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Abstract. We present a projection formalism which allows us to define dynamical polarizabilities of the
nucleon from a multipole expansion of the nucleon Compton amplitudes. We give predictions for the
energy dependence of these dynamical polarizabilities both from Dispersion Theory and from leading-one-
loop Chiral Effective Field Theory. Based on the good agreement between the two theoretical frameworks,
we conclude that the energy dependence of the dynamical polarizabilities is dominated by chiral dynamics,
except in those multipole channels where the first nucleon resonance ∆(1232) can be excited. Both the
Dispersion Theory framework and a Chiral Effective Field Theory with explicit ∆(1232) degrees of freedom
lead to a very good description of the available low-energy proton Compton data. We discuss the sensitivity
of the proton Compton cross-section to dynamical polarizabilities of different multipole content and present
a fit of the static electric and magnetic dipole polarizabilities from low-energy Compton data up to ω ∼
170 MeV, finding ᾱE = (11.04± 1.36) · 10−4 fm3, β̄M = (2.76∓ 1.36) · 10−4 fm3.

PACS. 11.55.Fv Dispersion relations – 13.40.-f Electromagnetic processes and properties – 13.60.Fz Elastic
and Compton scattering – 14.20.Dh Protons and neutrons

1 Introduction

Compton scattering off a proton has a long history in
the field of nucleon structure studies with electromagnetic
probes [1]. While for photon energies below 25 MeV in the
center-of-mass (cm) system the experimental cross-section
is well described with the assumption of a point-like spin-
(1/2) nucleon with an additional anomalous magnetic mo-
ment κ [2], the internal structure of the nucleon starts
to play a role at higher energies. Nowadays, these nu-
cleon structure effects have been known for many decades
and (in the case of a proton target) quite reliable the-
oretical calculations for the deviations from the Powell
cross-section exist, typically parameterized in terms of the
electromagnetic polarizabilities of the nucleon, of which
the (static) electric and magnetic dipole polarizabilities
ᾱE , β̄M are only the most prominent examples [1]. While
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the general sizes of the dominant polarizabilities extracted
from proton Compton experiments with the help of theo-
retical frameworks based on Dispersion Theory1 have only
received minor modifications over the past decade, several
calculations were undertaken trying to identify the active
constituent degrees of freedom within the nucleon, which
are responsible for these structure effects. These theoreti-
cal calculations come from a wide set of theoretical frame-
works, covering the range from constituent quark degrees
of freedom (e.g., see [3] and references therein) to the role
of pionic fluctuations originating from chiral dynamics in
the nucleon [3,4].

In principle, nucleon Compton scattering can provide
a wealth of information about the internal structure of
the nucleon. However, in contrast to many other elec-
tromagnetic processes —e.g., pion photoproduction off a
nucleon— the nucleon structure effects probed in Comp-
ton scattering in most of the recent analyses have not been
analyzed in terms of a multipole expansion [5]. Instead,
most experiments have focused on just two structure pa-
rameters, which in analogy to classical electrodynamics

1 For details on the various variants of Dispersion Theory,
we refer to the discussion given in ref. [1].
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are interpreted as the very (static) electric and magnetic
polarizabilities ᾱE and β̄M mentioned above. Therefore,
at present, quite different theoretical frameworks are able
to provide a consistent, qualitative picture for the leading
static polarizabilities ᾱE , β̄M [1].

In order to obtain a better filter for the theoretical
mechanisms proposed for the internal structure of the
nucleon as seen in nucleon Compton scattering, it was
pointed out in ref. [6] that the two concepts of Compton
multipoles and nucleon polarizabilities can be combined
if one introduces so-called “dynamical polarizabilities” of
the nucleon. These dynamical polarizabilities are functions
of the excitation energy and encode the dispersive effects
of πN, N∗ and other higher intermediate states [6]. In
the limit of zero excitation energy, one regains the usual
(static) polarizabilities ᾱE , β̄M . Extensions to higher mul-
tipole channels or (static) spin polarizabilities discussed in
the literature [7] are straightforward and will be discussed
in sect. 2.

In this work, we go beyond the theoretical concept
study of ref. [6] and present a first analysis [8,9] of the
sensitivity of proton Compton cross-section data to these
dynamical polarizabilities. This paper is organized as fol-
lows: In sect. 2, we present the basic formalism for a mul-
tipole expansion in nucleon Compton scattering and give
the connection between the Compton multipoles and the
concept of dynamical polarizabilities. In sect. 3, we briefly
discuss the two theoretical frameworks —Dispersion The-
ory and Chiral Effective Field Theory— employed here to
study nucleon Compton scattering. In sect. 4, we then con-
front the theoretical calculations with actual proton cross-
section data. In sect. 5 we present a detailed analysis of the
physics contained in the dynamical polarizabilities at ener-
gies below the ∆(1232)-resonance and in sect. 6 we briefly
cover the behavior of dynamical polarizabilities in the res-
onance region as predicted by Dispersion Theory. Having
relegated a lot of the necessary formulae to the appen-
dices A-D, we then come to the conclusions of this study.

2 Multipole expansion for nucleon Compton
scattering

2.1 From amplitudes to multipoles

The T -matrix of real Compton scattering off the nucleon is
written in terms of six structure amplitudes Ri(ω, z), i =
1, . . . , 6:

Tfi =
4πW

M

6∑
i=1

ρi Ri(ω, z) . (2.1)

For the Compton multipole expansion, we follow the tra-
dition of Ritus et al. [10] and work in the center-of-mass
(cm) frame. W = ω +

√
M2 + ω2 is the total cm energy

and ω denotes the cm energy of a real photon scattering
under the cm angle θ off the nucleon with mass M and

Fig. 1. Schematic representation of the three types of pole
contributions to nucleon Compton scattering in the s-, u- and
t-channel.

z = cos θ. The basis functions ρi read

ρ1 = �ε ′∗ · �ε , ρ2 = �s ′∗ · �s ,
ρ3 = i �σ · (�ε ′∗ × �ε) , ρ4 = i �σ · (�s ′∗ × �s) ,

ρ5 = i
((

�σ · �̂k
)
(�s ′∗ · �ε)−

(
�σ · �̂k′

)
(�ε ′∗ · �s)

)
,

ρ6 = i
((

�σ · �̂k′
)
(�s ′∗ · �ε)−

(
�σ · �̂k

)
(�ε ′∗ · �s)

)
(2.2)

with �s = �̂k × �ε, �s ′∗ = �̂k′ × �ε ′∗ and �σ the vector of the

Pauli spin matrices. Furthermore, �̂k = �k/ω (�̂k′ = �k′/ω) is
the unit vector in the direction of the momentum of the
incoming (outgoing) photon with polarization �ε (�ε ′∗).

While the multipole expansion can in principle be de-
fined for the entire Compton amplitude, the nucleon struc-
ture effects as, for example, expressed in ᾱE and β̄M
are typically defined as intermediate states which go be-
yond single-nucleon contributions. Traditionally, this cor-
responds to subtracting from the full amplitudes the Pow-
ell amplitudes [2] of Compton scattering on a point-like
nucleon of spin 1

2 and anomalous magnetic moment κ.
Therefore, we separate the six amplitudes into structure-
independent (pole) and structure-dependent (non-pole)
parts,

Ri(ω, z) = Rpole
i (ω, z) + R̄i(ω, z) . (2.3)

Note that here we define the pole contributions as those
terms which have a nucleon pole in the s- or u-channel
and in addition as those terms which have a pion pole in
the t-channel. Schematically, we show these three contri-
butions in fig. 1 and note that any theoretical framework
utilized to calculate Compton scattering has to clearly sep-
arate these pole contributions before any information on
static or dynamical polarizabilities can be obtained. Ob-
viously, the proton Compton cross-sections are insensitive
to this artificial separation of the amplitudes.

As the pole contributions to nucleon Compton scatter-
ing have been known for many decades [11], the main in-
terest in Compton studies over the past few years has been
focused on the non-pole contributions R̄i. In ref. [6], it was
suggested that the Compton multipole expansion should
be applied only to these structure-dependent terms. In
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analogy to ref. [10], one obtains

R̄1(ω, z) =
∞∑
l=1

[
[(l + 1)f l+EE(ω) + lf l−EE(ω)](lP

′
l (z)

+P ′′
l−1(z))− [(l+1)f l+MM (ω) + lf l−MM (ω)]P ′′

l (z)
]
, (2.4)

R̄2(ω, z) =
∞∑
l=1

[
[(l + 1)f l+MM (ω) + lf l−MM (ω)](lP ′

l (z)

+P ′′
l−1(z))− [(l + 1)f l+EE(ω) + lf l−EE(ω)]P

′′
l (z)

]
, (2.5)

R̄3(ω, z) =
∞∑
l=1

[
[f l+EE(ω)− f l−EE(ω)](P

′′
l−1(z)− l2P ′

l (z))

−[f l+MM (ω)− f l−MM (ω)]P ′′
l (z)

+2f l+EM (ω)P ′′
l+1(z)− 2f l+ME(ω)P

′′
l (z)

]
, (2.6)

R̄4(ω, z) =
∞∑
l=1

[
[f l+MM (ω)− f l−MM (ω)](P ′′

l−1(z)

−l2P ′
l (z))− [f l+EE(ω)− f l−EE(ω)]P

′′
l (z)

+2f l+ME(ω)P
′′
l+1 − 2f l+EM (ω)P ′′

l (z)
]
, (2.7)

R̄5(ω, z) =
∞∑
l=1

[
[f l+EE(ω)− f l−EE(ω)](lP

′′
l (z) + P ′′′

l−1(z))

−[f l+MM (ω)− f l−MM (ω)]P ′′′
l

+f l+EM (ω)[(3l + 1)P ′′
l (z) + 2P ′′′

l−1(z)]

−f l+ME(ω)[(l + 1)P ′′
l+1(z) + 2P ′′′

l (z)]
]
, (2.8)

R̄6(ω, z) =
∞∑
l=1

[
[f l+MM (ω)− f l−MM (ω)](lP ′′

l (z) + P ′′′
l−1(z))

−[f l+EE(ω)− f l−EE(ω)]P
′′′
l (z)

+f l+ME(ω)[(3l + 1)P ′′
l (z) + 2P ′′′

l−1(z)]

−f l+EM (ω)[(l + 1)P ′′
l+1(z) + 2P ′′′

l (z)]
]
. (2.9)

The prime denotes differentiation with respect to z = cos θ
in the cm system, and Pl(z) is the l-th Legendre polyno-
mial. The functions f l±TT ′(ω) are the Compton multipoles
and correspond to transitions T l → T ′l′, where T, T ′ =
E,M labels the coupling of the incoming or outgoing pho-
ton as electric or magnetic. Here l (l′ = l ± {1, 0}) de-
notes the angular momentum of the initial (final) photon,
whereas the total angular momentum is l± = j = l ± 1

2 .
We note that mixed multipole amplitudes T 	= T ′ only
occur in the spin-dependent amplitudes R̄i, i = 3, . . . , 6.

Having defined purely structure-dependent Compton
multipoles in the cm frame, we now move on to connect
them to polarizabilities.

2.2 Dynamical and static polarizabilities

In order to derive a consistent connection between the
Compton multipoles fTT ′ , T, T ′ = E,M and the polar-
izabilities of definite spin structure and multipolarity at
a certain energy, we recall the low-energy behavior of the
multipoles in the cm frame [10]:

f l±TT ′(ω) ∼ ω2l , T = T ′ , (2.10)

f l+TT ′(ω) ∼ ω2l+1 , T 	= T ′ . (2.11)

With this piece of information, dynamical spin-
independent electric or magnetic dipole and quadrupole
polarizabilities were defined as linear combinations of
Compton multipoles in [6]:

αE1(ω) =
[
2 f1+

EE(ω) + f1−
EE(ω)

]
/ω2 ,

βM1(ω) =
[
2 f1+

MM (ω) + f1−
MM (ω)

]
/ω2 ,

αE2(ω) = 36
[
3 f2+

EE(ω) + 2 f2−
EE(ω)

]
/ω4 ,

βM2(ω) = 36
[
3 f2+

MM (ω) + 2 f2−
MM (ω)

]
/ω4 . (2.12)

We note that the normalization of these linear superposi-
tions has been chosen in such a way that the usual (static)
electric and magnetic polarizabilities of the nucleon typ-
ically discussed in Compton scattering can be recovered
from the dynamical dipole polarizabilities via

ᾱE = lim
ω→0

αE1(ω) , β̄M = lim
ω→0

βM1(ω) . (2.13)

Likewise, the static electric and magnetic quadrupole po-
larizabilities ᾱE2, β̄M2 discussed in ref. [7] and ref. [12]
(see also appendix D) can be obtained as the zero-energy
limit of the corresponding dynamical quadrupole polariz-
abilities.

Extending ref. [6], we also introduce dynamical spin-
dependent dipole polarizabilities via

γE1E1(ω) =
[
f1+
EE(ω)− f1−

EE(ω)
]
/ω3 (E1 → E1) ,

γM1M1(ω) =
[
f1+
MM (ω)− f1−

MM (ω)
]
/ω3 (M1→M1) ,

γE1M2(ω) = 6 f1+
EM (ω)/ω3 (E1 →M2) ,

γM1E2(ω) = 6 f1+
ME(ω)/ω

3 (M1→ E2) .
(2.14)

In the limit of zero photon energy ω → 0, one again re-
covers the four static spin polarizabilities γ̄E1E1, γ̄M1M1,
γ̄E1M2, γ̄M1E2 of the nucleon:

γ̄TlT ′l′ = lim
ω→0

γTlT ′l′(ω) , T, T ′ = E,M. (2.15)

Here, these four static spin polarizabilities are written in
the so-called multipole-basis [7]. The connection to the
Ragusa-basis γi, i = 1, . . . , 4 [13], is discussed in [14]. We
note that at present there exists little information on the
spin-dependent nucleon polarizabilities. Only two linear
combinations are constrained from experiments [1], typi-
cally denoted as the forward γ0 and the backward γπ spin
polarizabilities of the nucleon. Via the connection

γ0 = −γ̄E1E1 − γ̄E1M2 − γ̄M1M1 − γ̄M1E2 ,

γπ = −γ̄E1E1 − γ̄E1M2 + γ̄M1M1 + γ̄M1E2 , (2.16)
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one realizes that in each case all four (dipole) spin polar-
izabilities are involved.

While the static polarizabilities of the nucleon are real,
we note that the dynamical polarizabilities become com-
plex once the energy in the intermediate state is high
enough to create an on-shell intermediate state, the first
being the physical πN intermediate state. Below the two-
pion threshold, the imaginary parts of the dynamical po-
larizabilities can be understood very easily. They are sim-
ply given by the well-known multipoles of single-pion pho-
toproduction (e.g., see [15]). One obtains

Im[αE1(ω)] = kπ

ω2

∑
c(2|E(c)

2−|2 + |E(c)
0+|2) ,

Im[βM1(ω)] = kπ

ω2

∑
c(2|M (c)

1+ |2 + |M (c)
1− |2) ,

Im[αE2(ω)] = 36 kπ

ω4

∑
c(3|E(c)

3−|2 + 2|E(c)
1+|2) ,

Im[βM2(ω)] = 36 kπ

ω4

∑
c(3|M (c)

2+ |2 + 2|M (c)
2− |2) ,

Im[γE1E1(ω)] = kπ

ω3

∑
c(|E(c)

2−|2 − |E(c)
0+|2) ,

Im[γM1M1(ω)] = kπ

ω3

∑
c(|M (c)

1+ |2 − |M (c)
1− |2) ,

Im[γE1M2(ω)] = 6 kπ

ω3

∑
cRe[E

(c)
2−(M

(c)
2− )

∗] ,

Im[γM1E2(ω)] = −6 kπ

ω3

∑
cRe[E

(c)
1+(M

(c)
1+ )

∗] ,

(2.17)

where kπ is the magnitude of the pion momentum and
E

(c)
l± and M

(c)
l± are pion photoproduction multipoles which

are summed over the different isotopic or charge channels
c. In the following, we therefore focus on the real parts
of the dynamical polarizabilities and treat the imaginary
part in the dispersion relation calculation as explained in
sect. 3.1. For the chiral calculations of sect. 4, the imag-
inary parts of the polarizabilities are extracted from the
Compton amplitudes given in appendix B.

This concludes our section pertaining to the defini-
tions of the dynamical polarizabilities and their connec-
tion to static polarizabilities as well as to single-pion pho-
toproduction. Before we discuss the numerical values of
the (static) polarizabilities in the upcoming section, we
first provide some background on the theoretical machin-
ery employed to analyze nucleon Compton scattering.

3 Theoretical frameworks

3.1 Dispersion relation analysis

Unsubtracted fixed-t dispersion relations (DRs) have al-
ready been applied to a multipole analysis of Compton
scattering in the ∆-resonance region [16], focusing on the
possibility to combine simultaneously the experimental in-
formation on pion photoproduction and Compton scatter-
ing multipoles for a study of the magnetic and electric
∆-photoexcitation. Because unsubtracted dispersion rela-
tions suffer from theoretical uncertainties due to slow con-
vergence of the integrals, an alternative scheme has been
proposed to consider subtracted DR at constant t [17]. In
the following, we outline the essentials of the subtracted
DR approach and in particular we review the formalism

to set up a multipole decomposition of the Compton scat-
tering amplitude which enters in the calculation of the
dynamical polarizabilities. We work with the set of in-
variant amplitudes AL

i (ν, t) introduced by L’vov et al. [18]
which are functions of ν = (s − u)/4M and t = −2k · k′,
with s, t and u the Mandelstam variables and kµ (kµ′)
the four-momentum of the incoming (outgoing) photon.
These amplitudes are free of kinematical singularities and
constraints, and satisfy the relations AL

i (ν, t) = AL
i (−ν, t)

due to crossing symmetry. Assuming furthermore analyt-
icity and an appropriately soft high-energy behavior, they
fulfill the following fixed-t DRs that are once subtracted
at (ν = 0, t) [17]:

Re[AL
i (ν, t)] = AL, N -pole

i (ν, t)

+
[
AL
i (0, t)−AL, N -pole

i (0, t)
]

+
2
π

ν2 P
∫ +∞

ν0

dν′ Ims[AL
i (ν

′, t)]
ν′ (ν′2 − ν2)

, (3.1)

where AL, N -pole
i (ν, t) are the nucleon pole terms as given

in appendix A of ref. [18], and Ims[AL
i ] the discontinuities

across the s-channel cuts of the Compton process which
start at the first inelastic threshold due to pion-nucleon
intermediate states, ν0 = mπ + (m2

π + t/2)/(2M). The
integration is understood as using the principal-value pre-
scription, starting at the first threshold ν0.

Due to the subtraction at ν = 0, six subtraction func-
tions AL

i (0, t) appear in eq. (3.1) which are evaluated by
setting up once-subtracted DR, this time in the variable t:

AL
i (0, t) − AL, N -pole

i (0, t) = ai

+
[
AL, π0-pole
i (0, t) − AL, π0-pole

i (0, 0)
]

+
t

π

∫ +∞

(2mπ)2
dt′

Imt[AL
i (0, t

′)]
t′ (t′ − t)

− t

π

∫ −2m2
π−4Mmπ

−∞
dt′

Imt[AL
i (0, t

′)]
t′ (t′ − t)

, (3.2)

where AL, π0-pole
2 (0, t) represents the contribution of the

π0-pole in the t-channel, and the six coefficients ai ≡
AL
i (0, 0) − AL, N -pole

i (0, 0) are related to the static polar-
izabilities as explained below.

In order to evaluate the dispersion integrals in
eq. (3.1), the imaginary parts in the s-channel are calcu-
lated from the unitarity relation, taking into account the
πN intermediate states because of their strong dominance
in the kinematic regime we are interested in, ν ≤ 300 MeV.
In fact, due to the energy denominator 1/

(
ν′(ν′2 − ν2)

)
in

the subtracted dispersion integrals, the contributions from
double-pion photoproduction and other inelastic channels
with thresholds at higher energies are largely suppressed,
and may be taken into account reliably by simple models.

In particular, we calculate the dominant γN → πN →
γN contribution using the pion-photoproduction multi-
poles of Hanstein et al. [15] up to energies ν ≈ 500 MeV.
At higher energies (up to ν � 1.5 GeV), we take the recent
SP02K multipole solution of the SAID analysis [19]. Of all
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multipion intermediate states, we only take into account
the resonance contribution, as explained in ref. [17].

The subtracted t-channel integrals in eq. (3.2) run
along the positive-t channel cut from 4m2

π → +∞ and
along the negative-t cut from −∞ to a = −2 (m2

π +
2Mmπ) ≈ −0.56 GeV2. At positive t, the t-channel dis-
continuities in AL

i can be evaluated by unitarity from
the possible intermediate states for the t-channel process
γγ → NN̄ . Since we only want to evaluate the Compton
amplitudes for small t, the subtracted dispersion integrals
are well saturated by the contribution of ππ intermedi-
ate states. As explained in detail in ref. [17], we calculate
this contribution by evaluating a unitarized amplitude for
the γγ → ππ subprocess and then combine it with the
ππ → NN̄ amplitudes as determined in ref. [20] from
Dispersion Theory by analytical continuation of πN scat-
tering amplitudes. The integral along the negative-t cut is
highly suppressed by the denominator of the subtracted
DR for values of |t| � |a| and gives only a small contribu-
tion. In order to take into account the main effects of the
negative-t integrals, we evaluate the contributions of the
∆-resonance and non-resonant πN intermediate states to
the imaginary part of the Compton amplitudes and ex-
trapolate these contributions into the unphysical region
at ν = 0 and negative t by analytical continuation.

Finally, the relations between the six subtraction con-
stants ai in eq. (3.2) and the static polarizabilities of
sect. 2.2 are

ᾱE = − 1
4π

(a1 + a3 + a6) , β̄M = − 1
4π

(a3 + a6 − a1)

(3.3)
for the spin-independent sector, and

γ̄E1E1 =
1

8πM
(a6 − a4 + 2a5 + a2) ,

γ̄M1M1 =
1

8πM
(a6 − a4 − 2a5 − a2) ,

γ̄E1M2 = − 1
8πM

(a4 + a6 − a2) ,

γ̄M1E2 = − 1
8πM

(a4 + a6 + a2)

for the static spin-dependent polarizabilities. In the Dis-
persion Theory calculation, we take as input the experi-
mental values of the electric and magnetic dipole polar-
izabilities as well as the backward spin polarizability γπ
of eq. (2.16), fixing in this way the values of a1, a2, and
a3. The remaining subtraction constants a4, a5, and a6 are
calculated via the unsubtracted sum rules

ai =
2
π

∫ +∞

ν0

dν′ Ims[AL
i (ν

′, t = 0)]
ν′ . (3.4)

In particular, for the proton we use the following values
—we always use the central values for the calculations—

from the recent global fit of ref. [21]:

ᾱp
E + β̄pM = (13.8± 0.4)× 10−4fm3 ,

ᾱp
E − β̄pM = (10.5± 0.9(stat.+ syst.)± 0.7(mod.))

× 10−4fm3 ,

γpπ = (10.6± 2.1(stat.)∓ 0.4(syst.)± 0.8(mod.))

× 10−4fm4 , (3.5)

where we have subtracted the contribution from the
π0-pole in γpπ, γ

p, π0-pole
π = −46.7 × 10−4 fm4. For the

neutron, the static values of the lowest-order polarizabili-
ties are fixed to

ᾱn
E + β̄nM = (15.2± 0.5)× 10−4fm3 ,

ᾱn
E − β̄nM = (9.8± 3.6(stat.)+2.1

−1.1(syst.)± 2.2(mod.))

× 10−4fm3 ,

γnπ = 13.6× 10−4fm4 , (3.6)

where the values for the sum and difference of the
spin-independent neutron polarizabilities are taken from
ref. [22], while the spin polarizability is calculated through
fixed-t unsubtracted DRs, as given in eq. (3.4).

Once the dispersion results for the invariant ampli-
tudes AL

i are obtained, we calculate the helicity ampli-
tudes through the relations given in eq. (A.2) of ap-
pendix A and finally obtain the Compton multipoles
f l±TT ′(ω) of eq. (2.4) via the projection formulae of
eq. (A.5). We now move on to demonstrate how the same
Compton multipoles can be obtained from Chiral Effective
Field Theory (χEFT).

3.2 Chiral Effective Field Theory

Many calculations of nucleon Compton scattering —some
even up to next-to-leading one-loop order— have been
performed in χEFT during the past decade [3,4,23,24].
Here, we extract information on the dynamical polarizabil-
ities of the nucleon both from the leading-one-loop2 Heavy
Baryon Chiral Perturbation Theory (HBχPT) calculation
of ref. [23] as well as from the leading-one-loop “Small
Scale Expansion” (SSE) calculations of refs. [26,27]. We
just note that HBχPT only involves explicit πN degrees of
freedom, whereas the SSE formalism is one possibility to
also systematically include explicit spin-(3/2) nucleon res-
onance degrees of freedom like∆(1232) in χEFT, and refer
the interested reader to the literature [23,28] for technical
details.

The pole contributions to nucleon Compton scattering
off the proton at leading-one-loop order in χEFT are given

2 We refrain from analyzing any HBχPT results beyond
leading-one-loop order for nucleon Compton scattering at this
point, because it appears that the concept of O(p4) corrections
used so far has to be modified [25]. In particular, this concerns
the O(p4) corrections to the spin polarizabilities of the nucleon
as —according to “naive” counting in HBχPT— there are no
counterterms occurring in this order.
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Fig. 2. Leading-one-loop Nπ continuum contributions to nucleon polarizabilities.

Fig. 3. Leading-one-loop ∆π continuum contributions to nucleon polarizabilities.

Fig. 4. ∆-pole and short-distance contributions to nucleon
polarizabilities.

in eq. (B.2) of appendix B for completeness. As discussed
in the previous section, it is the non-pole contribution to
Compton scattering which determines the polarizabilities.
In HBχPT, these structure-dependent contributions are
solely given by πN intermediate states (fig. 2), whereas in
SSE one in addition has to take into account π∆ (fig. 3)
as well as ∆(1232) s- and u-channel pole contributions
(fig. 4).

We note that we go beyond the existing leading-
one-loop HBχPT/SSE calculations [23,26,27] of nucleon
Compton scattering in four aspects:

1) Both HBχPT and SSE are non-relativistic frameworks
leading to a 1/M expansion of the amplitudes, where
M corresponds to the mass of the (nucleon) target.
In the leading-one-loop structure amplitudes R̄i, the

one-pion production threshold

ωπ =
m2

π + 2mπM

2(mπ +M)
≈ 131 MeV (3.7)

is therefore not at the correct location. We correct for
this purely kinematical effect by replacing the photon
energy ω with the Mandelstam variable s via

ω →
√

s(ω)−M . (3.8)

There are various possibilities to perform such a
threshold correction (cf. [29]), but it is clear from [29]
that all these choices agree exactly within the strict
truncation of the χEFT employed. Obviously, this re-
placement should only be applied in those places where
an imaginary part arises above threshold (for further
details we refer the reader to appendix B). We imple-
ment this kinematical correction in the leading-one-
loop πN continuum contribution to the χEFT ampli-
tudes throughout this work. The amplitudes thus mod-
ified are shown explicitly in appendix B for the case of
SSE. We note that, strictly speaking, such kinemati-
cal corrections should be employed in non-relativistic
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Table 1. χEFT parameters determined independent of Comp-
ton scattering. Magnetic moments are given in nuclear magne-
tons.

Parameter Value Comment
mπ 139.6 MeV charged pion mass
M 938.9 MeV isoscalar nucleon mass
fπ 92.4 MeV pion decay constant
gA 1.267 axial coupling constant
α 1/137 QED fine-structure constant
κv 3.71 isovector anom. mag. moment
κs −0.120 isoscalar anom. mag. moment

∆0 271.1 MeV N∆ mass splitting
gπN∆ 1.125 πN∆ coupling constant

χEFTs at all particle thresholds. However, given that
the χEFTs employed here are valid only below the
∆(1232)-resonance, the one-pion production threshold
is the only one to be taken care of.

2) Another kinematical effect concerns the exact location
of the ∆(1232)-pole. In ref. [15] it was determined as
a T -matrix pole in the complex W =

√
s plane at

the location M∆ = (1210 − i 50) MeV. We there-
fore employ the same substitution prescription for ω
as in eq. (3.8) in s-channel pole contributions of the
∆(1232)-resonance. Given that∆(1232)-pole contribu-
tions in the u-channel can also affect higher multipoles,
we make an analogous replacement, ω → M −√

u, in
the ∆(1232) u-channel pole contributions. While these
kinematical details are of minor importance when one
only discusses static polarizabilities (with the excep-
tion of β̄M2, see appendix D), they do become impor-
tant in dynamical polarizabilities once the photon en-
ergy is higher than 100 MeV. We note again that via
these modifications, we have not introduced any ad-
ditional physics content into the χEFT calculations,
as in the M → ∞ limit all these purely kinematical
modifications reduce to the strict O(ε3) truncation of
SSE [26,27]. The detailed form of the modified ampli-
tudes can be found in appendix B.

3) The parameters required for the leading-one-loop
HBχPT calculation are well known. For completeness,
we list them in table 1. Also shown are the two parame-
ters ∆0 and gπN∆ utilized in the leading-one-loop SSE
Compton scattering calculation of refs. [26,27]. The
numbers given here differ slightly from ref. [26], as we
determine them now from the exact kinematical lo-
cation of the ∆(1232)-pole in the complex W plane,
discussed in the previous paragraph.
To leading-one-loop order, the HBχPT calculation for
nucleon Compton scattering is therefore parameter-
free (in the sense that all parameters shown in ta-
ble 1 can be determined from sources outside Compton
scattering). On the other hand, in the corresponding
SSE calculation we are left with one free parameter b1
—which in χEFT corresponds to the leading γN∆ cou-
pling [26,28]. In ref. [27], b1 was estimated from the
“measured” ∆ → Nγ decay width to be |b1| ≈ 3.9.
As this determination is very sensitive to the numer-

ical value of the parameter ∆0 (for the value ∆0 =
271 MeV shown in table 1, we would obtain |b1| ≈ 4.4),
we choose a different strategy here and determine b1
directly from a fit to Compton cross-section data.

4) With the γN∆ coupling constant b1 as a fit parameter
in the SSE analysis, we can constrain the crucial
paramagnetic contribution from the ∆ directly from
data. However, it has been known for a long time
that there must also be substantial diamagnetism in
the nucleon —otherwise the small numbers for the
static magnetic polarizability of the proton cannot be
understood, see, e.g., ref. [1] for details. At leading-
one-loop order neither HBχPT nor SSE in their
respective counting schemes allow for such a contribu-
tion [26]. Both schemes assume that this is a “small”
higher-order effect, which can be accounted for at the
next-to-leading one-loop order. As a side remark we
remind the reader that in ref. [29] it was shown in a
next-to-leading one-loop HBχPT calculation that for
“reasonable” values of the regularization scale λ, a
large part of this diamagnetism could be accounted for
by πN loop effects. Working only to leading-one-loop
order, we cannot contribute to the discussion on the
physical nature of this diamagnetism in the nucleon.
As we determine our paramagnetism from data and as
at small photon energy there is a well-known delicate
interplay between para- and diamagnetic contribu-
tions, we introduce two additional higher-order γγNN
couplings g117, g118 [30]:

LCT
1 =

g117

(4π fπ)2 M
N̄ vµ vν

〈
fRλµ fRλν + fL

λµ fLλν

〉
N,

(3.9)
LCT

2 =
g118

(4π fπ)2 M
N̄

〈
fRµν fRµν + fL

µν fLµν
〉
N

(3.10)

in the leading-one-loop SSE analysis, where
fµνR = fµνL = e

2 τ3 (∂µAν − ∂νAµ) denote elec-
tromagnetic field tensors [23]. Two independent
structures are needed to separate magnetic and
electric contributions via different linear combinations
of g117 and g118. To promote these two structures to
leading-one-loop order modifies the power counting,
as they are formally part of the well-known next-to-
leading one-loop order chiral Lagrangian [30]. In light
of the reasoning given above, we nevertheless include
them as free parameters in our SSE fit to Compton
cross-sections. If they turned out to give only small
corrections, we could safely neglect them as a small
higher-order effect in accordance with the counting
assumptions of SSE. However, as will be demonstrated
in sect. 4.3, this is not the case and these two couplings
really have to be included already at leading-one-loop
order, breaking the naive power counting due to
their unnaturally large sizes. We find that the two
couplings in eqs. (3.9), (3.10) are sufficient to param-
eterize any unknown magnetic short-distance physics
in nucleon Compton scattering (cf. fig. 8 below). The
contributions of g117, g118 to the Compton structure
amplitudes are given explicitly in appendix B.
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The leading-one-loop structure-dependent Compton am-
plitudes given in appendix B include the four modifi-
cations discussed above. In order to extract from them
the dynamical polarizabilities of the nucleon in χEFT
frameworks, one first projects out the Compton multipoles
fTT ′(ω) of sect. 2.1, using the formulae in appendix C. The
dynamical polarizabilities at definite multipolarity as a
function of the photon energy follow then from eqs. (2.12),
(2.14).

This concludes our brief summary of leading-one-loop
χEFT calculations for nucleon Compton scattering. We
now move on to a determination of the three free param-
eters b1, g117 and g118 from cross-section data.

4 Compton cross-sections

4.1 General remarks

In the previous section, we have briefly reminded the
reader of two theoretical frameworks which we now con-
front with actual Compton scattering data off a proton
target. This will also serve as a check for the parameters
employed (in the case of Dispersion Theory and HBχPT),
or provide us with the possibility to constrain some pa-
rameters (in the case of SSE). To be precise, we com-
pare the experimental differential cross-sections with pre-
dictions from Dispersion Theory, where the static values
of the polarizabilities are fixed as described in eqs. (3.3)–
(3.6), and with predictions from leading-one-loop HBχPT,
which does not contain any free parameters to be deter-
mined from Compton scattering. In the case of leading-
one-loop order SSE, we perform a fit of the three free
parameters b1, g117, g118 discussed in the previous section
to proton Compton data. In this section, we can therefore
only check whether the three theoretical curves are con-
sistent with the data. A detailed discussion of the electro-
magnetic structure of the proton in the three frameworks
will be given in sect. 5.

So far, only spin-averaged cross-sections on the proton
have been measured. We draw from a large set of data [21,
31–33] covering proton Compton scattering from low en-
ergies to above the pion production threshold. We present
the low-energy data as functions of the differential cross-
section in the cm system versus the photon energy (in the
cm system) at different angles θlab. Note that in the plots
—except for those where we compare to the SAL data,
which are given in the cm system— we keep the scatter-
ing angle in the lab system because the data are given
in this system. We also note that there are small devia-
tions in the angles the various data sets are taken at, as
described in the caption of fig. 5.

In the differential Compton scattering cross-sections,
the artificial separation between pole and non-pole contri-
butions is absent. Pole and non-pole contributions have to
be added both in Dispersion Theory and in χEFT. The
differences between lab and cm system are expressed via
the flux factors

Φcm =
M

4π
√

s(ω)
, Φlab =

ω′
lab

4π ωlab
, (4.1)

where ω′
lab (ωlab) denotes the energy of the outgoing (in-

coming) photon in the lab frame. In the spin-averaged
case, the differential cross-section is then given by

dσ
dΩ

∣∣∣∣
frame

= Φ2
frame |T |2 , (4.2)

with the absolute square of the Compton amplitude (see
appendix B and ref. [23])

|T |2 = 1
2
|AH

1 |2 (
1 + z2

)
+

1
2
|AH

3 |2 (
3− z2

)
+

(
1− z2

) [
4Re[AH†

3 AH
6 ]

+Re[AH†
3 AH

4 + 2AH†
3 AH

5 −AH†
1 AH

2 ] z
]

+
(
1− z2

) [
1
2
|AH

2 |2 (
1− z2

)
+

1
2
|AH

4 |2 (
1 + z2

)
+|AH

5 |2 (
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)
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6 |2

+2Re[AH†
6

(
AH

4 + 3AH
5

)
]z + 2Re[AH†

4 AH
5 ]z

2

]
. (4.3)

After these general remarks, we now move on to the com-
parison with experiment.

4.2 Comparison to experiment

Figures 5 and 6 compare several different cross-section
data at selected angles with the DR and HBχPT predic-
tions, and with the result of our new SSE fit (details of
the fit will be discussed in the next section). The data of
Hallin et al. [31] (fig. 6) provide important constraints for
the fit above pion threshold. All three theoretical curves
describe the available data quite well in the forward di-
rection. The upwards trend in the data above 130 MeV
related to the opening of the single-pion channel is also
present in all three frameworks. However, while the SSE
and DR results are rather similar at all angles, the HBχPT
curve deviates from the data significantly in the backward
direction, starting from photon energies around 80 MeV.
The detailed analysis of the dynamical polarizabilities in
the next section will show that this different energy de-
pendence is due to the lack of explicit ∆(1232)-resonance
degrees of freedom in HBχPT. We find the by now well-
known fact that cross-section calculations in leading-one-
loop order χEFT discarding the ∆ as explicit degree of
freedom fail for large-angle scattering θ > 90◦, even at
energies well below pion threshold, as the ∆-resonance
starts to play an important role in Compton cross-sections
even at very low energies in the backward direction (see,
e.g., [24] and [16,34]).

Having shown that the full Compton amplitudes
R1, . . . , R6 of DR and leading-one-loop SSE provide a
good description of the available Compton data up to en-
ergies above pion threshold, we now determine what kind
of physics dominates in the kinematic regime considered
here. A well-established procedure to answer this ques-
tion is of course a systematic multipole expansion of the
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Fig. 5. Comparison of the differential cross-section data for Compton scattering off the proton (diamonds: Olmos de Leon et
al. [21]; circles: Federspiel et al. [32]; boxes: MacGibbon et al. [33]) with Dispersion Theory and leading-one-loop order HBχPT,
respectively, SSE at fixed lab angle. Solid line: DR results; short-dashed line: HBχPT; long-dashed line: SSE. Note that the data
of [32] are not given at 59◦ and 133◦, but at 60◦ and 135◦; the data of [33] are not given at 85◦ and 133◦, but at 90◦ and 135◦.

Fig. 6. Comparison of the differential cross-section data for Compton scattering off the proton from Hallin et al. [31] with
Dispersion Theory and leading-one-loop order HBχPT, respectively, SSE at fixed cm angle. Solid line: DR; short-dashed line:
HBχPT; long-dashed line: SSE.
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Fig. 7. Comparison of the SSE multipole expansion to the differential cross-section data for Compton scattering off the proton.
Note that the l = 1 and l = 2 truncations are indistinguishable in the energy region shown here. (l = 0 truncation: dash-dotted
curve; l = 1 truncation: dashed curve; l = 2 truncation: dotted curve.)

Compton amplitudes Ri(ω, z) as discussed in sect. 2.1.
In fig. 7, we compare the contributions of the first three
terms of the Compton multipole expansion to the same
data as shown in fig. 5. The curves plotted are for SSE,
but the same pattern arises in DR. The l = 0 truncation
only contains the pole contributions to nucleon Compton
scattering as shown by the diagrams in fig. 1. Truncating
the multipole expansion at l = 1, the curve in addition
contains all dynamical dipole polarizabilities. All dynam-
ical quadrupole polarizabilities are contained in the l = 2
truncation. As has been known for a long time, a theo-
retical framework which only contains the pole contribu-
tions for nucleon Compton scattering gives a rather poor
description of the cross-sections, especially at small an-
gles. The discrepancy between the l = 0 result and the
data is a clear indication of internal nucleon structure
not contained in the standard pole terms. According to
χEFT calculations, this structure can be interpreted as
chiral dynamics in the nucleon: It is largely the contri-
butions from the pions as the Goldstone bosons of low-
energy QCD —or, in other words, the contribution from
the pion cloud of the nucleon— which closes the gap be-
tween the pole contribution and the Compton data, at
least for energies below the pion threshold. While this is
not a surprise anymore after many years of χEFT cal-
culations in nucleon Compton scattering, the surprising
find from our multipole analysis is that up to energies of
ω ≈ 200 MeV, there is no visible difference between the
l = 1 and the l = 2 truncation. Therefore, the multi-
pole expansion converges very fast in this entire energy
region for this nucleon Compton scattering observable. In
a parallel publication [35], this suppression of higher-order

polarizabilities is also demonstrated in a variety of asym-
metries in Compton scattering. Furthermore, we see that
aside from the well-known standard pole terms of fig. 1, all
one needs to know for a good description of nucleon Comp-
ton scattering are the six dynamical dipole polarizabili-
ties αE1(ω), βM1(ω), γE1E1(ω), γM1M1(ω), γE1M2(ω) and
γM1E2(ω), as these six dynamical structures contain all
the l = 1 information. While χEFT calculations for nu-
cleon Compton scattering in the past have either focused
on the static values of the polarizabilities or on the (rather
complicated) full Compton amplitudes R1, . . . , R6, one
can now dissect the role of chiral dynamics (and of ex-
plicit resonance contributions) in this process by looking
at the individual multipole channels.

Before we move on to a detailed comparison of DR and
leading-one-loop order HBχPT, respectively, SSE results
for these six dynamical polarizabilities, we first have to
give a few details regarding the three free parameters of
SSE fitted to the Compton data.

4.3 SSE fit and static dipole polarizabilities

4.3.1 Fit

The two short-distance terms containing the couplings
g117 and g118 of eqs. (3.9), (3.10) give contributions
only to the electric and magnetic dipole polarizabili-
ties and are energy independent. The three free param-
eters of the leading-one-loop SSE analysis therefore corre-
spond to a fit, which determines ᾱE , β̄M plus the leading
γN∆ coupling b1. So we are able to fit the two static
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Table 2. Values for ᾱE , β̄M and b1 from a fit to MAMI and SAL data, compared to the results from [21]. Note that the
definition of χ2/d.o.f. used in [21] is different from eq. (4.4). The error bars in our fits are only statistical.

Quantity 3-parameter fit 2-parameter fit [21]

χ2/d.o.f. 2.87 2.83 1.14

ᾱE [10−4 fm3] 11.52± 2.43 11.04± 1.36 12.4± 0.6(stat.)∓ 0.5(syst.)± 0.1(mod.)
β̄M [10−4 fm3] 3.42± 1.70 2.76∓ 1.36 1.4± 0.7(stat.)± 0.4(syst.)± 0.1(mod.)

b1 4.66± 0.14 4.67± 0.14

spin-independent dipole polarizabilities only because the
fourth-order Lagrangians eqs. (3.9), (3.10) are promoted
to leading-one-loop order. For the fit, we use the data
from [21,31], and we show the results in table 2 together
with their corresponding χ2/d.o.f.-values, which we calcu-
lated using the standard definition of χ2, i.e.

χ2 =
∑ (

σexp − σtheo

∆σ

)2

(4.4)

with σexp the experimental, σtheo the calculated cross-
sections and ∆σ the experimental error bars. In a first
step, the number of degrees of freedom (d.o.f.) is the num-
ber of data points (115) minus the number of free pa-
rameters (3). Note that the value of ᾱE + β̄M from the
three-parameter fit is consistent within error bars with the
Baldin sum rule for the proton, ᾱE+β̄M = 13.8·10−4 fm3.
One can therefore in a second step use the value of the
Baldin sum rule as additional data point and reduce the
number of free parameters to two. The results thus ob-
tained are the ones we use in all our plots. The result-
ing static spin-independent dipole polarizabilities com-
pare very well with state-of-the-art dispersion analyses [1].
Nevertheless, the χ2/d.o.f.-values of our fits are relatively
large, but they are more an indication of the spread in the
Compton data, which we have not allowed to float with
a free normalization constant. The encouraging results of
table 2 therefore prove that by utilizing the SSE ampli-
tudes of appendix B, one has an alternative technique to
extract the static polarizabilities ᾱE , β̄M from low-energy
Compton data below the ∆-resonance. We note that a de-
termination of ᾱE , β̄M from Compton data utilizing next-
to-leading one-loop order HBχPT was presented in [36].
The results obtained there are comparable to ours, al-
though the authors had to restrict their fit only to the
lower-energy data to exclude effects from the ∆(1232),
due to the known inadequate description of the Compton
cross-sections in the backward direction in HBχPT.

We further note that the value we obtain for the lead-
ing γN∆ coupling agrees with previous analyses from the
radiative ∆-width as discussed in sect. 3.2, and, as a side
remark, that we could also employ the strategy to rely
on the DR results for ᾱE , β̄M , γ̄M1M1 to determine the
three unknowns. In this case, the whole energy dependence
is predicted. The values thus obtained are identical with
the fit results within the error bars.

As our leading-one-loop order SSE calculation only de-
scribes an isoscalar nucleon, we cannot contribute to the
ongoing controversies over the size of the neutron polariz-
abilities [1,36,37].

4.3.2 Static polarizabilities

The spin-independent static dipole polarizabilities to
leading-one-loop order in SSE consist of the following in-
dividual contributions:

ᾱE =
5α g2

A

96 f2
π mπ π

(
1− mπ

M

1
π

)
− 2α (g117 + 2 g118)

(4π fπ)2 M

+
α g2

πN∆

54 (fπ π)2

[
9∆0

∆2
0 −m2

π

+
∆2

0 − 10m2
π

(∆2
0 −m2

π)3/2
lnR

]
= [11.87 (Nπ)− (5.92± 1.36) (c.t.)

+0 (∆-pole) + 5.09 (∆π)]× 10−4fm3

= (11.04± 1.36)× 10−4fm3 , (4.5)

β̄M =
α g2

A

192 f2
π mπ π

+
4α g118

(4π fπ)2 M
+

2α b21
9∆0 M2

+
α g2

πN∆

54 (fπ π)2
1√

∆2
0 −m2

π

lnR

= [1.25 (Nπ)− (10.68± 1.17) (c.t.)

+(11.33± 0.70) (∆-pole) + 0.86 (∆π)]× 10−4fm3

= (2.76∓ 1.36)× 10−4 fm3 , (4.6)

where R =
(
∆0 +

√
∆2

0 −m2
π

)
/mπ is a dimensionless pa-

rameter [26].
In the case of ᾱE , one notices a strong cancellation be-

tween the π∆ contributions and the short-distance physics
contained in g117, g118. In sect. 5, we will demonstrate that
this mutual cancellation holds throughout the low-energy
region also in the case of the dynamical electric dipole po-
larizability, forcing us to the not so surprising conclusion
that for photon energies far below on-shell ∆π interme-
diate states such kind of contributions are indistinguish-
able from counterterms parameterizing the short-distance
physics. We note that the extra, quark-mass–independent
term in the πN contribution arises from our pion thresh-
old correction discussed in sect. 3.2.

In β̄M , we encounter the well-known cancellation be-
tween a large paramagnetism from the ∆(1232)-pole con-
tributions and the nucleon diamagnetism, which here is
parameterized via the coupling g118. An alternative ex-
planation for the smallness of β̄M due to off-shell effects
in the γN∆ transition form factors has been presented
in [38]. In contrast to the cancellation in ᾱE discussed
above, the sum of dia- and paramagnetic effects is strongly
energy dependent and therefore leads to a clear signal in
the dynamical magnetic dipole polarizability βM1(ω), see
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Table 3. Comparison of proton γ
(p)
0 , γ

(p)
π and neutron γ

(n)
0 , γ

(n)
π spin polarizabilities between leading-one-loop SSE, experiment

and Hyperbolic Dispersion Theory [1]; the experimental values for γ
(p)
0 , γ

(p)
π are taken from [39] and [21], respectively. Note

that the O(ε3) SSE results are purely isoscalar.

Quantity SSE Experiment Fixed-t DR

γ
(p)
0 [10−4 fm4] 0.62∓ 0.25 −1.01± 0.08(stat.)± 0.10(syst.) −0.7
γ

(p)
π [10−4 fm4] 8.86± 0.25 10.6± 2.1(stat.)∓ 0.4(syst.)± 0.8(mod.) 9.3

γ
(n)
0 [10−4 fm4] 0.62∓ 0.25 – −0.07
γ

(n)
π [10−4 fm4] 8.86± 0.25 – 13.7

sect. 5. Apart from the contribution proportional to g118,
eq. (4.6) agrees with the result found in ref. [26] (mod-
ulo the different convention for the coupling b1), where it
was already noted that the ∆π contributions to β̄M are
considerably smaller than in the case of ᾱE .

Already from this discussion, one can see that the two
extra terms g117, g118 are not just small higher-order ef-
fects. For a consistent description both of the data and of
the static polarizabilities, they are in contradistinction re-
quired in a leading-one-loop SSE analysis. Translating the
fit results of table 2 back to these two unknown couplings,
one obtains

g117 = 17.44± 2.11 ,

g118 = −5.64± 0.88 (3-parameter fit) ,
g117 = 18.82± 0.79 ,

g118 = −6.05∓ 0.66 (2-parameter fit) . (4.7)

Therefore, these two couplings are significantly larger than
their “natural” values, which in the Lagrangian employed
here in eqs. (3.9), (3.10) would be expected to be unity.
These couplings —though formally being part of the next-
to-leading one-loop order Lagrangian— therefore break
the naive power counting underlying SSE and have to
be taken into account already at leading-one-loop order.
There are indications that this feature is not specific to
SSE but occurs in all chiral calculations of αE1(ω) and
βM1(ω), cf. [40]. Having determined g117, g118 from fits to
Compton scattering data, we now have fixed all our un-
known parameters and have full predictive power in the
determination of the dynamical polarizabilities discussed
in sect. 5.1. The addition of these two couplings does not
lead to any inconsistencies with the leading-one-loop order
regularization/renormalization procedure.

Finally, we note again that not only the energy de-
pendence of the dynamical polarizabilities is independent
of the two extra couplings g117, g118, but also the val-
ues of the four spin-dependent static dipole polarizabili-
ties γ̄E1E1, γ̄M1M1, γ̄E1M2, γ̄M1E2. The results obtained
in ref. [27] are therefore reproduced3, as expected. For bet-
ter comparison with Dispersion Theory and experiment,

3 We note that in the case of γ̄E1E1 we obtain a small ex-

tra term δ γ̄E1E1 = − αg2
A

96f2
ππMmπ

due to our correction of the

pion threshold discussed in point 1) of sect. 3.2. This term is
part of the next-to-leading one-loop order contributions to this
polarizability discussed in ref. [4].

we present here the numbers for the linear combinations
γ0, γπ of eq. (2.16) in table 3. For more detail, we refer
the interested reader to the extensive literature on these
two elusive structures [1].

Our findings on the static quadrupole polarizabilities
ᾱE2, β̄M2 are discussed in appendix D.

5 Chiral dynamics and dynamical
polarizabilities

In the following detailed discussion of the dynamical po-
larizabilities, the error bars for the input parameters as
discussed in sect. 4.2 induce uncertainties in the static
and dynamical polarizabilities. The grey bands in the fig-
ures around the SSE curves arise from the uncertainty in
the fit parameters determined with the help of the Baldin
sum rule in sect. 4.3. Albeit only a full higher-order calcu-
lation will give a good estimate of the higher-order effects
in EFT, this already allows a rough estimate of their size,
at least in α

(s)
E1(ω) and β

(s)
M1(ω).

5.1 Isoscalar spin-independent polarizabilities

Turning first to α
(s)
E1(ω) as shown in fig. 8, it is obvious that

its energy dependence in the low-energy region is entirely
controlled by chiral dynamics arising from single πN inter-
mediate states. All three theoretical analyses agree rather
well within the statistical uncertainty band of the SSE cal-
culation. As already discussed for the static electric polar-
izability ᾱE in the previous section, no effects from any
inherent π∆ intermediate states can be detected, pointing
to the fact that these rather heavy degrees of freedom are
effectively frozen out at these low energies. This makes
them —as far as the energy dependence of the dynami-
cal polarizabilities is concerned— indistinguishable from
short-distance contributions contained in the couplings
g117, g118. We also note that the strength and shape of
the cusp associated with the one-pion production thresh-
old is reproduced extremely well by the leading-one-loop
chiral calculations. It will serve as an interesting check
for the convergence properties of the chiral theories to see
whether the rather good agreement is maintained, once
the higher-order corrections are included.

The other spin-independent l = 1 dynamical polariz-
ability, β(s)

M1(ω), shows quite a different picture. We note
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Fig. 8. Comparison of the Dispersion Theory results (solid line) of the real parts of the isoscalar, spin-independent dynamical
electric and magnetic dipole (top) and quadrupole (bottom) polarizabilities with leading-one-loop order HBχPT (short-dashed
line) and SSE (long-dashed line), respectively.

that the three theoretical frameworks only agree (within
the uncertainty of the SSE parameters) for the value of the
static magnetic polarizability β̄M . For increasing values of
the photon energy, it becomes obvious from the agree-
ment between SSE and Dispersion Theory that explicit
∆(1232) contributions via s-channel pole graphs lead to
a paramagnetic behavior quickly rising with energy. Any
∆π contributions remain small and are effectively frozen
out. The near cancellation between para- and diamagnetic
contributions for the static value discussed in the previous
section is completely taken over by ∆(1232)-induced para-
magnetism when the photon energy goes up. We explicitly
point to the scale on the y-axis of this plot, indicating a
rise by a factor of four at photon energies near the one-pion
production threshold. While the leading-one-loop HBχPT
calculation [41] provides a good prediction for β̄M , it fails
to describe the energy dependence of β

(s)
M1(ω), as shown

in fig. 8. In contrast to α
(s)
E1(ω), hardly any cusp is visible

in β
(s)
M1(ω). Beyond the static limit, the chiral πN contri-

butions play a minor role in this polarizability. We note
that while the fine details of the rising paramagnetism in
β

(s)
M1(ω) differ between SSE and Dispersion Theory, they

are consistent within the uncertainties of the SSE curve.
The discrepancy between the two schemes above the one-
pion production threshold is likely to be connected to a
detailed treatment of the width of the ∆-resonance, which
is neglected in leading-one-loop SSE.

We further note that the good agreement between SSE
and Dispersion Theory for the l = 1 spin-independent
dynamical polarizabilities provides a non-trivial check
regarding the physics parameterized in the couplings

g117, g118. Given that these two structures are energy in-
dependent, cf. eqs. (3.9), (3.10), the fact that only the πN
and ∆ degrees of freedom suffice to describe the energy
dependence in the low-energy region quite well supports
our idea that the physics underlying g117, g118 is “short
distance” from the point of view of χEFTs.

It is also interesting to look at the spin-independent
l = 2 dynamical polarizabilities, even if in actual analyses
of Compton data they only play a minor role. In α

(s)
E2(ω)

we observe a visible contribution from ∆π intermediate
states. It hardly modifies the shape of the energy depen-
dence, but does affect the overall normalization of this po-
larizability, as can be seen from the difference between the
SSE and the HBχPT curve. The agreement between SSE
and Dispersion Theory is surprisingly good throughout
the entire low-energy region. Another interesting higher-
order dynamical polarizability is β

(s)
M2(ω). The chiral πN

contribution seems to play only a minor role in the energy
dependence of this polarizability. ∆π and a surprisingly
large ∆(1232) u-channel pole contribution can close a sig-
nificant part of the gap between the HBχPT and the Dis-
persion Theory result. The remaining gap between SSE
and Dispersion Theory might well be accounted for by
next-to-leading one-loop chiral πN corrections, given that
the slope of the energy dependence below pion thresh-
old seems to agree between the two frameworks. Nev-
ertheless, the energy dependence of this polarizability is
quite peculiar. The magnetic quadrupole strength has de-
creased rather fast by more than a factor of two when the
photon energy reaches the one-pion production threshold.
This shape is reminiscent of a relaxation effect typically
discussed in textbook examples for dispersive effects [6].
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Fig. 9. Comparison of the Dispersion Theory results of the real parts of the isoscalar, spin-dependent dynamical dipole
polarizabilities with leading-one-loop HBχPT, respectively, SSE. Notation as in fig. 8.

While both in HBχPT and SSE the strengths for βM2(ω)
tend to zero for large photon energies, the DR-curve seems
to point to additional physics contributions above the pion
threshold.

We now move on to a discussion of the l = 1 spin-
dependent dynamical polarizabilities.

5.2 Isoscalar spin-dependent polarizabilities

We again remind the reader that no fit parameters anal-
ogous to g117 and g118 are present in the leading-one-
loop SSE results for the spin-dependent polarizabilities.
The only free parameter entering the dynamical spin
polarizabilities is b1, which we have determined from
the fit to Compton cross-sections in sect. 4.3. As fig. 9
demonstrates, the contributions of the ∆π continuum to
the spin polarizabilities are small throughout the low-
energy region. The energy dependence in γ

(s)
E1E1(ω) is com-

pletely governed by chiral dynamics and agrees well among
the three frameworks, quite analogous to the situation
in α

(s)
E1(ω). The ∆(1232)-pole contribution —rising with

energy— is visible in γ
(s)
M1M1(ω), but it does not rise as

dramatically as in the case of β
(s)
M1(ω) (cf. fig. 8). The

HBχPT calculation for γ
(s)
M1M1(ω) deviates strongly from

both the SSE and DR result, signaling again the need
for explicit ∆(1232) degrees of freedom in resonant mul-
tipoles. The slight disagreement between SSE and DR for
photon energies above pion threshold in γ

(s)
M1M1(ω) might

be connected to a detailed treatment of the width of the
resonance, see sect. 6. Both HBχPT and SSE predictions

Fig. 10. Schematic representation of the intermediate πN
states generating the width of the ∆-resonance.

for the mixed spin polarizabilities are rather similar, dis-
agreeing with the DR result. While γ

(s)
E1M2(ω) constitutes

a rather tiny structure effect which will be hard to pin
down precisely, the “large” gap between SSE and the DR
result in γ

(s)
M1E2(ω) could possibly arise from the missing

E2 excitation of the ∆-resonance in a leading-one-loop
SSE calculation. This effect can be accounted for at next-
to-leading one-loop order. On the other hand, the overall
shape of the energy dependence in γ

(s)
M1E2(ω) is rather sim-

ilar between the chiral and the DR results, indicating that
a πN loop contribution at the next higher chiral order
might also suffice to close the gap.

In conclusion, among the four isoscalar spin-dependent
dipole polarizabilities, only γ

(s)
E1E1(ω) seems to be domi-

nated by πN chiral dynamics, which can be accounted
for rather well already at leading-one-loop order through-
out the low-energy region. A detailed understanding of
the dynamical dipole spin polarizabilities requires explicit
∆(1232)-resonance degrees of freedom.

After this discussion focused on the low-energy tail
of Compton scattering, we turn to a short excursion on
dynamical polarizabilities in the resonance region in the
next section.
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Fig. 11. Qualitative comparison between Dispersion Theory (solid lines) and a χEFT calculation employing spin-(3/2) propaga-
tors with an additional Breit-Wigner parameterization (dashed lines) for two selected dynamical polarizabilities in the resonance
region.

6 Dynamical polarizabilities in the resonance
region

We remind the readers that in SSE, the finite width
Γ∆/2 = 50 MeV of the ∆(1232)-resonance [15] is treated
as a (small) perturbation. Clearly, as soon as the expres-
sion (W−M−∆0) in the denominator of the∆(1232)-pole
contributions in eqs. (B.3)-(B.8) becomes comparable in
magnitude to Γ∆, this assumption breaks down. There-
fore, the SSE results become meaningless for photon en-
ergies above 180 MeV and we have truncated the plots
in sects. 4.2 and 5 at this energy. When one wants to
analyze dynamical polarizabilities within χEFT at such
higher photon energies —i.e. in the first or second reso-
nance region— one clearly has to modify the power count-
ing employed by resumming the πN intermediate state
contribution (fig. 10) to the ∆ self-energy to all orders.
While a full calculation of nucleon Compton scattering
in the resonance region in appropriately modified SSE
is quite involved, one can get a quick qualitative pic-
ture of the results in the resonant multipole channels by
adding (by hand) a Breit-Wigner parameterization to the
spin-(3/2) propagators. In fig. 11 we show the results of
such a procedure for the (isoscalar) magnetic polarizabil-
ities βM1(ω) and γM1M1(ω) and note that a calculation
on the one-loop level is at most valid up to the two-pion
threshold ω2π. While details of the comparison to the Dis-
persion Theory result are certainly far from perfect, one
realizes that such a procedure does lead to a good qualita-
tive description even in the resonance region —without of
course replacing the need for a full systematic calculation
of dynamical polarizabilities and Compton cross-sections
in χEFT [42]. One possible way to extend the χEFT calcu-
lation of Compton cross-sections into the resonance region
was already presented in [43].

Obviously, systematic predictions for dynamical polar-
izabilities from Dispersion Theory are not limited to pho-
ton energies below the ∆-resonance. In fig. 12, we show
the DR prediction for the first 8 isoscalar dynamical po-
larizabilities throughout the first and second resonance re-
gion. For comparison, we also plot the (surprisingly) large
contributions from the imaginary parts of the dynamical
polarizabilities in this region, which below the two-pion
threshold —corresponding to ω = 247.2 MeV in the cm

system— in DR are input obtained from ref. [15]. Above
the two-pion threshold, they are modeled with the same
input which enters the imaginary parts of the amplitudes
AL
i in the s-channel (see sect. 3.1).
Likewise, we show in fig. 13 the predictions from Dis-

persion Theory for the first 8 isovector dynamical polar-
izabilities of the nucleon from low energies up into the
second resonance region. We note that the isovector con-
tributions —defined as half the difference between proton
and neutron results— are a lot smaller than their isoscalar
counterparts. This finding is in agreement with χEFT,
which finds a null result for all isovector polarizabilities
to leading-one-loop order [26,27]. The isovector-dependent
terms are treated as small higher-order corrections, both
in HBχPT and in SSE. Before concluding we note that
there seems to be an exception to this rule —according to
our results from Dispersion Theory: The spin-dependent
dynamical polarizability γ

(v)
E1M2(ω) is found to be of the

same size as its isoscalar counterpart γ
(s)
E1M2(ω) in fig. 12,

which, however, is significantly smaller than the other iso-
scalar dipole polarizabilities.

7 Conclusions

Dynamical polarizabilities are a concept complementary
to generalized polarizabilities of the nucleon [44–46]. The
latter probe the nucleon in virtual Compton scattering,
i.e. with an incoming photon of non-zero virtuality and
an outgoing, static real photon. Therefore, they provide
information about the spatial distribution of charges and
magnetism inside the nucleon at zero energy. Dynamical
polarizabilities —the main subject of this work— on the
other hand, test the global low-energy excitation spectrum
of the nucleon at non-zero energy and answer the question,
which internal degrees of freedom govern the structure of
the nucleon at low energies.

In this work, we have confronted the concept of dynam-
ical polarizabilities developed in ref. [6] with data from
nucleon Compton scattering experiments via a multipole
expansion. We compared χEFT and Dispersion Theory
predictions for the dynamical polarizabilities. The perti-
nent results of our analysis can be summarized as follows:
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Fig. 12. Dispersion Theory result for the real (solid lines) and imaginary (dashed lines) parts of the isoscalar dynamical
polarizabilities discussed in the text.

i) Both state-of-the-art Dispersion Theory as well as Chi-
ral Effective Field Theory with explicit ∆(1232) de-
grees of freedom are able to describe the proton Comp-
ton cross-sections in the low-energy region very well.
We note that without explicit ∆(1232) degrees of free-
dom, the calculations deviate considerably at back-
ward angles for photon energies starting as early as
80 MeV, as already discussed in the literature [24].

ii) An l = 1 truncation in the multipole expansion of
Compton scattering is found to be completely suffi-
cient to describe available cross-sections up to energies
of the ∆-resonance. This implies that all information

about the structure of the nucleon in spin-averaged
Compton scattering at low energies is contained in
the six dynamical dipole polarizabilities. In [35] it is
demonstrated that the same holds for the observables
in polarized Compton scattering.

iii) After determining the free parameters (two or three,
respectively) from experiment, there is an impressive
agreement between Dispersion Theory and SSE in
most multipole channels below 170 MeV. Differing pre-
dictions in some dynamical polarizabilities cannot be
resolved at the present level of experimental error bars
in proton Compton scattering.
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Fig. 13. Dispersion Theory result for the isovector dynamical polarizabilities. For notation see fig. 12.

iv) We identified the dynamical dipole polarizabilities
αE1(ω) and γE1E1(ω) as candidates whose entire en-
ergy dependence in the low-energy domain is con-
trolled by chiral dynamics.

v) A projector formalism both for Dispersion Theory and
for χEFT allows one to uniquely generate any desired
dynamical polarizability from a given set of structure-
dependent Compton amplitudes.

vi) We determined the static electric and magnetic polar-
izabilities of the proton within SSE via a fit to Comp-
ton cross-section data at all angles up to ω = 170 MeV.
The results are entirely consistent with the results
one obtains when Dispersion Theory techniques are

employed to extract static polarizabilities of the nu-
cleon from Compton data. Our SSE amplitudes (ap-
pendix B) therefore provide an alternative extraction
method for these static polarizabilities directly from
Compton data up to 170 MeV.

In a recent analysis [35], it is investigated how to deter-
mine all l = 1 dynamical spin polarizabilities, at a given
energy directly from nucleon Compton scattering experi-
ments, both unpolarized and polarized, without resorting
to any theoretical machinery like SSE or Dispersion The-
ory.
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Appendix A. Projection formulae in
Dispersion Theory

In this appendix, we give the relevant formulae to cal-
culate the multipole amplitudes for Compton scattering
from the invariant amplitudes AL

i . Following the notation
of ref. [5], we introduce the following six independent he-
licity amplitudes φΛ′Λ, with Λ = λγ − λN (Λ′ = λ′

γ − λ′
N )

related to the helicities of the initial (final) photon and
nucleon, λγ (λ′

γ) and λN ( λ′
N ), respectively,

φ1 ≡ φ1/2 1/2 ,

φ2 ≡ φ1/2 −1/2 ,

φ3 ≡ φ1/2 −3/2 ,

φ4 ≡ φ1/2 3/2 ,

φ5 ≡ φ3/2 3/2 ,

φ6 ≡ φ3/2 −3/2 . (A.1)

The invariant amplitudes AL
i are connected to the he-

licity amplitudes φi by the relations

φ1 =

√
(1− σ)
8π

√
s

(s−M2)[2(s−M2) + t]
2M3[M2σ − s(σ − 2)]

×{
(σ − 1)s[2M2 AL

3 − (s−M2)AL
4 ]

+2M2AL
6 (σM

2 − s)
}
,

φ2 = −
√
σ

8π
√
s

(s−M2)2

4M2s3/2

×{ − 2M2σ[AL
1 (s+M2) +AL

2 (s−M2)]

+sAL
5 (σ − 2)[2(s−M2) + t]

}
,

φ3 = −σ
√
1− σ

8π
√
s

(s−M2)2

4Ms

×{
4M2AL

1 −AL
5 [2(s−M2) + t]

}
,

φ4 =
√
σ (1− σ)
8π

√
s

√
s(s−M2)[2(s−M2) + t]
2M2[M2σ − s(σ − 2)]

×[2M2AL
6 +AL

3 (s+M2)],

φ5 = − (1− σ)
√
(1− σ)

8π
√
s

s(s−M2)[2(s−M2) + t]
M [M2σ − s(σ − 2)]

×
[
AL

3 +AL
6 +AL

4

(s−M2)
2M2

]
,

φ6 =
σ
√
σ

8π
√
s

(s−M2)2

4s
√
s

{
2(s−M2)AL

2

−2AL
1 (s+M2) +AL

5 [2(s−M2) + t]
}
, (A.2)

where σ = −s t/(s−M2)2 = sin2(θ/2).

The helicity amplitudes have the following standard
partial-wave decomposition in terms of the reduced ma-
trices dJΛΛ′ :

φΛ′Λ =
∑
J

(2J + 1)φJΛ′Λ dJΛ′Λ(θ), (A.3)

which, by inversion, gives

φJΛ′Λ =
1
2

∫ +1

−1

d cos θ φΛ′Λ(cos θ)dJΛ′Λ(θ). (A.4)

With the partial-wave decomposition of eq. (A.3), we
finally obtain the relations between the multipole am-
plitudes of Compton scattering and the helicity partial
waves:

f l+EE =
1

(l + 1)2

[
1
2

(
φ
l+1/2
1 − φ

l+1/2
2

)

+

√
l + 2
l

(
φ
l+1/2
3 −φ

l+1/2
4

)
+

l + 2
2l

(
φ
l+1/2
5 −φ

l+1/2
6

)]
,

f l+MM =
1

(l + 1)2

[
1
2

(
φ
l+1/2
1 + φ

l+1/2
2

)

−
√

l + 2
l

(
φ
l+1/2
3 +φ

l+1/2
4

)
+

l + 2
2l

(
φ
l+1/2
5 +φ

l+1/2
6

)]
,

f l−EE=
1
l2

[
1
2

(
φ
l−1/2
1 +φ

l−1/2
2

)
+

√
l − 1
l + 1

(
φ
l−1/2
3 +φ

l−1/2
4

)

+
l − 1

2(l + 1)

(
φ
l−1/2
5 + φ

l−1/2
6

) ]
,

f l−MM =
1
l2

[
1
2

(
φ
l−1/2
1 −φ

l−1/2
2

)
−

√
l − 1
l + 1

(
φ
l−1/2
3 −φ

l−1/2
4

)

+
l − 1

2(l + 1)

(
φ
l−1/2
5 − φ

l−1/2
6

) ]
,

f l+EM =
1

(l + 1)2

[
− 1

2

(
φ
l+1/2
1 − φ

l+1/2
2

)

− 1√
l(l + 2)

(
φ
l+1/2
3 −φ

l+1/2
4

)
+
1
2

(
φ
l+1/2
5 −φ

l+1/2
6

) ]
,

f l+ME =
1

(l + 1)2

[
− 1

2

(
φ
l+1/2
1 +φ

l+1/2
2

)

+
1√

l(l + 2)

(
φ
l+1/2
3 +φ

l+1/2
4

)
+
1
2

(
φ
l+1/2
5 +φ

l+1/2
6

) ]
.

(A.5)

Appendix B. Compton amplitudes to
leading-one-loop order in χEFT

The formulae which connect the amplitudes Ri discussed
in the text to the AH

i basis usually used in χEFT calcu-
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ĀH
1 (ω, z) =

b21 e
2 ω2 z

9M2

(
− 1

ωs −∆0
+

1

ωu +∆0

)
+
α (g118 t− g117 ω2)

2π f2
π M

+
α

18π f2
π

1∫
0

dx

1∫
0

dy

{
9 g2A

[
mπ π +

π
(
2mπ

2 − t)
2
√−t arctan

( √−t
2mπ

)
+
ωs − ω
8ωs ω

(
mπ

2 π2 − 4ωs ω
)

+
mπ

2

2ωs ω

(
ω arccos2

(
− ωs

mπ

)
− ωs arccos

2

(
ω

mπ

))
− (1− y)

(
1

cu

[
5 c2u − (1− y)

(
ω2 x2 (1− y)

+ t
(x
2
+ (1− x) y

) )]
arccos

(
ω x (1− y)

d

)
+

1
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[
5 c2s − (1− y)

(
ω2 x2 (1− y) + t

(x
2
+ (1− x) y

))]

× arccos

(
ωs x (−1 + y)

d

) )]
+16 g2πN∆

[
−2∆0 lnmπ − 3∆0 ln

√
m2

π − t (1− x) x

+

√
−m2

π + (∆0 − ω)2 lnR(∆0 − ω) +
√

−m2
π + (∆0 + ω)

2 lnR(∆0 + ω)− 2

√
−m2

π + (∆0 − ω x)2 lnR(∆0 − ω x)

−2
√

−m2
π + (∆0 + ω x)
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3∆0

2 − 3m2
π + 4 t (1− x) x)√

∆0
2 −m2
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√
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2 −m2
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1
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5C2
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2
t x (1− y) + t (1− x) (1− y) y
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1
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t x (1− y) + t (1− x) (1− y) y

)
ln R̃ (∆0 + ω x (1− y))
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(1− y)

]}
+O (

ε4
)
, (B.3)

lations of nucleon Compton scattering read [7]

AH
1 = 4π

W

M
(R1 + zR2) ,

AH
2 = −4πW

M
R2 ,

AH
3 = 4π

W

M
(R3 + zR4 + 2zR5 + 2R6) ,

AH
4 = 4π

W

M
R4 ,

AH
5 = −4πW

M
(R4 +R5) ,

AH
6 = −4πW

M
R6 . (B.1)

As discussed in sect. 2.1 we need to know both the pole
as well as the structure-dependent contributions to AH

i .
The cm pole contributions to the Compton amplitudes

AH
1 to AH

6 for the case of a proton target have been cal-
culated up to leading-one-loop order in ref. [27]. For com-
pleteness, we list them here again (κ = 1

2 (κv + κs)):

Apole
1 (ω, z) = − e2

M
+O(ε4) ,

Apole
2 (ω, z) =

e2 ω

M2
+O(ε4) ,

Apole
3 (ω, z) =

e2 ω
(
1 + 2κ− (1 + κ)2 z

)
2M2

− e2 gA
4π2 f2

π

ω3 (1− z)
m2

π + 2ω2 (1− z)
+O(ε4) ,

Apole
4 (ω, z) = −e2 ω (1 + κ)2

2M2
+O(ε4) ,

Apole
5 (ω, z) =

e2 ω (1 + κ)2

2M2

− e2 gA
8π2 f2

π

ω3

m2
π + 2ω2 (1− z)

+O(ε4) ,

Apole
6 (ω, z) = −e2 ω (1 + κ)

2M2

+
e2 gA
8π2 f2

π

ω3

m2
π + 2ω2 (1−z)

+O(ε4). (B.2)

Finally, we present explicit expressions for the leading-
one-loop order structure-dependent SSE Compton am-
plitudes including the kinematical as well as the short-
distance corrections discussed in sect. 3.2. The threshold
correction was done as follows for each diagram in fig. 2:
If the pion propagator in a loop integral exhibits a cut at
ω = mπ, one replaces ω in that propagator by eq. (3.8) in
order to obtain the physically correct s-channel cut posi-
tion at ω = ωπ. The u-channel contribution is unchanged.
We are aware, that this procedure violates crossing sym-
metry, but the crossing violating effects in the u-channel
are quite small. Formally, the terms correcting for the ex-
act location of the pion threshold start to appear at O(p4).

See equations (B.3) above and (B.4)-(B.8)

on the following pages
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ĀH
2 (ω, z) =

b21 e
2 ω2

9M2

(
1

ωs −∆0
− 1

ωu +∆0

)
− α g118
π f2

π M
ω2 +

α

18π f2
π

1∫
0

dx

1∫
0

dy ω2 (1− y)
{
9 g2A

[
(1− x) x

×
(
ωs

c2s d2
− ω

c2u d2

)
(1− y)3 y

(
ω2 x2 (1− y) + t

(x
2
+ (1− x) y

))
− 1

c3s

(
(−1 + x) (1− y)2 y

(
ω2 x2 (1− y)

+t
(x
2
+ (1− x) y

) )
+ c2s

(
x y + (1− x) (

1− 7 y + 7 y2
)) )

arccos

(
ωs x (−1 + y)

d

)
− 1

c3u

×
(
(−1 + x) (1−y)2 y

(
ω2 x2 (1−y) + t

(x
2
+ (1−x) y

))
+ c2u

(
x y + (1−x) (

1− 7 y + 7 y2
)) )

arccos

(
ω x (1−y)

d

) ]

−16 g2πN∆

[
(1− x)

(−∆0 + ω x (1− y)
C2

s d2
− ∆0 + ω x (1− y)

C2
u d2

)
(1− y)2 y

(
ω2 x2 (1− y) + 1

2
t x+ t (1− x) y

)

+
1

C3
s

(
C2

s ((1− x) (1− 7 y) (1− y) + y) + (1− x) (1− y)2 y
(
ω2 x2 (1− y) + 1

2
t x+ t (1− x) y

) )

× ln R̃ (∆0 − ω x (1− y)) + 1

C3
u

(
C2

u ((1− x) (1− 7 y) (1− y) + y) + (1− x) (1− y)2 y

×
(
ω2 x2 (1− y) + 1

2
t x+ t (1− x) y

) )
ln R̃ (∆0 + ω x (1− y))

]}
+O (

ε4
)
, (B.4)

ĀH
3 (ω, z) =

b21 e
2 ω3 z

18M2∆0

(
1

ωs −∆0
− 1

ωu +∆0

)
+

α

π f2
π

1∫
0

dx

1∫
0

dy

{
g2A
2

[
−ωs + ω

8ωs ω

(
mπ

2 π2 + 4ωs ω
)

+
mπ

2

2ωs ω

(
ω arccos2

(
− ωs

mπ

)
+ ωs arccos

2

(
ω

mπ

))
+ ω4 (1− x) x (1− y)3 y (

1− z2)

×
((

ωs

c2s d2
+

ω

c2u d2

)
x (1− y)− 1

c3u
arccos

(
ω x (1− y)

d

)
+

1

c3s
arccos

(
ωs x (−1 + y)

d

) )]

+
4 g2πN∆

9

[
−

√
−m2

π + (∆0 − ω)2 lnR(∆0 − ω) +
√

−m2
π + (∆0 + ω)

2 lnR(∆0 + ω)

+2

√
−m2

π + (∆0 − ω x)2 lnR(∆0 − ω x)− 2

√
−m2

π + (∆0 + ω x)
2 lnR(∆0 + ω x)− ω4 (1−x) x (1−y)3 y (

1−z2)
×
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∆0 − ω x (1−y)

C2
s d2

− ∆0 + ω x (1−y)
C2

u d2
− 1

C3
s

ln R̃ (∆0 − ω x (1−y)) + 1

C3
u

ln R̃ (∆0 + ω x (1−y))
)]}

+O(ε4) , (B.5)

ĀH
4 (ω, z) =

b21 e
2 ω3

18M2∆0

(
1

ωs −∆0
− 1

ωu +∆0

)
+

α

π f2
π

1∫
0

dx

1∫
0

dy ω2 x (1− y)2
{
g2A
2

[
− 1

cu
arccos

(
ω x (1− y)

d

)

+
1

cs
arccos

(
ωs x (−1 + y)

d

) ]
+

4 g2πN∆

9

[
− 1

Cs
ln R̃ (∆0 − ω x (1−y)) + 1

Cu
ln R̃ (∆0 + ω x (1−y))

] }
+O(ε4) , (B.6)

ĀH
5 (ω, z) =

b21 e
2 ω3

18M2∆0

(
− 1

ωs −∆0
+

1

ωu +∆0

)
+

α

π f2
π

1∫
0

dx

1∫
0

dy ω2 (1− y) y
{
g2A
2

[
ω2

(
ωs

c2s d2
+

ω

c2u d2

)

× (1− x) x2 (1− y)3 z − 1

c3u

(−c2u + ω2 (1− x) x (1− y)2 z) arccos

(
ω x (1− y)

d

)

+
1

c3s

(−c2s + ω2 (1− x) x (1− y)2 z) arccos

(
ωs x (−1 + y)

d

) ]

+
4 g2πN∆

9

[
1
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Cu
ln R̃ (∆0 + ω x (1−y))− ω2 (1− x) x (1− y)2 z

×
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C2
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− ∆0 + ω x (1− y)
C2
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− 1

C3
s

ln R̃ (∆0 − ω x (1−y)) + 1

C3
u

ln R̃ (∆0 + ω x (1−y))
)]}

+O(ε4) , (B.7)
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ĀH
6 (ω, z) =

α

π f2
π

1∫
0

dx

1∫
0

dy ω2 (1− y) y
{
g2A
2

[
−ω2

(
ωs

c2s d2
+

ω
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)
(1− x) x2 (1− y)3 + 1

c3u

(
− c2u

+ω2 (1− x) x (1− y)2
)
arccos

(
ω x (1− y)

d

)
− 1

c3s
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(
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d

) ]

+
4 g2πN∆

9
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− 1
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ln R̃ (∆0 − ω x (1− y)) + 1

Cu
ln R̃ (∆0 + ω x (1− y)) + ω2 (1− x) x (1− y)2
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(
∆0 − ω x (1− y)

C2
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− ∆0 + ω x (1− y)
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u d2
− 1

C3
s

ln R̃ (∆0 − ω x (1−y)) + 1

C3
u

ln R̃ (∆0 + ω x (1−y))
)]}

+O(ε4) . (B.8)

In eqs. (B.3)-(B.8) we have used the following abbre-
viations:

d2 = m2
π − t (1− x) (1− y) y ,

c2s = d2 − ω2
s x2 (1− y)2 ,

c2u = d2 − ω2 x2 (1− y)2 ,

C2
s = (∆0 − ω x (1− y))2 − d2 ,

C2
u = (∆0 + ω x (1− y))2 − d2 ;

ωs =
√
s−M ,

ωu = M −√
u ,

s = (p+ k)2 =
(
ω +

√
M2 + ω2

)2

,

t = (k − k′)2 = 2ω2 (z − 1) ,

u = (p− k′)2 = M2 − 2ω
√

M2 + ω2 − 2ω2 z ;

R(X) =
X

mπ
+

√
X2

m2
π

− 1, R̃(X) =
X

d
+

√
X2

d2
− 1 .

For the isovector Compton structure amplitudes, one
finds a null result to leading-one-loop order:

Ā
H (v)
i = 0 +O(ε4) , (B.5)

with i = 1, . . . , 6.

Appendix C. Projection formulae for χEFT

The connection between the Compton structure ampli-
tudes ĀH

i (ω, z), i = 1, . . . , 6 given in the previous section
and the cm Compton multipoles f l±XX′(ω), X,X ′ = E,M ,

introduced in sect. 2.1, reads

f1+
EE(ω) =

1∫
−1

M

16 · 4πW

[
ĀH

3 (ω, z)
(−3 + z2

)

+4ĀH
6 (ω, z)

(−1 + z2
)
+

(
2ĀH

2 (ω, z) + ĀH
4 (ω, z)

+2 ĀH
5 (ω, z)

)
z

(−1 + z2
)
+ 2ĀH

1 (ω, z)
(
1+z2

) ]
dz ,

f1−
EE(ω) =

1∫
−1

M

8 · 4πW

[
−ĀH

3 (ω, z)
(−3 + z2

)

−4ĀH
6 (ω, z)

(−1 + z2
) − (

− ĀH
2 (ω, z) + ĀH

4 (ω, z)

+2 ĀH
5 (ω, z)

)
z

(−1 + z2
)
+ ĀH

1 (ω, z)
(
1 + z2

) ]
dz ,

f1+
MM (ω) =

1∫
−1

M

16 · 4πW

[
2ĀH

2 (ω, z)
(−1 + z2

)

+ĀH
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)
+ 2
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ĀH
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1− z2
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)]
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8 · 4πW
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ĀH
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)
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ĀH
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)
+ĀH
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)]
dz ,
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EE(ω) =

1∫
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M

72 · 4πW
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ĀH
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)

+ĀH
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(
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)
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(
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f2−
EE(ω) =

1∫
−1

M

48 · 4πW
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ĀH

4 (ω, z)
(
1 + 3z2 − 4z4

)

+ĀH
2 (ω, z)

(
2− 6z2 + 4z4

)
+ 2

(
ĀH

5 (ω, z)

× (
1 + 3z2 − 4z4

)
+ ĀH

1 (ω, z) 2z3

+ĀH
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(
3z − 2z3

)
+ ĀH

6 (ω, z)
(
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) )]
dz ,

f2+
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1∫
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M

72 · 4πW

[
ĀH
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(
1− 3z2

)

+
(
3ĀH

2 (ω, z) + 5ĀH
4 (ω, z)− 2ĀH

5 (ω, z)
)

× z
(−1 + z2

)
+ ĀH

1 (ω, z)
(−3 + 9z2

) ]
dz ,

f2−
MM (ω) =

1∫
−1

M

48 · 4πW

[
ĀH

3 (ω, z)
(−1 + 3z2

)

+
(
2ĀH

2 (ω, z)− 5ĀH
4 (ω, z) + 2ĀH

5 (ω, z)
)

× z
(−1 + z2

)
+ ĀH

1 (ω, z)
(−2 + 6z2

) ]
dz ,

f1+
EM (ω) =

1∫
−1

M

16 · 4πW

[
ĀH

3 (ω, z)
(
1− 3z2

)

−2ĀH
6 (ω, z)

(−1 + z2
)

− (
ĀH

4 (ω, z) + 4ĀH
5 (ω, z)

)
z

(−1 + z2
) ]

dz ,

f1+
ME(ω) =

1∫
−1

M

16 · 4πW

[
ĀH

4 (ω, z)
(
1− z2

)

−2z (
ĀH

3 (ω, z) + ĀH
6 (ω, z)

(
1− z2

)) ]
dz . (C.1)

Appendix D. Static quadrupole
polarizabilities

The spin-independent static quadrupole polarizabilities
have been analyzed in ref. [12] to leading-one-loop order
in SSE. Here we present the details of our results for these
l = 2 polarizabilities, as they turn out to be quite different:

ᾱE2 =
α g2

A

32 f2
π m3

π π

(
7
5
+

9
10

mπ

M

1
π

)

+
α g2

πN∆

135 (fπ π)2 m2
π

[
∆0

(
11∆2

0 − 41m2
π

)
(∆2

0 −m2
π)

2

+
3m2

π

(
3∆2

0 + 7m2
π

)
(∆2

0 −m2
π)

5/2
lnR

]
+O(ε4)

= [21.48 (Nπ) + 0 (c.t.) + 0 (∆-pole) + 4.99 (∆π)]

× 10−4fm5

=
[
26.47 +O(ε4)

] × 10−4fm5 , (D.1)

β̄M2 = − 3α g2
A

160 f2
π m3

π π
− 2α b21

3∆2
0 M3

+
α g2

πN∆

15 (fπ π)2 m2
π

×
[ −∆0

∆2
0 −m2

π

+
m2

π

(∆2
0 −m2

π)3/2
lnR

]
+O(ε4)

=
[ − 8.93 (Nπ) + 0 (c.t.)− (5.18± 0.32) (∆-pole)

−3.37 (∆π)
] × 10−4fm5

=
[−17.48± 0.32 +O(ε4)

] × 10−4fm5 . (D.2)

R =
(
∆0 +

√
∆2

0 −m2
π

)
/mπ is a dimensionless param-

eter [26]. In particular, we note the extra piece ∼ m−2
π

from the one-pion threshold correction in ᾱE2 as well as
the kinematically induced u-channel∆(1232) contribution
in β̄M2. For details on the origin of these terms we re-
fer to sect. 3.2, items 1 and 2. Judging from the plots
of the corresponding dynamical quadrupole polarizabili-
ties as shown in fig. 8, each of these effects seems to im-
prove the agreement between SSE and Dispersion Theory.
However, as discussed in sect. 4.2, we remind the reader
that the l = 2 polarizabilities are in effect so small, that
they cannot be determined from state-of-the-art nucleon
Compton scattering experiments.
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