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Abstract

It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of

transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an

evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet

well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing

transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a

functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA meth-

ylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives

(Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation

levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes asso-

ciated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/tran-

scriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed

comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects.
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Introduction

Methylation of cytosine residues constitutes a common epi-

genetic modification among eukaryotes. It is functionally as-

sociated with the regulation of expression of genomic

elements (Zemach et al. 2010). For example, promoter-

proximate methylation is linked to the transcriptional repres-

sion of associated genes (Jones 2012; Schübeler 2015).

Methylation of repetitive noncoding DNA elements also has

a repressive effect, limiting the expression, and thus, the ge-

nomic expansion of these elements (Schübeler 2015). In con-

trast, intragenic methylation is associated with active

transcription (Feng et al. 2010; Zemach et al. 2010; Jones

2012), but a “cause and effect” relationship has not been

established in this context (Schübeler 2015). Although DNA

methylation is widely present among eukaryotes, the levels

(i.e., the proportion of methylated cytosines or CpG sites in a

given genome), patterns, and genomic targets of DNA

methylation are not evolutionarily conserved. In vertebrates,

and especially in mammals, CpG dinucleotides are heavily

methylated genome-wide, with the exception of CpG islands.

CpG islands typically overlap with promoter regions and re-

main mostly unmethylated (Schübeler 2015). In contrast,

invertebrates show intermediate or even negligible levels of

DNA methylation at CpG sites, which is typically targeted to a

subset of gene bodies (the term gene body refers to the tran-

scribed part of a gene, comprised of exons and introns; Suzuki

and Bird 2008; Feng et al. 2010; Zemach et al. 2010; but see

Wang et al. 2014; Kao et al. 2016).

In insects, the levels of gene body methylation vary consid-

erably (Glastad et al. 2011). On one hand, model organisms

like the fruit fly, Drosophila melanogaster, and the red flour

beetle, Tribolium castaneum, do not display notable DNA

methylation levels in their genomes (Zemach et al. 2010;

Bewick et al. 2017). On the other hand, nutritionally regulated
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levels of DNA methylation contribute to the ontogenetic es-

tablishment of alternative castes in the honey bee, Apis melli-

fera (Kucharski et al. 2008; Foret et al. 2012). This observation

has supported the hypothesis that DNA methylation in insects

is associated with caste development and the evolution of

(eu)sociality, but recent empirical evidence from research on

eusocial Hymenoptera (wasps, ants, and bees) suggests that

this association is not universal (Bonasio et al. 2012; Patalano

et al. 2015; Kapheim et al. 2015; Libbrecht et al. 2016;

Standage et al. 2016). Obviously, a taxonomically representa-

tive description of the levels and patterns of DNA methylation

is one major prerequisite to improve our understanding of the

evolution and, eventually, the function of DNA methylation in

insects. Therefore, we conducted a comparative analysis of

DNA methylation patterns in insects by making use of recently

published, extensive transcriptomic (Misof et al. 2014) and

publicly available genomic sequence data covering all extant

insect orders.

Two types of DNA methyltransferases (DNMTs), DNMT1

and DNMT3, are responsible for DNA methylation in animals

(Goll and Bestor 2005). In mammals, DNMTs carry out de

novo (DNMT3) and maintenance (DNMT1) methylation,

with functional overlap (Jeltsch and Jurkowska 2014).

Another, noncanonical member of the DNMT family,

TRDMT1 (tRNA aspartic acid methyltransferase 1, most com-

monly known as DNMT2), long considered a DNMT, has

seemingly shifted substrate and is now known to methylate

tRNA, not DNA (Goll et al.2006; Lyko 2017). It is generally

assumed that these functions are conserved in insects (Wang

et al. 2006). This assumption is supported by the observation

that the absence of DNMT1 and DNMT3 is associated with

the loss or extreme reduction of DNA methylation in D. mel-

anogaster (Raddatz et al. 2013). However, in contrast to

mammals, the DNMT toolkit of insects that show substantial

levels of DNA methylation in their genomes is not conserved.

For example, the silk moth, Bombyx mori, has empirically de-

termined DNA methylation, but lacks copies of DNMT3

homologs from its genome (Xiang et al. 2010; Bewick et al.

2017). Thus, functional methylation systems in insects can be

realized in the absence of DNMT3. The frequency of DNMT3

loss in different lineages is, however, unknown due to a lack

of extensive comparative data.

Whereas DNMTs are responsible for generating methylcy-

tosine (5mC) residues, Tet dioxygenases are shown to convert

5mC to hydroxymethylcytosine (5hmC) in many animal spe-

cies (Pastor et al 2013). In contrast to mammals which harbor

three Tet paralogs, invertebrate species, including some

insects, seem to encode a single Tet homolg without a char-

acterized function in the majority of cases (Pastor et al 2013;

Wojciechowski et al 2014). In the honey bee, it was recently

shown that the single Tet enzyme is capable of converting

5mC to 5hmC (Wojciechowski et al 2014). However, Tet

enzymes may display functional promiscuity in insects,

because a Tet homolg seems to mediate N6-methyladenine

demethylation and 5mC demethylation in the D. mela-

nogaster DNA and mRNA, respectively (Zhang et al. 2015;

Delatte et al. 2016). The distribution of Tet enzymes in insects

and its relationship to the presence of 5mC is currently not

known.

Comparative analyses using experimental data have

shown that the levels of gene body methylation of the silk

moth and the honey bee are substantially lower compared

with other invertebrates (sea squirt, Ciona intestinallis, and

sea anemone, Nematostella vectensis; Sarda et al. 2012).

These results have fueled the hypothesis that DNA methyl-

ation was reduced in the ancestors of insects (Glastad et al.

2014). However, experimental and computational evidence

from research on hemimetabolous lineages point to signif-

icantly elevated DNA methylation levels in species belonging

to Orthoptera, Phasmatodea, and Isoptera compared with

certain Hymenoptera and B. mori (Krauss et al. 2009;

Falckenhayn et al. 2013; Glastad et al. 2013, 2016;

Terrapon et al. 2014). Thus, the validity of the proposed

hypothesis on the ancestral state of DNA methylation in

insects is questionable.

The methylomic profiling of insects, mostly representing

Hymenoptera, and to a lesser extent Lepidoptera and

Coleoptera, revealed largely similar patterns of DNA methyl-

ation, primarily targeted to exons of protein-coding genes

(Lyko et al. 2010; Xiang et al. 2010; Bonasio et al. 2012;

Wang et al. 2013; Cunningham et al. 2015; Patalano et al.

2015; Libbrecht et al. 2016; Rehan et al. 2016; Standage et al.

2016). Additionally, genes targeted by DNA methylation were

ubiquitously expressed among various tissue types (Foret et al.

2012; Xiang et al. 2010), among different morphs in ants

(Bonasio et al. 2012; Libbrecht et al. 2016), and among de-

velopmental stages in the parasitoid wasp, Nasonia vitripennis

(Wang et al. 2013). Gene ontology annotations showed that

the majority of these genes mostly serves basic cellular func-

tions, exhibit a highly methylated state among species, and

are highly conserved at sequence level (Elango et al. 2009;

Lyko et al. 2010; Hunt et al. 2013; Wang et al. 2013;

Cunningham et al. 2015; Rehan et al. 2016). These patterns

are even found when comparing orthologous genes among

distantly related invertebrates (Sarda et al. 2012). These find-

ings strongly imply that the targeting of DNA methylation in

insect genomes is nonrandom, but a solid explanation for this

observation remains elusive.

The aim of the present study is to improve our understand-

ing of the evolution of DNA methylation in insects.

Specifically, we focused on the hypothesis stating that

DNA methylation has been reduced in the ancestors of

insects (Glastad et al. 2014). For this purpose, we analyzed

whole-body transcriptomes and genomic data (protein-

coding sequences and predicted proteins) of 143 insect

species, representing all 32 currently recognized insect

orders, and eleven outgroup species. First, we document

the presence or absence of DNA methyltransferases
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(DNMT1, DNMT3). Second, we use the normalized CpG

dinucleotide content (CpG observed/expected or simply

CpG o/e) to predict the occurrence and estimate the levels

of DNA methylation in protein-coding sequences. The last

approach provided the means to assess the relationship

between DNA methylation and the evolutionary conserva-

tion of genes across insects.

We found that, unlike in vertebrates, the phylogenetic dis-

tribution of DNMT1 in insects is much wider compared with

DNMT3. On the basis of the patterns of CpG o/e distributions,

our data suggest that DNA methylation is widespread among

insect orders. More importantly, we estimate DNA methyla-

tion levels of protein-coding sequences to be significantly

higher in hemimetabolous insects than in Holometabola.

Finally, we show that single-copy genes present across insects

tend to display signs of heavy DNA methylation compared

with the genomic background. Our analyses point to a com-

plex DNA methylation landscape in insects and set the basis

for large scale comparative analyses using direct measure-

ments of DNA methylation.

Materials and Methods

Data Acquisition

We identified DNMTs, Tet dioxygenases, and calculated CpG

o/e ratios of 102 transcript assemblies from the 1KITE project

(www.1kite.org) representing species of all extant insect

orders (Misof et al. 2014); we used the latest version of all

1KITE assemblies (supplementary table S1, Supplementary

Material online). Details concerning sequencing and assembly

are described by Misof et al. (2014) and Mayer et al.

(2016). We appended the 1KITE data with additional

transcriptomic and genomic (CDS and predicted proteins)

data of 53 arthropod species obtained from public and

other resources (supplementary table S2, Supplementary

Material online). For orthology assessment (see below), we

used the 1KITE species, the aforementioned published

transcriptomes, and 14 arthropod official gene sets previ-

ously used by Misof et al. (2014, supplementary tables S2,

S4; in this study, supplementary table S3, Supplementary

Material online).

Identification of DNMTs and Tet Dioxygenases

To search for DNMT1, DNMT3, TRDMT1, and Tet homologs

in the transcriptomes and genomes presented previously, we

constructed profile Hidden Markov Models (pHMMs) for the

proteins in question (all pHMMs are available at: doi:

10.17632/8y5wm8887b.3). Amino-acid sequences of arthro-

pod DNMTs and Tet proteins were downloaded from

OrthoDB using the text-based search option (Kriventseva

et al. 2015; Zdobnov et al 2017). Subsequently, we aligned

each group of orthologous sequences using MAFFT L-INSI

(Katoh and Standley 2013) and generated pHMMs from

each alignment using HMMER 3.1b1 (www.hmmer.org).

We translated transcript sequences into all six possible read-

ing frames with Exonerate, version 2.2.0 (Slater and Birney

2005) and searched with each pHMM the translated tran-

scriptome and genome (predicted proteins) data using

hmmsearch with default options (HMMER 3.1b1).

Because DNMT1, DNMT3, and TRDMT1 share a homolo-

gous DNA methylase domain (Pfam-accession no. PF00145),

some sequences were identified as common candidates

among these three proteins. Consequently, we removed re-

dundant candidate sequences by keeping the ones with low-

est e-value. Furthermore, we excluded all candidate

sequences with an e-value >10�5 from downstream analy-

ses. To determine whether or not the candidate sequences

were properly annotated as DNMT1, DNMT3, or TRDMT1, we

introduced the following levels of control. First, we used

blastp (BLASTþ v 2.2.28, Camacho et al. 2009) to search

candidate sequences against N. vitripennis OGS v 2.0

(Munoz-Torres et al. 2011). We selected N. vitripennis as ref-

erence because it possesses a well-characterized DNMT toolkit

(Werren et al. 2010). We excluded all candidate sequences

that did not match a corresponding Nasonia DNMT as a best

hit. Second, we scanned all remaining candidate sequences

with a Nasonia match against Pfam-A pHMM library (version

27, Finn et al. 2014) and kept only the ones that did contain a

characteristic DNA methylase or DNMT1-RFD domain

(PF12047 which is a unique DNMT1 domain).

Tosearch forTetproteins,wecomparedcandidateamino-

acid sequences with the Pfam-A pHMM library (version 27,

Finn et al. 2014) and retained only the ones that contained an

annotated Tet-JBP domain (Pfam-accession no. PF12851)

(for a detailed process on the identification of DNMTs and

Tet, see Supplementary Material sections 1 and 2).

Calculation of Normalized CpG Dinucleotide Content
(CpG o/e)

The normalized CpG dinucleotide content can serve as a

proxy for the presence of DNA methylation, because cytosines

targeted by DNA methylation are prone to spontaneous de-

amination into thymines, leading to a gradual reduction of

CpG dinucleotides, termed CpG depletion. Therefore, in ge-

nomic regions that are subject to intense germline methyla-

tion over evolutionary time, CpGs are underrepresented. In

contrast, regions with limited germline methylation maintain

a high CpG content (Bird 1980). In insects and other inverte-

brates with considerable levels of DNA methylation in their

genomes, two classes of genes are present, one with low CpG

o/e (high germline DNA methylation) and another with high

CpG o/e (low germline DNA methylation). Thus, a bimodal

CpG o/e distribution typically occurs in such cases. In contrast,

in species with very low or no DNA methylation, only one class

of genes is expected, signified by a unimodal CpG o/e distri-

bution and lack of CpG depletion.

Reduced DNA Methylation Levels in Holometabola GBE
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We calculated the normalized CpG dinucleotide content

using the following equation:

CpGo=e ¼ PCpG

PC � PG

where PCpG, PC, and PG are the frequencies of 50-CpG-3

dinucleotides, C nucleotides and G nucleotides, respectively,

estimated from each sequence. In addition, we plotted dis-

tributions of the normalized GpC content, to control for

causative factors unrelated to DNA methylation, like GC

content (Fryxell and Moon 2005). We excluded sequences

containing <200 nucleotides or containing >5% ambigu-

ous nucleotides (N) from the calculation of normalized

dinucleotide content. Furthermore, we excluded all nucleo-

tide sequences with a normalized dinucleotide content

equal to zero from any downstream analyses. All analyses

were carried out using custom-made Perl and R (R Core

Team 2016) scripts.

Inferring the Presence of DNA Methylation Based on CpG
o/e Distributions

Species like the honeybee, A. mellifera, and the pea aphid,

Acyrthosiphon pisum, in which DNA methylation has been

experimentally verified, display clear bimodal CpG o/e distri-

butions in protein-coding sequences with two distinct com-

ponents, one with low CpG o/e and one with high CpG o/e

values. A bimodal CpG o/e distribution may thus serve as an

indication for the presence of DNA methylation. However,

species with experimentally verified DNA methylation, like

the branchiopod Daphnia pulex, the silk moth B. mori, and

the beetle Nicrophorus vespilloides, lack clearly defined bimo-

dality in protein-coding sequences, but the presence of DNA

methylation is indicated due to an extensive tail spanning to-

wards the low CpG o/e part of their distributions (Glastad

et al. 2011; Sarda et al. 2012; Cunningham et al. 2015). In

contrast, species like D. melanogaster and T. castaneum in

which DNA methylation in protein-coding sequences is ex-

tremely reduced or absent, display a unimodal, almost normal

CpG o/e distribution, with a mean around one (D. mela-

nogaster �0.89, T. castaneum �1.1; Elango et al. 2009).

Using these empirically well-documented cases, we defined

a set of criteria to infer the presence of DNA methylation

based on the modality of CpG o/e distributions. To test the

modality of CpG o/e distributions, we used the Gaussian mix-

ture modeling software package mclust (v 5.2) similar to Park

et al. (2011) and fitted two Gaussian distributions in the CpG

o/e and GpC o/e distributions of each species in question. We

consider the following criteria as sufficient evidence for the

presence of germline DNA methylation in protein-coding

sequences of a species:

1. a CpG o/e distribution is bimodal, with one class of genes

showing signs of CpG depletion. To identify bimodality,

we expect the absolute difference of the means of the

two fitted Gaussian distributions to be 0.25 or higher,

provided that one of the means is <0.7. Furthermore,

the proportion of data belonging to the smallest of the

fitted components should be>0.1. These criteria of bimo-

dality should not be fulfilled by the GpC o/e distribution,

which is unaffected by DNA methylation. A CpG o/e dis-

tribution fulfilling this set of criteria is described as

“bimodal depleted” (fig. 1a).

2. In the absence of clearly defined bimodality, as observed

in B. mori and D. pulex, we do not expect the criteria of

bimodality to apply. However, in both these species a

large proportion of data belongs to the smallest of the

two fitted distributions (0.36 in B. mori and 0.43 in D.

pulex). If we apply such criteria, we can identify species

with similar CpG o/e distributions which, based on em-

pirical evidence, should indicate the presence of DNA

methylation. Therefore, we set the threshold for the pro-

portion of smallest of the fitted normal distributions to

0.36 or higher (equal to that of B. mori or higher). This

should not apply to the corresponding GpC o/e distribu-

tion. The CpG o/e distributions of these species are de-

scribed as “unimodal, indicative of DNA methylation”

(fig. 1b and c).

If the above criteria did not apply, we considered the

evidence as insufficient to infer the presence of DNA meth-

ylation. The CpG o/e distributions of these species are de-

scribed as “unimodal, not indicative of DNA methylation”

(fig. 1d). We acknowledge that these criteria are conserva-

tive. However, we think that missing true positives is likely

less misleading than building conclusions based on false

positives.

Phylogenetic Generalized Least Squares (PGLS) Analysis

We used PGLS to correlate estimations of DNA methylation in

protein-coding sequences (continuous dependent variable;

obtained from Bewick et al. 2017) to the mode of develop-

ment (categorical independent variable, binary coded as hem-

imetabolism or holometabolism) in 26 holometabolous and

14 hemimetabolous insect species (supplementary table S1 in

Bewick et al. 2017). The multilocus coalescent tree estimated

by Bewick et al. (fig. 1 in Bewick et al. 2017) was used to

control for statistical nonindependence between species

traits. To perform PGLS, we used the R packages ape

(Paradis et al. 2004) and nlme (Pinheiro et al. 2017).

Orthology Assessment

We used an ortholog set of 1,478 protein-coding genes that

are single-copy in twelve reference species (Misof et al. 2014).

We used Orthograph version 0.5.4 (Petersen et al. 2017) to

identify the protein-coding sequences of orthologs of the

1,478 single-copy genes in 129 additional species (see

Provataris et al. GBE
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supplementary tables S1 and S3, Supplementary Material on-

line in this study; supplementary tables S1, S2, and S4,

Supplementary Material online in Misof et al. 2014). We ap-

plied a relaxed setting for the reciprocal best hit search to any

of the reference species included in the ortholog set. In all

identified orthologs (see supplementary table S4,

Supplementary Material online), we subsequently masked

stop codons and Seleocysteine with X in the predicted

amino-acid sequences and with NNN in the coding nucleotide

sequences (CDS). We then aligned all orthologous amino-acid

sequences as outlined by Misof et al (2014), including check

for suspiciously aligned outlier sequences, alignment–refine-

ment of identified outliers, and exclusion of persistent outliers.

Subsequently, we generated corresponding multiple se-

quence alignments (MSAs) on nucleotide level with the soft-

ware pal2nal (Suyama et al. 2006), using the amino-acid

MSAs as blueprint. Finally, the 1,478 MSAs on nucleotide level

served as basis for CpG o/e calculations (see Supplementary

Material, section 3, Supplementary Material online).

Results

DNMT1 Homologs Are Likely Indispensable for
Maintaining a Functional Methylation System in Insects

We characterized the occurrence of DNMTs and Tet proteins

in the investigated insect and outgroup species by using

pHMMs constructed from orthologous protein sequences of

arthropods for each of the proteins in question. With these

pHMMs at hand, we searched transcriptomes representing all

insect orders, crustaceans and myriapods. Transcriptomic data

were complemented by genomic data (protein predictions) of

species belonging to nine insect orders (Collembola, Isoptera,

Hemiptera, Psocodea, Hymenoptera, Strepsiptera,

Coleoptera, Lepidoptera, and Diptera) plus crustaceans, myr-

iapods, and a chelicerate (see Materials and Methods).

We identified homologous sequences of DNMT1 in species

belonging to all insect orders and outgroups, except

Collembola (seven species, including three with sequenced

genomes), Diptera (13 species, including three with

FIG. 1.—Distinct types of CpG o/e distributions in protein-coding sequences of four insect species. A mixture of two Gaussian distributions was fitted to

the data using mclust (v. 5.2). Dark red and dark blue dashed lines correspond to the means of each fitted distribution (meanlow and meanhigh, respectively).

(a) Apis mellifera displays a clearly bimodal CpG o/e distribution, with one component displaying low CpG o/e values (sequences mostly affected by CpG

depletion) and the other one high (sequences less affected by CpG depletion). We describe the CpG o/e distribution of A. mellifera as “bimodal

depleted” since difference between the component means is >0.25 (meanhigh - meanlow¼0.61), whereas the low CpG o/e component has a mean

<0.7 (meanlow¼0.47). (b, c) Bombyx mori and Daphnia pulex lack clearly defined bimodality (meanhigh - meanlow<0.25 and meanlow>0.7 in both

cases), but their low CpG o/e component displays a characteristic extensive tail, which contains a significant proportion of data (0.36 and 0.43,

respectively). We describe distributions that lack clearly defined bimodality similar to B. mori and D. pulex, but their smallest component contains a

significant proportion of data (proportionlow¼0.36 or higher) as “unimodal, indicative of DNA methylation.” (d) Finally, Drosophila melanogaster,

which is almost devoid of DNA methylation from protein-coding sequences, displays a clearly unimodal CpG o/e distribution with two component

means being almost identical (meanhigh - meanlow¼0.004), show no signs of significant CpG depletion (meanlow¼0.886), and the proportion of data

belonging to the smallest component is very low (proportionlow¼0.087<0.36). We describe the CpG o/e distribution of D. melanogaster as

“unimodal, not indicative of DNA methylation.”
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sequenced genomes), and Strepsiptera (two species, includ-

ing one with a sequenced genome; fig. 2; supplementary

table S5, Supplementary Material online). DNMT3 homologs

were not identified in species belonging to these three orders

either, which apparently lack all currently known cytosine-

specific DNMTs. In contrast to DNMT1, DNMT3 was sparsely

found in insects, being present in species belonging to only

seven out of 32 insect orders (Hemimetabola: Diplura,

Orthoptera, Isoptera, Hemiptera, and Thysanoptera;

Holometabola: Hymenoptera and Coleoptera), plus species

of crustaceans and myriapods (fig. 2; supplementary table

S5, Supplementary Material online). Within hemimetabolous

insects, DNMT3 was absent from Palaeoptera (seven species)

and the polyneopteran clade formed by Mantophasmatodea,

Grylloblattodea, Embioptera, and Phasmatodea (eight spe-

cies). Within Holometabola, DNMT3 was lacking from

Neuropterida (eight species) and Mecopterida (40 species;

fig. 2).

The tRNA methyltransferase TRDMT1 was the most com-

monly found enzyme in our data set being present in species

belonging to 31 out of 32 insect orders (140/154 species

possessed putative TRDMT1 homologs). TRDMT1 was absent

from the transcriptome of the only representative of

Zoraptera in our data set, Zorotypus caudeli (supplementary

table S5, Supplementary Material online).

We identified homologous sequences of Tet dioxygenases

in species belonging to 25 out of 32 insect orders, plus species

belonging to all three outgroups (supplementary table S6,

Supplementary Material online). Within hemimetabolous

insects, Tet homologs are apparently missing in

Arachaeognatha (two species), in the polyneopteran clade

formed by Mantophasmatodea, Grylloblattodea,

Embioptera, and Phasmatodea (eight species), and in

Mantodea (three species). Within Holometabola, only

Strepsiptera lack Tet homologs (two species). We have to

note that Tet homologs were consistently identified in

genomes (28/30), but not in transcriptomes (52/124).

CpG o/e Patterns Suggest DNA Methylation Being
Taxonomically Widespread in Winged Insects

In order to infer the occurrence of DNA methylation in insects,

we calculated CpG o/e ratios of protein-coding sequences in

143 species covering all insect orders and eleven additional

outgroup species (see Materials and Methods). CpG o/e has

been widely used as a proxy for estimating the patterns and

levels of DNA methylation in various species of invertebrates

(Suzuki et al. 2007; Elango et al. 2009; Glastad et al. 2013)

with high concordance to empirical measurements (Glastad

et al. 2011; Sarda et al. 2012).

Applying a set of stringent criteria (see Materials and

Methods), we identified CpG o/e distributions pointing to

the presence of DNA methylation in species belonging

to 24 out of 32 total insect orders (fig. 2; supplementary

fig. S1; table S7, Supplementary Material online).

Furthermore, our data suggest that DNA methylation is ap-

plied by close relatives of insects, as we found signatures of

DNA methylation in crustaceans (four out of seven species),

FIG. 2.—Occurrence of DNA methyltransferases and DNA methyla-

tion in investigated species. We plotted the presence of DNA methyltrans-

ferases (DNMT1, DNMT3) on a phylogram representing the phylogenetic

relationships among all investigated species. Additionally, we plotted the

presence of DNA methylation as inferred by the CpG o/e distributions of

investigated species on this phylogram (DNMT1: dark gray, DNMT3: light

gray, DNA methylation: red). The phylogenetic relationships of depicted

insect orders and outgroups are congruent with the proposed relationships

in Misof et al. (2014). DNMT1 is found in species belonging to all insect

orders except in Collembola, Strepsiptera, and Diptera. DNMT3 was only

identified in seven insect orders. Methylation-indicative CpG o/e distribu-

tions were identified in species belonging to 24 insect orders plus crusta-

cean and myriapod species. PALAE, Palaeoptera; COND, Condylognatha;

NEUROPTER, Neuropterida.
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including the only representative of remipedes (the proposed

sister group of insects; Misof et al. 2014) Xibalbanus tulumen-

sis, and in the diplopod, Glomeris pustulata (fig. 2; supple-

mentary fig. S1; table S7, Supplementary Material online).

Interestingly, however, CpG o/e distributions pointing to the

presence of DNA methylation were not consistently observed

in apterygote insect orders, as only species of Diplura (one out

of two species) and Zygentoma (two out of three species), but

not Protura (one species), Collembolla (seven species), or

Archaeognatha (two species) showed signs strongly suggest-

ing the occurrence of DNA methylation. In contrast, we found

consistent evidence for the occurrence of DNA methylation in

winged hemimetabolous insects, including all representatives

of Palaeoptera (all seven species), all polyneopteran orders,

except Dermaptera (24 out of 27 species), and many repre-

sentatives of Condylognatha (Hemiptera [ten out of 16 spe-

cies], Thysanoptera [all three species]; fig. 2; supplementary

fig. S1; table S7, Supplementary Material online). CpG o/e

distributions strongly suggesting the presence of DNA meth-

ylation are comparatively sparse in Holometabola (17 out of

70 species in total). Representatives of Diptera (15 species),

Neuroptera (four species), Raphidioptera (two species), and

Strepsiptera (two species) showed no signs of DNA methyla-

tion. These results show that CpG o/e distributions pointing to

the presence of germline DNA methylation in protein-coding

sequences can be easily tracked in the majority of hemime-

tabolous insects, but are largely absent from holometabolous

species.

We did not identify CpG o/e distributions pointing to the

presence of DNA methylation in any of the species belonging

to eight insect orders (i.e., Protura, Collembola,

Archaeognatha, Dermaptera, Neuroptera, Raphidioptera,

Strepsiptera, and Diptera). However, in certain species be-

longing to Archaeognatha, Collembola, Diptera, and

Protura, unimodal CpG o/e distributions displayed low mean

values (below 0.9 and as low as�0.7) whereas corresponding

GpC o/e distributions displayed mean values close to the

expected ones under random chance (mean �0.9 or higher;

supplementary table S7, Supplementary Material online).

These mean CpG o/e values are lower than the ones observed

in species with extremely reduced or no DNA methylation

(Aedes aegypti �1.1, Anopheles gambiae �1.0, D. mela-

nogaster �0.9, T. castaneum �1.1).

Normalized CpG Content Points to Lower Levels of DNA
Methylation in Holometabola

Normalized CpG content constitutes a powerful means for

drawing conclusions not only for the patterns, but also for

the levels of genomic DNA methylation (Yi and Goodisman

2009). Thus, we calculated the mean CpG o/e value of each

transcriptome included in our analysis. First, we compared

mean CpG o/e values of holometabolous insects (52 species),

to those of hemimetabolous insects (67 species) and outgroup

species (six crustacean and two myriapod species; fig. 3a).

Holometabolous insect species exhibited higher overall

mean CpG o/e values (lower mean germline DNA methyla-

tion) in protein-coding sequences compared with both hemi-

metabolous insects and outgroups (Kruskal–Wallis H test,

P< 0.001; ignoring phylogenetic relatedness). Subsequently,

we compared mean CpG o/e values of insect species sepa-

rated by order (fig. 3c). The majority of species belonging to

hemimetabolous insect orders shows lower mean CpG o/e

values than species belonging to holometabolous orders, ex-

cept Dermaptera and Psocodea. Species belonging to

Zygentoma, Odonata, and most polyneopteran orders (ex-

cluding Dermaptera) consistently display very low mean

CpG o/e values, with Mantodea representing the most ex-

treme example. Condylognathan species (i.e., Hemiptera

and Thysanoptera) tend to display higher mean CpG o/e val-

ues than most Polyneoptera, but still clearly lower values than

species belonging to orders of Holometabola. Proturan, col-

lembolan, and dipluran species exhibit higher mean values

than species of Palaeoptera and Polyneoptera, with the ex-

ception of Dermaptera. In conclusion, mean CpG o/e values

suggest lower levels of germline DNA methylation in the

protein-coding sequences of Holometabola and their closest

relatives, Psocodea (Misof et al. 2014).

Despite offering a decent first approximation on the levels

of DNA methylation within genes (Sarda et al. 2012), CpG o/e

is also suggested to be influenced by other factors, such as

local GC content (Fryxell and Moon 2005) and recombination

or gene conversion (Kent et al. 2012), for which we cannot

currently control. Furthermore, certain insect lineages (most

commonly Hymenoptera) are known to possess high mean

CpG o/e values, genome-wide (Simola et al. 2013). Thus, we

tested whether our observation that levels of DNA methyla-

tion are lower in protein-coding sequences of Holometabola

compared with hemimetabolous insects still holds when using

experimental DNA methylation data. To do that, we exploited

the recently published and most comprehensive to date insect

DNA methylation data set, encompassing holometabolous

species from four orders (Hymenoptera, Coleoptera,

Lepidoptera, and Diptera) and hemimetabolous species

from three orders (Isoptera, Blattodea, and Hemiptera) pub-

lished by Bewick et al. (2017).

We performed a PGLS analysis, to measure the strength of

phylogenetic signal (following the definition by Revell et al

2008) between DNA methylation in protein-coding sequen-

ces and the mode of insect development (hemimetabolism or

holometabolism). To measure phylogenetic signal we used

Pagel’s lambda (k; Pagel 1999). In brief, a k equal to one

(k1) corresponds to traits being as similar among species as

expected from the phylogenetic tree, assuming a Brownian

motion model of evolution. In contrast, a k equal to zero (k0)

suggests species traits evolving independently from the phy-

logenetic tree. We estimated weak phylogenetic signal be-

tween DNA methylation and the mode of insect
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development (kml¼ 0.047). Most importantly, kml was signif-

icantly different from k1, but not significantly different from

k0 (supplementary table S8, Supplementary Material online).

Thus, we can directly compare DNA methylation values be-

tween holometabolous and hemimetabolous insects as the

traits in this data set are independent from the given phylog-

eny. Similar to our CpG o/e comparisons, we found that ho-

lometabolous insects tend to display significantly lower DNA

methylation levels in protein-coding sequences compared

with hemimetabolous insects (Mann–Whitney U test,

P< 0.001; fig. 3b).

Single-Copy Genes across All Insect Orders Show Signs of
High DNA Methylation

Sarda et al. (2012) showed that most evolutionarily conserved

genes tend to be highly methylated among four distantly re-

lated invertebrates. We investigated whether there is a

FIG. 3.—(a) Comparison of mean normalized CpG dinucleotide content (CpG o/e) among species belonging to Holometabola (52 species, violet box

plot), Hemimetabola (67 species, orange box plot), and other arthropod outgroups (8 species, white box plot) based on investigated transcriptomes (127

species in total, representing all currently recognized insect orders plus crustacean and myriapod outgroups). We tested whether the difference of mean CpG

o/e values among Hemimetabola, Holometabola, and outgroups was significant with a Kruskal–Wallis H test (P<0.001). (b) Comparison of CG DNA

methylation levels between the protein-coding sequences of 14 hemimetabolous and 26 holometabolous insect species. Holometabolous species display

lower levels of DNA methylation in protein-coding sequences compared with hemimetabolous species (Mann–Whitney U test P<001). (c) Comparison of

mean CpG o/e values of species described in (a) separated by insect order. The CpG o/e levels strongly vary among insect orders, but orders of Holometabola

show higher overall mean CpG o/e values than orders belonging to hemimetabolous insects.
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congruent pattern among insects. For this purpose, we ana-

lyzed a set of 1, 478 clusters of nuclear-encoded protein-cod-

ing genes that have been retained in single-copy across

insects and whose DNA sequences we obtained from the

genomes and transcriptomes of 141 species representing all

insect orders and other arthropods (Misof et al. 2014). For

each transcriptome/official gene set we compared the CpG o/

e distribution of all transcripts/genes with the CpG o/e distri-

bution of the corresponding set of single-copy genes. We

found that in species that possess methylation-indicative

CpG o/e distributions, these single-copy genes tend to be

overrepresented among low CpG o/e genes (supplementary

fig. S2, Supplementary Material online). To clearly display this

relationship, we compared the median CpG o/e value of all

transcripts/genes to the median CpG o/e value of the single-

copy gene set of each species. Specifically, we selected a con-

servative set of taxa that according to our analysis and/or

empirical evidence do not display signs of DNA methylation

(i.e., lack of DNMT1 and DNMT3 accompanied by a CpG o/e

distribution that does not indicate the presence of DNA meth-

ylation, or experimentally verified lack of CG DNA methylation

from protein-coding sequences), namely Collembola,

Strepsiptera, and Diptera (see Discussion), plus two beetles

(Coleoptera), T. castaneum and Dendroctonus ponderosae,

and calculated a linear regression between the median CpG

o/e values of all transcriptomes/official gene sets and the cor-

responding set of single-copy genes. Using these taxa as ref-

erence, we found that in a number of species the calculated

median CpG o/e value of the set of single-copy genes is sig-

nificantly lower than the median CpG o/e value of the corre-

sponding transcriptome/official gene set (fig. 4;

supplementary table S9, Supplementary Material online).

Overall, we found that genes that are consistently present

across diverse insect lineages and possess highly conserved

amino-acid sequences tend to exhibit low CpG o/e values,

thus, high historical levels of germline DNA methylation.

Discussion

The Taxonomic Distribution of DNMTs in Insects

Our results suggest that DNMT1 was present in the last com-

mon ancestor of all insects and the last common ancestor of

each extant insect order, except Collembola, Diptera, and

Strepsiptera. Furthermore, our results are in agreement with

previously published work on species of Diptera (reviewed by

Glastad et al. 2011; Falckenhayn et al. 2016; Bewick et al.

2017) and Strepsiptera (Niehuis et al. 2012). The losses of

DNMT1 in Collembola, Strepsiptera, and Diptera are certainly

evolutionarily independent phenomena, because phyloge-

netic reconstructions rule out a close relationship among

these lineages (Misof et al. 2014). We conclude that the

loss of DNMT1 in insects is an evolutionarily rare event. In

contrast, DNMT3 has been possibly lost numerous times

during the evolutionary history of insects. Independent

DNMT3 gains constitute an unlikely scenario for insects

(Bewick et al. 2017). We did not identify DNMT3 in major

insect groups such as Mecopterida, Palaeoptera,

Neuropterida, and most Polyneoptera (except Orthoptera

and Isoptera). However, the absence of DNMT3 from the

inspected transcriptomes could be attributed to low or no

expression of the corresponding gene. For example, we did

not find DNMT3 in the transcriptome of the brown planthop-

per, Nilaparvata lugens, although it was shown that DNMT3 is

weakly expressed in all life stages, but the mated and gravid

females of this species (Zhang et al. 2015). In Mecopterida,

our dense taxonomic sampling (40 species) combined with

the availability of sequenced genomes provide congruent ev-

idence for the loss of DNMT3 in this clade (Misof et al. 2014).

Furthermore, Bewick et al. (2017) did not identify DNMT3 in

the genomes of two palaeopteran species, in congruence

with our results. The case is less clear in Neuropterida and

Polyneoptera (excluding Isoptera and Orthoptera). In these

clades, our species sampling per order is comparatively low

FIG. 4.—Comparison of the median CpG o/e value of all transcripts/

genes of a transcriptome/official gene set (complete median) with the

median CpG o/e value of a subset of 1,478 single-copy genes with ortho-

logs across 141 insect and other arthropod species (ortholog median).

Black dots indicate species with no signs of DNA methylation according

to our analysis and/or experimental evidence (species from the orders

Collembola, Strepsiptera, Diptera, plus two beetles, Dendroctonus ponder-

osae and Tribolium castaneum). On the basis of the median CpG o/e values

of these species, we calculated a linear regression (black solid line). The

black dashed lines indicate the confidence intervals and the black dash-

dotted lines indicate the prediction intervals that were calculated based on

this regression. Species in which the median CpG o/e of single-copy genes

is significantly lower than the median CpG o/e of the transcriptomic/ge-

nomic background are colored red (dots below the lower dash-dotted

line). The remaining species are shown in gray.
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and sequenced genomes were not yet published. To con-

clude, DNMT1 and DNMT3 do not constitute an indispensable

functional pair in insects (in contrast to vertebrates), because

the insect DNMT toolkit seems to be mainly comprised of

DNMT1 homologs.

CpG o/e Patterns When DNMTs Are Present

On the basis of CpG o/e distributions, it is reasonable to as-

sume that species belonging to Trichoptera, Siphonaptera,

Lepidoptera, Mecoptera (all belong to Mecopterida),

Odonata, and Ephemeroptera (together form Palaeoptera)

possess functional methylation systems despite the apparent

loss of DNMT3. DNA methylation occurs in species belonging

to 20 additional insect orders based on indicative CpG o/e

distributions and DNMT3 complemented DNMT1 in just seven

of them. Thus, our data indicate that DNA methylation is

established and maintained without DNMT3 homologs in a

possibly wide range of insect taxa. In Protura, Archaeognatha,

Dermaptera, Raphidioptera, and Neuroptera, only copies of

DNMT1 were found in at least one species per order, but the

corresponding CpG o/e distributions are not unequivocally

pointing to the presence of DNA methylation. However,

some insect species with experimentally verified DNA meth-

ylation at protein-coding sequences lack bimodal CpG o/e

distributions despite the presence of either DNMT1 or both

DNMT1 and DNMT3 (Glastad et al. 2011; Oxley et al. 2014;

Libbrecht et al. 2016). Therefore, DNA methylation probably

occurs at an even higher number of insect orders than the

ones specified here.

The likely presence of CG methylation in protein-coding

sequences of multiple insect taxa despite the absence of

DNMT3 homologs, shows that the definition of a functional

methylation toolkit needs to be redefined in insects. In certain

species, like B. mori or the paper wasp Polistes canadensis,

which possess a single DNMT1 homolog as their only identi-

fied DNMT (Xiang et al. 2010; Patalano et al. 2015), it is

possible that DNA methylation is introduced and maintained

by this one enzyme (Maleszka 2016). However, in some

insects, including multiple Hymenoptera and the human

body louse, P. humanus, which also lacks DNMT3, more

than one DNMT1 homologs are present (Glastad et al.

2011; Lyko and Maleszka 2011). Thus, certain DNMT1 paral-

ogs may have shifted their function and are able to methylate

de novo and/or in contexts other than CG, similar to verte-

brate DNMT3 enzymes. Another scenario is that a novel and

currently unknown enzymatic machinery may be able to carry

out DNA methylation in insects (Glastad et al. 2011; Maleszka

2016).

CpG o/e Patterns When DNMT1 and DNMT3 Are Absent

It has been shown that the absence of DNMT1 and DNMT3

from the genomes of invertebrate species, including the dip-

teran insects, A. aegypti, Aedes albopictus, A. gambiae, and

D. melanogaster, the nematode, Caenorhabditis elegans, and

the trematode Schistostoma mansonii, is correlated with the

absence or extreme reduction of DNA methylation (Simpson

et al. 1986; Raddatz et al. 2013; Falckenhayn et al. 2016;

Bewick et al. 2017). In line with this observation, we did not

identify DNMT1, DNMT3, or methylation-indicative CpG o/e

distributions in protein-coding sequences of species belonging

to Collembola, Diptera, and Strepsiptera. Thus, because DNA

methylation is predominantly found in CG context at protein-

coding sequences across insects (Bewick et al. 2017), it is

highly probable that species in these three orders lack or

show extremely low levels of DNA methylation. Only

TRDMT1 homologs were identified in these species, reflecting

the predicted absence of DNA methylation. The potential

losses or extreme reductions of DNA methylation and its ac-

companying machinery in species belonging to three phylo-

genetically distinct insect lineages support the notion that

DNA methylation might not be vital for the proper ontoge-

netic development of various insect species (Lyko and

Maleszka 2011; Raddatz et al. 2013).

The Taxonomic Distribution of Tet Dioxygenases in Insects

Our results show that Tet dioxygenases are widely distributed

across insects, because we identified homologs in species be-

longing to most insect orders. The underrepresentation of

putative Tet homologs in transcriptomes compared with

genomes can be attributed to low or no expression of the

Tet gene and hence its absence from the analyzed transcrip-

tomes. The identification of Tet homologs in the genome, but

not the transcriptome of the springtail Folsomia candida or

the mountain pine beetle D. ponderosae substantiate this

idea. The presence of Tet homologs in species belonging to

Collembola and Diptera, in which according to our analyses

and/or experimental evidence (Bewick et al. 2017) DNA meth-

ylation is extremely reduced or absent is in line with the pro-

posed multifunctional role of Tet enzymes in insect genomes

(Maleszka 2016). In Collembola, Diptera, or other insects in

which DNA methylation is extremely reduced or absent, Tet

homologs may act as 6mA DNA demethylases and/or 5mC

mRNA demethylases, similar to their roles in D. melanogaster

(Zhang et al. 2015; Delatte et al. 2016). Thus, the presence of

Tet enzymes in insects may not be strictly correlated to its

most designated function, that is, 5mC DNA demethylation.

The Presence of DNA Methylation Is Ancestral to Insects

The identification of a complete DNMT toolkit and the pres-

ence of methylation-indicative CpG o/e distributions in crus-

taceans show that DNA methylation is probably ancestral to

insects. The absence of DNMTs from the transcriptome of the

remipede X. tulumensis should be considered a limitation of

this specific transcriptomic data set, because the species

shows signs of heavy CpG depletion of protein-coding

sequences, while no other remipede species was examined.
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Thus, the potential losses or extreme reductions of DNA meth-

ylation and its machinery from insect groups are secondary,

lineage-specific events (Glastad et al. 2011). This pattern

shows that DNA methylation is a dispensable epigenetic

mechanism for insects and its function may be compensated

by other molecular mechanisms (Glastad et al. 2011; Raddatz

et al. 2013).

DNA Methylation Has Been Reduced in Holometabola

The sparse presence of DNA methylation observed in holome-

tabolous species and comparative analyses between two ho-

lometabolous insects (A. mellifera and B. mori) and two other

invertebrates (N. vectensis and C. intestinallis; Sarda et al.

2012) led to the hypothesis that the levels of DNA methylation

may have been reduced in the ancestors of insects (Glastad

et al. 2014). However, our comparative analysis, combined

with experimental evidence from single-species studies, point

to a different scenario: The heavy CpG depletion of protein-

coding sequences observed in the majority of species belong-

ing to Zygentoma, Palaeoptera, Polyneoptera, and to a lesser

extent Condylognatha, suggests that DNA methylation levels

have been reduced in the ancestors of Holometabola, while

there is no indication that DNA methylation levels were al-

ready reduced in the ancestors of insects. Our analysis of

published empirical methylation data (Bewick et al. 2017)

backs this hypothesis. Furthermore, empirical evidence

obtained from direct measurements of DNA methylation in

Orthoptera (Schistocerca gregaria, Locusta migratoria),

Phasmatodea (Medauroidea extradentata), and Isoptera

(Zootermopsis nevadensis) and computational evidence from

analyzing Isoptera (Zootermopsis nevadensis, Coptotermes

lacteus, Reticulitermes flavipes) support this conclusion.

These polyneopteran species are, in comparison to holome-

tabolous insects, characterized by significantly elevated levels

of DNA methylation (Krauss et al. 2009; Falckenhayn et al.

2013; Glastad et al. 2013, 2016; Terrapon et al. 2014; Wang

et al. 2014). Alternatively, the high mean CpG o/e values of

Psocodea, the proposed sister group of Holometabola (Misof

et al. 2014), suggest a reduction in the levels of DNA meth-

ylation that already occurred in the last common ancestor of

Psocodea and Holometabola.

Evolutionary Conservation of Genes Is Strongly Associated
with DNA Methylation in Insects

We showed that a set of single-copy genes that are associated

with housekeeping functions (Misof et al. 2014) and have

orthologs in all insects tend to display signatures of heavy

DNA methylation in species with evident historical germline

methylation. Our result is in line with those of previous inves-

tigations showing that the majority of orthologs among four

distantly related invertebrates is extensively methylated (Sarda

et al. 2012) and reveals that most evolutionarily conserved

housekeeping genes have been strongly methylated through-

out insect evolution.

The evolutionary interconnection between DNA methyla-

tion and housekeeping genes may have a functional explana-

tion. Bird (1995) conjectured that intragenic methylation may

reduce transcriptional noise (high transcript variability) by sup-

pressing spurious transcription initiation in vertebrate

genomes. Both points of this hypothesis have recently re-

ceived support by studies on mammalian systems. First, Huh

and colleagues found that transcriptional noise is reduced in

heavily methylated human genes (Huh et al. 2013). Second,

Neri et al. (2017) showed that DNMT3-dependent intragenic

DNA methylation acts to prevent spurious transcription initia-

tion in mouse cells. Reducing transcriptional noise could be

especially beneficial for constitutively expressed housekeeping

genes (Suzuki et al. 2007). Thus, it is likely that intragenic DNA

methylation acts to reduce transcriptional noise on evolution-

arily conserved housekeeping genes in insects, perhaps with a

mechanism similar to the one described by Neri et al. (2017).

However, because many insect species that show signs of

intragenic DNA methylation seem to lack DNMT3 homologs,

a DNMT3-independent enzymatic machinery would contrib-

ute to a noise reduction mechanism in certain insects.

Conclusions

Our results provide an invaluable resource for experimental

studies designed towards continuing this line of work.

Experimental tests designed for investigating the functional

role of DNMT1 homologs should be applied, by employing,

for example, RNAi and/or CRISPR/Cas based methods, espe-

cially in DNMT3-deficient species. Additionally, large scale

comparative studies using direct measurements of DNA meth-

ylation, such as whole genome bisulfite sequencing, should

be conducted. Applying such approaches will not only aid in

estimating the levels of DNA methylation in certain lineages,

but also in determining the genomic targets of DNA methyl-

ation with accuracy, which in turn may provide important

insights towards understanding its function in insects.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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