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Abstract
An electron-vibrational coupling model that includes the vibronic (non-adiabatic) coupling between the Q 

y
 and Q 

x
 transi-

tions of chlorophyll (Chl), created by Reimers and coworkers (Scientific Rep. 3, 2761, 2013) is extended here to chlorophyll 
dimers with interchlorophyll excitonic coupling. The model is applied to a Chl a dimer of the water-soluble chlorophyll 
binding protein (WSCP). As for isolated chlorophyll, the vibronic coupling is found to have a strong influence on the high-
frequency vibrational sideband in the absorption spectrum, giving rise to a band splitting. In contrast, in the CD spectrum 
the interplay of vibronic coupling and static disorder leads to a strong suppression of the vibrational sideband in excellent 
agreement with the experimental data. The conservative nature of the CD spectrum in the low-energy region is found to be 
caused by a delicate balance of the intermonomer excitonic coupling between the purely electronic Q 

y
 transition and the Q 

y
 

transition involving intramolecular vibrational excitations on one hand and the coupling to higher-energy electronic transi-
tions on the other hand.

Keywords WSCP · Absorption · Circular dichroism

Introduction

Non-adiabatic couplings between different excited electronic 
states of chlorophyll (Chl) and related pigments in photo-
synthetic antennae give rise to a fast internal conversion of 
excitation energy to the first excited state S 1 , from where 
excitation energy transfer to the photosynthetic reaction 
center (RC) starts. In this way, the absorption spectrum of 
the RC is increased spectrally and spatially. Internal conver-
sion timescales in the 100 fs range have been reported both 
experimentally, using time-resolve spectroscopy (Shi et al. 
2005; Bricker et al. 2015; Meneghin et al. 2017; Song et al. 
2019; Do et al. 2022), and theoretically from non-adiabatic 
excited state molecular dynamics simulations (Bricker et al. 
2015; Zheng et al. 2017; Fortino et al. 2021).

For the two lowest excited states, S 1 and S 2 , the non-adia-
batic coupling is so strong that a quantum mechanic mixing 
between the S0 → S1 (termed Q y ) and the S0 → S2 (termed 

Q x ) transitions can occur. This mixing is particularly strong 
if the 0-1 transition of Q y and the 0-0 transition of Q x are 
in near resonance. Here, “0-1” refers to an electronic transi-
tion that is accompanied by the excitation of the first excited 
state of a high-frequency intramolecular vibrational mode 
and “0-0” is a purely electronic transition. Such a resonance 
condition is met, e.g., in Chl a and to a much lesser extent 
in bacteriochlorophyll a (Reimers et al. 2013).

In a landmark study, Reimers and coworkers (Reimers 
et al. 2013) provided compelling evidence for this mixing 
and thereby solved a long-standing puzzle concerning the 
assignment of the Q y vibrational sideband and the Q x tran-
sition (see Fig. 1). Using a simple model that includes a 
non-adiabatic coupling between the S 1 and S 2 states, which 
is assumed to be linear in the coordinate of a vibronic cou-
pling mode, and a remaining set of intramolecular modes 
that couple separately to the Q y and Q x transitions, they were 
able to explain the absorption, fluorescence, and magnetic 
circular dichroism spectra of 32 different chlorophyllides 
in various environments. We follow Reimers et al. and will 
call this non-adiabatic mixing between Q y and Q x “vibronic 
coupling”. Independent evidence for this vibronic coupling 
has been reported from polarized two-dimensional electronic 
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spectroscopy on Chl a (Song et al. 2019) and Chl c (Bukartė 
et al. 2020) in solution.

In the present study, the vibronic coupling model of 
Reimers et al. (2013) is extended to describe optical spec-
tra of chlorophyll dimers with strong excitonic coupling. A 
suitable model system to study the interplay of intrachromo-
phore vibronic and interchromophore excitonic couplings is 
the water-soluble chlorophyll binding protein (WSCP). It is 
a tetramer with quasi D2 symmetry (Horigome et al. 2007; 
Bednarczyk et al. 2016) containing 4 chlorophyll a pigments 
that are arranged in two dimers with strong intra- and weak 
inter-dimer excitonic couplings. WSCP has been used as a 
simple model system for the study of pigment-pigment and 
pigment-protein interactions (Hughes et al. 2006; Renger 
et al. 2007; Adolphs et al. 2016; Friedl et al. 2022; Pieper 
et al. 2011a, b; Alster et al. 2014; Rosnik and Curutchet 
2015; Bednarczyk et al. 2016; Agostini et al. 2018; Palm 
et al. 2018; Prabahar et al. 2020; Fresch et al. 2020; Lahav 
et al. 2021). Due to their quasi-symmetric protein environ-
ment, all four Chls have the same mean local transition 
energy (site energy). Another simplifying aspect of WSCP 
is the fact that wavefunction overlap between the Chls is suf-
ficiently low, such that short-range contribution to the site 
energies and excitonic couplings can safely be neglected. 
On the other hand, the Chls in the dimers are close enough 
for strong excitonic coupling, giving rise to a delocalization 
of excited states. The latter leads to a strong redistribution 
of oscillator strength between the two lowest exciton states 
of the dimer (Hughes et al. 2006; Renger et al. 2007). Due 
to the open sandwich geometry of local transition dipole 
moments, the high-energy exciton state gets most of the 
oscillator strength of the Q y 0-0 transitions of the two Chls.

Whereas this low-energy region of the optical spectra of 
WSCP has been thoroughly investigated (Hughes et al. 2006; 
Renger et al. 2007; Dinh and Renger 2015, 2016; Adolphs 
et al. 2016; Friedl et al. 2022; Pieper et al. 2011b), the spec-
trum at higher energies is less understood theoretically. In 
this region, we expect a mixing between the Q x and Q y tran-
sitions of the Chls in the dimer that are coupled vibronically 
in the monomers and excitonically between the monomers. 
Interestingly, there are relatively strong experimental signals 
in the absorption spectrum at higher energies, but barely any 
signals in the circular dichroism (CD) spectrum (see Fig. 2). 
Since the intrinsic CD of Chls is small, the CD spectrum is 
determined by exciton contributions that vanish for local-
ized excited states. In contrast, in the absorption spectrum 
the excitonic coupling can only redistribute the oscillator 
strength without changing the overall intensity of the spec-
trum. Hence, our working hypothesis for the present study 
is that a localization of excited states involving excited intra-
molecular vibrational modes occurs that leads to a suppres-
sion of the CD signal at high energies.

The remaining parts of this work are organized as fol-
lows: We start by summarizing the monomer Hamiltonian 
of Reimers et al. (2013) containing the vibronic coupling 
between the Q y and Q x transitions. Next, this Hamiltonian 
is extended by introducing the intermonomer excitonic 
coupling. Afterward, the low-frequency part of the spec-
tral density of the local exciton-vibrational coupling of the 
monomers is used to introduce a system-bath interaction 
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Fig. 1  Comparison between experimental absorption spectrum of 
Chl a in ether (Reimers et  al. 2013) (black solid line) at T = 300K 
and calculation (blue dashed line) using a vibronic coupling model 
adopted from Reimers et al. (2013), as described in the theory part. 
In the calculation a 0-0 transition energy of 14910 cm−1 ( 670.7nm ) of 
Chl a was assumed
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Fig. 2  Comparison between experimental absorption (upper part) and 
circular dichroism (lower part) spectra of Chl a WSCP measured at 
T = 300K (Palm et al. 2017) and calculations using a dimer exciton 
model with vibronic coupling described in the theory part. In the 
calculation a local transition energy of 14940 cm−1 ( 669.3nm ) of Chl 
a has been assumed
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Hamiltonian that is applied afterward to derive line-shape 
functions of optical transitions. Next, we summarize the 
parameterization of the monomer and dimer Hamiltonians 
that are applied to describe optical spectra of isolated Chl 
a in ether and of a Chl a dimer in WSCP. Our theoretical 
analysis comprises a step-by-step investigation of the influ-
ence of different parts of the Hamiltonian on the optical 
spectra presented in Figs. 1 and 2. Finally we summarize our 
findings concerning the structure of the Q y–Qx vibrational 
side band in the absorption spectrum, the suppression of 
this band in the CD spectrum and the conservative nature 
of the latter.

Theory

Monomer Hamiltonian

Based on the model proposed in Reimers et al. (2013), we 
start from the Hamiltonian of the monomer with electronic 
g round sta te  ∣ S0⟩ and s ingly  exci ted  sta tes 
∣ m⟩ ∈ {∣ S1⟩, ∣ S2⟩, ∣ S3⟩, ∣ S4⟩} . While the states ∣ S1⟩ and 
∣ S2⟩ are vibronically coupled, this is not the case for the 
states ∣ S3⟩ and ∣ S4⟩ , which are taken into account addition-
ally compared to Reimers et al. (2013). Electronic transitions 
from ∣ S0⟩ to ∣ S3⟩ and to ∣ S4⟩ , denoted as By and Bx , respec-
tively, are distinct components of the Soret band and have 
been characterized by quantum chemical calculations in an 
earlier work (Lindorfer et al. 2017). For simplicity they are 
assumed to be purely electronic states without vibrational 
substructure in our model. The corresponding eigenenergies 
are �0 = 0 and �m . Electronic excitation from ∣ 0⟩ to ∣ m⟩ goes 
along with displacement of the potentials of Nm vibrational 
oscillator modes, where each of them is addressed by the 
index i. We denote their respective vibrational frequencies, 
position coordinate operators, displacements, and momen-
tum operators as �i , q̂i , dm,i and p̂i , respectively. While we 
assume that the displacement of each vibrational mode 
depends on the electronic state, the vibrational frequency is 
assumed to be equal in all electronic states. Furthermore, we 
separately specify the corresponding parameters and opera-
tors of the vibronic coupling mode as �VC , q̂VC , dVC and p̂VC , 
which are all independent of the electronic state. The 
vibronic coupling mode can be associated with the coupling 
mode of a conical intersection, while among the further 
vibrational modes at least those with different Huang–Rhys 
factors in  Qy and  Qx excitation share the properties of tuning 
modes (Robb 2011). Different from Reimers et al. (2013), 
we do not apply a scaling of the position coordinate by the 
square root of the inverse vibrational frequency, q̃ =

√
1

𝜔
q , 

so that h𝜈
2
q̃2 =

�𝜔

2
q̃2 in Reimers et al. (2013) can be identified 

with ℏ�
2
�2q2 . We furthermore set ℏ = 1 . The scaling of the 

vibrational coordinate also influences the vibronic coupling 
constant in terms of �̃�VC =

√
1

𝜔VC

𝛼VC . Altogether the mono-
mer Hamiltonian can be written as

Please note that dm,i = 0 for m ∈ {S3, S4} , that is we do not 
take into account vibrational excitations of the By(S0 → S3) 
and Bx(S0 → S4) transitions. We select the vibronic cou-
pling mode and the high-frequency intramolecular vibra-
tional oscillators to be treated as part of the relevant system, 
while the low-frequency intermolecular ones enter in terms 
of contributions to an environment. Note that the harmonic 
oscillator potentials of the vibronic coupling mode in the 
diagonal elements are not displaced, but the linear depend-
ence of the off-diagonal elements of the above Hamiltonian 
on the position operator of the vibronic coupling mode 
leads to an effective displacement dVC,eff and accordingly 
to an effective Huang–Rhys factor SVC,eff =

1

2
�VCd

2
VC,eff

 if 
a diagonalization is applied. The basis representation of the 
monomer Hamiltonian is described in Appendix A. While 
this basis representation is formulated without restriction to 
a certain number of vibrational excitation quanta, we only 
take a small number of the possible vibrational excitations 
into account, as described in more detail in “Model assump-
tions and parameters” Section. However, we want to men-
tion explicitly that simultaneous excitation of an intramo-
lecular vibrational mode and a vibronic coupling mode are 
accounted for in our model.

Dimer Hamiltonian

The Hamiltonian of an excitonic dimer is composed of Ham-
iltonians of the monomer units given in Eq. (1), which in 
the following will be referred to by introducing an addi-
tional superscript index, and excitonic coupling contribu-
tions between electronic transitions of the different monomer 
units. Thus, it is of the form

where ā and b̄ count the pigments and m̄ and n̄ the elec-
tronic states of pigment ā and b̄ , respectively. For the basis 

(1)

ĤM =

�
Nm�
i

1

2
(𝜔2

i
q̂2
i
+ p̂2

i
) +

1

2
(𝜔2

VC
q̂2
VC

+ p̂2
VC
)

�
∣ 0⟩⟨0 ∣

+
�

m∈{S1,S2,S3,S4}

�
𝜖m +

Nm�
i

1

2
(𝜔2

i
(q̂i − dm,i)

2 + p̂2
i
)

+
1

2
(𝜔2

VC
q̂2
VC

+ p̂2
VC
)
�
∣ m⟩⟨m ∣

+ 𝛼VCqVC(∣ S1⟩⟨S2 ∣ + ∣ S2⟩⟨S1 ∣).

(2)

ĤD =
�
ā

Ĥ
(ā)

M
+
�
ā

�
b̄

�
m̄

�
n̄

J
(ā)(b̄)

m̄n̄
∣ m̄(ā)⟩ ∣ 0(b̄)⟩⟨0(ā) ∣ ⟨n̄(b̄) ∣,
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representation we use a product of the monomer bases with 
one of the monomer units being excited and the other one 
being de-excited (i.e., in the electronic ground state) in the 
formulation of singly excited states of the dimer. To reduce 
the size of the basis, we apply the so-called one-particle 
approximation (OPA) (Spano 2002, 2010; Hestand and 
Spano 2018) and only take a single product state composed 
of the lowest vibrational eigenfunctions of the explicitly 
treated intramolecular vibrational modes into account if the 
respective monomer unit is de-excited, while the comple-
mentary monomer unit in the excited electronic states also 
exhibits vibrational excitations. The basis representation of 
the dimer Hamiltonian is described in Appendix B.

System‑bath coupling Hamiltonian

From Nm = Nm,explicit + Nm,bath vibrational modes in the 
monomer Hamiltonian in Eq. (1), Nm,explicit high-frequency 
modes are treated explicitly by including them in the sys-
tem Hamiltonian, and the remaining Nm,bath low-frequency 
modes enter as contributions to a thermal bath in the frame-
work of the concept of an open quantum system (May and 
Kühn 2011). The contribution of a bath mode with index i 
to the system-bath coupling Hamiltonian ĤSB is obtained 
by selecting the sum of the terms with linear dependence 
on q̂i from expansion of the squared expression (q̂i − dm,i)

2 , 
whereas the terms q̂2

i
 and d2

m,i
 are attributed to the bath Ham-

iltonian ĤB and the system Hamiltonian ĤS , respectively. In 
the bath Hamiltonian also the squared momentum opera-
tors p̂2

i
 enter. The system Hamiltonian corresponds to the 

Hamiltonian of the dimer involving the explicitly treated 
modes, as specified above, with an energy correction of the 
basis states by the reorganization energies of the bath modes 
introduced by the term containing the squared displacement. 
The combination of the system-bath coupling contributions 
of the monomer units in a dimer system leads to

The basis representation of this operator is formulated in 
Appendix C, where also the treatment of the dissipative 
dynamics is described.

Calculation of linear optical spectra

For the calculation of linear absorption spec-
tra we introduce the lower and upper triangular part 
of the vectorial transition dipole operator in the  
exciton basis ,  ̂⃗𝜇exc,+ =

∑
𝛼

∑
𝜉 e⃗𝜉𝜇exc,𝜉,𝛼0 ∣ 𝛼⟩⟨0 ∣ and 

̂⃗𝜇exc,− =
∑

𝛼

∑
𝜉 e⃗𝜉𝜇exc,𝜉,0𝛼 ∣ 0⟩⟨𝛼 ∣ , where ⃗e𝜉 is the unit vector 

(3)

ĤSB =
�

ā∈{1,2}

�
m̄∈{S1,S2,S3,S4}

Nm,bath�
i

𝜔2
i
d
(ā)

m̄,i
q̂
(ā)

i
∣ m̄(ā)⟩⟨m̄(ā) ∣ .

in direction � . We furthermore introduce a time evolution 
operator Û(t) , which comprises the evolution of coherent and 
dissipative dynamics and is evaluated by time propagation 
of the QME, in practice. Initially, all elements of the system 
density matrix are zero, apart from the ground state popu-
lation. We denote the initial system density matrix as �̂�0,g 
and assume an initial equilibration of the thermal bath with 
density matrix �̂�B,eq . With these definitions we can write the 
dipole-dipole correlation function of absorption as

where ⟨⟨∙⟩⟩ = TrS
�
TrB

�
∙�̂�B,eq

��
 denotes the trace over both 

system and bath. As we take the transition dipole operators 
as vectorial quantities, the contributions of the directional 
components are separated from each other. Therefore, an ori-
entational average is obtained by multiplication with a global 
factor of 1

3
 . Furthermore, to take inhomogeneous broadening 

into account, we vary the electronic excitation energies of 
the monomer units (site energies) independent of each other 
by adding random numbers from a Gaussian distribution. 
This approach is equivalent to an independent incremental 
variation of the site energies and subsequent weighting of 
the resulting spectra by the respective Gaussian distribution 
function.

In the calculation of circular dichroism (CD) spectra not 
only the electronic transition dipole moments, which under 
the assumption of localized excitation of electronic state n 
of a single monomer unit a from the electronic ground state 
are given as 𝜇(a)

n0
=
∑

𝜉 𝜇
(a)

𝜉,n0
e⃗𝜉 , but also the magnetic transi-

tion dipole moments enter. The latter are imaginary and 
proportional to the cross product of the position vector R⃗a of 
monomer unit a, where the position is identified with the 
center of mass, and the corresponding electronic transition 
dipole moment: m⃗(a)

n0
∼ iR⃗a × 𝜇

(a)

n0
 (Lindorfer and Renger 

2018; Weigang 1965). Note that we neglect the small intrin-
sic CD of Chl a (Lindorfer et al. 2017). In analogy to the 
case of the electronic transition dipole moment an operator 
of the magnetic transition dipole moment in the basis of the 
electronic states for each directional component � can be 
defined as m̂(ā)

𝜉
=
∑

n̄ m
(ā)

𝜉,n̄0
∣ n̄(ā)⟩⟨0(ā) ∣ +c.c . Accordingly, 

after transformation to the exciton basis one obtains the 
lower and upper triangular part of the vectorial magnetic 
transition dipole operators ̂⃗mexc,+ =

∑
𝛼

∑
𝜉 e⃗𝜉mexc,𝜉,𝛼0 ∣ 𝛼⟩⟨0 ∣ 

and ̂⃗mexc,− =
∑

𝛼

∑
𝜉 e⃗𝜉mexc,𝜉,0𝛼 ∣ 0⟩⟨𝛼 ∣ , respectively. In anal-

ogy to Eq. (4) we formulate the dipole-dipole correlation 
function of CD as

The absorption and CD spectrum is obtained via Fourier 
transformation as

(4)Cabs(t) = ⟨⟨ ̂⃗𝜇−Û(t) ̂⃗𝜇+�̂�0,g⟩⟩,

(5)CCD(t) = ⟨⟨ ̂⃗m−Û(t) ̂⃗𝜇+�̂�0,g⟩⟩.
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and

respectively.
The correlation functions Cabs(t) and CCD(t) are obtained 

as (see Appendix 9)

and

with

which contains the renormalized excitation energy of exciton 
state ∣ �⟩,

and

with

Here, ����� is given as 
∑

m

∑
n Â𝛼mÂm𝛽 Â𝛽nÂn𝛼 and thus corre-

sponds to products of coefficients entering in the transforma-
tion from the localized basis to the exciton basis, C̃(𝜔𝛼𝛽) is 
the Fourier transform of the system-bath correlation function 
introduced in Appendix C and � is the reorganization energy 
of a local optical excitation.

(6)�abs(�) = ℜ

{
∫

∞

0

dt exp(i�t)Cabs(t)

}
,

(7)�CD(�) = ℑ

{
∫

∞

0

dt exp(i�t)CCD(t)

}
,

(8)Cabs(t) =
∑
�

∑
�

�exc,�,0�C�(t),

(9)CCD(t) ∼
∑
�

∑
�

mexc,�,0�C�(t)

(10)
C𝛼(t) = 𝜇exc,𝜉,𝛼0 exp(−i�̃�𝛼0t) exp(G𝛼𝛼(t) − G𝛼𝛼(0)) exp(−t∕𝜏𝛼),

(11)�̃�𝛼0 = 𝜔𝛼0 − 𝛾𝛼𝛼𝛼𝛼𝜆 +
∑
𝛽≠𝛼

𝛾𝛼𝛽𝛽𝛼ℑ(C̃(𝜔𝛼𝛽))

(12)�� =
[
1

2

∑
�

Γltb,��

]−1

(13)Γltb,𝛼𝛽 = 2𝛾𝛼𝛽𝛽𝛼ℜ(C̃(𝜔𝛼𝛽)).

Model assumptions and parameters

The model system for the monomer which we use for our 
calculations is adopted from Reimers et al. (2013). However, 
we apply some modifications, such as a reduction of the 
number of intramolecular vibrational modes attributed to the 
system (see Table 1) and additional involvement of modes 
attributed to a thermal bath. Furthermore, we extend the 
model in such a way that it is also capable of describing an 
excitonic dimer in the framework of the OPA. As we are 
aiming at a validation of the model by comparison with 
measured spectra of Chl a from the literature, we adopt the 
model parameters of the monomer specified in Reimers et al. 
(2013) for Chl a dissolved in ether. Accordingly, we assume 
an energy gap between electronic excitation of Q x and Q y as 
ΔEQxQy

= �Qx
− �Qy

= 1640 cm−1 , a ratio of the squared opti-
cal transition dipole moments for electronic excitation of Q x 
and Q y as fQxQy

= 0.1 and the full width at half maximum 
(FWHM) for the inhomogeneous broadening of Q x and Q y 
as FWHM(Qx) = 720 cm−1 and FWHM(Qy) = 360 cm−1 , 
respectively. To compensate the influence of the bath modes, 
which are not taken into account in Reimers et al. (2013), we 
take the liberty of adjusting the inhomogeneous broadening 
width of Q y to FWHM(Qy) = 240 cm−1 . For the description 
of a dimer of Chl a bound to WSCP the inhomogeneous 
broadening is modified anyway, and values of 
FWHM(Qx) = 340 cm−1 and FWHM(Qy) = 170 cm−1 are 
assumed. The latter value has been determined previously 
(Renger et al. 2007), whereas for the former we assume that 
the relative magnitude with respect to the width of the Q y 
transition remains the same as in the solvent described 
above. The By(S0 → S3) and Bx(S0 → S4) transitions, which 
are decoupled from Q y and Q x transitions of the same mono-
mer, are energetically shifted with respect to Q y by 
ΔEByQy

= 7570 cm−1 and ΔEBxQy
= 8740 cm−1 , and the ratios 

of the transition dipole strengths of B y and B x and of Q y are 
fByQy

= 2.52 and fBxQy
= 2.43 , respectively, as determined 

previously (Lindorfer et al. 2017). Note, however, that the 
exact energies of the  Bx and  By states are not so critical, 
since we want to study the influence of these transitions on 

Table 1  Explicitly treated intramolecular vibrational modes i with 
their respective frequencies �

i
 and Huang–Rhys factors S

i
 . These 

modes were obtained by separation of sets of five (or six) modes with 
similar frequencies from the 51 modes given in Reimers et al. (2013), 
thereby calculating a summed Huang–Rhys factor and an averaged 

frequency, where in the calculation of the latter the frequency con-
tribution of each mode in a selected set is weighted by the relative 
contribution to the Huang–Rhys factor of the combined mode. The 
sum of the Huang–Rhys factors is 0.278, as in Reimers et al. (2013)

i 1 2 3 4 5 6 7 8 9 10

�
i
[cm−1] 169 345 438 572 732 843 993 1197 1310 1511

S
i
∗ 10

3 29.5 22.2 4.4 10.3 27.2 18.2 47.4 29.9 52.1 36.7
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the low-energy  (Qy and  Qx) region of the spectra. According 
to Reimers et al. (2013), we assume a vibronic coupling 
constant of �̃�VC = 750 cm−1 and a frequency of the vibronic 
coupling mode of �VC = 1500 cm−1 . However, different 
from Reimers et al. (2013), we further reduce the number of 
intramolecular vibrational modes included in the model. 
Starting from the 51 effective vibrational modes identified 
there, we compose nine groups of five modes and one group 
with six modes by appropriately partitioning the modes 
sorted by their frequencies and replace each group by a sin-
gle mode with summed Huang–Rhys factor and averaged 
frequency, where in the calculation of the frequency average 
a weighting by the Huang–Rhys factors of the respective 
modes is applied. The summed Huang–Rhys factors of the 
ten resulting modes are then attributed to the involvement of 
the respective modes in the Q y transition. The frequencies 
and Huang–Rhys factors of the resulting modes are com-
posed in Table 1.

In the case of the Q x transition the Huang–Rhys factors 
of the lowest-frequency modes ( i = 1, 2, 3 ) are rescaled in 
such a way that the displacement of these modes in the Q x 
transition is three times larger than in the Q y transition, as 
suggested in Reimers et al. (2013), leading to a factor of 9 
for the Huang–Rhys factors. This rescaling in the low-fre-
quency range leads to an increase of the total reorganization 
energy from 262 cm−1 for Q y to 380 cm−1 for Q x . The system-
bath coupling is determined by the spectral density given in 
Eq. (C18), where in comparison with Renger and Marcus 
(2002) the Huang–Rhys factors are rescaled in such a way 
that the total Huang–Rhys factor becomes equal to 0.8, as 
determined previously from the temperature dependence of 
the absorption spectrum of WSCP (Renger et al. 2007). This 
rescaling leads to the values s1 = 0.402 and s2 = 0.398 , 
while the corresponding frequencies �1 = 0.557 cm−1 and 
�2 = 1.94 cm−1 remain unchanged. To determine the direc-
tions of the transition dipole moments we rely on structural 
data for the WSCP (Horigome et al. 2007) and determine the 
vectors connecting the nitrogen atoms at opposite sites of 
the Chl a molecules. While the transition dipole moment 𝜇Qy

 
is supposed to be aligned with the connecting vector of the 
nitrogen atoms identified as NB and ND , the transition dipole 
moment 𝜇Qx

 is associated with the connecting vector of the 
nitrogen atoms identified as NA and NC . In fact, this rule of 
thumb merely gives some orientation. In previous works it 
turned out that a more accurate description is obtained by 
applying a rotation of the transition dipole moment in the 
plane spanned by the connecting vectors of the nitrogen 
atoms. More precisely, in the case of 𝜇Qy

 a rotation by −7◦ 
has turned out to be appropriate to reproduce the measured 
rotational strength of the dimer in WSCP by calculations 
(Renger et al. 2009). In the present work also rotations of 
𝜇Qx

 , 𝜇By
 and 𝜇Bx

 by 20◦ , 20◦ and −20◦ have been applied, 

respectively, as these values have turned out to be the most 
appropriate ones for simulation of the measured spectra (see 
Supporting Information (SI), Section III, Figs. S9–S16). 
Note, however, that these rotations are not critical for the 
optical spectra. Qualitatively similar spectra are obtained if 
𝜇Qx

 , 𝜇By
 and 𝜇Bx

 are assumed to be oriented along the x-, y-, 
and x-axes, respectively (SI, Fig. S17). For the excitonic 
couplings between the electronic transitions of the different 
monomer units we used the following estimates: For the 
coupling between the Q y 0-0 transitions we use 
JQyQy

= 83 cm−1 . This value has been obtained from a fit of 
optical spectra (Adolphs et al. 2016) and, recently from 
quantum chemical/electrostatic calculations (Friedl et al. 
2022). In dipole-dipole approximation the excitonic cou-
pling is given as

where Rab =∣ R⃗
(b) − R⃗(a) ∣ is the center-to-center distance 

between monomers a and b and the additional factor � (a,b)
mn

 
reads

Here, e⃗(a)
m

 , e⃗(b)
n

 and e⃗ab are vectors along 𝜇(a)
m

 , 𝜇(b)
n

 and 
R⃗(b) − R⃗(a) , respectively. For the present system, the dipole-
dipole approximation gives a deviation of about 10% for the 
coupling between the Qy transitions JQyQy

 (Friedl et al. 2022). 
This deviation is small enough to estimate the excitonic cou-
plings between the remaining transitions as

where f (c)
k,Qy

=
�
(c)

k

�
(c)

Qy

 is the ratio of transition dipole magnitudes 

between the k-th and the Qy transition of monomer c. The 
resulting values of the excitonic coupling in the subspace of 
Q x and Q y excitation are JQxQx

= −2.8 cm−1 and J
Q

x
Q

y

=

4.9 cm
−1 . Furthermore, the values JBxBx

= −24.8 cm−1 , 
JBxBy

= −73.9 cm−1 , JByBy
= 205.2 cm

−1 , JBxQx
= −19.9 cm−1 , 

JBxQy
= −68.5 cm−1 , JQxBy

= 15.5 cm−1 and JQyBy
= 136.2 cm−1 

are obtained. If we are aiming at a comparison of calculated 
spectra with measured ones, we adjust the energetic position 
of Q y accordingly, otherwise we set it to zero.

As mentioned in  Section  “Monomer Hamiltonian” 
we only take a very limited number of vibrational excita-
tions into account. While only a single intramolecular 
vibration can be excited to its first vibrational eigenstate, 
excitation of up to four vibrational quanta of the vibronic 
coupling mode is possible in the framework of our treat-
ment. The applied restriction with respect to the number 

(14)Jmn =
�(a)
m
�(b)
n

R3
ab

� (a,b)
mn

,

(15)𝜁 (a,b)
mn

= e⃗(a)
m

⋅ e⃗(b)
n

− 3(e⃗(a)
m

⋅ e⃗ab)(e⃗
(b)
n

⋅ e⃗ab).

(16)Jmn = JQyQy
f
(a)

m,Qy
f
(b)

n,Qy

� (a,b)
mn

�
(a,b)

QyQy

,



25Photosynthesis Research (2023) 156:19–37 

1 3

of intramolecular vibrational excitations can be justified 
by the small Huang–Rhys factors of the respective modes. 
Even though there is no displacement of the vibronic 
coupling mode upon electronic excitation, the vibronic 
coupling leads to an effective displacement in the diago-
nalized Hamiltonian. As the corresponding Huang–Rhys 
factor is estimated to be larger than the Huang–Rhys fac-
tors of the individual intramolecular vibrational modes, 
we take four excited vibrational eigenstates into account 
to ensure convergence. Please note that simultaneous 
excitation of an intramolecular vibrational mode and of 
the vibronic coupling mode is feasible in our treatment. 
Such combined excitations gain relevance in the side band 
region of absorption and CD spectra. However, including 
them drastically increases the numerical effort, making 
convergence tests with respect to the number of vibra-
tional modes, included in the model, and with respect to 
restrictions regarding the number of vibrationally excited 
basis states difficult. We therefore applied such tests only 
at an earlier stage of the development of our model, where 
simultaneous excitation of an intramolecular vibrational 
mode and of the vibronic coupling mode had not been 
included yet. Some of the respective results are shown in 
Section IB of the SI.

It is worth mentioning that the vibronic coupling relies 
on the concept of a conical intersection. For the descrip-
tion of conical intersections separable tuning and a cou-
pling modes can be identified (Robb 2011), where only 
the latter actually couples the involved electronic states 
and thus corresponds to the vibronic coupling mode in 
our description. For a tuning mode different Huang–Rhys 
factors in the involved electronic states are required. This 
criterion is fulfilled for the first three modes with the 
lowest frequencies from the ten recombined modes in 
our description. As we treat the vibronic coupling mode 
independent of the specific vibrational modes with the 
character of tuning modes (and also independent of the 
remaining vibrational modes), thereby accounting for 
simultaneous excitations of these different types of modes 
in the product basis of the vibrational eigenstates, our 
description is compatible with the concept of a conical 
intersection which implies the independence of coupling 
and tuning mode.

Results and discussion

To illustrate the influence of different aspects of the 
model on the optical spectra of Chl a monomers in ether 
(Fig. 1) and of Chl a dimers in WSCP (Fig. 2), we start 
with a minimal model and successively extend it until all 
relevant aspects are included.

Monomer absorption spectra

The homogeneous and inhomogeneous absorption spectra 
of the Chl a monomer resulting from various approxima-
tions are displayed in the upper and lower panel of Fig. 3, 
respectively. First we consider a very simplified situation, 
where both the vibronic coupling mode and the intramo-
lecular vibrational modes are disregarded by setting the 
vibronic coupling constant and the assigned Huang–Rhys 
factors to zero, respectively, so that the influence of vibra-
tional dynamics only enters in terms of components asso-
ciated with the thermal bath. Under the assumption that 
only Q y is excited without involvement of its vibrational 
structure, only a single peak appears in the absorption spec-
trum displayed as a black line. This peak is centered at zero 
on the frequency axis, which corresponds to the electronic 
excitation energy of the Q y transition. If the coupling of the 
intramolecular vibrations to the Q y excitation is taken into 
account by assuming the Huang–Rhys factors in Table 1, 
the peak centered at zero, which stems from the 0-0 transi-
tion, decreases, and due to the involvement of vibrational 
excitation of the different intramolecular modes a side band 
appears, as indicated by the red line. Additional involvement 
of the Q x transition with its vibrational structure leads to an 
enhancement of the absorption profile in the energetic region 
of Q x (green and red line). Furthermore, if vibronic coupling 
between the Q x and Q y transitions is taken into account, 
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Fig. 3  Absorption spectra of Chl a monomer at T = 300K with-
out and with inhomogeneous broadening are displayed in upper and 
lower panel, respectively; black line: without intramolecular vibra-
tions, excitation of Q y only; red line: with intramolecular vibrations, 
excitation of Q y only; green line: with intramolecular vibrations, 
excitation of Q y and Q x ; blue line: with additional vibronic coupling 
between the Q x and Q y transitions
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the resulting absorption spectrum, displayed as a blue line, 
exhibits a slightly redshifted 0-0 line and substantial changes 
in the vibrational structure. Due to the vibronic coupling 
a band splitting occurs with new bands around 1000 cm−1 
and 2000 cm−1 . The splitting appears because of the cou-
pling between the first excited vibrational eigenstate of the 
vibronic coupling mode in S 1 and the lowest vibrational 
eigenstate of the vibronic coupling mode in S 2 , which are 
energetically close to each other and give rise to a quantum 
mechanical mixing between the 0-1 Q y transition and the 
0-0 Q x transition. The origin of the resulting peaks in the 
monomer absorption spectrum is discussed Section IA in the 
SI. As we take simultaneous excitation of the vibronic cou-
pling mode and of a single intramolecular mode to its first 
vibrational eigenstate into account, also the intramolecular 
modes get involved the vibronic coupling, even though the 
influence of simultaneous excitation turns out to be negli-
gible from a comparison of Figs. S1 and S2 from the SI. A 
minor contribution to the peak in the region above 2000 cm−1 
and the small peak above 3500 cm−1 can be associated with 
the Q y transition under the influence of vibronic coupling.

If inhomogeneous broadening is involved, the absorption 
spectra become smoother, and the peaks are spread over a 
broader frequency range, as displayed in the lower panel of 
Fig. 3. From the comparison of the measured absorption 
spectrum for Chl a in ether Reimers et al. (2013) and the 
calculated result in Fig. 1 (involving adjustment of the ener-
getic position of the zero phonon line to the actual transition 
frequency of Q y excitation) it becomes recognizable that the 

involvement of vibronic coupling is required to reproduce 
the progression of the side bands. Note that the involvement 
of all 51 modes from Reimers et al. (2013) instead of the ten 
recombined modes did not lead to recognizable changes in 
the absorption spectra (see Section IB and Fig. S3 in the SI). 
In Section IB of the SI we also discussed whether taking into 
account only the first excited state of a single intramolecular 
vibrational mode is sufficient. The excitation of more than 
one vibrational quantum does not lead to qualitative changes 
in the shape of the spectra (SI, Section IB).

Dimer absorption spectra

Next we study the properties of the dimer model with 
excitonic coupling between the monomer units, aiming at 
an understanding of the measured (Palm et al. 2017) and 
calculated spectra in Fig. 2. We disregard inhomogeneous 
broadening at first and successively take into account the 
involvement of different aspects of the model in analogy to 
the corresponding discussion in the monomer case (Fig. 3). 
The resulting homogeneous absorption and circular dichro-
ism spectra are shown in the upper and lower left half of 
Fig. 4, respectively. The corresponding inhomogeneous 
spectra are shown in the right half of Fig. 4. It turns out that 
the changes of the dimer absorption spectrum in the region 
of intramolecular vibrational sidebands are similar to those 
of the monomer for the considered cases. This finding can be 
explained by the relatively small values of the excitonic cou-
plings compared to the frequencies of the vibronic coupling 

Fig. 4  Absorption (upper 
panels) and CD spectra (lower 
panels) of dimer at T = 300K 
without and with inhomogene-
ous broadening (left and right 
panels, respectively); black line: 
without any vibrations, excita-
tion of Q y only; red line: with 
intramolecular vibrations, exci-
tation of Q y only; green line: 
with intramolecular vibrations, 
excitation of Q y and Q x ; blue 
line: with additional vibronic 
coupling between Q x and Q y 
transitions
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mode and of the explicitly treated intramolecular vibrations. 
Recognizable differences between the absorption spectra of 
dimer and monomer consist in the less smooth vibrational 
side bands in the dimer case due to underlying splitting of 
the excitonically coupled states with a single intramolecular 
vibrational excitation. The relative amplitude of the peak in 
the 0-0 Q y region with respect to that of the high-frequency 
vibrational sidebands (and the Q x transition) is smaller in the 
case of the dimer (Figs. 2 and 4) than in the case of the mon-
omer (Figs. 1 and 3). This effect is caused by the excitonic 
splitting between the exciton states formed by the 0-0 Q y 
transitions and the strong lifetime broadening of the upper 
exciton state (Renger et al. 2007). Obviously, the lifetime 
broadening of the (mixed Q y–Qx ) excited states is smaller.

In all of the considered cases in the homogeneous CD 
spectrum (lower left panel of Fig. 4) a pair of opposite-
signed peaks appears close to the zero position associated 
with the electronic excitation energy of the 0-0 Q y transi-
tions. In the green curve, which is obtained under the 
assumption of involvement of Q x excitation with its vibra-
tional structure, a peak combination with a sign change 
appears at the electronic excitation energy of Q x (around 
1500 cm−1 ). These peak structures in the energetic region of 
the Q y and Q x transitions can be attributed to the influence 
of the excitonic couplings JQyQy

 and JQxQx
 , respectively. From 

the point of view that JQxQx
 is more than a magnitude smaller 

than JQyQy
 it seems surprising that the integral over the abso-

lute value of the peak structures in the energetic region of 
Q x still corresponds to about 1

3
 of the integral over the peak 

structures in the energetic region of the 0-0 Q y transitions. 
Obviously, the influence of the arrangement of the transition 
dipole moments involved in the respective transitions over-
compensates the tendencies expected for the relative peak 
intensities by relying on the absolute values of the excitonic 
coupling matrix elements. Switching on the vibronic cou-
pling between the Q y and Q x transitions leads to a slight 
redshift of the CD peaks in the Q y(0, 0) region and to a split-
ting of the Q x(0, 0) CD peaks with new peaks at around 
1000 cm−1 and 2000 cm−1 . The rotational strength in the 
vicinity of the two new peaks is reduced with respect to that 
of the Q x(0, 0) transition observed in the absence of vibronic 
coupling. Because of the mixing of Q x and Q y the aspect of 
the different geometric arrangement of the assigned transi-
tion dipole moments gains importance, resulting in a 
decrease of the integrated CD spectrum due to the involve-
ment of Q y by its vibronic coupling to Q x.

By including inhomogeneous broadening the spectra 
become considerably smoother (right hand side of Fig. 4). 
It becomes recognizable that in the energetic regions where 
side bands with considerable intensity appear in the absorp-
tion spectra, the relative intensity with respect to the spectral 
region of the 0-0 Q y transitions is much lower in the CD 

spectra. Obviously the sign changes in the peaks, which were 
observed in the CD spectrum without inhomogeneous broad-
ening, result in cancelation when inhomogeneous broaden-
ing gets involved. In addition, the site energy disorder leads 
to a localization of the exciton states involving excited intra-
molecular vibrations, because of their small Franck-Condon 
factors that give rise to a small excitonic coupling. These 
localized excited states contribute only to the absorption, 
but not to the circular dichroism spectrum.

Interestingly, the coupling of the Q y transition to intra-
molecular modes leads to a non-conservative shape of the 
CD spectrum in the 0-0 spectral region of the Q y transi-
tion, which means that integration over the selected spectral 
region does not lead to compensation of contributions from 
positive- and negative-signed peaks (Lindorfer et al. 2017; 
Georgakopoulou et al. 2002, 2006, 2007; Lindorfer et al. 
2021). This property becomes recognizable from the colored 
lines in the lower right panel of Fig. 4. There is redistribu-
tion of negative rotational strength of the 0-0 transition to 
the high-frequency vibrational sideband region that is hardly 
visible in Fig. 4 because of the large spectral width of the 
sideband region. Since the experimental CD spectrum of 
Chl a WSCP is conservative in the 0-0 Q y spectral region 
(Fig. 2), an additional mechanism seems to be active in the 
experiment. Such a mechanism is provided by the coupling 
of Q x and Q y to B x and B y . In order to quantify this effect, 
we have rescaled all inhomogeneous CD spectra from the 
lower right panel of Fig. 4, such that their positive peaks 
get equal amplitude. The resulting spectra are compared in 
Fig. 5 with a calculation that includes the excitonic cou-
plings to high-energy B x and B y transitions (the orange line 
in Fig. 5). While the involvement of B x and B y plays a minor 
role in the absorption spectra (SI, Fig. S4, upper half), it has 
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Fig. 5  CD spectra of dimer at T = 300K from the lower right panel 
of Fig. 4 are rescaled in such a way that the positive-signed peak has 
the same amplitude. Different from Fig. 4, also a case with additional 
involvement of Bx and By is displayed as an orange dashed line
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a substantial influence on the intensities of the positive- and 
negative-signed peak component in the energetic region of 
Q y in the CD spectrum (SI, Fig. S4, lower half). As a meas-
ure of the conservativity of the CD spectrum in the low-
energy region we can take the spectrum resulting by includ-
ing only the 0-0 transitions of the monomers (the black solid 
line in Fig. 5). Including the intramolecular vibrations of 
the Q y transition (red line) leads to a redistribution of nega-
tive rotational strength from the main peak around 0 to the 
vibrational sideband around 1000 cm−1 . This redistribution 
persists upon including the Q x transition and the vibronic 
coupling between Q x and Q y . Including the B x and B y transi-
tions, the main CD peaks finally get conservative again, in 
agreement with the experimental data in Fig. 2. In the SI the 
corresponding absorption and CD spectra are displayed over 
a wider frequency range which also captures the features 
resulting from excitation of B x and B y (SI, Fig. S4). Here 
we concentrate on the low-energy region.

To get further insight into this mechanism which deter-
mines the appearance of the dimer spectra, we investigate the 
role of excitonic coupling involving vibrational excitation. 
To study the role of vibrational excitation in excitonic cou-
pling, we include the intramolecular vibrational sidebands 
of the monomers, but include only the excitonic coupling 
between the 0-0 transitions of the monomers. The resulting 
CD spectra are composed in Fig. 6 together with the results 
of calculations that include all excitonic couplings which 
have already been discussed in the context of Figs. 4 and 5. 
The Q x transition and its vibronic coupling to Q y is included 
in all calculations and we investigate the involvement of the 
B x and B y transitions. In the absorption spectrum (upper part 
of Fig. 6) we find a slight decrease of the vibrational side-
band around 1000 cm−1 when excitonic coupling involving 
the 0-1 Q y transitions is disregarded. Otherwise the vibra-
tional sideband stays practically the same, independent of 
excitonic coupling to the high-energy B x and B y transitions. 
The small changes arising from involvement of the 0-1 Q y 
transitions in the excitonic coupling indicate that the vibra-
tional sideband is that of a monomer (including the vibronic 
mixing with the Q x transition). This result is in agreement 
with a recent numerical study by Reppert (2020) on the char-
acter of excited states of molecular dimers and with a recent 
comparison of perturbative and numerically exact lineshape 
theories (Caycedo-Soler et al. 2022). It supports our ear-
lier treatments (Renger et al. 2011; Müh and Renger 2012), 
where intramolecular excitations that include excitonic cou-
plings as well as high-frequency vibrational excitations of 
pigment-protein complexes were treated as localized transi-
tions, in contrast to alternative treatments that include high-
frequency intramolecular modes into the spectral density and 
use perturbative line-shape theory that cannot distinguish 
between the different degrees of delocalization of the 0-0 

and the 0-1 transitions of the chromophores (Gelzinis et al. 
2017; Novoderezhkin et al. 2005).

The lower part in Fig. 6 contains the corresponding CD 
spectra (As in Fig. 5, for better comparison these spectra 
were rescaled to yield the same height of their positive peak). 
The results from calculations with and without contributions 
of vibrationally excited states in the excitonic coupling, both 
of them involving B x and B y , are displayed with orange and 
red line color. Furthermore, the corresponding results for 
the case without involvement of B x and B y are displayed as 
a blue and a violet curve, respectively. As described above, 
there is redistribution of negative rotational strength between 
the 0-0 Q y transition and the intramolecular vibrational side 
bands by the excitonic coupling between the 0-0  Qy transi-
tion of one monomer and the 0-1  Qy transition of the other 
monomer, where the increase of relative intensity of the side 
band is larger than in the absorption spectrum. Similar mag-
nitudes of the negative peak in the CD spectrum are obtained 
from a full calculation (the orange line) and from a calcula-
tion where the coupling between the 0-0 Q y transitions of 
one monomer and the B x and B y transitions as well as the 
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Fig. 6  Absorption and CD spectra of dimer at T = 300K 
with inhomogeneous broadening ( FWHM(Qy) = 240 cm

−1 , 
FWHM(Qx) = 720 cm

−1 ), excitation of Q y and Q x and vibronic 
coupling are displayed in upper and lower panel, respec-
tively; if all matrix elements of the excitonic coupling are 
taken into account, the blue and the orange line are obtained 
from calculations without and with involvement of B y and B x 
( FWHM(By) = FWHM(Bx) = 1800 cm

−1 ), respectively; if only those 
coupling matrix elements with involvement of lowest vibrational 
eigenfunctions are taken into account, the violet and the red line 
are obtained from calculations without and with involvement of B y 
and B x , respectively. Please note that the absorption and CD spectra 
were rescaled to obtain a common maximum of the 0-0 line (the low-
energy peak).
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0-1 Q y transitions of the other monomer are neglected (violet 
line). The coupling to B x and B y leads to a more negative 
rotational strength in the Q y 0-0 region and the coupling to 
Q y 0-1 shows opposite behavior. Hence, an error compensa-
tion occurs if both types of couplings are neglected.

Now that we have studied the influence of the differ-
ent parts of our model Hamiltonian on the optical spectra 
of the Chl a dimer in WSCP, we are ready to discuss the 
comparison of our calculated spectra with the experimen-
tal data in Fig. 2 in detail. The experimental absorption 
spectrum shows a main peak at around 15000 cm−1 and two 
broad peaks at 16000 cm−1 and 17000 cm−1 . Our calculations 
show that the main peak is formed by two exciton transi-
tions with dominant contributions from the 0-0 Q y transi-
tions of the two monomers. Due to the large homogeneous 
and inhomogeneous broadening these transitions appear 
as one peak at 300K . At cryogenic temperatures the low-
est exciton transition results in a low-energy shoulder of 
the main peak (see SI, Fig. S5). As in the monomer spec-
trum, the two broad high-energy peaks are mixed Q y(0, 1)
–Qx(0, 0) transitions. The excitonic coupling between the 
Q y(0, 1) transitions as well as between the Q x transitions 
(and those between Q y(0, 1) and Q x ) of the two monomers 
is found to have a negligible effect on the intensity and shape 
of the absorption spectrum. Overall, the agreement between 
theory and experiment is somewhat better for the absorption 
spectrum of the monomer (Fig. 1) than for that of the dimer 
(Fig. 2). This result is not surprising since the parameters 
of the vibronic coupling Hamiltonian of the monomer were 
fitted to the experiment (here Chl a in ether) by Reimers 
et al. (2013). We used these parameters also for Chl a in 
WSCP. The overall Huang–Rhys factor S =

∑
i Si = 0.278 

(Table 1) is indeed close to the S = 0.23 estimated recently 
(Friedl et al. 2022) from fluorescence line narrowing data of 
WSCP (Pieper et al. 2011a), taking into account the effect 
of the excitonic coupling on the redistribution of oscilla-
tor strength. Concerning the value of the vibronic coupling 
strength we do not have any independent estimate for Chl 
a in WSCP, but note that the values estimated by Reimers 
et al. for Chl a can vary by roughly 100% depending on the 
solvent (see Table S9 from Reimers et al. (2013)). In the SI 
we analyze the dependence of the spectra on the variations 
of Huang–Rhys factors and vibronic coupling constants (SI 
Section II, Figs. S6–S8). The analysis suggests that reduc-
ing the vibronic coupling and increasing the Huang–Rhys 
factors somewhat improves the fit of the experiment. Our 
dimer spectra were calculated in the framework of the 
OPA, as discussed above. To explain the remaining differ-
ences between measured and calculated dimer spectra an 
extension of the model by also including vibrations in the 
electronic ground state of the de-excited monomer unit in 
the framework of the so-called two-particle approximation 
(TPA) (Spano 2002, 2010; Hestand and Spano 2018) could 

be revealing. Additional vibrational levels in the electronic 
ground state facilitate additional resonances between elec-
tronic de-excitation and excitation involving the vibrational 
substructure of excited states and ground state, which con-
tribute to the excitonic coupling and would be expected to 
particularly influence the side band region. However, such 
an extension of the model would substantially increase the 
computational effort and would go beyond the scope of the 
present study. Preliminary calculations with application of 
the TPA only with respect to the vibronic coupling mode 
and without the possibility of simultaneous excitation of an 
intramolecular vibrational mode did not result in substantial 
differences compared to calculations with OPA, as discussed 
in Section IB of the SI.

Excellent agreement between theory and experiment is 
obtained for the CD spectrum (Fig. 2, lower part). In particu-
lar, the calculations explain the conservative nature of the 
spectrum and the absent signal in the high-energy spectral 
region. Our calculations show that the conservative nature 
of the CD spectrum rests on a delicate balance between 
different excitonic couplings between the Q y(0, 0) transi-
tion and higher electronic (Bx , B y ) and vibronic (Qy(0, 1)

–Qx(0, 0) ) transitions. In earlier studies the focus has been 
on the coupling of the Q y(0, 0) transition of Chl and bacte-
riochlorophyll (BChl) with higher electronic states of Chls, 
BChls and carotenoids (Lindorfer et al. 2017; Georgakopou-
lou et al. 2002, 2006, 2007). Since these transitions have a 
much larger dipole strength than the Q y(0, 1) or the Q x(0, 0) 
transition, it could be expected that their influence is larger. 
However, the present study shows that at least for Chl a 
these low-intensity transitions can compensate their small 
dipole strength by a much smaller energy difference with 
respect to the Q y(0, 0) transition. Often in the earlier studies 
only part of the non-conservativity could be explained and 
the missing part was assumed to originate from the intrinsic 
circular dichroism of the pigments. It could well be that for 
different dipole geometries the coupling to high-energy elec-
tronic transitions and that to Q y(0, 1) and Q x(0, 0) give non-
conservative contributions in the Q y(0, 0) region that add up 
instead of compensating each other as in the present study. 
The present calculations also explain why there is practically 
no CD signal outside the low-energy region that is due to the 
0-0 Q y transition. The Q x transitions would have a favorable 
dipole geometry to create some vibrational strength in the 
high-energy region. However, due to the vibronic coupling 
to the Q y transition with unfavorable geometry, the rotational 
strength is reduced. The remaining high-energy features in 
the CD spectrum are removed by the inhomogeneous distri-
bution of site energies giving rise to a localization of excited 
states and overlapping positive and negative bands between 
the different homogeneous spectra that cancel each other in 
the inhomogeneous spectrum.
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Please note that the aspect of assuming ten modes with 
summed Huang–Rhys factors and averaged frequency of the 
51 modes included in Reimers et al. (2013) is more critical 
in the case of the dimer than in the case of the monomer. 
Vibronic effects might be exaggerated, since coherence is 
maintained much longer in a basis with few stronger vibra-
tions compared to more weaker vibrations with slightly dif-
ferent frequencies. While we found some changes of dis-
tinct features in the dimer spectra without inhomogeneous 
broadening when we included 51 modes, the differences 
were much less pronounced in the corresponding inhomo-
geneously broadened spectra (SI, Section IB).

Conclusion

We have developed a description of absorption and CD spec-
tra of a Chl a dimer in WSCP, relying on the model proposed 
in Reimers et al. (2013) for the Chl a monomer units. While 
we reduced the number of explicitly treated intramolecu-
lar vibrations by combining vibrational modes with similar 
vibrational frequencies, we extended the model by includ-
ing additional modes attributed to a thermal bath. It turned 
out that particularly the involvement of a vibronic coupling 
mode is of importance for the appropriateness of the model 
for description of both monomer and dimer spectra. As in the 
monomer case investigated earlier (Reimers et al. 2013), in 
the absorption spectrum of the dimer we find strong signatures 
of the intra-monomer vibronic coupling between the 0-1 Q y 
transition and the 0-0 Q x transition. The inter-monomer exci-
tonic couplings involving these transitions are rather weak and 
hidden under the inhomogeneous broadening. The latter leads 
to an almost complete cancelation of the CD signal outside 
the spectral region of the 0-0 Q y transition. The conserva-
tive nature of the CD signal in the latter region is perturbed 
by the inter-monomer excitonic coupling between the 0-0 Q y 
transition and the mixed 0-1 Q y / 0-0 Q x transitions, an effect 
reported here for the first time. For the present Chl a dimer 
in WSCP this perturbation is compensated by the excitonic 
coupling between the 0-0 Q y and the high-energy B x and B y 
transitions. In related systems with a non-conservative CD 
spectrum the above compensation might be incomplete.

Appendix A Basis representation 
of Monomer Hamiltonian

For a representation of vibronic coupling in the basis  
of the respective vibrational eigenfunctions, we express  
the position and momentum operators of the vibronic cou-
pling mode in terms of bosonic creation and annihilation 
operators b̂†

VC
 and b̂VC as q̂VC =

√
1

2𝜔VC

(b̂†
VC

+ b̂VC) and 

p̂VC = i
√

𝜔VC

2
(b̂†

VC
− b̂VC) . We denote the K-th vibrational 

eigenfunction of the unshifted oscillator in the electronic 
states ∣ S1⟩ and ∣ S2⟩ as ∣ �S1,VC,K

⟩ and ∣ �S2,VC,K
⟩ , respectively, 

with K ≥ 0 . Using the orthogonality of the vibrational eigen-
functions, ⟨�m,VC,K ∣ �n,VC,L⟩ = �K,L , and the properties of 
t h e  c r e a t i o n  a n d  a n n i h i l a t i o n  o p e r a t o r s 
b̂
†

VC
∣ 𝜒

m,VC,L⟩ =
√
L + 1 ∣ 𝜒

m,VC,L+1⟩ and b̂VC ∣ 𝜒m,VC,L⟩ =
√
L ∣ 𝜒m,VC,L−1⟩ , 

the contributions of the vibronic coupling mode to the diago-
nal and off-diagonal elements of the Hamiltonian repre-
sented in the electronic basis can be identified as

and

respectively. For the treatment of the other vibrational 
modes which are attributed to the system we also intro-
duce a basis of vibrational eigenfunctions, however with 
respect to the shifted harmonic oscillators in the excited 
electronic states. We denote these vibrational eigenfunc-
tions as ∣ �m,i,k(dm,i)⟩ , where the electronic state to which 
they are assigned is specified by m, the index i refers to the 
selected vibrational mode and k is the quantum number of 
the selected vibrational eigenfunction. The property of the 
assigned harmonic oscillator to be shifted with respect to 
the electronic ground state is indicated by the dependence 
on the respective displacement dm,i , which can formally be 
expressed by applying a shift operator to the corresponding 
vibrational eigenfunction of the unshifted oscillator in terms 
of ∣ 𝜒m,i,l(dm,i)⟩ = exp(ip̂m,idm,i) ∣ 𝜒m,i,l⟩ . Note that, for con-
venience, we keep referring to the equilibrium position of 
the electronic ground state as the reference position, different 
from Reimers et al. (2013), where the equilibrium position 
in S 1 was taken as a reference. Because of the adjustment of 
the basis of the vibrational eigenstates to the displacement of 
the harmonic oscillator, the vibrational basis representation 
in the subspace of each electronic state m becomes diagonal. 
The respective matrix element can be specified as

(A1)

⟨𝜒m,VC,K ∣
1

2
(𝜔2

VC
q̂2
VC

+ p̂2
VC
) ∣ 𝜒m,VC,L⟩ = 𝜔VC

�
K +

1

2

�
𝛿K,L;

m ∈ {S1, S2}

(A2)

⟨𝜒S2,VC,K
∣ 𝛼VCqVC ∣ 𝜒S1,VC,L

⟩ = ⟨𝜒S1,VC,K
∣ 𝛼VCqVC ∣ 𝜒S2,VC,L

⟩
= 𝛼VC

�
1

2𝜔VC

�√
K𝛿K−1,L +

√
K + 1𝛿K+1,L

�

= �̃�VC

�
max(K, L)

2
𝛿∣K−L∣,1,
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In the vibrational basis representation of subspaces of an 
operator involving different electronic states non-zero matrix 
elements appear if the displacements of the harmonic oscil-
lator potentials in these electronic states are different. This 
is the case for non-diagonal subspaces of the Hamiltonian 
in the electronic basis, such as ∣ S2⟩⟨S1 ∣ and ∣ S1⟩⟨S2 ∣ from 
Eq. (A1), for which the matrix elements in the basis of vibra-
tional eigenstates of the vibronic coupling mode are given in 
Eq. (A2). For each pair of vibrational basis states of an intra-
molecular vibrational mode i with vibrational quantum num-
bers k and l in the system Hamiltonian these matrix elements 
are multiplied by overlap integrals ⟨�S2,i,k

(dS2,i) ∣ �S1,i,l
(dS1,i)⟩ 

and ⟨�S1,i,k
(dS1,i) ∣ �S2,i,l

(dS2,i)⟩ , respectively. Also in the 
matrix elements of an electronic transition dipole opera-
tor �̂� =

∑
m 𝜇m0 ∣ m⟩⟨0 ∣ +c.c overlap integrals appear, so 

that the transition dipole strength �m0 is multiplied with 
⟨�m,i,k(dm,i) ∣ �0,i,l(0)⟩ = ⟨�m,i,k(dm,i) ∣ �0,i,l⟩ , which for a non-
zero displacement dm,i leads to non-vanishing contributions 
also for different quantum numbers k and l, whereas the cor-
responding overlap factors of the vibronic coupling mode 
⟨�m,VC,K ∣ �0,VC,L⟩ = �K,L require equal quantum numbers K 
and L for a non-vanishing contribution. The overlap factors 
of the intramolecular vibrational modes can be calculated by 
using the recursion schemes from Manneback (1951)

and

where the absolute value of the expression 
√

�i

2
(dn,i − dm,i) 

can be identified with the square root of a Huang–Rhys 
factor Smn,i , which in the case that m is the electronic 
ground state results as Sn,i = Sn0,i = Snm,i =

1

2
�id

2
n,i

 , because 
of dm,i = d0,i = 0 . If a vibrational quantum number k or l in 
the recursion scheme becomes equal to zero, no further 
recursion steps are taken with respect to this vibrational 
quantum number. In the case of l = 0 the right hand side of 
Eq. (A4) and (A5) is zero, anyway. By using the recursion, 

(A3)
⟨𝜒m,i,k(dm,i) ∣

1

2
(𝜔2

i
(q̂i − dm,i)

2 + p̂2
i
) ∣ 𝜒m,i,l(dm,i)⟩

= 𝜔i

�
k +

1

2

�
𝛿k,l.

(A4)

⟨�m,i,k+1(dm,i) ∣ �n,i,l(dn,i)⟩
= (k + 1)−

1

2

�
l
1

2 ⟨�m,i,k(dm,i) ∣ �n,i,l−1(dn,i)⟩

−

�
�i

2
(dn,i − dm,i)⟨�m,i,k(dm,i) ∣ �n,i,l(dn,i)⟩

�

(A5)

⟨�m,i,k(dm,i) ∣ �n,i,l+1(dn,i)⟩
= (l + 1)−

1

2

�
k

1

2 ⟨�m,i,k−1(dm,i) ∣ �n,i,l(dn,i)⟩

+

�
�i

2
(dn,i − dm,i)⟨�m,i,k(dm,i) ∣ �n,i,l(dn,i)⟩

�
,

any overlap integral can be drawn back to the overlap 
between the lowest vibrational eigenfunctions, 
⟨�m,i,0(dm,i) ∣ �n,i,0(dn,i)⟩ = exp

�
−

Snm,i

2

�
 . Therefore, the fac-

tor exp
(
−

Snm,i

2

)
 also appears in overlap factors involving 

higher vibrational eigenfunctions. It accounts for the nor-
malization of the vector of basis states and can be adjusted 
in view of reducing the dimension of the basis of vibra-
tional eigenstates to an extent which still facilitates suffi-
ciently accurate description of relevant aspects of the 
vibrational dynamics (in our case the vibrational features 
in a selected region of the absorption spectrum are of inter-
est, as we will discuss later). In principle, the basis states 
with respect to the Nn,explicit intramolecular vibrational 
modes which are explicitly taken into account in a selected 
state n of the system Hamiltonian consist of a product of 
the vibrational eigenfunctions with index i involving all 
possible combinations of vibrational quantum numbers ki . 
We specify a vector l of dimension Nl,explicit which contains 
li as its i-th component to formulate a single product state in 
terms of ∣ �n,l⟩ = ∏

j ∣ �n,j,lj
(dn,j)⟩ . The vibrational basis in 

the subspace of state n can be expressed as a vector of such 
product states ∣ �n,l⟩ , where each vector component is a prod-
uct state with a specific combination of vibrational quantum 
numbers. For the normalization we determine the overlap of 
the product state of the lowest vibrational eigenfunctions in 
electronic state m, namely ∣ �m,0⟩ = ∏

i ∣ �m,i,0⟩ , with each 
vector component of ∣ �n,l⟩ . If we, for example, restrict our 
basis to product states of the lowest vibrational eigenfunc-
tions, except for a single vibrational eigenfunction at most, 
the norm of the resulting vector can be determined by intro-
ducing normalization factors �mn,i instead of exp

(
−

Smn,i

2

)
 in 

the overlap factors ⟨�m,i,0(dm,i) ∣ �n,j,0(dn,j)⟩ = �mn,i�ij and 
⟨�m,i,0(dm,i) ∣ �n,i,1(dn,i)⟩ =

√
Smn,i�mn,i . The condition for 

normalization turns out to be 
∏

i �
2
mn,i

�
1 +

∑
i Smn,i = 1 . 

Thus, if we identify the normalization constant �mn of the 
vector of the overlap factors with the product of the normali-
zation constants of the individual modes 

∏
i �mn,i , we obtain 

�mn =
�

1

1+
∑

i Smn,i
 . Using this result for the normalization of 

the vector composed of the overlaps of ∣ �m,k⟩ = ∏
i ∣ �m,i,ki

⟩ 
with each vector component of ∣ �n,l⟩ , the normalization fac-
tor �mn,i is separated from the calculation of the overlaps of 
each explicitly treated vibrational mode, leading to 
⟨�m,i,0(dm,i) ∣ �n,j,0(dn,i)⟩ = 1 and ⟨�

m,i,0
(d

m,i
) ∣ �

n,i,1
(d

n,i
)⟩ = √

S
mn,i

.
To arrive at an analogous notation of the basis states as 

in Reimers et al. (2013), we introduce a product basis of 
electronic state ∣ m⟩ , of the product state of the vibrational 
eigenfunction of the explicitly treated intramolecular 
vibrational modes ∣ �m,k⟩ and of the vibrational eigenfunc-
tions of the vibronic coupling mode ∣ �m,VC,K⟩ in terms of 
∣ �m,k,K⟩ =∣ m⟩ ∣ �m,k⟩ ∣ �m,VC,K⟩ . In this product basis in the 



32 Photosynthesis Research (2023) 156:19–37

1 3

subspace of the singly excited states with {m, n} ∈ {S1, S2} 
the matrix elements

and

are obtained, where max(K,L) gives the larger of the two 
vibrational quantum numbers.

Appendix B Basis representation of Dimer 
Hamiltonian

In the general formulation we obtain the basis representa-
tion of the dimer Hamiltonian

The first term on the right hand side of Eq. (B8) results as

where 
∏

i �k′i0
�l′

i
0�K′0�L′0 appears in the evaluation of the 

overlap of the basis states ⟨� (b)

m�,k�,K�
∣ �

(b)

n�,l�,L�
⟩ in combination 

with �m′0�n′0 because of the OPA. Terms containing overlaps 
of basis states assigned to other electronic states than the 
ground state vanish because due to the construction of the 
dimer basis such terms are multiplied with matrix elements 
⟨𝜓 (a)

m,k,K
∣ Ĥ

(a)

M
∣ 𝜓

(a)

n,l,L
⟩ , which are equal to zero for indices m 

and/or n referring to the electronic ground state. Otherwise, 
if both indices refer to a singly excited state, the evaluation 
of Eq. (B9) can be drawn back to the evaluation of Eqs. (A6) 
and (A7). Likewise, for the second term from Eq. (A6) one 
obtains

(A6)

⟨𝜓m,k,K ∣ ĤM ∣ 𝜓n,l,L⟩ = 𝛿mn𝛿k,l𝛿K,L

×

⎧
⎪⎨⎪⎩
𝜖m +

⎡⎢⎢⎣
𝜔VC

�
K +

1

2

�
+

Nm,explicit�
i

𝜔i

�
ki +

1

2

�⎤⎥⎥⎦
�
𝛿mS1 + 𝛿mS2

�⎫⎪⎬⎪⎭

(A7)

⟨𝜓m,k,K ∣ ĤM ∣ 𝜓n,l,L⟩ = (𝛿mS1𝛿nS2 + 𝛿mS2𝛿nS1 )

× �̃�VC

�
max(K, L)

2
𝛿∣K−L∣,1

Nm,explicit�
i

⟨𝜒m,i,ki
(dm,i) ∣ 𝜒n,i,li

(dn,i)⟩

(B8)

⟨𝜓 (a)

m,k,K
𝜓

(b)

m�,k�,K�
∣ ĤD ∣ 𝜓

(a)

n,l,L
𝜓

(b)

n�,l�,L�
⟩

= ⟨𝜓 (a)

m,k,K
∣ Ĥ

(a)

M
∣ 𝜓

(a)

n,l,L
⟩⟨𝜓 (b)

m�,k�,K�
∣ 𝜓

(b)

n�,l�,L�
⟩

+ ⟨𝜓 (a)

m,k,K
∣ 𝜓

(a)

n,l,L
⟩⟨𝜓 (b)

m�,k�,K�
∣ Ĥ

(b)

M
∣ 𝜓

(b)

n�,l�,L�
⟩

+ ⟨𝜓 (a)

m,k,K
𝜓

(b)

m�,k�,K�
∣ Ĵ ∣ 𝜓

(a)

n,l,L
𝜓

(b)

n�,l�,L�
⟩.

(B9)
⟨𝜓 (a)

m,k,K
∣ Ĥ

(a)

M
∣ 𝜓

(a)

n,l,L
⟩⟨𝜓 (b)

m�,k�,K�
∣ 𝜓

(b)

n�,l�,L�
⟩

= ⟨𝜓 (a)

m,k,K
∣ Ĥ

(a)

M
∣ 𝜓

(a)

n,l,L
⟩𝛿m�0𝛿n�0

�
i

𝛿k�
i
0𝛿l�

i
0𝛿K�0𝛿L�0,

For the evaluation of the third term from Eq.  (B8) the 
coupling contribution Ĵ  from the dimer Hamiltonian 
given in Eq.  (2) is expressed by the sum of its compo-
nents J(ā)(b̄)

m̄n̄
∣ m̄(ā)⟩⟨n̄(b̄) ∣ , where each component yields a 

contribution

The matrix elements for a coupling contribution with oppo-
site assignment of excited and de-excited monomer unit, i.e., 
for J(b̄)(ā)

n̄m̄
∣ 0(ā)⟩ ∣ n̄(b̄)⟩⟨m̄(ā) ∣ ⟨0(b̄) ∣ , can be obtained by tak-

ing the complex conjugate of Eq. (B8), thereby switching the 
bra- and ket side of the basis vectors. As a result, one finds 
a symmetry under reassignment of excited and de-excited 
monomer unit.

If a given coupling constant is associated with the exci-
tonic coupling between 0-0 transitions, this aspect can be 
accounted for by division by the squared rescaling factor of 
the vibrational product states �2

m0
 to compensate the appear-

ance of this factor in Eq. (B11).
The transition dipole operator of monomer unit ā with a 

selected directional component � ∈ {x, y, z} is given as 
�̂�
(ā)

𝜉
=
∑

m̄ 𝜇
(ā)

𝜉,m̄0
∣ m̄(ā)⟩⟨0(ā) ∣ +c.c , where a selected sum 

component in the basis specified above leads to matrix 
elements

An exciton basis representation of operators given in the 
basis introduced above with localization of the excitation at 
a single monomer unit is obtained by applying a transforma-
tion with the matrix

(B10)

⟨𝜓 (a)

m,k,K
∣ 𝜓

(a)

n,l,L
⟩⟨𝜓 (b)

m�,k�,K�
∣ Ĥ

(b)

M
∣ 𝜓

(b)

n�,l�,L�
⟩

= 𝛿m0𝛿n0
�
i

𝛿ki0𝛿li0𝛿K0𝛿L0⟨𝜓 (b)

m�,k�,K�
∣ Ĥ

(b)

M
∣ 𝜓

(b)

n�,l�,L�
⟩.

(B11)

⟨𝜓 (a)

m,k,K
𝜓

(b)

m�,k�,K�
∣ J

(ā)(b̄)

m̄n̄
∣ m̄(ā)⟩ ∣ 0(b̄)⟩⟨0(ā) ∣ ⟨n̄(b̄) ∣∣ 𝜓 (a)

n,l,L
𝜓

(b)

n�,l�,L�
⟩

= J
(a)(b)

mn�
𝛿mm̄𝛿aā𝛿n�n̄𝛿bb̄
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m,k
∣ ⟨𝜒 (a)
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∣ 𝛿m�(b)0⟨𝜙(b)

0,0
∣ ⟨𝜒 (b)

0,VC,0
∣
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(a)

0,0
⟩ ∣ 𝜒 (a)
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⟩ ∣ 𝜙(b)
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⟩ ∣ 𝜒 (b)
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⟩
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𝛿mm̄𝛿aā𝛿n�n̄𝛿bb̄

× 𝜅
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�
i

⟨𝜒 (a)

m,i,ki
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⟩𝛿K(a)0𝜅

(b)

0n�
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j

⟨𝜒 (b)
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∣ 𝜒

(b)

n�,j,lj
⟩𝛿L�(b)0.

(B12)
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𝜓
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∣ 𝜇

(ā)
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𝜓
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⟩
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where the transformation coefficients c�;� (a)

n,l,L
�

(b)

n� ,l� ,L�
 stem from 

diagonalization of the dimer Hamiltonian and the exciton 
states are denoted as ∣ �⟩ without specifying how they 
depend on the vibrational structure of the monomer units. 
For example, the exciton basis representation of �̂�(a) intro-
duced above is obtained via the transformation 
�̂�exc,𝜉 = Â†

∑
a �̂�

(a)

𝜉
Â.

Appendix C System‑bath Hamiltonian 
and dissipative dynamics

The system part of the system-bath coupling contribution of 
mode q̂(a)

i
 can be identified as

The representation of such an operator in the basis with exci-
tation of a single monomer unit involving the eigenstates of 
the assigned vibrational modes is obtained in analogy to the 
corresponding basis representation of the dimer Hamiltonian 
in Eq. (B8) as

and

These results lead to the finding that in the given basis 
the subspace of the excited monomer unit is represented 
as a unity matrix, whereas the subspace of the de-excited 
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monomer unit is represented by a matrix containing only 
elements equal to zero.

In the following we assume that all operators attrib-
uted to the system comprising the electronic states, the 
explicitly treated intramolecular vibrational modes and 
the vibronic coupling mode are already represented in the 
basis introduced above. For each bath mode i the bath con-
tribution of the system-bath coupling, 𝜔2

i
dm,iq̂i , enters in 

a component of the correlation function. We assume that 
the fluctuations in different electronic states m and n are 
uncorrelated, leading to the correlation function

where the time dependence in q̂(a)
i
(t) stems from a repre-

sentation in the interaction picture with respect to the bath 
Hamiltonian. For the description of the frequency-dependent 
oscillator strength for a continuum of bath oscillators cov-
ering a selected frequency range we introduce the spectral 
density

with parameters s� and �� , where in comparison with the 
definition from Renger and Marcus (2002) a factor of ��2 
is included. From the spectral density the correlation func-
tion is obtained as

Aiming at a description in the framework of Redfield theory 
(May and Kühn 2011), we choose a representation in the 
exciton basis. Accordingly, the transformed system Hamil-
tonian ĤS,exc = Â†ĤSÂ corresponds to a diagonal matrix. The 
coherent part in the quantum master equation (QME) of the 
transformed system density matrix �̂�exc = Â†�̂�Â is

In the formulation of the dissipative contribution to the 
Liouville-von-Neumann equation in the Redfield approach 
the operators Q̂(a)

i,exc
= Â†Q̂

(a)

i
Â and

with Q̂(a)

i,exc
(−𝜏) = exp(iĤS,exc(−𝜏))Q̂

(a)

i,exc
exp(−iĤS,exc(−𝜏)) 

enter. Note that, different from the definition in May and 
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Kühn (2011), the upper integration border in Eq. (C21) is 
taken as variable. Otherwise, if the upper integration border 
is set to infinity, one obtains matrix elements corresponding 
to the Fourier-transformed correlation function at the differ-
ence frequencies associated with the time evolution of the 
respective matrix elements. The assumption of a variable 
upper integration border in Λ̂(a)

i,exc
(t) (and in its adjoint opera-

tor) leads to a description of coherence dynamics at the same 
level as with the cumulant expansion technique (Mukamel 
1995; Renger and Marcus 2002). In the case with variable 
upper integration border the dissipative contribution to the 
Liouville-von-Neumann equation in Markov approximation 
(here meant in the sense that the time integration is drawn 
into the definition of Λ̂(a)

i,exc
(t) instead of involving a convolu-

tion with the density matrix) can then be formulated as

where Λ̂†(a)

i,exc
(t) contains a convolution with the complex con-

jugate correlation function. In the framework of the secular 
approximation the population dynamics is separated from the 
coherence dynamics (Pisliakov et al. 2006). By using sub-
script indices to denote matrix elements with respect to states 
� and � in the exciton basis (involving the vibrational struc-
ture of the monomer units of the dimer), the rate expressions

are obtained, which enter in the rate equation of population 
transfer,

and in those for coherence dephasing,

In detail, the rates Γdeph,��(t) are composed of lifetime broad-
ening contributions
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and pure dephasing contributions

Appendix D Lineshape functions

The description of the dissipative dynamics in the frame-
work of Redfield theory with secular approximation turned 
out to be equivalent to a treatment relying on the partial 
ordering description (POP) cumulant expansion used in 
Renger and Marcus (2002). The formulation of this approach 
involves the frequency-dependent correlation function

The real part of this frequency-dependent correlation func-
tion can also be obtained directly from the spectral density 
and from the Bose-Einstein distribution

as

thereby keeping in mind that different from Renger and Mar-
cus (2002) a factor of ��2 has been taken into account in the 
spectral density given in Eq. (C18). This aspect also plays a 
role if the line-shape function

is compared with the corresponding expression from Renger 
and Marcus (2002). The connection between this definition 
of the line-shape function and the definition where it is cal-
culated from the correlation function (Mukamel 1995) as

is the following: The analytical expression for the relation 
between the line-shape function and the spectral density, 
resulting from the combination of Eq. (D32) with Eq. (C19), 
can be expressed as
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One can easily convince oneself that the real part of the 
expression from Eq. (D33) corresponds to the difference 
between ℜ(G(0)) and ℜ(G(t)) . The imaginary part from 
Eq. (D33) corresponds to the difference between −i�t and 
ℑ(G(t)) , where the reorganization energy � is identified as

Altogether one obtains

Due to the transformation of the system component of the 
system-bath coupling contributions products of transforma-
tion coefficients

are multiplied with the line-shape function of the bath com-
ponent, leading to

This definition with appearance of an index pattern ���� 
implies that only diagonal elements of the system-bath cou-
pling in the exciton basis are selected. Thus, they can be 
related to selected terms from the lifetime broadening con-
tribution given in the context of Eq. (C25), namely to those 
involving only diagonal elements of operators attributed 
to system-bath coupling. Note that integration of the lat-
ter, resulting from time evolution of the QME, is required 
to obtain a line-shape function expression. According to 
Renger and Marcus (2002), in the treatment of the dissipa-
tive dynamics using the partial ordering prescription (POP) 
cumulant expansion it is justified to treat terms involving 
off-diagonal matrix elements of the system part of system-
bath coupling contributions in a different way than terms 
involving the respective diagonal elements if either the 
condition 𝛾𝛼𝛼𝛼𝛼 >>∣ 𝛾𝛼𝛽𝛽𝛼 ∣ is fulfilled or if the dissipative 
dynamics takes place on a much longer timescale than the 
one given by 1∕��� . Then the upper integration border in 
Eq. (C21) is replaced by infinity, leading to an evaluation 
of the Fourier-transformed correlation function at the fre-
quency difference between the eigenenergies of the involved 
states of the system.
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