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Parity anomaly is a quantum mechanical effect that the parity symmetry in a two-dimensional
classical action is failed to be restored in any regularization of the full quantum theory and is
characterized by a half-quantized Hall conductivity. Here we propose a scheme to explore the
experimental signature from parity anomaly in the measurement of optical Hall conductivity, in
which the optical Hall conductivity is nearly half-quantized for a proper range of frequency. The
behaviors of optical Hall conductivity are studied for several models, which reveal the appearance
of half-quantized Hall conductivity in low or high frequency regimes. The optical Hall conductivity
can be extracted from the measurement of Kerr and Faraday rotations and the absorption rate of
the circularly polarized light. This proposal provides a practical method to explore the signature of
parity anomaly in topological quantum materials.

I. INTRODUCTION

Parity anomaly describes the fact that a single mass-
less Dirac fermion in 2+1 dimensions undergoes a spon-
taneous symmetry breaking when it is coupled to the
U(1) gauge field [1–3]. This anomalous effect is phys-
ically manifested as the half-quantized Hall conductiv-
ity in the external electromagnetic field. Several con-
densed matter systems have been proposed to simulate
parity anomaly on a lattice, such as a monolayer graphite
[4, 5] and PbTe-type narrow-gap semiconductor with an
anti-phase boundary [6]. In addition, the massive Dirac
fermions break the time-reversal symmetry and parity
symmetry explicitly. At the half-filling, the finite Dirac
mass also leads to a half-quantized Hall conductivity
[5, 7–9]. Combined with the parity anomaly, the massive
Dirac fermion exhibits an integer-quantized Hall conduc-
tivity, which leads to the quantum anomalous Hall effect
in condensed matter systems [10–14].

As the contribution from the parity anomaly and Dirac
mass are mixed together, it is difficult to distinguish
the two mechanisms from the total Hall conductivity
in the dc limit. In 1988, Haldane proposed that the
half-quantized Hall conductivity from the parity anomaly
could be realized if an unpaired Dirac fermion appears at
a critical transition point between a normal insulator and
a Chern insulator phase [5]. In recent, another attempt
was reported in the semi-magnetic topological insulator
thin film, where only the top surface state was gapped
by the magnetic doping, and a nearly half-quantized
Hall conductivity was observed [15]. Nevertheless, it is
known that a single symmetry-protected Dirac fermion
does not exist on a two-dimensional lattice [16]. Hence,
it is desired to explore a new method to figure out the
half-quantized Hall conductivity from the parity anomaly
from a system where a single gapless Dirac point cannot
be realized. Fortunately, the physical origins of two half-
quantized Hall conductivities of the massive Dirac cone
are different, one is attributed by the low energy fermions

around the Dirac cone and the high energy regulator part
respectively. Thus they can be distinguished at different
energy scales by optical Hall conductivity.

Recently, Tse and MacDonald proposed that Hall con-
ductivity at finite frequencies can be detected using the
magneto-optical technique. This is mainly reflected in
that the Kerr and Faraday angles can be experimentally
implemented to detect the optical Hall conductivity of
the system[18]. However, this series of work has mainly
focused on the low energy region of the Dirac cone, and
the contribution of quantum anomalies from the high en-
ergy region has yet to be explored[17–25]. Meanwhile,
the magneto-optical effect is naturally suited for explor-
ing response patterns in the high-energy region, which
provides us a possible way to detect the signature of par-
ity anomalies.

In this paper, we propose a method to detect the signa-
ture of parity anomaly in a condensed matter system and
to distinguish different origins of the anomalous quantum
Hall effect. We first calculate the optical Hall conduc-
tivity of the Wilson fermions and massive Dirac fermions
analytically and get the expression of half-quantized Hall
conductivity by making Taylors expansion at the proper
frequency. Besides, we calculate the Hall conductivity of
different lattice models, including the Bernevig-Hughes-
Zhang (BHZ) model, the Haldane model, and the mag-
netically doped topological insulator thin films. Finally,
we discuss how this phenomenon can be implemented ex-
perimentally and the effect that temperature and disor-
der can have on this, and we propose that the character of
this optical Hall conductivity can be measured by several
magneto-optical effects.

II. MODEL HAMILTONIAN

We begin with the two-dimensional Wilson fermion
model [26, 27]
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H = v~(kxσx + kyσy) + (mv2 − b~2k2)σz, (1)

where v is the effective velocity, ki with i = x, y are wave
vectors, k2 = k2

x + k2
y, and σi with i = x, y, z are the

Pauli matrices. 2mv2 is the band gap at k = 0, b~2k2 is
the dynamical mass regulator. In the dc limit, when the
chemical potential is located with the band gap, i.e., at
half filling, the Hall conductivity of the system is

σxy =
1

2

e2

h
[sgn(m) + sgn(b)] (2)

[28–30]. Either the band gap mv2 and the regulator
b~2k2 contribute 1

2
e2

h to the Hall conductivity, which
only depends on the signs, not value of the two mass
terms. When m and b have the same sign, i.e., bm > 0,
the Hall conductivity is quantized to be one in the
unit of e2/h, and the system is is topologically non-
trivial. When m and b have the opposite signs, i.e.,
bm < 0, the Hall conductivity is equal to zero, and
the system is is topologically non-trivial. In the ab-
sence of the regulating term b~2k2, the Hall conductiv-
ity is σxy = 1

2
e2

h sgn(m), which contradicts the Thouless-
Kohmoto-Nightingale-Nijs (TKNN) quantization rule in
a gapped system [31]. This means it cannot exist on a
two-dimensional lattice. The presence of the regulator
b~2k2 which provides another half-quantized Hall con-
ductivity as 1

2
e2

h sgn(b), is essential to avoid the contra-
diction. When m = 0, and the band gap closes, the half-
quantized Hall conductivity from the regulator b~2k2 can
exist alone [32, 33]. In the case the parity is broken by the
presence of he regulator b~2k2. However, when b → 0,
the parity symmetry is restored, and the Hall conduc-
tivity is still equal to 1

2
e2

h sgn(b), not zero as expected
in the parity symmetry. This is the so-called the parity
anomaly in the lattice gauge theory [26].

In the dc case, the Hall conductivity is equal to one or
zero. We cannot distinguish the contribution from the he
band gap mv2 and the regulator b~2k2. As the two terms
dominate the low energy region (k → 0) and high energy
regime (k → +∞) separately, the two parts will respond
disparately to an incident electromagnetic field with a
finite-frequency. Thus the optical Hall conductivity may
provide a possible way to distinguish the contribution at
different energetic scales.

III. OPTICAL HALL CONDUCTIVITY

In this section, we will present the optical Hall conduc-
tivity at a finite-frequency. In general, the optical Hall
conductivity σxy(ω) at finite-frequency ω can be evalu-

ated from the Kubo formula

σxy(ω) = ie2~
∫

d2k

(2π)2

∑
m,n

vxmnv
y
nm

εm − εn − ~ω + iδ

f(εm)− f(εn)

εn − εm
,

(3)

where εn is the energy eigenvalue of state |n〉 , vamn(k) =
1
~ 〈m|

∂H
∂ka
|n〉 are the matrix elements of the velocity opera-

tors at a = x, y direction, and f(ε) = 1/
(

1 + exp( ε−µkBT
)
)

is the Fermi-Dirac distribution function with µ the chem-
ical potential at finite temperature T . kB is the Boltz-
mann constant. δ is the infinitesimal regulator. After
some calculations, the real part of the optical Hall con-
ductivity at zero temperature (kBT = 0) and µ = 0 can
be analytically found as (see Appendix for details)

Reσxy(ω) =
e2

h

1

8ξω̃

[
2(1− 4bm) ln

∣∣∣∣ ω̃ + ξ

ω̃ − ξ

∣∣∣∣+
∑
s=±

gs(ω)

]
,

(4)
where the dimensionless parameter ξ =

√
1− 4bm+ ω̃2

and the renormalized frequency ω̃ = b~ω/v2, and

gs(ω) = (1−4bm−sξ) ln

∣∣∣∣ξ(1− 2bm)− 2b|m|ω̃ − s(1− 4bm)

ξ(1− 2bm) + 2b|m|ω̃ − s(1− 4bm)

∣∣∣∣ .
In the dc limit by taking ω → 0, it recovers the Hall
conductivity σxy(0) = 1

2
e2

h [sgn(m) + sgn(b)] as shown in
Fig. 1. In the case ofm > 0 and b > 0, σxy(0) = ± e

2

h and
in the case m < 0 and b > 0, σxy(0) = 0. The blue and
yellow lines represent the two cases separately.With the
frequency increasing, the Hall conductivity deviates from
the dc limit value and becomes divergent at ~ω = mv2

due to the Rabi resonance. This a strong indication of
the existence of the band gap mv2 6= 0. Near the region,
the sign of the Hall conductivity depends on the sign ofm
. As the frequency further increases above the band gap
~ω > mv2, the Hall conductivities converge to a quasi-
quantized plateau with a half-integer value 1

2 sgn(b) e
2

h .
When the frequency is in the proper range ,mv2 � ~ω �
v2

b , i.e., the dimensionless parameters ω̃, bmω̃ � 1, the real
part of σxy(ω) is approximately,

Reσxy(ω) ≈ e2

2h
sgn(b)

[
1 + sgn(bm)

(
2bm

ω̃

)2
]
. (5)

The value of the plateau is independent of the magnitude
and sign ofm, but is attributed by the sign of b, which can
be regarded as a signature of parity anomaly. Reσxy(ω)
will deviate the value of plateau if the frequency continues
increasing,

Reσxy(ω) ≈ e2

2h
sgn(b)

[
1− 2

3
ω̃2

]
. (6)

For comparison, we also plot Reσxy(ω) for the massive
Dirac fermions (m > 0 and b = 0). The value decreases
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Figure 1. The comparison of optical Hall conductivity be-
tween massive Dirac fermions and Wilson fermions. The blue
and yellow lines are Wilson fermions that are topologically
non-trivial and trivial, respectively. The green line is the
massive Dirac fermion. The region sandwiched between two
dashed lines is the half-quantization region from the parity
anomaly. Here mv2 = 0.05 eV (green and blue line), −0.05 eV

(yellow line), v~ = 0.5 eV ·Å, and b~2 = 0.2 eV ·Å2

to zero quickly after the Rabi resonance, and there is no
signature of parity anomaly.

Besides the dynamical mass, the massive Dirac fermion
with mass m can also be regulated by another Dirac
fermion with a large Dirac mass M , which is the Pauli-
Villars method [34]. In the case, the real part of the
optical Hall conductivity can be found to be

Reσxy(ω) =
1

2

e2

h

(mv2

~ω
ln

∣∣∣∣~ω + 2|m|v2

~ω − 2|m|v2

∣∣∣∣
+
Mv2

~ω
ln

∣∣∣∣~ω + 2|M |v2

~ω − 2|M |v2

∣∣∣∣ ). (7)

In the dc limit of ω → 0, it is reduced to

Reσxy(ω → 0) =
1

2

e2

h
[sgn(m) + sgn(M)]. (8)

Similar to the case of Wilson fermion, the zeroth-order of
Hall conductivity is half-quantized and merely depends
on the sign of the regulator M . Therefore, the effect
of the large mass regulator M contributes a background
of half-quantized Hall conductivity and shifts the whole
curve by 1

2
e2

h sgn(M).
The optical Hall conductivity will be divergent when

the frequency ω approaches the band edges 2mv2 and
2Mv2. When 2mv2 � ~ω � 2Mv2, the real part of the
optical Hall conductivity can be expressed appropriately
as following,

σxy ≈
sgn(M)

2

e2

h

[
1 +

1

12

(
~ω
Mv2

)2

+ 4sgn(mM)

(
mv2

~ω

)2
]
.

(9)
Thus in the presence of Pauli-Villars regulator, the
finite-Hall conductivity shows similar signature of parity
anomaly as a half-quantized plateau.

IV. LATTICE REALIZATION

The formulation of the lattice theory of Dirac fermion
is closely related to the Nielsen-Ninomiya no-go theorem
[7]. Unlike the continuummodel, the finite lattice spacing
serves as a natural UV regulator. The Wilson fermion in
Eq. (1) can be directly put on the lattice with no fermion
doubling problem in the presence of the regulation term
b(~k)2σz, which is equivalent to spin-polarized Bernevig-
Hughes-Zhang (BHZ) model [35],

HBHZ(kx, ky) = v
~
a

∑
i=x,y

sin(kia)σi

+mv2

1− 2bm

(
~

mva

)2

[2−
∑
i=x,y

cos(kia)]

σz,

(10)

where a is the lattice constant. The Chern number of
the valence band of this model depends on the the Dirac
mass m and the coefficient b,

C =
1

2
sgn(m)

{
2sgn

[
1− 4bm

(
~

mva

)2
]

− sgn

[
1− 8bm

(
~

mva

)2
]
− 1
}
. (11)

By numerically evaluating the Kubo formula in Eq. (3),
we obtain the optical Hall conductivity in Fig. 2 for
three different band gaps (mv2 = −0.1, 0.05, 0.1 eV) in
Eq. (10) . When mv2 = 0.05eV and mv2 = 0.1eV,
the Chern number is C = 1, and the optical Hall con-
ductivities begin with e2

h at ω = 0 and becomes di-
vergent at ~ω = 0.1 eV and ~ω = 0.2 eV, respectively.
When mv2 = −0.1 eV, C = 0, and the optical Hall
conductivity begins with 0 at ω = 0 and become di-
vergent at ~ω = 0.2 eV. In a large frequency regime
mv2 � ~ω � v2a2

b , all the three curves approach 1
2
e2

h (as
indicated by the black line), which is consistent with the
results of continuum model in Fig. 1. In experiments,
the spin-polarized BHZ models can be realized in several
two-dimensional quantum anomalous Hall effect materi-
als, including monolayer magnetic material 1T − VSe2

[36], and 2D magnetic Van der Waals heterojunction of
MnNF/MnNCl [37].

The first lattice model to realize parity anomaly was
proposed in the seminal paper by Haldane [5]. The Hal-
dane model can be implemented in a honeycomb lattice
with the nearest hopping t and the next to nearest imag-
inary hopping t′ and an on-site potential M . In terms
of the Pauli matrices, the corresponding tight-binding
model can be expressed as

H =
∑

i=x,y,z

diσi, (12)
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Figure 2. The Hall conductivity with finite-frequency of BHZ
model with different gaps. The different colors represent the
different mass gap of the model and the sign indicates the
topologically trivial or non-trivial. All samples have a plateau
tending to 1/2 at the proper frequency. The different line
represent different mass show in the legends with v~ = 0.5 eV·
Å, b~2 = 0.2 eV ·Å2

, a = 1nm.

where dx(k) = t
∑
i cos(k · ai), dy(k) = t

∑
i sin(k · ai),

dz(k) = ∆− 2t′
∑

sin(k · bi), ai is the nearest vectors of
honeycomb lattice that a1 = ( 1

2 ,
√

3
2 )a, a2 = ( 1

2 ,−
√

3
2 )a,

a2 = (−1, 0)a, and bi = εijk(aj − ak) with εijk the anti-
symmetric symbol. There are two Dirac cones at K and
K ′ valleys in the corner of the Brillouin zone, with the
band gaps 2∆+ = 2∆ + 6

√
3t′ and 2∆− = 2∆ − 6

√
3t′

respectively. When one of the band gaps closes (e.g.,
∆ = 3

√
3t′), the low energy theory is described by a sin-

gle massless Dirac fermion with the parity symmetry (or
time-reversal symmetry). The massive Dirac fermion at
the other valley plays the role of the large mass regula-
tor and gives a half-quantized contribution to the Hall
conductivity, σxy = 1

2
e2

h . Haldane thought that it is a
realization of parity anomaly on the lattice. As shown
in Fig. 3(a), there are two peaks in the optical Hall con-
ductivity when ~ω = 2∆+ or ~ω = 2∆−, and the con-
ductivity drops to zero quickly when ~ω is larger than
2∆+. However, when 2∆− < ~ω � 2∆+, the optical
Hall conductivity is approximately half-quantized. This
condition can be realized by tuning the band gap of two
valleys in a Floquet system [38, 39]. Hence, the optical
Hall conductivity can be used to distinguish the contri-
bution from the low energy physics and the high energy
physics (or the parity anomaly). The Haldane model can
be realized in ferromagnetic honeycomb materials with
no inversion symmetry [40, 41]. Recently, some Moiré
materials are reported that spontaneous magnetization
at a proper filling have a similar valley polarized quan-
tum Hall behavior [42–44]. As the half-quantization of
the optical Hall conductivity does not require ∆− = 0
exactly, it becomes more feasible in experiments.

In addition to the Haldane model, the magnetically
doped topological insulator thin film, which is the

first realization of the quantum anomalous Hall system
experimentally[11, 12], also yields two Dirac cones. Dif-
ferent from the Haldane model, the two Dirac cones in
topological insulators are separated in the real space and
located on the top and bottom surfaces, respectively.
The magnetic doping will open band gaps for the surface
Dirac cones through the exchange interaction [45, 46].
Then, each of the two Dirac cones contributes a one-
half Hall conductivity individually [33]. In the quantum
anomalous Hall insulator phase, the summation of two
surfaces Dirac cones gives a quantized Hall conductivity.
Here we use the magnetically doped three dimensional
topological insulator model to perform the calculation,

H3D = ig(z)α1α2 + v
~
a

∑
i=x,y,z

sin(kia)αi

+m0v
2

1− b0
(

~
m0va

)2

[3−
∑

i=x,y,z

cos(kia)]

β,

(13)

where αi = τ1σi and β = τ3σ0 are the Dirac matrices,
and a is the lattice constant. v, b0 and m0 are mate-
rial parameters for a three-dimensional topological in-
sulator. The term ig(z)α1α2 is the position-dependent
Zeeman energy along the z-direction, which breaks the
time-reversal symmetry and generates the Dirac mass in
the surface states. When g(z) ≡ g is chosen as a con-
stant, the induced Dirac masses of top and bottom sur-
face states will have the same magnitude and opposite
sign. Besides, the two surface states have opposite helic-
ity [30]. Then, in the dc limit, each of them contributes
e2

2h sgn(g) to the Hall conductivity, and the total Hall con-
ductivity is quantized as e2/h. When the frequency is
nonzero, the system hosts the inversion symmetry and
the optical Hall conductivity from the two massive sur-
face states is still identical, as shown in Fig. 3(b). The
total optical Hall conductivity of the magnetic topolog-
ical insulator thin film can be regarded as twice of the
massive Dirac fermion without any regulator. It con-
firms the fact that the quantized Hall conductivity in the
magnetically doped topological insulators is determined
by two gapped surface states. This mechanism would
make the behavior of optical Hall conductivity in mag-
netic topological insulators different from the case of the
Haldane model. The optical Hall conductivity can be
used to distinguish multiple physical origins of quantum
anomalous Hall effect in different systems.

Moreover, if g(z) is mainly localized at the top surface,
it is possible to open the gap of the top surface state only
while the bottom surface state remains gapless. It pro-
vides the most direct way to realize the parity anomaly
in experiments [15, 33]. However, it is challenge to pre-
serve a single gapless surface state. In such a case, parity
anomaly can also be detected by the optical Hall con-
ductivity. When there is a significant difference in the
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Figure 3. (a). The solid line is the optical Hall conductivity
for the Haldane model, and the dashed lines are the optical
Hall conductivity for the massive Dirac model, where the gaps
equal ∆− = 0.1 eV and ∆+ = 0.7 eV and hopping strength
is chosen as t = 0.5 eV. (b). The optical Hall conductivity
for the magnetically doped topological insulator thin film of
8 quintuple layer with the Zeeman term g = 0.04 eV. The
orange solid line is the numerical result of optical Hall con-
ductivity and the dashed line is twice of the analytical result
of a massive Dirac fermion. The parameters for the topolog-
ical insulator are chosen as m0v

2 = 0.68 eV, v~ = 0.4 eV · Å,

and b0~2 = 1.4 eV ·Å2
, a = 1nm.

 BHZ model Magnetic TI

0.2 0.4 0.6 0.8 1.0 1.2
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10
(a) (b) x10-3
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Substrate

Figure 4. (a).The experiment setup for the measurement of
Kerr and Faraday angle. (b). The Kerr and Faraday an-
gle of the the BHZ model (blue and cyan dashed lines) and
the magnetic topological insulator film (red and cyan dashed
lines).The parameters of the corresponding model are the
same as the one below the Fig. 2 and Fig. 3. The refrac-
tive index of the substrate is chosen as nr = 3.46 for InP.

magnitude of the band gaps for the two Dirac states, it
will be similar to the Haldane model. A half-quantized
plateau can also occur if the frequency is between the
band gaps of the two Dirac cones.

V. EXPERIMENT IMPLEMENT

In experiment, the optical Hall conductivity can be ob-
tained by measuring the magneto-optical effect, which re-
flects the information of Hall conductivity near the sam-
ple surface.

As shown in figure. 4(a), we takes the sample on the
substrate with the refractive index nr > 1, and inject a
light linearly polarized in the x direction with frequency
ω, the electric field of the light is Ein = E0e

i(ωt−kx)x̂.
In terms of electric field of transmission light Et and the

reflection light as Er, the Kerr and Faraday angles are
defined by the tan θK = Eyr /E

x
r and tan θF = Eyt /E

x
t , re-

spectively. The two angles can be solved by the Maxwell
equation with proper boundary condition (see Appendix
B) as

tan θF =
2ασ̃xy

1 + nr + 2ασ̃xx
, (14)

tan θK =− 4ασ̃xy
n2
r − 1 + 4α[σ̃xx(nr + ασ̃xx) + ασ̃2

xy]
, (15)

where the dimensionless σ̃xx = σxx
h
e2 and σ̃xy = σxy

h
e2

are the dimensionless transverse conductivity and the
Hall conductivity, respectively, and α ≈ 1/137 is the
fine structure constant. When σ̃xx and σ̃xy are much
smaller than α−1 and the refractive index of the sub-
strate nr > 1, the two angles can be approximated as
θF = arctan 2α

1+nr
σ̃xy and θK = − arctan 4α

n2
r−1 σ̃xy, re-

spectively. In Fig. 4(b), we plot θF and −θK as func-
tions of ω for the magnetic topological insulator and BHZ
model. We consider the case that the wavelength of light
is much larger than the thickness of the sample i.e., d� λ
and the insulating subtract is InP with nr = 3.46 [15].
In this limit, the bottom and top surfaces can be viewed
as a whole. Therefore, σxx and σxy in Eq. (14) and
(15) denote the total longitudinal and Hall conductivi-
ties from two surfaces, respectively. At zero frequency,
the chemical potential inside Dirac gap of both surfaces,
we have σxx = 0 and σxy = e2/h, the Faraday and Kerr
angles have universal values θF ≈ 3.28 × 10−3 rad and
θK ≈ −2.66 × 10−3 rad.. At finite frequencies, the θF
and θK for the BHZ model display a plateau with half
of the zero frequency value for ~ω � 2|m|v2. As indi-
cated by the red and cyan dashed lines in Fig. 4(b), the
Kerr and Faraday angles of magnetic topological insula-
tor film drop to zero after ~ω � 2g, which display the
same character as the Hall conductivity in Fig. 3(b).

Furthermore, the optical Hall conductivity can be de-
duced from the absorption rate of the circularly po-
larized light Γ±(ω) [47]. The imaginary part of opti-
cal Hall conductivity can be related to the difference
between the absorption rate of the left-hand and the
right-hand light as Imσxy(ω) = ~ω(Γ+ − Γ−)/(8AE2),
where E is the intensity of light and A is the area of
the sample. From the Kramers-Kronig relation, the real
part of the optical Hall conductivity can be obtained as
Reσxy(ω) = 2

πP
∫∞

0
ω′Imσxy(ω′)dω′

ω′2−ω2 with P denoting the
Cauchy principal value, and the half-quantized plateau
can be found at finite-frequency in the Reσxy.

VI. DISCUSSION AND SUMMARY

Besides the light frequency, disorder and temperature
can also be used to smear off the low energy contribution
in the Hall conductivity and leave the parity anomaly
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contribution from the high energy only [24]. Therefore,
we can expect a similar half-quantized plateau in the Hall
conductivity at finite temperature or finite disorder. For
the disordered system, using the Born approximation,
the disorder effect can be introduced phenomenologically
by the quasi-particle self-energy Γ in the Green function,
i.e. Gr/a = (iωn−H±iΓ)−1. Thus, the Hall conductivity
in the presence of disorder can be expressed as

σxy = e2~
∫

d2k

(2π)2

∑ Im(vxmnv
y
nm)[f(εm)− f(εn)]

(εm − εn)2 + Γ2
.

(16)
Compared to the Kubo formula at finite-frequency, σxy
can be obtained by taking an Analytic continuation that
replace the frequency ~ω with iΓ. When mv2 � Γ� v2

b ,
The asymptotic behavior of Hall conductivity reads

Reσxy(Γ) =
e2

2h
sgn(b)

[
1 +

2

3

(
bΓ

v2

)2

− sgn(mb)

(
2mv2

Γ

)2
]
,

(17)
where the leading order is a half-quantized value 1

2 sgn(b).
In addition to disorder in the system, the tempera-

ture can also lead to the half-quantized plateau when
the temperature kBT satisfies that mv2 � kBT � v2

b .
The effect of the temperature can be seen as averaging
the Berry curvature of the conduction band and valence
band near the Fermi surface, which can erase the contri-
bution of the low energy part, and only the contribution
from the high energy part remains. This also separates
the parity anomaly part and allows the system to show
the half-quantized plateau. We plot the Hall conductiv-
ity as a function of temperature kBT and the self-energy
Γ in the same dimensionless energy scale in Fig.5. The
Hall conductivity shows a similar nearly half-quantized
feature as the optical Hall conductivity in Fig.1.

In quantum anomalous Hall systems, the quantized
Hall conductivity usually consists of two parts, one is the
contribution from massive Dirac cone and the other is the
parity anomaly contribution in the high energy region. In
this article, the finite-frequency method is introduced to
separate these two different sources of Hall conductivity.
When the applied frequency is in the proper interval, the
Hall conductivity of the system exhibits a half-quantized
plateau, and this plateau is considered a direct manifesta-
tion of the parity anomaly. Thus in the condensed matter
system, the half-quantized optical Hall conductivity can
be used as a marker to characterize the parity anomaly.
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Figure 5. The Hall conductivity of Wilson fermion as func-
tions of temperature(pink line) and disorder(cyan line), the
temperature kBT and the disorder Γ have been renormalized
into the same dimensionless energy scale. The parameters are
v~ = 0.5 eV ·Å, b~2 = 0.2 eV ·Å2

,mv2 = 0.05 eV.

Appendix A: Calculation of Optical Hall
conductivity

For a general 2 × 2 matrix Hamiltonian in the form
H = d · σ with d = (dx, dy, dz), the eigenenergy and
eigenstates can be found as

Eχ = χ
√
d2
x + d2

y + d2
z = χd,

|φχ〉 =

 d̂x−id̂y√
2(1−χd̂z)

1−d̂z√
2(1−χd̂z)

 ,

where χ = + is for the conduction band and χ = −1 is
for the valence band. d̂i with i = x, y, z are defined as
d̂i = di/d.

In the eigen energy basis, the matrix elements of the
velocity operators are defined as

vxχχ′ =
1

~
∑

i=x,y,z

∂di
∂kx
〈φχ|σi|φχ′〉,

vyχχ′ =
1

~
∑

i=x,y,z

∂di
∂ky
〈φχ|σi|φχ′〉.

After a straightforward calculation, one can obtain the
imaginary part of the velocity product as

Im(vxχχ̄v
y
χ̄χ) = χ

d2

~2
d̂ · (∂xd̂× ∂yd̂).

For the BHZ model, d = (v~kx, v~ky,mv2 − bk2~2) and
d =

√
v2~2k2 + (mv2 − bk2~2)2, we have Imvxχχ̄v

y
χ̄χ =

χv
2

d (mv2+b~2k2). As a result, the real part of the optical
Hall conductivity at zero temperature in Eq. (3) is given
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by

Reσxy(ω) =
e2

h

1

8ξω̃

∑
s

(1− 4bm+ sξ)

× arcoth

 2 b~kv ω̃
√

1 + (mv~k −
b~k
v )2

s(1− 4bm) + ξ
(

1− 2bm+ 2
(
b~k
v

)2)
∣∣∣∣∣∣

+∞

0

.

(A1)

Here ξ and ω̃ is as the same definition as in the main
text. Using the analytical continuation arcoth(x) =
1
2

[
ln x+1

x − ln x−1
x

]
, we obtain Eq. (4) in Sec. III.

Appendix B: Kerr and Faraday angle

For the structure in the Sec. V, Faraday’s law of in-
duction tells

∇×E = −µ0
∂H

∂t
.

Here we assume that the thickness of the sample d is
much smaller than the wave-length of the light such that
the sample can be regarded as a two-dimensional system
and the boundary condition can be written as following

E = E0 −Er + Et;

H = H0 −Hr + Ht;

ẑ×E = 0;

ẑ×H = 4πj.

Here E0 = E0e
iωt−kzx̂ is the incidentl light, Er,Hr is the

reflection light and Et,Ht is the transmission light. Us-
ing the Maxwell equations, we have Hi = −

√
εi
µi
iτyEi for

i = 0, t and Hr =
√

εr
µr
iτyEr. The current only depends

on the transmission electric field asj = σ(ω)Et.
The boundary condition for the electric field can be

written as

−Er,x + Et,x − E0,x = 0;

−
√
ε0
µ0
Er,y −

√
εt
µt
Et,y +

√
ε0
µ0
E0,y = 4π (σyyEt,y − Et,xσxy) ;

−Er,y + Et,y − E0,y = 0;√
ε0
µ0
Er,x +

√
εt
µt
Et,x −

√
εt
µt
E0,x = −4π (σxxEt,x + Et,yσxy) .

Set E0,y = 0 and E0,x = E0. We suppose that the system
has the symmetry that σxx = σyy and σyx = −σxy. In
this way, we can find that

Et,x =
2E0

√
ε0
µ0

(
4πσxx +

√
εt
µt

+
√

ε0
µ0

)
(

4πσxx +
√

εt
µt

+
√

ε0
µ0

)2

+ 16π2σ2
xy

;

Et,y =
8πE0

√
ε0
µ0
σxy(

4πσxx +
√

εt
µt

+
√

ε0
µ0

)2

+ 16π2σ2
xy

;

Er,x =
−E0

(
(4πσxx +

√
εt
µt

)2 + 16π2σ2
xy − ε0

µ0

)
(

4πσxx +
√

εt
µt

+
√

ε0
µ0

)2

+ 16π2σ2
xy

;

Er,y =
8πE0

√
ε0
µ0
σxy(

4πσxx +
√

εt
µt

+
√

ε0
µ0

)2

+ 16π2σ2
xy

.

The Faraday angle θF and Kerr angle θK are

tan θF =
Et,y
Et,x

=
4πσxy√

ε0
µ0

+
√

εt
µt

+ 4πσxx

and

tan θK = −Er,y
Er,x

= −
8π
√

ε0
µ0
σxy

(4πσxx +
√

εt
µt

)2 + 16π2σ2
xy − ε0

µ0

.

Using the fine structure constant α = 2πe2

h

√
µ0

ε0
, we ob-

tain the Eqs. (14) and (15) in the Sec. V.
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