HX(F) —> Z by the formula

fia, b) = 0(a, b) + 6(b, a).
This symmetrization of the Seifert pairing is bilinear, and hence it has a well-de-
fined signature.

Definition. The signature of L is defined by the equation o(L) = signature
off.

This is essentially the Murasugi definition. In [15] Murasugi takes F to be
a Seifert surface. This is a surface constructed by Seifert 's algorithm (see [17])
from a projection of the link on S2. He then associates a matrix M with this sur-
face and defines o(L) = signature(AZ + M*). One can verify that M is the matrix
of Q with respect to an appropriate choice of basis for HX(F) (see [7, pp. 37—50]).
We allow an arbitrary spanning surface in our definition, but this will be seen to
be legitimate in §3.

A few remarks about branched coverings will allow the first reformulation
of this definition of signature.

Let N be any oriented manifold with boundary such that ZZjíTV; Z2) = 0.
Let F be any orientable codimension two locally-flat submanifold such that

[F, bF] = 0 GHn_2(N bN; Z2)   (n = dim(N)).
Consider the relative sequence for the pair (N,N-F).
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SIGNATURE OF LINKS 353
0 = Hl(N; Z2)-► Hl(N - F; Z2)-* H2(N, N - F; Z2)-> H2(N; Z2)

1 2

Hn_2(F, bF; Z2) —*Hn_2(N, bN; Z2)

3

H°(F;Z2)

The maps 1, 2 and 3 are isomorphisms induced by Alexander duality (1) and
Lefschetz duality (2 and 3).  Thus Hl(N - F; Z2) = H°(F; Z2). Choose a E
HX(N - F; Z2) so that a corresponds, under this isomorphism to the sum of the
generators of H°(F; Z2). Note that a is independent of the orientation choice
for F.   Let N - F be the two-fold covering space of N - F determined by a.

Let A = N - F U F, and topologize it as follows.  Let 7i: N —> A/be de-
fined by it(x) = p(x) for x EN - F and it(x) = x for x EF.  Here p: N-F—+
N-Fis the covering map.  Let N have the topology generated by the sets
■n~l(U) where U is open in N-F, and p~l(V n (N -F))U (V n F) where Fis
a connected open set in N having nonempty intersection with F   Then the map
it is continuous, and it is clear from the local-flatness of F that A is a topological
manifold. The manifold N will be referred to as the double branched cover of
N along F; it will be oriented so that it has degree + 2.

Lemma 1.1.   Let N = £>4 and let F EN be the result of pushing a span-
ning surface for the link L into £>4 so that bF = L, F n S3 = L.   Then o(L) =
o(Ñ). Here o(N) denotes the signature of the middle dimensional cup-product
form on H2(N, bÑ).

Proof.  This follows from Proposition 5.2 of [8] where it is shown that
the intersection form on H2(N) has matrix V + V* where V is the matrix of the
Seifert pairing 6 with respect to an appropriate basis.

This lemma is the key to our approach to the link signature in §3.
Another useful invariant of links is the nullity.   Let L C S3 be a tame,

oriented link. Let M denote the double branched cover of S3 along L.  The
nullity of L is defined by the formula r¡(L) = ßx(M) + 1. Here ßx denotes the
first Betti number.

It follows from Lemma 1.1 and the homology sequence for the pair (A, bN)
that r)(L) = nullity(F + V*) + I, for V the Seifert matrix for a connected span-
ning surface.  This shows that our definition of nullity coincides with that of
Murasugi.

Remark 1.2.  It follows from Proposition 5.2 of [8] that if we take even
a disconnected spanning surface for L in S3, and let N he the double branched
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cover of D4 along the pushed-in surface, then H2(N) —*■ H2(N, bN) is given by
V + Vt. Hence the signature of V + Vt is always the signature of the link. If
the spanning surface F has r components, then r¡(L) = nullity(F + Ff) + r.

2. Nullity theorems. Our definition of the nullity provides easy proofs of
many theorems. As a start, since branched covers do not depend on the orienta-
tion of either the base manifold or the branch set we obtain the following.

Theorem 2.1.   The nullity is independent of the orientation on S3 and the
orientation of the link.  It is also independent of the choice of spanning surface.

If Lx and L2 are links in S3, let Lx ° L2 be the link obtained from S3#S3
with Lx in one piece and L2 in the other (disjointly).  Let Lx ® L2 be the link
obtained by choosing a 3-ball, B{, in each S3 such that B¡ n L¡ is a single strand.
Form S3 # S3 by removing these 3-balls, and let the gluing homeomorphism
S2 —> S2 take the two points in bBx n Lx to the two in bB2 n L2. The link
Lx ®L2 is not well defined, but we let this symbol denote any link obtained by
the above procedure.

Theorem 2.2.  r¡(Lx ° L2) = r¡(Lx) + r¡CL2), r¡(Lx ® L2) = t¡(Lx) + r\(L2)
-I.

The proof, which is left to the reader, consists of looking at double branched
covers for Lx ° L2 and Lx ®L2.

Let us decompose the double branched cover, N, of S3 along L as follows.
There is V, a tubular neighborhood of the branch set, and M, a double cover of
M = S3 - 7; here 7 is a tubular neighborhood of L ES3. Mayer-Vietoris gives

Hx(bV)-^Hx(V)®Hx(M)-^Hx(N)-^H0(bV)

it

Hx(bT) -^HX(T)® HX(M) — HX(S3) -±* H0(bT)

Maps 3 and 4 are easily seen to be zero. The map it is induced from a col-
lection of tori double covering themselves. Thus, with rational coefficients, it is
an isomorphism. Hence 1 is a monomorphism since 2 clearly is. We conclude that
V(L) = ßx(M)-p(L) + l.

This shows that the nullity depends only on M, or only on S3 - L and a
homomorphism HX(S3 - L;Z2) —► Z2.

To compute r\(L), we could compute H*(M; Z2) and apply the Bockstein
spectral sequence. This is not as facetious as it sounds, for H*(M; Z2) is easy to
compute using the Gysin sequence.  (We are indebted to Frank Connolly for sug-
gesting the Gysin sequence approach, which greatly simplified matters.) The Gysin
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SIGNATURE OF LINKS 355

sequence reads

-► H*+l(M; Z2) -ÍX H*(M; Z2) -*■ HjM; Z2) ■*-+ HJ(M; Z2) -> ■ • •
(e.g., Spanier [18, p. 260]).

In our case, using Alexander duality, HX(M; Z2) = Z^L^ generated by me-
redians in bT; H2(M; Z2) S Z^(L)_1 and H2(bT; Z2) maps onto it. The map
H2(bT) -* H2(M) £**■ HX(M) is given by the matrix L = (Jtj) where ltj =
I O'th component, ;'th component) for i #= /, and lu = - XfS\ L^j l¡j. (This may be
seen by interpreting the map fix as intersection with a spanning surface for L.)

Since ßx(M) < dim HX(M; Z2), we conclude the following.

Theorem 2.3.  r\(L) < nullityz I where we take the nullity over the field
z2-

Corollary 2.4.   1 < r¡(L) < p(L).

Remark 2.5. The integer nullityz L is a link homotopy invariant since
Milnor [13] shows L is. Example (1) shows that nullity is not a link homotopy
invariant.

We can now define r¡(L) = dim (quotient group of HX(M; Z2) consisting of
permanent cycles in the Bockstein spectral sequence) -p(L) + 1. This defines a
nullity even for wild links.

Two links Lx and L2 are said to be link concordant if there exists a topo-
logical imbedding of F = p(Lx) copies of S1 x / in S3 x I, such that b_F E
S3 x0isLx and b+FE S3 x 1 is L2. A link L is said to be null link concordant
if there is an imbedding of Fx = p(L) copies of D2 in D4 such that bFx C S3 is
L.  Neither imbedding is required to be nice in any fashion whatsoever.

Theorem 2.6.  If Lx and L2 are link concordant, then r¡(Lx) = t¡(L2). If
L is null link concordant, then r\(L) = p(L).

Corollary 2.7.   Nullity is a link isotopy invariant (see Milnor [14]).

Proof (of 2.6). By adding a collar, we may assume our imbeddings are
proper (F C N is proper if F n bN = bF). Let M = S3 x I - F with boundary
components b+M and b_M.   Alexander duality shows b±M C M is a mod-2 ho-
mology equivalence. The Gysin sequence shows bJA C M is a mod-2 homology
equivalence. The Bockstein spectral sequence shows r¡(Lx) = t}(L2).

Now consider D* -Fx. Since HX(DA -Fx) s Z£(L) is the only nontrivial
homology group (except H0), the Gysin sequence shows HX(D* -Fx) ^Z\^L^~l
is the only nontrivial homology group.  Thus, using the Gysin sequence again,
HX(S3 - L) —► HX(D4 - L) must be onto. The naturality of the Gysin sequence
and the Bockstein spectral sequence shows rj(L) = p(L).

The next to the last sentence contains an observation we will need again.
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Lemma 2.8.   Let fi.X —*■ Y induce a monomorphism on H0( ; Z2) and an
r~v     r**j r\s r**j

epimorphism on Hx( ; Z2). If f: X —» Y is a double cover, then /* is monk on
H0( ; Z2) and epic on Hx( ; Z2). Z/ZZj(?; Z) is finitely generated, then /¡. is
epic on Hx{ ; Q). if* is the map induced by fon homology.)

The proof is just the relative Gysin sequence and universal coefficients.
As a final result, we state

Theorem 2.9.  r){L) = 1 if and only if VL{-1) ¥= 0.

This result is proved in [5, Theorem 1].  Recall [4]

LK        \A{t, t,..., r)(l - t)2~^L\     p{L) > 2,

where A(r, t,.... t) is the Alexander polynomial.

3. The signature.  Let L C S3 he an oriented link. Let F E £>4 be a prop-
erly imbedded, oriented, locally flat surface with bF = L.   Let N{F) denote the
double branched cover of D4 along F.  We wish to show that o{L) = o{N{F)).
Thus the link signature is independent of the choice of spanning surface.  In the
piecewise-linear or differentiable categories, this is an easy matter:  Let F' C D4
be another such surface. Let F" E Ds he a properly imbedded submanifold so
that bF" =FU-F'CZ)4U -Z?4 = S4.  Then bN(F") = N(F) U -N(F').
Hence, by the Novikov addition theorem (see [1, p. 588]), o(N(F)) = o(N(F')).
In particular, let F' denote a pushed-in spanning surface for L.  Then o(L) =
o(N(F')) = o(N(F)), proving the assertion.

In fact, we shall generalize this idea as follows. Let M be an oriented four
manifold with boundary such that HX(M; Z2) - 0. Let F be any orientable co-
dimension-two, locally-flat submanifold with [F, bF] = 0 G H2(M, bM; Z2).
Then, as in §1, we can form N, the double branched cover of M along F.

Suppose that bM = S3 with bF E S3 some link L.   Suppose also that
[F, bF] = xEH2(M, bM;Z),with x divisible by 2.

Define x2 e Z as follows.  Let Fx C S3 denote a spanning surface for
bFES3. Let M = M U £>4 with the boundary three-spheres identified. Let
X = [F - Fx ] E H2{M; Z), and define x2 = X2 where x2 denotes the self-inter-
section number of x-

Note that x2 may also be interpreted as the linking number of bF with bF'
in S3. Here F' denotes the result of pushing F off itself in M so that F n F' =
0and F' C\bM = bF'.

The fundamental observation of this section is the following result.

Theorem 3.1.   o{L) = oiAO - 2o(M) + Vix2 where the double branched
cover N is oriented so that n: N —> M has degree + 2.
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Proof. If F C Ai is a smooth imbedding, we proceed as follows. Let B
be the double branched cover of D4 along some pushed-in surface for L. Thus
o(L) = o(B) by Lemma 1.1. Now Proposition 6.15 of [1] (see [6] for an ele-
mentary proof) shows o(N) - o(B) = 2o(M) - x2/2 from which our result follows.
The same result is still true for locally-flat imbeddings [19]. We will close this
section with a proof of 3.1 for x = 0, in the topological category.

Remark 3.2. Note that 3.1 shows that o(L) is independent of the choice
of spanning surface. If F is any locally-flat, orientable surface in D4 with bF =
LES3, then o(L) = o(N) where N is the double branched cover of D4 along F.

Given a link L C S3, let X(L) = ^x<i<j<ll{L)l(K¡, K¡) where L = Kx U
Í2U'"UÍ     Here is a proof of the following theorem due to Murasugi [15].
From our approach, one sees that the result depends only on the fact that double
branched covers are independent of orientations.

Theorem 3.3.   o(L) + X(L) is independent of the orientations of the com-
ponents of L.

Proof.  Let each component K¡ bound F¡ ED4. We can always take the
F¡ so that F¡ nFfr\Fk=0 for i, j, k distinct, and so that F¡ n F¡ is exactly
\l(K¡, Kj)\ points.

Let B4 ED4 be a small ball about a point in F( n F,. We can insist that

(Fi n bB4) U {Fj n bB4) C bB4 be either {]£) orQD (see Wal1 I22!)- The

first link bounds two disjoint disks in CP2 - B4 such that [Dx] = ~[D2] in
H2(CP2 -B4). The other does the same except in (-CP2) -B4.

Let M denote the connected sum of D4 and a collection of copies of CP2
and -CP2, one for each intersection point. M is obtained by adding a ±CP2 at
each crossing of F¡ (~> Fj and then removing the double point. This gives F EM
with bF = L E bM = S3. Then [F, bF] = 0 E H2(M, M; Z).

Hence o(L) = o(N) - 2o(M).
Let L* he the link obtained by reorienting one component, say Kx.  Then,

for the new surface F* bounding L* we have [F*, bF*] = 2x. It is not hard to
see x2 — ~^t<J<u(L)^i> Kj)-  (Here Kx has the new orientation.) Hence
o(L*) = o(N) - 2o(M) - 2Zl(Kx, Kj), or o(L*) = o(L) - 22l(Kx, Kj), or o(L*)
+ X(L*) = o(L) + X(L), proving the theorem.

The following situation gives our remaining theorems.  Let M he a 4-mani-
fold with HX(M; Z2) = 0 and bM a collection of copies of S3. In practice, M is
D4, S3 x I, S4, or S3 x I - D4.  Let each component of bM contain a link L¡,
and let F C M be a surface with bF = U,!,-.  Let N he the double branched
cover of M along F.   By the Novikov addition theorem, o(N) = ^¡2X     o(L¡).
Now o(N) is also the signature of the cup product form on H2(N, bN; Q). In
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general, this form is singular, but if K is the cokernel of Hx (bN; Q) —►
H2(N, bN; Q), then the form restricts to a nonsingular form on K with the same
signature. Hence \o{N)\ < dim K and o{N) = dim ZC(mod 2).

Theorem 3.4.   The dimension of K is given by

0O(3M)
dimZC = 2x(M)-x(ZO + 2,31(A0-    £   V{L() + 2ß0(bM) - 2.

i=l

Corollary 3.5.   If L E S3, is a link, then o(L) = t¡(L) + p(L) (mod 2).

Proof.  Write down the cohomology sequence of the pair (N, bN) begin-
ning with 0 —»■ ZZ°(A0 and ending with H2(N, bN) —*■ K —► 0. Then dim K is an
alternating sum of various Betti numbers. The following formulas are useful:
2x{M) - X(Z0 = X(A0, ß2{N bN) = ß2(N), ßx(N, bN) = ß3(N), ßx(bN) = 2írI(I/)
- ß0(bM), ß0(bN) = ß0(bM). The proof is now obvious. To get 3.5, apply 3.4
to any orientable surface in D4 spanning L.

Thus we need ways of computing or estimating ßx(N).

Theorem 3.6. Let b¡M be the component of bM containing L¡ and let
b(F = FD b¡M.  If Fis orientable, and ifH0(b¡F) —> H0(F) is onto, then
ßx{N)<r1(Li)-l.

Proof.  Use Alexander duality to compute ZZj(AZ - F, b¡M - b¡F; Z2) = 0.
Use Lemma 2.8 to show HX(M - F, b¡M - b¡F) = 0, first with Z2 coefficients
and thus also with Q. Use Alexander duality again to show HX(N, b¡N; Q) — 0.
This completes the proof.

Theorem 3.7. Let F EM as above have ß0(F) components.   Then ßx(N) <
/W)-i.

Proof.  Using Mayer-Vietoris, it is sufficient to show ßx(M - F)< 2ß0(F)
- 1.  Let A be a wedge of ß0(F) circles.  There is a map A—► M - F which is
onto in ZZj( ; Z2), as is not hard to see. By Lemma 2.8, A —* M- Fis also onto
in Hx( ; Q). But ßx(f\) = 2ß0(F) - 1 as is well known. This completes the proof.

Theorem 3.8.  Signature is a topological concordance invariant.

Proof. Let Lx and L2 E S3 be concordant; that is, there is a locally-flat
imbedding of F = p(Lx) copies of Sx x I in S3 x I with b+F = L2 and b_F =
-Lx, the mirror image of Lx. It is easy to see o(-Z,j) = -o(Lx). N is the double
branched cover. By Theorem 3.6, ßx(N) < r¡(Lx) - 1 and r¡(L2) - 1. Theorem
3.4 shows dim K < - \r\(Lx) - t?(Z,2)|. Thus 7j(Z,i) = ri(L2) (which also follows
from 2.6) and o(A0 = 0. Hence o(Lx) = o(L2).
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Theorem 3.9.  Let F be an orientable surface in D4 spanning L E S3, and
assume F has no closed components.   Then

\o(L)\ < 2 genusiF) - p(L) - tnax(n(L), 2ß0(F) - V(L)).

Corollary 3.10 (Murasugi [15, Theorem 9.1]).

\o(L)\ < 2 gen\xs(F) + p(L) - ßQ(F).

Corollary 3.11. Suppose VL(-1) ^ 0. 77ie«

\o(L)\ < 2 genus(F) + p(L) + 1 - 2ß0(F).

Corollary 3.12. Ifg*(L) is the minimal genus of an oriented connected
surface in D4 spanning L, then

\o(L)\<2g*(L) + p{L)-r1(L).

Proof.  Apply Theorem 3.4. Estimate ßx(N) once using Theorem 3.6 and
again using 3.7.  The corollaries are obvious.

Now let L E S3 he a link, and let S3 E S4 be the standard imbedding.
There exist closed locally-flat surfaces P E S4 such that P n S3 = L and every
component of P meets S3. Define the slice genus, gs(L), as the minimum genus
of such an oriented surface.  Since S3 divides S4 into two components, it also
divides P into surfaces Fx and F2. Let h(L) he the minimum of ß0(Fx) - ß0(P)
over all P C S4 such that P C\ S3 = L, each component of P meets S3, and
genusf/) = gs(L).

A slice link is one for which gs(L) = 0, and a slice link in the strong sense
is one for which gs(L) = h(L) = 0.

Theorem 3.13.   \o(L)\ < gs(L) + min(0, r?(¿) - ß0(P)) and 0 <
(ß(L)-V(L))l2<2gs(L) + h(L).

Proof.  Let N be the double branched cover of S4 along P.  Let Wx and
W2 he the two pieces of A mapping onto the two pieces of S4 -S3. Thus,
bWx = bW2 =M, the double branched cover of S3 along L.  The sequence
H2(W¡, M; Q) -> H2(N; Q) -> H2(W¡; Q) and Mayer-Vietoris show dim Kx +
dim K2 < dim H2(N; Q) where K¡ is the cokernel of Hl(M) -* H2(W¡, M).
Hence \o(L)\ < ft dim H2(N; Q).

We also know that dim H2(N; Q) = -2 + 2ßx(N) + x(A) and x(A) =
4 - X(P) = 4 - 2ß0(P) + 2gs(L). By Theorem 3.7, ßx(N) < ß0(P) - 1. One
checks that HX(S3 - L;Z2)-+ Hx(S4 -P;Z2) is onto, and then, that Hx(M; Q)
—*■ HX(N; Q) is also onto. Hence ßx(N) < r¡(L) - 1. This gives the first formula.

To see the second formula, proceed as follows.  Let F¡ = P n W¡. Then
Hx(Wt, W¡ - Fj) = 0 by the Thorn isomorphism, so HX(W¡ - Fj) —► Hx(Wj) is
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onto.  It is now easy to see that HX(W¡ - F¡, M - bF¡) —* H^Wj, M) is onto.
By Lemma 2.8, to show Hx(W0 M) = 0, it is enough to show ZZj (D4 - Ff, S3 - bF¡)
= 0.  By Alexander duality this group is isomorphic to H3(D4, F¡), which is 0.
This shows ß3(Wf) = 0 and ßx(M) > ßx(Wi).

Next show ßx(Wt) > x{F¿) ~ 1.  Estimate yCF,) = ß0iFt) - ßx(Ft, bF¡) using
the excision ßx{F{, bF¡) = ßx{P, bF¡') so as to show

ßx{M) > \ß0(Fx) - ß0(F2)\ + ß0(P) - ßx(P) - 1.

Since P = FX U F2,

ß0(Fi) + ¿W^) > VW) - ßi(P) + ßoF).
from which the required formula follows easily.

Corollary 3.14. If L is a slice link, o(L) = 0. If moreover, L is a slice
link in the strong sense, then T)(L) = p(L).

Remark 3.15.  If FED4 spans L, then gs(L) < 2 genus(Z0 + p(L) - ß0(F),
so we recover 3.10 from 3.13.

We next wish to consider the effect of the following operation.  Let ¿,C
S3 he a link and let D3 C S3 intersect Lx in a two stranded braid bx.  Both
strings of bx are oriented.  Let b2 he another two stranded braid with the same
orientation as bx, and let L2 he the link obtained by replacing bx with b2. Two
examples of this operation are: (1) change an overcrossing to an undercrossing;
and (2) add two components of a link together.

A two stranded braid may be visualized as in Figure 1 and is classified by
the number of crossings, and whether the first cross is under or over.  Our braids
also have an orientation.

I
Figure 1 Figure 2

Given a two stranded braid b, define o(b) as follows.  If the two strands
have opposite orientations, o(b) = 0.  If they have the same orientation, o(b) -
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e • (N - 1) where N is the number of crossings, e = ±1, and e = +1 if the braid
ends as in Figure 2 (that is, a left-right overcrossing in the direction of the
orientations).

Theorem 3.16.  With notation as above,

\o(Lx) - a(bx) - (a(L2) - o{b2))\ + \n(Lx) - r¡{L2)\ + \p(Lx) - p(L2)\ < 3.

Modulo 2, the left-hand side is congruent to o(bx)- o(b2). Furthermore,

\n(Lx)-ri(L2)\<l   and   \p(Lx) - p(L2)\ < 1.

We defer the proof momentarily, and discuss some consequences.
Given two arcs in a link, we may isotop them into a disc D3 in such a way

that the braid is trivial and the two strands have the same orientation.  We may
replace this braid by either one of two braids with a single crossing.  Call either
of these the link obtained by adding either two components of our original link,
or one component to itself.

Corollary 3.17. Let Lx be a link and let L2 be a link obtained by adding
two components of Lx.  Then

\o(L2) - o(Lx)\ + \r1(L2)-v(Ll)\<l.

Corollary 3.18. o(Lx ® L2) = o(Lx) + o(L2), o(Lx ° L2) = o(Lx) +
o(L2).

Corollary 3.19. Z/Z,j is a link and L2 is the link obtained by adding
two components of Lx, and if r¡(Lx) = p(Lx), then

r¡(L2) = p(L2)  and  o(Lx) = o(L2).

Corollary 3.20. Let Lx be a link and L2 be the link obtained from Lt
by changing an overcrossing in a projection of Lx to an undercrossing.   Then
\o(L2) - o(Lx)\ + \n(L2) - n(Lx)\ = 0or2 and \r,(L2) - v'LJl < 1.

Definition. The unlinking number, U(L), of a link L is the minimum
number of operations of the type: change an underpass to an overpass, needed to
produce the trivial link on p(L) components.

Corollary 3.21.  \o(L)\ + p(L) - t,(L) < 2U(L) and p(L) - rj(L) < U(L).

Proof (of 3.16).   First consider the case where the braid strands have the
same orientation.  Then, if the braid b has N crossings, one can choose a spanning
surface for the link so that the matrix M = V + Vf has the form
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M =

±2   ±1
±1 ±2 ±1

±1 ±2 ±1.
±1 ••• ±1"■'±1 ±2 ±1

±1 ±2
±1

±1

M'

where the upper left-hand block is an (N - 1) x (N - 1) matrix.  Braid replace-
ment corresponds to changing the size, and possibly the sign, of this block along
with the signs of the auxiliary ±1 entries.

Now M is certainly congruent to a matrix M of the following form

M =

±2
+3/2

±4/3
•±A/(A-1)

±1

±1

The theorem now follows by considering the effect of changing N and the
signs upon the signature and nullity of M.

To be more precise, we see that o(M) = o(b) + o(M) and nvMity(M) =
nuility(iW) where the matrix M denotes the lower right-hand block of M with a0
replaced by a'0 = a0 ±(N - 1)1 N. Thus the value of a0 depends upon N and the
sign, e, of the braid. It is easy to check that the signature of M can change by
at most two when a0 is varied.  If the signature of M changes by two, then the
nullity remains constant. If the signature of M changes by zero or one, then the
nullity may change by at most one. Finally, the multiplicity, p(L), changes by
no more than one, under braid replacement. We sum this up by observing that
if Mx is the matrix for Lx, and M2 is the matrix for L2, then \o(Mx) - o(Af2)[ +
\t)(Lx) - r/(¿2)| + \p(Lx) - p(L2)\ < 3. Hence the theorem follows, since o(Mj)
= o(Lj)-o(bj)foti= 1,2.

The case where the braid strands have opposite orientation is handled similarly.
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This completes the proof of 3.16. To prove Corollary 3.18, note that sig-
natures of four-manifolds add for boundary connected sum. Hence o(Lx ° L2) -
o(Lx) + o(L2). Now apply 3.17 and 2.2. The other corollaries follow easily.

Finally, we give the promised proof of Theorem 3.1 in the case x = 0.
Proof.  We need only show that if F is a locally-flat orientable surface in

M, a closed, compact 4-manifold and if N is the double branched cover of M
along F, then o(N) = 2o(M).

F x R1 E M x R1 has a normal bundle by [9], so we get a map f: M x
Rl —>MSTOP(2) with/transverse to BSTOP(2) and/_1(BSTOP(2)) = FxRK
Letg:M—+ MSTOP(2) be the composite of M—*MxQEMxRl with /
Then g~l(BSTOP(2)) = F, but we do not claims is transverse to BSTOP(2).

By Kneser [11] and Thorn [20], MSTOP(2) = K(Z, 2), so g is null-homo-
topic since x = 0.  Thus there is a map H: M x / —*• MSTOP(2) such that H\M x
[0, e] =f\M x [0, e] and H(M x [l-e,l]) = »e MSTOP(2) for some e,
0 < c < Vi.

H is transverse to BSTOP(2) on M x (0, e] U M x [1 - e, 1), so by the
transverse regularity theorem [10], we can make H transverse to BSTOP(2) on
M x (0, 1) rel M x (0, e] U M x [1 - e, 1). Hence we get P E M x I such that
P is locally-flat, bP = F, P n M x 1 = 0, and P n M x 0 = bP.

It is possible to add a 0-handle toMxOUMx lso that we have M# -M
bounded by W with H becoming a map h: W —» MSTOP(2) such that P =
«_1(BSTOP(2)). Then H3(W, bW; Z) as H2(M; Z) and [P, bP] goes to x under
this map.  Hence we can form the double branched cover of W along P.  This
bounds N# - M# - M, so N# - M# - M has zero signature. Hence o(N) = 2o(M).

Remark.   The reader will note that the only time we used Theorem 3.1
with x ^ 0 was in a case where everything could be taken smooth.

4.  Examples.  In the following examples we omit all calculational details.
Nullity may be rather easily calculated from a projection of the link via an algo-
rithm due to H. Seifert [17]. This is also discussed by Fox [3]. Signatures may
be calculated by using Murasugi's matrix [15] or by directly finding the Seifert
pairing (see [7] ).

(1) Let L be the link illustrated in Figure 3 (the Whitehead link [23] ).
One finds that t¡(L) = 1. On the other hand, L is link homotopic to a trivial link
of two circles. Since the latter has nullity 2, we see that nullity is not an invari-
ant of link homotopy, and the inequality of Theorem 2.3 may be strict.

(2) Let L and L' be the links illustrated in Figure 4. They differ only in
orientation, and yet o(L) = -3 while o(L') = 1. Thus link signature depends
strongly upon the orientation choice. The difference is seen clearly by comparison
of spanning surfaces for L and L'.
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Figure 3

Figure 4

c±D

ooc::::xx
n half-twists

Figure 5

(3)  For n an odd, nonnegative integer, let Ln be the link in Figure 5. We
find that o(Ln) = 2 - n. Since S3 - Ln is homeomorphic to S3 - Lm for any
odd integers n, m, this gives an infinite family of links all sharing the same com-
plement. Since they all have different signatures, no two are concordant.

This underscores the necessity of knowing the link, not merely the comple-
ment.

As a final remark, we wish to note that the approach to signature used here
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can be extended to higher order cyclic branched covers. We hope to make these
higher signatures the subject of another paper.
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