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Signatures of light-beam spatial filtering in a three-dimensional photonic crystal
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We report experimental evidence of spatial filtering of light beams by three-dimensional, low-refraction-index-
contrast photonic crystals. The photonic crystals were fabricated in a glass bulk, where the refraction index has
been periodically modulated using tightly focused femtosecond laser pulses. We observe filtered areas in the
angular distributions of the transmitted radiation, and we interpret the observations by theoretical and numerical
study of light propagation in index-modulated material in paraxial model.
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I. INTRODUCTION

Spatial filtering is broadly used to improve spatial quality of
light beams [1]. The conventional technique of spatial filtering
uses a confocal system of lenses to form the far-field image
of the beam in the focal plane and a diaphragm of appropriate
diameter to block the undesired large angle components of the
spatial spectrum [2]. In the present article another, alternative,
method for spatial filtering is experimentally demonstrated and
theoretically analyzed. The method is based on the propagation
of the beam through a specially designed photonic crystal (PC),
where the undesired spatial spectra components are deflected
to the first diffraction maxima of the periodic structure,
whereas the “useful” part of the beam (corresponding to the
central part of the spatial spectrum) remains in the central
diffraction maximum and propagates in (and behind) the
crystal without deflection.

The PCs, i.e., the materials with periodically spatially
modulated refraction index on a wavelength scale, are widely
studied mostly due to their peculiar temporal dispersion
properties, in particular due to the appearance of the band
gaps in frequency domain (see e.g., Refs. [3,4] for the photonic
band gaps). Temporal dispersion is the frequency dependence
of the propagation eigenmodes (Bloch modes) on the modulus
of propagation wave number ω = ω(|�k|). More recently it has
been pointed out that the diffraction (the analog of spatial
dispersion, i.e., the dependence of the longitudinal component
of the propagation wavevector on its transverse component,
k||(k⊥)) can be also modified in PCs, managing the spatial
propagation properties of the monochromatic light beams. The
spatial propagation phenomena are usually interpreted in terms
of isofrequency lines of the Bloch modes in (and behind)
�k space, i.e., ω(�k) = const., which indeed are the spatial
dispersion (or diffraction) curves k||(k⊥). Whereas in isotropic
materials the isofrequency lines are concentric circles, in PCs
these circles become distorted due to the periodic modulation
of the refraction index, leading to nontrivial spatial propagation
effects. Perhaps the best-known propagation effect in PCs is the
so-called self-collimation or the disappearance of diffraction
[5–10], where, due to the flattening of the segments of the
spatial dispersion curve the spatial envelope of the Bloch mode
propagates without diffractive broadening. The dispersion
curve can also present strongly tilted segments, which leads

to super-refraction and negative refraction effects [11,12].
It has been recently proposed that the PCs can lead to the
modification of the angular spectra of the transmitted beams
[13], the effect that could be at the basis of an interesting type
of spatial filter. Here we present the experimental signatures
of the proposed filtering effect and give theoretical-numerical
interpretation of the observations.

The mechanism of spatial filtering in PCs is more evi-
dent in the case when the propagation eigenmodes of the
electromagnetic field display angular band gaps. Similarly
to the band gaps in frequency domain ω(|�k|) which can be
used to manipulate (to filter out) particular regions of the
temporal spectrum [3,4], the angular band gaps could allow the
manipulation of the angular or the spatial spectrum. Whereas
the appearance of the frequency band gaps and the frequency
filtering in one-dimensional (1D) PCs is related to the resonant
back-scattering of the plane waves of particular frequencies,
the spatial filtering is related with the resonant reflection or
deflection of particular angular components of the light beam
in 2D and 3D PCs, as illustrated in Figs. 1(a) and 1(b). The
basic parameters of the PC, which determine the range of
the wave components to be filtered out, are basically the
longitudinal and transverse periods of the structure. In order
to obtain an efficient spatial filter one aims to achieve high
transparency for the axial and near-axial components, and
low transparency (strong reflection or deflection) for particular
angular (off-axis) components which are to be filtered out.

Here we consider another, less evident, mechanism of
spatial filtering in PCs in the configuration displaying no
angular band gaps. The idea of gapless filtering is that
due to particular shapes of the spatial dispersion curve (in
particular due to its strongly curved segments) the certain
angular components of the beam can be deflected. Figure 1(b)
illustrates the latter mechanism, which does not require the
presence of the angular band gap. Differently from the first
mechanism the angular components of the radiation do not
reflect at the entrance of the PC, but instead deflect into the
first diffraction maxima along the propagation in the PC.

As Fig. 1 highlights, the spatial filtering can be expected
for the range of transverse component of the modulation
wave vector q⊥ � k (equivalently d⊥ � λ). The longitudinal
period of the modulation determines whether the filtered
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FIG. 1. (Color online) Illustration of the spatial filtering in a 2D
PC in spatial Fourier plane (kx , ky) with (a) and without (b) the angular
band gaps. Filtering occurs in both cases around the angles where
the dispersion curves of the harmonic components for a particular
frequency (dotted circles) cross. The spatial spectrum (far field) of
the initial beam, consisting of the central (regular) part, and of the
wings [the part to be removed, i.e., reflected in (a) or deflected in
(b)], is illustrated with bright and dark triangles. The central dashed
circle indicates the spatial dispersion of the homogeneous wave in
homogeneous material, and the lateral circles indicate the dispersion
of the lowest harmonic components in the PC.

angular components of the beam reflect in the backward
direction (2k > q|| > k, equivalently λ/2 < d|| < λ) or deflect
in the forward direction (q|| < k, equivalently d|| > λ). We
considered the latter situation, as it corresponds to the PC used
for the reported experiment on gapless filtering.

II. PHOTONIC CRYSTAL SAMPLES

Our PCs were fabricated by selectively modifying the
refraction index of fused silica glass bulk by applying tightly
focused femtosecond laser pulses [14–16]. The magnitude
of the index change depends on material and exposition
conditions. It is generally considered to be of the order of 10−3

[14–16]. The micromachining system used for fabrication
operates with τ = 300 fs duration pulses of λ = 1030 nm
radiation with the energy of Eimp = 1 µJ and the repetition rate
of f = 200 kHz. Glass samples were positioned using XYZ
high-precision linear motor driven stages. The laser beam was
focused using aspheric lens with f = 4.03 mm focal length
and numerical aperture of 0.62, which resulted in a spot of
ellipsoid shape at the focal point of width w⊥ ≈ 1 µm and of
length w|| ≈ 3 µm.

FIG. 2. (Color online) A side view of the PC. Ellipsoids indicate
the areas illuminated by femtosecond pulses in the process of
fabrication and correspond to the areas with enhanced refraction index
in the PC.

FIG. 3. (Color online) Experimental scheme (a) consisting of a
focused laser beam (10× objective), PC sample at the focus, and
a remote screen for observation of the far field. Results: (b) image
on a screen indicating appearance of first-order diffraction maxima;
(c) CCD camera image of the central part of the beam indicating
angular field components filtered out (dark lines crossing each other
and making a square in the central maximum).

The geometry of the PC is illustrated in Fig. 2, where d⊥ =
1.5 µm and d|| = 10.6 µm are the transverse and longitudinal
periods, respectively. Different colors of the ellipsoids indicate
odd and even layers of photonic crystal which are half-period
shifted, one with respect to another in the transverse plane.
The total number of the longitudinal modulation periods is 25
and the square structure in each transverse layer is 500 by 500
spots.

III. EXPERIMENTAL RESULTS

We illuminated the sample with a focused cw beam of a
He-Ne laser of λ = 633 nm and the power up to 2 mW. The
focused beam fits well inside the PC. The angular distribution
of the intensity (distribution in the far-field domain) of the
beam transmitted through the PC was observed on a screen
and recorded by a charge-coupled device (CCD) camera. A
schematic representation of the setup is presented in Fig. 3.
The experimental measurement shows a clear presence of the
first diffraction maxima [Figs. 3(a) and 3(b)] as well as the dark
line structure in the central maximum [Figs. 3(b) and 3(c)].

The results are well reproducible (we used several PC
samples fabricated under slightly different conditions) and
show the signatures of the expected effect of the spatial
filtering. The configuration of the crossing dark lines shows
the filtered out angular components of the spatial spectra.
The structure of these dark lines within the central maximum
corresponds well to the structure of the bright lines observed in
the first diffraction maxima, which is in good correspondence
with the theoretical expectations discussed below.

Figure 4 represents a quantitative analysis of the spatial
filtering effect. From the evaluation of the field distributions
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follows that approximately 5% of the radiation energy was
selectively removed from the central maximum and deflected
into the four first order diffraction components. The angular
intensity distribution of the deflected radiation coincides well
with the angular distribution of the “dips” in the central
components, as the comparison in Fig. 4 indicates.

IV. THEORY

We consider light propagation in a material with a spatially
modulated refraction index, as described by paraxial model:(

2ik0 ∂/∂z + ∇2
⊥ + 2�n(x,y,z)k2

0

)
A(x,y,z) = 0. (1)

Here A(x,y,z) is the slowly varying complex envelope
of the electromagnetic field in 3D space E(x,y,z,t) =
A(x,y,z)eik0z−iω0t + c.c. propagating along the z direction
with the carrier wave number k0 = nω0/c (in a material with
average refraction index n) and ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2 is the
Laplace operator in the space transverse to the propagation
direction.

The fabricated profile of the refraction index is
well approximated by a harmonic function: �n(x,y,z) =
�n0/4[cos(qxx) + cos(qyy)] cos(qzz), where �n0 is the max-
imum amplitude of the variation of the refractive index. We
expand the field into harmonic components:

A(r⊥,z) =
∫

eik⊥r⊥

(
A0(k⊥,z) +

∑
mx,my

Amx,my
(k⊥,z)eimxqxx+imyqyy−iqzz

)
dk⊥ (2)

containing only the most relevant diffracted components
Amx,my

(k⊥,z) [(mx,my) = (0, − 1),(0, + 1),(−1,0),(+1,0)],
in addition to the zero component A0(k⊥,z). This particular
truncation is justified having in mind the smallness of

FIG. 4. (Color online) Intensity distributions well behind the PC
(in the far-field domain) along the horizontal cut crossing the center
of the beam: (a) the field from central maximum (solid line) and
from the first diffraction maxima (dashed, colored lines). (b) Full
transmitted intensity distribution, i.e., the central- and the first maxima
added (dashed line) compared to the distribution without the crystal
(solid line). α◦ is the angular coordinate (in degrees) in the far-field
domain.

the index modulation, and also from the experimental obser-
vations, where only four diffraction maxima are dominating.
r⊥ = (x,y) denotes the space perpendicular to the propagation
direction, and k⊥ = (kx,ky) denotes the transverse components
of the propagation wave vector. Inserting (2) into (1) results in
the following:

d

dz
A0 = − ik2

⊥
2k0

A0 + i�n0k0

16

∑
mx,my

Amx,my
, (3a)

d

dz
Amx,my

=
[
− i(kx + mxqx)2 + i(ky + myqy)2

2k0
+ iqz

]

×Amx,my
+ i�n0k0

16
A0, (3b)

where (3b) describes a coherent transport of the radiation
from the central component k⊥ = (kx,ky) to the diffracted
components (kx + mxqx,ky + myqy), and (3a) describes a
depletion of the zero component due to this scattering. The
scattering and the depletion is most efficient for the angles
k⊥ corresponding to the resonant interaction between the
zero component (3a) and one or several of the diffracted
components (3b). The resonance condition reads:

(kx + mxqx)2 + (ky + myqy)2 − 2qzk0 = k2
x + k2

y (4)

as follows from (3). This condition results in four crossing
lines in k⊥ space, each line corresponding to a particular set
of (mx,my), i.e., to the coupling with particular diffraction
components. Physically speaking the radiation from each of
the resonance lines is efficiently transported to their “own”
diffraction components. The resonant lines are equivalent to
the dark lines observed in experiment (Fig. 3). The pattern
of the lines (the separation between the parallel lines) can
be tuned by varying the parameters of the photonic structure.
For instance all four lines cross at the center kx = ky = 0 for
q2

x = q2
y = 2k0qz.

The resonance condition (4) allows calculating the angles
of the dark lines with respect to the optical axis. In particular
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FIG. 5. (Color online) The 2D transmission profile (a) as well
as the distribution on a horizontal cut (b), as obtained by numerical
integration of (3) with the parameters: f = 2 × 10−4, q⊥ = 0.25,
q|| = 0.04, and for normalized propagation distance z = 4 × 103. The
dimensional coupling factor: f z = 0.8.

the resonance line (mx,my) = (+1,0) appears at the position
kx/k0 = qz/qx − qx/(2k0) in the angular space. This latter
expression was used to design the PCs with required resonance
angle. In our samples the angle was engineered of 1.5◦, as
visible from Figs. 3(c) and 4(a).

The numerical integration of (3) shows the formation of
the pattern in angular space (Fig. 5) which is analogous to
that observed in experiment. The amplitude of the modulation
of refraction index �n0 = 3 × 10−3 has been chosen in
numerical calculations in order to match the experimental
distributions from Fig. 4(a). In particular, the amplitude of
the refraction index modulation in PC samples was estimated
from the matching of experimental data with the theory and
numerical results.

In order to explore the formation of a particular dark line
we simplify the (3), by neglecting all the other resonances,
except for a particular one (we consider the dark lines
sufficiently separated). Considering the concrete resonance
line (mx,my) = (+1,0) the evolution of the field components
on the axis ky = 0 follows:

d

dz
A0(kx,z) = if A1,0(kx,z) (5a)

d

dz
A1,0(kx,z) = i�kz(kx)A1,0(kx,z) + if A0(kx,z), (5b)

where �kz(kx) = (2kxqx + q2
x )/(2k0) − qz = �kxqx/k0 is the

off-resonance parameter for the interacting two waves (�kx is
the transverse wave number with respect to the center of the
dark line), and f = �n0k0/16 is the normalized parameter of

FIG. 6. (Color online) Evolution of the angular field profile
around the resonance, as obtained from (6) along the propagation
in PC. The parameters are f = 2 × 10−4, q⊥ = 0.25, q|| = 0.04, the
lines show field profiles at equidistant propagation distances from
z = 0 to z = 6 × 103. (The adimensional coupling factor increases
until f z = 1.2.)

coupling between the harmonic components (of dimension of
inverse length).

The solution of (5a) is obtained analytically, which in terms
of the field intensities reads:

|A1,0(z)|2 = |A0(0)|2 sin2
(
zf

√
1 + �k2

z /(4f 2)
)

1 + �k2
z /(4f 2)

(a) (6a)

|A0(z)|2 = |A0(0)|2 − |A1,0(z)|2(b). (6b)

The evolution of the far-field profile |A0(kx,z)|2 along the
propagation distance z is shown in Fig. 6. The dip in the
central component increases, starts narrowing, and becomes
maximally narrow at the full depletion. With increasing
depth of the dip the oscillations on its fronts emerge. In
particular the field components at the resonance �kz = 0 (i.e.,
on the center of the dark line) evolves with the propaga-
tion as |A0(z)|2 = |A0(0)|2 cos2(f z) ≈ |A0(0)|2(1 − f 2z2/2).
The half-width of the dark line decreases approximately
as �k2

z,1/2 ≈ 2(3 − f 2z2)/z2 (at the level of 1
2 of intensity)

as obtained by the series expansion of (6). The minimum
half-width of the dark line at a distance of full depletion is
�kz,1/2, min ≈ f . In terms of the variables of kx , the half-width
of the dark line evolves as �k2

x,1/2 ≈ 2k2
0(3 − f 2z2)/(q2

x z
2)

down to the minimum width of �kx,1/2, min ≈ f k0/qx .
The above derivations allow a simple estimation of the

magnitude of the effect of spatial filtering for a given geometry
of the PC: the minimum width of the dark line (in k space)
is linearly proportional to the depth of index modulation
and is given by f = �n0k0/16; the depth of the dark line
is proportional to the adimensional coupling factor f z =
�n0k0z/16.

V. CONCLUSIONS

In conclusion, we have experimentally proved the effect
of the spatial filtering of light beams by three-dimensional
photonic crystals. Those evidences consist in the modification
of the angular spectra of the propagating beams in such a way
that the particular angular components are removed from the
central diffraction maximum and are selectively deflected into
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the first order diffraction maxima. Our theoretical-numerical
analysis reproduces well the experimental observations and
interprets the observed effect as the spatial filtering in the
gapless configuration.

The reported effect of spatial filtering is relatively weak
and carries a demonstrational character only, as the dark
lines are relatively narrow. Only approximately 5% of the
radiation was filtered out from the beam by the particular PC
samples. The reason for the weak filtering is the relatively small
amplitude of the modulation of the refraction index, resulting
in weak coupling between the harmonic components. In order
to obtain a technologically utile spatial filter the higher- (but
moderate) index-contrast PCs are necessary, which are to be
based on novel materials and new fabrication technologies.
A technologically relevant spatial filtering, say, that allows
improvement of the beam quality parameter by a factor of 2,
requires selective removal of at least of 50% of the radiation.
In this case the index modulation of order of �n0 = 3 × 10−2

would be needed for the same geometry and for the same width
of the PC, as follows from the scaling of the strength of the
effect derived above.

We note that the high-index-contrast PCs are not ideal for
spatial filtering, as splitting of the dark lines according to the-
oretical predictions (6) occurs. This is, from an experimental
viewpoint, should lead to a strong and unpredictable scattering
of light by the PC structure. In this way the straightforward
implementation of the high-index-contrast polymeric PCs,
such as woodpiles [17,18] or fcc-like PC structure [19], could

be problematic. However, the above-mentioned polymeric
structures [17–19] filled by the material with the refraction
index similar to that of a polymer, could lead to the desired
refraction index contrast �n0 = 3 × 10−2 and could thus
result in the above-estimated technologically spatial filtering
effect (improving the beam quality parameter by the factor of
two).

Finally, we highlight the advantages of the novel method of
filtering presented in the present article. The main advantages
(comparing with the conventional pinhole spatial filter) are
as follows: (i) extremely small thickness (tenths or hundreds
of microns) of the filter enabling the integration of such a
filter into micro-optical devices or into microresonators of
small lasers; (ii) translational invariance of the photonic crystal
spatial filter (insensitivity to the lateral shift of PC structure)
simplifying its utilization; and (iii) the possibility of combining
(to add) the filtering functionality to some other, already
existing, functionalities (amplification, nonlinearities) in bulk
material by additional modulation of refraction index of the
(amplifying or nonlinear) material.
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