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Abstract

The signature is an important structural characteristic of a coherent system. Its
computation, however, is often rather involved and complex. We analyze several
cases where this complexity can be considerably reduced. These are the cases when
a ‘large’ coherent system is obtained as a series, parallel, or recurrent structure built
from ‘small’ modules with known signature. Corresponding formulae can be obtained in
terms of cumulative notions of signatures. An algebraic closure property of families of
homogeneous polynomials plays a substantial role in our derivations.
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1. Introduction

In the analysis of coherent systems, the concept of signature is more and more revealing
as a quite natural and very powerful tool, and different types of related application have been
pointed out. The literature on this subject is extensive, and focuses on both conceptual and
computational aspects. Some relevant references are presented in the bibliography; see in
particular the monographs of [9] and [19], and the references therein.

An important and still challenging problem in this field is the computation of the signature
for coherent systems of large order; in fact, rather complex computations are typically involved
in such a task. Different types of method and of solution to this problem can be considered,
depending on special system structures. In [22], in particular, a generating function approach
was applied to the signature of linear consecutive k-out-of-n systems. In this paper we
show how the complexity can be sensibly reduced in the case of systems with other general
structures. Namely, we consider systems that are coherent connections of different modules,
which comprise separated sets of components.

We start by considering systems that can be decomposed into series or parallel connections
of two subsystems. More precisely, starting from the signatures of two coherent systems S1
and S2, we study the signature of the ‘super-system’ S obtained as a series or as a parallel
of S1 and S2. Thereafter we consider the case of recurrent systems, i.e. those systems that are
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obtained as connections of several identical subsystems organized into a structure with known
signature.

We shall see (Propositions 2 and 3 in Section 3, and Proposition 4 in Section 4) that solutions
to our problem are obtained in terms of cumulative notions of signatures, rather than in terms
of the standard notion of signature. Actually, the interest and the meaning of such notions have
already been pointed out in the literature (see, in particular, [2] and [19, Chapters 5, 6]; see also
[9, Chapters 6, 8]).

It will be important for our purposes to keep in mind that two different but equivalent
definitions of signature can be given: one of probabilistic type and one which is purely
combinatorial. The arguments used in the literature are based on the latter or the former
type of definition, according to what is more convenient in the case at hand. In our problem we
can use either of the two methods and it is convenient to rely on both of them in order to better
illustrate our arguments and results.

The paper is organized as follows. In Section 2 we initially fix the notation and recall some
basic definitions and facts related to the concept of signature. Then we point out relevant
aspects of the ‘cumulative’ notions of signature. In Section 3 we describe some deductions
concerning systems obtained as series or parallel connections of two systems. More precisely,
we show how Proposition 2 (or the analogous Proposition 3) can be immediately proved by
elementary algebraic arguments based on the ‘probabilistic’ definition of signature; then we
give a heuristic interpretation in terms of the ‘combinatorial’definition. We end this section with
some comments of potential interest. In Section 4 we consider the case of recurrent systems;
we shall see how the formulae obtained in Section 2 can be extended to this case. Finally, we
devote Section 5 to the presentation of specific examples that illustrate the meaning and the use
of our results. Some computational aspects are also sketched therein.

2. Notation, definitions, and basic facts

Consider the lifetime T of a (binary) coherent system S (see, e.g. [1, Chapter 1]) formed
with n binary components C1, . . . , Cn. Let ϕS : {0, 1}n → {0, 1} denote the corresponding
structure function. We assume that T1, . . . , Tn, the lifetimes of C1, . . . , Cn, are independent
with a common, continuous distribution function F . For the corresponding order statistics
T(1), . . . , T(n), it then holds that

P(T(1) < · · · < T(n)) = 1.

The system S (since it is coherent) will fail, with probability 1, in concomitance with the failure
of one and only one of the system’s components, i.e. we can write

P(T = T(k) for some k) = 1.

The vector s ≡ (s1, . . . , sn), with

sk := P(T = T(k)), k = 1, 2, . . . , n,

is called the signature ofS (see [18]). Then the signature ofS is a specific probability distribution
over {1, . . . , n}. As pointed out in [18], we have the following very simple, but important, fact.

Proposition 1. The vector s ≡ (s1, . . . , sn) does not depend on the choice of F .

Thus, s is a mere characteristic of the structure function ϕS of the system S. In the case
whenT1, . . . , Tn are independent and identically distributed (i.i.d.) we also find that the partition
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{(T = T(k)), k = 1, 2, . . . , n} is stochastically independent of (T(1), . . . , T(n)). Then, by using
the total probability formula, the reliability function of S can be decomposed into the form

F̄T (t) := P(T > t) =
n∑
k=1

sk P(T(k) > t). (1)

Equation (1) is at the basis of several applications of the concept of signature and, in particular,
is used in the comparison of systems (see, e.g. [3], [4], [5], [6], [15], and [19, Chapters 4, 5]) and
in the analysis of network reliability (see, e.g. [8] and [10]). Recently, it has been pointed out
that the above formula can be suitably extended to the case when T1, . . . , Tn are exchangeable;
in this respect see, in particular, [11], [12], [14], [16], [17], and [21].

Let us now recall the combinatorial interpretation of signature. In the combinatorial ap-
proach, it is convenient to conceive that nonfailed components continue to work even if the
system has already failed, so that we can record the subsequent failure times of all of the n
components and list them in the natural increasing ordering.

Denote by Pn the set of permutations of {1, 2, . . . , n}. For any π ≡ (π(1), π(2), . . . ,
π(n)) ∈ Pn, we can consider the case when the systems’s componentsC1, . . . , Cn fail according
to the ordering π , i.e.

Tπ(1) < Tπ(2) < · · · < Tπ(n).

We look at the instant of failure and determine the component that caused the system failure,
setting m(π) := k if T = T(k). Furthermore, for k = 1, 2, . . . , n, set

Ak := {π ∈ P | m(π) = k}.
Thus, A ≡(A1, . . . , An) is a partition of Pn, and we have

n∑
k=1

|Ak| = |Pn| = n!,

where |Ak| denotes the cardinality ofAk . Taking into account the fact that T1, . . . , Tn are i.i.d.,
it is easy to see that

sk ≡ |Ak|
n! , k = 1, 2, . . . , n.

Finally, we recall here the notions of cumulative signature and tail signature. We set

Sh :=
h∑
i=1

si, S̄h :=
n∑

i=h+1

si .

Definition 1. The vectors S ≡ (S1, . . . , Sn) and S̄ ≡ (S̄1, . . . , S̄n)will be called the cumulative
signature and the tail signature, respectively. It is also convenient and conventional to set

S0 := 0, S̄0 := 1, and S̄n := 0.

The vectors S and S̄ have a direct role, and a basic combinatorial meaning, in the frame of
system reliability.

Let us fix our attention on S̄ (dual facts can be enunciated for S). By taking into account the
form of the marginal distribution of the order statistics of i.i.d. random variables and recalling (1),
we can also write

F̄T (t) =
n∑
k=1

sk

k−1∑
i=0

(
n

i

)
[F(t)]i[F̄ (t)]n−i . (2)
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By interchanging the order between the summation indexes k and i, the expression in (2) can
also be written in the form

F̄T (t) =
n−1∑
i=0

(
n

i

)
[F(t)]i[F̄ (t)]n−i

( n∑
k=i+1

sk

)
,

i.e.

F̄T (t) =
n−1∑
i=0

(
n

i

)
S̄i[F(t)]i[F̄ (t)]n−i . (3)

As a ‘dual’ form of this formula, we can also write the following expression for FT (t) =
1 − F̄T (t), the distribution function of the system’s lifetime T :

FT (t) =
n∑
j=1

Sj

(
n

j

)
[F(t)]j [F̄ (t)]n−j . (4)

As noted in [2], the coefficients S̄i (i = 0, . . . , n− 1) have a direct combinatorial meaning
of their own. Such a meaning can be obtained by simply comparing (3) with the expression of
system reliability in the form of a homogeneous pq-polynomial based on the number of path
sets of different orders. The product

(
n
i

)
S̄i can be thus viewed as the number of system path sets

of order n− i. See also [7], [19, p. 80], and [20], where the dual property of the coefficients Sj ,
in terms of cut sets, is considered.

3. Series and parallel connection of two coherent blocks

Here we consider two coherent systems (or blocks) S′ and S′′: S′ has n components
C′

1, . . . , C
′
n and signature s′ = (s′1, . . . , s′n), and S′′ hasm componentsC′′

1 , . . . , C
′′
m (all different

from C′
1, . . . , C

′
n) and signature s′′ = (s′′1 , . . . , s′′m). The vectors S′, S′′ and S̄′, S̄′′ denote the

cumulative signatures and the tail signatures of S′ and S′′, respectively.
Now we consider the system S, formed with the components C′

1, . . . , C
′
n, C

′′
1 , . . . , C

′′
m and

obtained as a series connection of S′ and S′′. Our aim in what follows is to find the signature
s = (s1, . . . , sn+m) of the system S.

We can actually obtain a direct formula for the computation of the tail signature S̄ =
(S̄1, . . . , S̄n+m) of S, i.e. for the computation of

S̄r :=
n+m∑
i=r+1

si, r = 1, 2, . . . , n+m− 2

(it is obvious that in the present case sn+m = 0 and so S̄n+m−1 = 0).
In this respect we have the following result.

Proposition 2. The components of S̄ can be computed from S̄′ and S̄′′ by means of the formula

S̄u =
min(n,u)∑

i=max(0,u−m)

(
n
i

)(
m
u−i

)
(
n+m
u

) S̄′
i S̄

′′
u−i , u = 1, 2, . . . , n+m− 2. (5)
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Proof. As is clear from the arguments recalled in Section 2, it is convenient, for the compu-
tation of S̄, to assume that the lifetimes of the components C′

1, . . . , C
′
n, C

′′
1 , . . . , C

′′
m are i.i.d.,

continuous random variables; we denote by F̄ (t) the corresponding survival function (we shall
see next that the choice of F̄ (t) is completely inessential).

We can fix t arbitrarily (also this choice is inessential) and set, for brevity’s sake,

ω = F(t), ω̄ = F̄ (t).

Recall (3) for the reliability of a system in terms of its tail signature. For the reliability of
our system S (formed as a series of S′ and S′′), we can write and compare the following two
formulae:

n+m−1∑
u=0

(
n+m

u

)
S̄uω

uω̄n+m−u (6)

and (n−1∑
i=0

(
n

i

)
S̄′
iω
iω̄n−i

)(m−1∑
j=0

(
m

j

)
S̄′′
j ω

j ω̄m−j
)
. (7)

Now note that (7) can be rewritten as

n+m−1∑
u=0

min(n,u)∑
i=max(0,u−m)

(
n

i

)(
m

u− i

)
ωuω̄n+m−uS̄′

i S̄
′′
u−i (8)

and is valid for any arbitrary 0 < ω < 1. By comparing (6) and (8) term by term with respect
to the monomials ωuω̄n+m−u, we obtain (5).

Concerning (5), it is interesting now to present a probabilistic interpretation, based on
combinatorial arguments. Let us denote by M ′ the anchor of S′, i.e. the (random) number
of failures, among the components of S′, needed to meet the failure of S′ and, similarly, letM ′′
be the anchor of S′′. Furthermore, let us consider the events

E′
h :≡ (M ′ = h), h = 1, 2, . . . , n, E′′

k :≡ (M ′′ = k), k = 1, 2, . . . , m.

Thus, if we assume that the lifetimes of C′
1, . . . , C

′
n, C

′′
1 , . . . , C

′′
m are i.i.d. random variables,

we can interpret the signatures’ components as

s′h = P(E′
h), s′′k = P(E′′

k ),

for h = 1, 2, . . . , n and k = 1, 2, . . . , m. Furthermore,

S̄′
h = P(M ′ > h), S̄′′

k = P(M ′′ > k).

In view of the very definition of signature we have

• n! S̄′
h permutations of the elements {C′

1, . . . , C
′
n} that give rise to (M ′ > h);

• n! S̄′
h/(n−h)! ordered subsequences (of length h) of the elements {C′

1, . . . , C
′
n} that give

rise to (M ′ > h) (i.e. such that if any such subsequences happen for the first h failures
then S′ survives the first h failures).
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Similarly, for any k, we have m! S̄′′
k /(m − k)! ordered subsequences (of length k) of the

elements {C′′
1 , . . . , C

′′
m} that give rise to (M ′′ > k).

By mixing, in any order, any such subsequence pair we obtain a subsequence, of length
h + k, of elements of C′

1, . . . , C
′
n, C

′′
1 , . . . , C

′′
m such that the event (M > h + k) is verified,

where M denotes the anchor of S.
In conclusion we obtain (

h+ k

h

)
n! S̄′

h

(n− h)!
m! S̄′′

k

(m− k)!
subsequences, of length h+ k, of elements of C′

1, . . . , C
′
n, C

′′
1 , . . . , C

′′
m such that

(a) the event (M > h+ k) is verified;

(b) of the first h+ k failures for S, exactly h are failures of elements of S′.

Now, any such subsequence (of length h+k) can be ‘continued’ in (n+m−h−k)! different
ways. Thus, we obtain

(n+m− h− k)!
(
h+ k

h

)
n! S̄′

h

(n− h)!
m! S̄′′

k

(m− k)!
permutations of the elements C′

1, . . . , C
′
n, C

′′
1 , . . . , C

′′
m such that conditions (a) and (b) hold.

By letting r = h+ k and

Ah,r := (n+m− r)!
(
r

h

)
n! S̄′

h

(n− h)!
m! S̄′′

r−h
(m− r + h)! ,

we can also say that, for any fixed r (r = 1, 2, . . . , n+m− 2), we have Ah,r permutations of
the elements C′

1, . . . , C
′
n, C

′′
1 , . . . , C

′′
m such that the following conditions hold:

(a*) the event (M > r) is verified;

(b*) of the first r failures for S, exactly h are failures of elements of S′.

We then have a total of Ah,r permutations of the elements C′
1, . . . , C

′
n, C

′′
1 , . . . , C

′′
m such

that the event (M > r) is verified. Then, in view of the very definition of signature for the
system S, we obtain, for r = 1, 2, . . . , n+m− 2,

S̄r = P(M > r) = 1

(n+m)!
min(n,r)∑

h=max(0,r−m)
Ah,r =

min(n,r)∑
h=max(0,r−m)

(
n
h

)(
m
r−h

)
(
n+m
r

) S̄′
hS̄

′′
r−h.

Remark 1. From our knowledge of S̄, the signature s of the system S can be obtained by
applying the relation

sk = S̄k−1 − S̄k, k = 1, 2, . . . , n+m− 1.

Thus, we can also obtain from (5) a formula for the computation of s. For this formula, a
suitable combinatorial interpretation could be given as well.

Remark 2. It can happen (see, e.g. the examples in [11] and [13]) that two different systems,
say S′

A and S′
B , of the same order m, share the same signature s′. Let S′′ be a third system of

order n, and consider the two systems SA and SB respectively obtained as a series of S′
A with S′′
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and as a series of S′
B with S′′. We note in this respect that, as a consequence of Proposition 2,

the signatures of SA and SB share the same signature as well. Thus, we see that the signature of
a series connection of two systems depends only on the original signatures and does not really
depend on the systems.

This argument, in particular, shows a method to construct several examples of pairs of
systems (of the same order) that share the same signature, starting from one such pair.

We now consider the case of the system S(par) obtained by putting in parallel S1 and S2.
In such a case, by suitably dualizing the arguments above, we can easily obtain the following
result about the cumulative signature S of S(par).

Proposition 3. The components of S(par) can be computed from S′ and S′′ by means of the
formula

Sr =
min(n,r)∑

h=max(0,r−m)

(
n
h

)(
m
r−h

)
(
n+m
r

) S′
hS

′′
r−h, r = 2, . . . , n+m.

Remark 3. In defining the concept of signature we tacitly assumed that all the components
C1, . . . , Cn are up at time t = 0, whence they progressively fail. For some types of problem,
it can be useful to think, dually, of the case when C1, . . . , Cn are all down at time t = 0 and
then progressively start to work (become up) at random times W1, . . . ,Wn . This situation
naturally leads to the introduction of the notion of a construction spectrum (C�-spectrum)
b = (b1, b2, . . . , bn), where bi is the probability that the system gets up at the instantW(i). The
equation

bn−i+1 = si (9)

relates the C�-spectrum to the signature. See [9, Chapters 6, 10] (note that, in this monograph,
the term destruction-spectrum (D-spectrum) has been used to denote the signature).

Let us now address the relationship between Propositions 2 and 3. Here we have chosen to
prove Proposition 2 first and then just claim that the proof of Proposition 3 can be obtained by
applying dual arguments. An alternative approach would be to prove Proposition 3 first and
then directly obtain from it Proposition 2 by using the relationship between the signature and
the C�-spectrum given in (9).

We also note in this respect that a further, alternative, approach to proving Proposition 2
or Proposition 3 could be given by taking into account the relationship existing between the
signature and the number of path sets or cut sets of the different orders.

4. Signatures of recurrent systems

A recurrent system S is a coherent system composed of N identical coherent modules (see
[1, Chapter 1]) that are assembled by means of a coherent organizing structure. Different
modules share the same structure but they have no common components. Thus, if N is the
number of modules and m is the number of elements in a module, then the whole system S
has Nm components. For example, an organizing structure might be a bridge and each of
its five modules is a coherent system which, as a particular case, may copy the organizing
structure itself. More technically, we can describe the structure function ϕS of S as follows.
Let ψ (the module structure) and � (the organizing structure), with ψ : {0, 1}m → {0, 1} and
� : {0, 1}N → {0, 1}, be two given coherent structure functions. Then

ϕS(x
(1)
1 , . . . , x(1)m ; . . . ; x(N)1 , . . . , x(N)m ) = �(ψ(x

(1)
1 , . . . , x(1)m ); . . . ;ψ(x(N)1 , . . . , x(N)m )).
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For our purposes, we extend the definition of the recurrent system to the case when the
different modules may have different structures, provided that they share an identical signature.

We suppose that we know the signature so = (so
1 , s

o
2 , . . . , s

o
N) of the organizing structure

and the signature s∗ = (s∗1 , s∗2 , . . . , s∗m) of the modules. Our goal is to obtain the signature
s = (s1, s2, . . . , sNm) of the whole system S. To this end, we consider the cumulative signature
S∗ and the tail signature S̄∗ of the modules, the cumulative signature So and the tail signature
S̄o of the organizing structure, and finally the cumulative signature S and the tail signature S̄

of the whole system S.
Furthermore, we assume that the lifetimes of theNm components are i.i.d. random variables

distributed according to a continuous distribution function G(t) (as already explained, this
assumption is innocuous as far as the computation of the signature is concerned).

We begin by rewriting (3) for S when this is looked at as a system of its basicNm components:

F̄T (t) =
Nm−1∑
r=0

(
Nm

r

)
S̄r [G(t)]r [Ḡ(t)]Nm−r . (10)

On the other hand, the modules can be considered to have (independent) identically dis-
tributed lifetimes, due to the identity of their signatures. Thus, we can also write

F̄T (t) =
N−1∑
u=0

(
N

u

)
S̄o
u[FM(t)]u[F̄M(t)]N−u. (11)

Here FM(t) and F̄M(t) respectively denote the distribution function and the survival function
of the i.i.d. lifetimes of the N different modules; thus, by applying to each module (3) and (4)
with F(t) replaced by G(t), we can write

F̄M(t) =
m−1∑
i=0

S̄∗
i

(
m

i

)
[G(t)]i[Ḡ(t)]m−i , (12)

FM(t) =
m∑
j=1

S∗
j

(
m

j

)
[G(t)]j [Ḡ(t)]m−j . (13)

From (11), and setting p = G(t) and q = Ḡ(t) for brevity, we obtain

F̄T (t) =
N−1∑
u=0

(
N

u

)
S̄o
u

[ m∑
j=1

S∗
j

(
m

j

)
pjqm−j

]u[m−1∑
i=0

S̄∗
i

(
m

i

)
piqm−i

]N−u

=
N−1∑
u=0

(
N

u

)
S̄o
u

[ m∑
j=1

S∗
j

(
m

j

)
pjqm−j

]u[ m∑
h=1

S̄∗
m−h

(
m

h

)
pm−hqh

]N−u
. (14)

We note that, for a coherent system with i.i.d. component lifetimes, (3) and (4) express
the reliability function, and the lifetime’s distribution function, in the form of a homogeneous
polynomial of degree n in the two variables F(t) and F̄ (t).

Here we have the homogeneous polynomial in (11), of degreeN , whose variables are FM(t)
and F̄M(t) given in (12) and (13), which can in turn be written as homogeneous polynomials
of degree m in the variables p and q. Expression (14), which is obtained as a composition of
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(11) with (12) and (13), is again a homogeneous polynomial (of degree Nm) in the variables
p and q. This fact corresponds to a basic property in the algebra of polynomials. Even though
this closure property is rather trivially seen to be valid, it has an essential role in our present
deductions: let us denote by D1,D2, . . . , DNm the coefficients of the obtained polynomial of
degree Nm:

F̄T (t) =
Nm−1∑
r=0

Drp
rp̄Nm−r . (15)

Obviously, D1,D2, . . . , DNm depend on S̄o and S̄∗; thus, we will also write

Dr = Dr(S̄
o, S̄∗), r = 1, 2, . . . , Nm.

By comparing (15) with (10) we are now ready to formulate the following result.

Proposition 4. The tail signature of the recurrent system is given by

S̄r = Dr(S̄
o, S̄∗)(

Nm
r

) , r = 1, 2, . . . , Nm.

In principle, the expression of Dr in terms of S̄o and S̄∗ is not difficult to find. However,
carrying out the calculation analytically is an extremely tiresome task even for a rather small
system having in total, say, 4 · 3 = 12 elements. An example presented in the next section will
show how this task can be carried out quite efficiently using MATHEMATICA® (see, e.g. [23]).

Remark 4. In the case when the organizing structure is a series system (i.e. when S̄o =
(1, 0, . . . , 0)), (14) obviously reduces to

F̄T (t) = [F̄M(t)]N =
[m−1∑
h=0

S̄∗
h

(
m

h

)
phqm−h

]N
. (16)

The coefficients S̄0, . . . , S̄Nm−1 can then be obtained by comparing (16) with the expression
of the reliability of the recurrent system written in terms of its basic components (recall (10)).
Namely, we can write

F̄T (t) =
Nm−1∑
r=0

(
Nm

r

)
S̄rp

rqNm−r =
[m−1∑
h=0

S̄∗
h

(
m

h

)
phqm−h

]N
.

We might thus obtain for S̄0, . . . , S̄Nm−1 an expression that directly generalizes, for the
N > 2 case, the formula

S̄u =
min(n,u)∑

i=max(0,u−m)

(
n
i

)(
m
u−i

)
(
n+m
u

) S̄∗
i S̄

∗
u−i , u = 1, 2, . . . , n+m− 2,

which, in the N = 2 case, we obtain by substituting the condition S̄′ = S̄′′ = S̄∗ into (5). The
cumulative signature of a recurrent system, formed with a parallel organizing structure, can be
obtained by reasoning similarly.
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Concerning Proposition 4, the following comments can be useful.
Note that, by taking into account the relationship existing between the signature of a system

and the number of path sets or cut sets of the different orders, we might interpret the claim in
Proposition 4 as a relationship between, say, the number of path sets (of different orders) of the
recurrent systems and the number of path sets (of different orders) of the modules and of the
organizing structure.

As an extension of the concept of a recurrent system, we considered the case of independent,
possibly different, modules that share the same signature (see also Remark 2). Consequently,
all the modules have the same reliability, when the lifetimes of all the basic components are
considered to be i.i.d. Our assumption, however, is definitely necessary for our arguments; in
fact, when making the (inessential) hypothesis that the components are identically distributed,
we simultaneously need the lifetimes of modules to be identically distributed (besides being
independent).

5. Examples

In this section we analyze two different examples that can help us to illustrate both the
meaning and the application of our results.

Example 1. Here we consider the case of a series of two (nonnecessarily similar) blocks with
n = m = 3 components. We then use (5), which now reads

S̄1 =
(3

0

)(3
1

)
(6

1

) S̄′
0S̄

′′
1 +

(3
1

)(3
0

)
(6

1

) S̄′
1S̄

′′
0 ,

S̄2 =
(3

0

)(3
2

)
(6

2

) S̄′
0S̄

′′
2 +

(3
1

)(3
1

)
(6

2

) S̄′
1S̄

′′
1 +

(3
2

)(3
0

)
(6

2

) S̄′
2S̄

′′
0 ,

S̄3 =
(3

0

)(3
3

)
(6

3

) S̄′
0S̄

′′
3 +

(3
1

)(3
2

)
(6

3

) S̄′
1S̄

′′
2 +

(3
2

)(3
1

)
(6

3

) S̄′
2S̄

′′
1 +

(3
3

)(3
0

)
(6

3

) S̄′
3S̄

′′
0 ,

S̄4 =
(3

1

)(3
3

)
(6

4

) S̄′
1S̄

′′
3 +

(3
2

)(3
2

)
(6

4

) S̄′
2S̄

′′
2 +

(3
3

)(3
1

)
(6

4

) S̄′
3S̄

′′
1 ,

S̄5 =
(3

2

)(3
3

)
(6

5

) S̄′
2S̄

′′
3 +

(3
3

)(3
2

)
(6

5

) S̄′
3S̄

′′
2 .

In the special case when S′ and S
′′
are both parallel systems (i.e. S′ = (1, 1, 0) and S′′ =

(1, 1, 0)) the above formulae lead to the solution

(
1, 1, 9

10 ,
6

10 , 0, 0
)
.

In fact, as is easy to check by hand, the signature of S in this case is the vector

(
0, 0, 1

10 ,
3

10 ,
6

10 , 0
)
.

Let us consider the case when S′ has the structure function

x1 ∧ (x2 ∨ x3)
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and S′′ has the structure function
x1 ∨ (x2 ∧ x3).

In this case we have S̄′ = ( 2
3 , 0, 0) and S̄′′ = (1, 0, 0), and the above formulae lead to the

solution
S̄ = ( 5

6 ,
4

10 , 0, 0, 0, 0
)
.

Also, in this case it is easy to compute the signature of S, given by

s = ( 1
6 ,

13
30 ,

12
30 , 0, 0, 0

)
,

and which is the signature vector corresponding to S̄.

Example 2. (Five bridge modules organized into a bridge structure.) The cumulative signature
of the bridge is

So
1 = 0, So

2 = 1
5 , So

3 = 4
5 , So

4 = 1, So
5 = 1.

Whence, using (4) and (5), it is easy to deduce that the bridge has two cut sets of size 2, eight
cut sets of size 3, five cut sets of size 4, and one cut set of size 5. Therefore, the bridge module’s
down probability q� is

q� = 2q2p3 + 8q3p2 + 5q4p + q5.

In the bridge structure the number of path sets of size j, j = 2, 3, 4, 5, coincides with the
number of cut sets of the same size j and, therefore,

p� = 1 − q� = 2p2q3 + 8p3q2 + 5p4q + p5.

Below we provide the steps necessary for calculating, using MATHEMATICA operators
(see, e.g. [23]), the signature of the whole system.

1. Write the down probability of the organizing structure as

Q = 2a2b3 + 8a3b2 + 5a4b + a5.

2. Set a := q and b := p, and Expand[Q]. This operation produces a (q, p)-polynomial
of order 5 · 5 = 25.

3. Set b = 1. This will produce a polynomial W in q with powers ranging from 1 to 25.
(The coefficients at q, q2, and q3 will be 0 since the min cut set is 4.)

4. Apply the operator CoeficientList[W,q] which will produce the list of the coeffi-
cients at qz, z = 4, . . . , 25. Set D(z) := Coeff[qz].

5. Calculate the system’s cumulative signature as

Sz = D(z) ∗ z! (25 − z)!
25! , z = 1, . . . , 25.

See Table 1 for the cumulative signatures of the recurrent bridge system.
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Table 1: The cumulative signatures of the recurrent bridge system.

z Sz

3 0
4 0.000 632
5 0.003 463
6 0.011 203
7 0.027 876
8 0.058 923
9 0.110 859
10 0.189 717
11 0.297 752
12 0.429 485
13 0.570 515
14 0.702 248
15 0.810 283
16 0.889 141
17 0.941 077
18 0.972 124
19 0.988 797
20 0.996 537
21 0.999 368
22 1
23 1
24 1
25 1
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