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Abstract

All cancers are caused by somatic mutations. However, understanding of the biological processes

generating these mutations is limited. The catalogue of somatic mutations from a cancer genome
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bears the signatures of the mutational processes that have been operative. Here, we analysed

4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures.

Some are present in many cancer types, notably a signature attributed to the APOBEC family of

cytidine deaminases, whereas others are confined to a single class. Certain signatures are

associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in

DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational

signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer

types. The results reveal the diversity of mutational processes underlying the development of

cancer with potential implications for understanding of cancer etiology, prevention and therapy.

INTRODUCTION

Somatic mutations found in cancer genomes1 may be the consequence of the intrinsic slight

infidelity of the DNA replication machinery, exogenous or endogenous mutagen exposures,

enzymatic modification of DNA or defective DNA repair. In some cancer types, a

substantial proportion of somatic mutations is known to be generated by exposures, e.g.,

tobacco smoking in lung and ultraviolet (UV) light in skin cancers2, or by abnormalities of

DNA maintenance, e.g., defective DNA mismatch repair in some colorectal cancers3.

However, our understanding of the mutational processes that cause somatic mutations in

most cancer classes is remarkably limited.

Different mutational processes often generate different combinations of mutation types,

termed “signatures.” Until recently, mutational signatures in human cancer have been

explored through a small number of frequently mutated cancer genes, notably TP534.

Although informative, these studies have limitations. To generate a mutational signature, a

single mutation from each cancer sample is entered into a mutation set aggregated from

several cases of a particular cancer type. A signature that contributes the large majority of

somatic mutations in the tumor class is accurately reported. However, if multiple mutational

processes are operative, a jumbled composite signature is generated. Furthermore, because

such studies are based on “driver” mutations1, signatures of selection are superimposed on

the signatures of mutational processes.

Recent advances in sequencing technology have overcome past limitations of scale1.

Thousands of somatic mutations can now be identified in a single cancer sample, offering

the possibility of deciphering mutational signatures even when several mutational processes

are operative. Moreover, since most mutations in cancer genomes are “passengers”1 they do

not bear strong imprints of selection.

We recently developed an algorithm to extract mutational signatures from catalogues of

somatic mutations and applied it to 21 breast cancer whole genome sequences5,6. Novel and

known signatures were revealed, with the contribution of each signature to each cancer

sample and the timing of its activity estimated6,7. Further studies have demonstrated that the

approach can also be applied, albeit with less power, to mutational catalogues from

sequences of all coding exons (“exomes”)5. Global sequencing initiatives are now yielding

catalogues of somatic mutations from thousands of cancers8. We have therefore applied this

method to survey the repertoire of mutational signatures and processes operating across the

spectrum of human neoplasia.
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RESULTS

Mutational catalogues

We compiled 4,938,362 somatic substitutions and small insertions/deletions (indels) from

the mutational catalogues of 7,042 primary cancers of 30 different classes (507 from whole

genome and 6,535 from exome sequences) (Supplementary Fig. 1). In all cases, normal

DNA from the same individuals had been sequenced to establish the somatic origin of

variants.

The prevalence of somatic mutations was highly variable between and within cancer classes,

ranging from about 0.001/Mb to more than 400/Mb (Fig. 1). Certain childhood cancers

carried fewest mutations whereas cancers related to chronic mutagenic exposures such as

lung (tobacco) and malignant melanoma (UV) exhibited the highest prevalence. This

variation in mutation prevalence is attributable to differences between cancers in the

duration of the cellular lineage between the fertilized egg and the sequenced cancer cell and/

or to differences in somatic mutation rates during the whole or parts of that cellular lineage1.

The landscape of mutational signatures

In principle, all classes of mutation (substitutions, indels, rearrangements, etc.) and any

accessory mutation characteristic, e.g., the sequence context of the mutation or the

transcriptional strand on which it occurs, can be incorporated into the set of features by

which a mutational signature is defined. In the first instance, we extracted mutational

signatures using base substitutions and additionally included information on the sequence

context of each mutation. Since there are six classes of base substitution C>A, C>G, C>T,

T>A, T>C, T>G (all substitutions are referred to by the pyrimidine of the mutated Watson-

Crick base pair) and since we incorporated information on the bases immediately 5′ and 3′ to
each mutated base, there are 96 possible mutations in this classification. This 96 substitution

classification is particularly useful for distinguishing mutational signatures which cause the

same substitutions but in different sequence contexts.

Applying this approach to the 30 cancer types revealed 21 distinct validated mutational

signatures (Supplementary Table 1, Supplementary Figs 2 to 28). These show substantial

diversity (Fig. 2 and Supplementary Figs 2 to 23). There are signatures characterized by

prominence of only one or two of the 96 possible substitution mutations, indicating

remarkable specificity of mutation type and sequence context (Signature 10). By contrast,

others exhibit a more-or-less equal representation of all 96 mutations (Signature 3). There

are signatures characterized predominantly by C>T (1A/B, 6, 7, 11, 15, 19), C>A (4, 8, 18),

T>C (5, 12, 16, 21) and T>G mutations (9, 17), with others showing distinctive

combinations of mutation classes (2, 13, 14).

Signatures 1A and 1B were observed in 25/30 cancer classes (Fig. 3). Both are characterized

by prominence of C>T substitutions at NpCpG trinucleotides. Since they are almost

mutually exclusive among tumor types they probably represent the same underlying process,

with Signature 1B representing less efficient separation from other signatures in some

cancer types. Signature 1A/B is likely related to the relatively elevated rate of spontaneous

deamination of 5-methyl-cytosine which results in C>T transitions and which predominantly

occurs at NpCpG trinucleotides9. This mutational process operates in the germline, where it

has resulted in substantial depletion of NpCpG sequences, and in normal somatic cells10.

Signature 2 is characterized primarily by C>T and C>G mutations at TpCpN trinucleotides

and was found in 16/30 cancer types (Fig. 3). On the basis of similarities in mutation type

and sequence context we previously proposed that Signature 2 is due to over-activity of
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members of the APOBEC family of cytidine deaminases, which convert cytidine to uracil,

coupled to activity of the base excision repair and DNA replication machineries6,11.

In most cancer classes at least two mutational signatures were observed, with a maximum of

six in cancers of the liver, uterus and stomach. Although these differences may, in part, be

attributable to differences in the power to extract signatures, it seems likely that some

cancers have a more complex repertoire of mutational processes than others.

Most individual cancer genomes exhibit more than one mutational signature and many

different combinations of signatures were observed (Fig. 4 and Supplementary Figs 29 to

88). The patterns of contribution to individual cancer samples vary markedly between

signatures. Signature 1A/B contributes relatively similar numbers of mutations to most

cancer cases whereas other signatures contribute overwhelming numbers of mutations to

some cancer samples but very few to others of the same cancer class, for example Signatures

2, 3, 4, 6, 7, 9, 10, 11, 13 (Fig. 4).

Mutational signatures and age of cancer diagnosis

We examined each cancer type for correlations between age of diagnosis and the number of

mutations attributable to each signature in each sample. Signature 1A/B exhibited strong

positive correlations with age in the majority of cancer types of childhood and adulthood

(Supplementary Table 2). No other mutational signature showed a consistent correlation

with age of diagnosis.

The mutations in a cancer genome may be acquired at any stage in the cellular lineage from

the fertilized egg to the sequenced cancer cell. The correlation with age of diagnosis is

consistent with the hypothesis that a substantial proportion of Signature 1A/B mutations in

cancer genomes have been acquired over the lifetime of the cancer patient, at a relatively

constant rate which is similar in different people, probably in normal somatic tissues. The

absence of consistent correlation of all other signatures with age suggests that mutations

associated with these have been generated at different rates in different people, possibly as a

consequence of differing carcinogen exposures or after neoplastic change has been initiated.

Mutational signatures with transcriptional strand bias

The efficiency of DNA damage and DNA maintenance processes can differ between the

transcribed and untranscribed strands of genes. The most celebrated cause of this

phenomenon is transcription-coupled nucleotide excision repair (NER) that operates

predominantly on the transcribed strand of genes and is recruited by RNA polymerase II

when it encounters bulky DNA helix-distorting lesions12.

We re-extracted substitution mutational signatures incorporating the transcriptional strand

on which each mutation has taken place. Since a mutation in a transcribed genomic region

may be either on the transcribed or the untranscribed strand, this generates a classification

with 192 mutation subclasses.

Several signatures showed substantial differences in mutation prevalence between

transcribed and untranscribed strands (known as transcriptional strand bias) (Fig. 5 and

Supplementary Figs 89 to 95). For example, Signature 4 shows transcriptional strand bias

for C>A mutations (Fig. 5). Signature 4 is observed in lung adeno, squamous and small cell

carcinomas, head and neck squamous, and liver cancers (Fig. 3), most of which are known

to be caused by tobacco smoking. Therefore, Signature 4 is probably an imprint of the bulky

DNA adducts generated by polycyclic hydrocarbons found in tobacco smoke and their

removal by transcription-coupled NER13. The higher prevalence of C>A mutations on
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transcribed compared to untranscribed strands is consistent with the propensity of many

tobacco carcinogens to form adducts on guanine.

Similarly, Signature 7, mainly found in malignant melanoma, shows a higher prevalence of

C>T mutations on the untranscribed compared to the transcribed strands consistent with the

formation, through UV exposure, of pyrimidine dimers and other lesions which are known

to be repaired by transcription-coupled NER14.

Beyond these known examples of DNA damage processed by transcription-coupled NER,

other signatures show strong transcriptional strand bias (5, 8, 10, 12, 16). Notably, Signature

16, which is characterized by T>C mutations at ApTpA, ApTpG and ApTpT trinucleotides

and is observed in hepatocellular carcinomas, shows the strongest transcriptional strand bias

of any signature, with T>C mutations occurring almost exclusively on the transcribed strand

(Fig. 5). Similarly, Signature 12, which features T>C mutations at NpTpN trinucleotides,

also found in hepatocellular carcinomas, shows strong transcriptional strand bias with more

T>C mutations on the transcribed than untranscribed strands (Supplementary Fig. 94). On

the assumption that the transcriptional strand biases in Signatures 12 and 16 are introduced

by transcription coupled NER, these currently unexplained signatures may be the result of

bulky DNA helix-distorting adducts on adenine. However, there is no prior basis for

invoking transcription-coupled NER in the genesis of these signatures and other causes of

transcriptional strand bias may exist.

Mutational signatures with insertions and deletions

We re-extracted the mutational signatures including, in addition to the 96 substitution types,

two further classes of mutation: indels at short nucleotide repeats and indels with

overlapping microhomology at breakpoint junctions. Three of the 21 base substitution

signatures associated with large numbers of indels. Signature 6, which is characterized

predominantly by C>T at NpCpG mutations, but is distinct from Signature 1A/B,

contributes very large numbers of substitutions and small indels (mostly of 1bp) at

nucleotide repeats to subsets of colorectal, uterine, liver, kidney, prostate, esophageal and

pancreatic cancers. This pattern of indels, often termed “microsatellite instability”, is

characteristic of cancers with defective DNA mismatch repair15. Consistent with this

explanation, the presence of Signature 6 was strongly associated with the inactivation of

DNA mismatch repair (MMR) genes in colorectal cancer (P = 3.3 × 10−5).

Signature 15 also contributes very large numbers of substitutions and small indels at

nucleotide repeats but, compared to Signature 6, exhibits greater prominence of C>T at

GpCpN trinucleotides. Signature 15 was found in several samples of lung and stomach

cancer and its origin is currently unknown.

By contrast, substantial numbers of larger deletions (up to 50 bp) with overlapping

microhomology at breakpoint junctions were found in breast, ovarian and pancreatic cancer

cases with major contributions from Signature 3. A subset of cancer cases of these three

classes is known to be due to inactivating mutations in BRCA1 and BRCA2 and the

presence of Signature 3 was strongly associated with BRCA1/2 mutations within the

individual cancer types (P = 1.6 × 10−8 for breast cancer and P = 0.02 for pancreatic

cancer)6. Indeed, almost all cases with BRCA1/2 mutations showed a large contribution

from Signature 3. However, some cases with a substantial contribution from Signature 3 did

not have BRCA1/2 mutations suggesting that other mechanisms of BRCA1/2 inactivation or

abnormalities of other genes may also generate it.

BRCA1 and BRCA2 are implicated in homologous recombination based DNA double strand

break repair16. Abrogation of their functions results in non-homologous end-joining (NHEJ)
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mechanisms, which can utilize microhomology at rearrangement junctions to rejoin double

strand breaks, taking over DNA double strand break repair. The results show that, in

addition to the genomic structural instability conferred by defective double strand break

repair, a base substitution mutational signature is associated with BRCA1/2 deficiency.

Associating cancer etiology and mutational signatures

Each mutational signature is the imprint left on the cancer genome by a mutational process

that may include one or more DNA damage and/or DNA maintenance mechanisms, with the

latter either functioning normally or abnormally. Here, we consider likely mechanisms or

underlying causes by comparing signatures with mutation patterns of known causation in the

scientific literature or by associating them with epidemiological and biological features of

particular cancer types.

Signature 1A/B is probably due to the endogenous mutational process present in most

normal and neoplastic cells that is initiated by deamination of 5-methyl-cytosine9. Other

signatures are likely attributable to exogenous mutagenic exposures. Signature 7 is observed

in malignant melanoma and squamous carcinoma of the head and neck and has the known

features of UV induced mutations. Signature 4 is found in cancers associated with tobacco

smoking (Fig. 3) and has the mutational features associated with tobacco carcinogens13. The

causal relationship between tobacco smoking and Signature 4 is supported by a strong

positive association between smoking history and the contributions of Signature 4 to

individual cancers (P = 1.1 × 10−7, Supplementary Figs 44 to 46, 74 to 76, 96).

Cigarette smoke contains over 60 carcinogens13 and it is possible that this complex mixture

may initiate other mutational processes. Signatures 1A/B, 2 and 5 were also found in lung

adenocarcinoma. Signature 5, but not Signatures 1A/B and 2, also showed a positive

correlation between smoking history and mutation contribution (P = 8.0 × 10−3,

Supplementary Fig. 96). Thus, in lung cancer, Signature 5, which is characterized

predominantly by C>T and T>C mutations, may also be due to tobacco carcinogens.

However, it is also present in nine other cancer types, most of which are not strongly

associated with tobacco consumption, and therefore its etiology overall is unclear (Fig. 3).

Some anticancer drugs are mutagens17. Signature 11 is found in malignant melanomas and

glioblastomas multiforme pretreated with the alkylating agent temozolomide (P = 4.0 ×

10−3) and has mutational features very similar to those previously reported in experimental

studies of alkylating agents18.

Abnormalities in DNA maintenance may also be responsible for mutational signatures and

the roles of defective DNA mismatch repair (Signature 6) and defective homologous

recombination based DNA double strand break repair (Signature 3) have been discussed

above. Other signatures may result from abnormal activity of enzymes that modify DNA or

of error-prone polymerases. Signatures 2 and 13 have been attributed to the AID/APOBEC

family of cytidine deaminases6. On the basis of similarities in the sequence context of

cytosine mutations caused by APOBEC enzymes in experimental systems, a role for

APOBEC1, APOBEC3A and/or APOBEC3B in human cancer appears more likely than for

other members of the family19-21. However, the reason for the extreme activation of this

mutational process in some cancers is unknown. Since APOBEC activation constitutes part

of the innate immune response to viruses and retrotransposons22 it may be that these

mutational signatures represent collateral damage on the human genome from a response

originally directed at retrotransposing DNA elements or exogenous viruses. Confirmation of

this hypothesis would establish an important new mechanism for initiation of human

carcinogenesis.
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Signature 9, observed in chronic lymphocytic leukaemia and malignant B-cell lymphomas is

characterized by T>G transversions at ApTpN and TpTpN trinucleotides, and is restricted to

cancers that have undergone somatic immunoglobulin gene hypermutation (IGHV-mutated)

associated with Activation Induced Deaminase (AID) (P = 2.5 × 10−4 in CLL). Signature 9

does not, however, have the known mutational features of AID20, and has been proposed to

be due to POL η, an error prone polymerase involved in processing AID induced cytidine

deamination11,23. Similarly, Signature 10, which generates huge numbers of mutations in

subsets of colorectal and uterine cancer, has been previously associated with altered activity

of the error-prone polymerase POL ε (POLE) consequent on mutations in the gene24,25.

Many mutational signatures do not, however, have an established or proposed, underlying

mutational process or etiology. Some, for example Signatures 8, 12 and 16, show strong

transcriptional strand bias (Fig. 5) and possibly reflect the involvement of transcription

coupled nucleotide excision repair acting on bulky DNA adducts due to exogenous

carcinogens. Others, for example Signatures 14, 15, and 21, show overwhelming activity in

a small number of cancer cases (respectively Supplementary Figs 38, 45, and 56) and are

perhaps more likely to be due to currently uncharacterized defects in DNA maintenance.

Localized hypermutation: kataegis

Foci of localized substitution hypermutation, termed kataegis after the Greek for

thunderstorm, were recently described in breast cancer6. Kataegis is characterized by

clusters of C>T and/or C>G mutations which are substantially enriched at TpCpN

trinucleotides and on the same DNA strand. Foci of kataegis include from a few to several

thousand mutations and are often found in the vicinity of genomic rearrangements. The

genomic regions affected are different in different cancers. On the basis of the substitution

types and sequence context of kataegis substitutions, an underlying role for APOBEC family

enzymes was proposed for kataegis as well as for Signatures 2 and 136.

The 507 whole cancer genome mutation catalogs were searched for clusters of mutations.

Cancers of breast (67/119), pancreas (11/15), lung (20/24), liver (15/88), medulloblastomas

(2/100), CLL (15/28), B-cell lymphomas (21/24) and ALL (1/1) showed occasional (<10),

small (<20 mutations) foci of kataegis whilst AML (0/7) and pilocytic astrocytoma (0/101)

did not. Subsets of breast (7), lung (6) and haematological cancers (3) showed numerous

(>10) kataegic foci and two breast and one pancreatic cancer showed major foci of kataegis

(>50 mutations) (Fig. 6 and Supplementary Figs 97 and 98).

Kataegic foci are often associated with genomic rearrangements (Supplementary Fig. 98). In

yeast, introduction of a DNA double strand break greatly increases the likelihood of kataegis

in its vicinity indicating a role for such breaks in initiating the process20. However, even in

cancer cases with kataegis, most rearrangements do not exhibit nearby kataegis, suggesting

that a double strand break is not sufficient.

In neoplasms of B-lymphocyte origin, including CLL and many lymphomas, mutation

clusters recurrently occurred at immunoglobulin loci. In these cancers the mutation

characteristics were different (Supplementary Fig. 98), bearing the hallmarks of somatic

hypermutation associated with AID, which is operative during the generation of

immunological diversity20.

DISCUSSION

The diversity and complexity of somatic mutational processes underlying carcinogenesis in

human beings is now being revealed through mutational patterns buried within cancer

genomes. It is likely that more mutational signatures will be extracted, together with more
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precise definition of their features, as the number of whole-genome sequenced cancers

increases and analytic methods are further refined.

The mechanistic basis of some signatures is, at least partially, understood but for many it

remains speculative or unknown. Elucidating the underlying mutational processes will

depend upon two major streams of investigation. First, compilation of mutational signatures

from model systems exposed to known mutagens or perturbations of the DNA maintenance

machinery and comparison with those found in human cancers. Second, correlation of the

contributions of mutational signatures with other biological characteristics of each cancer

through diverse approaches ranging from molecular profiling to epidemiology. Collectively,

these studies will advance understanding of cancer etiology with potential implications for

prevention and treatment.

ONLINE METHODS

Validating Mutational Signatures

Validating a mutational signature requires ensuring that a large set of somatic mutations

attributed to this signature is genuine in at least one sample. Validation is complicated as

multiple mutational processes are usually operative in most cancer samples, and thus every

individual somatic mutation can be probabilistically assigned to several mutational

signatures. To overcome this limitation, we examined our dataset for samples that are

predominantly generated by one mutational signature (i.e., more than 50% of the somatic

mutations in the sample belong to an individual mutational signature) and/or for samples in

which all operative mutational processes have mutually exclusive patterns of mutations

(e.g., a sample with mutations only from Signature 1B, which is predominantly C>T

substitutions, and Signature 18, which is predominantly C>A substitutions). We identified

the optimal available sample for every mutational signature and attempted to validate the

subset of somatic mutations attributed to this signature using one of three methods

(Supplementary Figure 99):

- Validation through re-sequencing with an orthogonal sequencing technology.

- Validation through re-sequencing with the same sequencing technology (including

RNA-Seq, bisulfite sequencing, etc.).

- Validation through visual examination of somatic mutations by an experienced curator

using a genomic browser and BAM files for both the tumour and its matched normal.

For some of the previously published samples, we leveraged the already reported validation

data. When possible, somatic mutations were validated by either re-sequencing with

orthogonal technology or re-sequencing using the same sequencing technology. We resorted

to visual validation only when there was no other possibility for validating a mutational

signature. 21 of the 27 originally identified mutational signatures were validated

(Supplementary Table 1 and Supplementary Figure 99). 3 mutational signatures failed

validation – Signatures R1 to R3 (Supplementary Figs 24 to 26). We were unable to validate

2 mutational signatures, Signatures U1 and U2 (Supplementary Figs 27 and 28), due to lack

of available biological samples and access to BAM files for the samples with sufficient

number of somatic mutations generated by these two mutational signatures.

Samples and curation of freely available cancer data

Informed consent was obtained from all subjects. Collection and use of patient samples were

approved by the appropriate IRB of each Institution. In addition to newly generated data, we

curated freely available somatic mutations from three other sources:

- The data portal of The Cancer Genome Atlas (TCGA)

Alexandrov et al. Page 9

Nature. Author manuscript; available in PMC 2014 February 22.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



- The data portal of the International Cancer Genome Consortium (ICGC)

- Previously published data in peer-review journals, see additional references6,23,27-59

Filtering, estimating mutation prevalence, and generating mutational catalogs

In all examined samples, normal DNA from the same individuals had been sequenced to

establish the somatic origin of variants. Extensive filtering was performed to remove any

residual germline mutations and technology specific sequencing artifacts prior to analyzing

the data. Germline mutations were filtered out from the lists of reported mutations using the

complete list of germline mutations from dbSNP60, 1000 genomes project61, NHLBI GO

Exome Sequencing Project62, and 69 Complete Genomics panel (http://

www.completegenomics.com/public-data/69-Genomes/). Technology specific sequencing

artifacts were filtered out by using panels of BAM files of (unmatched) normal tissues

containing more than 120 normal genomes and 500 normal exomes. Any somatic mutation

present in at least three well-mapping reads in at least two normal BAM files was discarded.

The remaining somatic mutations were used for generating a mutational catalog for every

sample. Prevalence of somatic mutations was estimated based on a haploid human genome

after all filtering. Prevalence of somatic mutations in exomes was calculated based on the

identified mutations in protein coding genes and assuming that an average exome has 30

megabases in protein coding genes with sufficient coverage. Prevalence of somatic

mutations in whole genomes was calculated based on all identified mutations and assuming

that an average whole genome has 2.8 gigabases with sufficient coverage.

The immediate 5′ and 3′ sequence context was extracted using the ENSEMBL Core APIs

for human genome build GRCh37. Curated somatic mutations that originally mapped to an

older version of the human genome were re-mapped using UCSC’s freely available lift

genome annotations tool (any somatic mutations with ambiguous or missing mappings were

discarded). Dinucleotide substitutions were identified when two substitutions were present

in consecutive bases on the same chromosome (sequence context was ignored). The

immediate 5′ and 3′ sequence content of all indels was examined and the ones present at

mono/polynucleotide repeats or microhomologies were included in the analyzed mutational

catalogs as their respective types. Strand bias catalogs were derived for each sample using

only substitutions identified in the transcribed regions of well-annotated protein coding

genes. Genomic regions of bidirectional transcription were excluded from the strand bias

analysis.

Deciphering signatures of mutational processes

Mutational signatures were deciphered independently for each of the 30 cancer types using

our previously developed computational framework5. The algorithm deciphers the minimal

set of mutational signatures that optimally explains the proportion of each mutation type

found in each catalogue and then estimates the contribution of each signature to each

catalogue. Mutational signatures were also extracted separately for genomes and exomes.

Mutational signatures extracted from exomes were normalized using the observed

trinucleotide frequency in the human exome to the one of the human genome. All mutational

signatures were clustered using unsupervised agglomerative hierarchical clustering and a

threshold was selected to identify the set of consensus mutational signatures. Mis-clustering

was avoided by manual examination (and whenever necessary re-assignment) of all

signatures in all clusters. 27 consensus mutational signatures were identified across the 30

cancer types. The computational framework for deciphering mutational signatures as well as

the data used in this study are freely available and can be downloaded from: http://

www.mathworks.com/matlabcentral/fileexchange/38724
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Factors that influence extraction of mutational signatures

Recently, using simulated and real data, we described in detail the factors that influence the

extraction of mutational signatures5. These included the number of available samples, the

mutation prevalence in samples, the number of mutations contributed by different

mutational signatures, the similarity between the signatures of mutational processes

operative in cancer samples, as well as the limitations of our computational approach. Here,

we examined datasets with varying sizes from 30 different cancer types and we have taken

great care to report only validated mutational signatures. However, our approach identified

two similar patterns most likely representing the same biological process, viz., Signature 1A

and 1B. The reasons for this is, for some cancer types, we have sufficient numbers of

samples and/or mutations ( i.e., statistical power) to decipher the cleaner version ( i.e.,

Signature 1A) while for other cancer types we do not have sufficient data and our approach

extracts a version of the signature which is more contaminated by other Signatures present

in that cancer type ( i.e., Signature 1B). Nevertheless, the two Signatures are very similar,

hence we call them 1A and 1B. Being almost mutually exclusive amongst cancer types ( i.e.,

finding either Signature 1A or 1B in each cancer type but not usually both) is supportive of

the notion that they represent the same underlying process as is the fact that Signatures 1A

and 1B both correlate with age and have the same overall pattern of contributions to

individual cancer genomes. Indeed, in our view it is likely, that if we had sufficient data,

Signature 1B would disappear and the algorithm would extract only Signature 1A.

Displaying mutational signatures

Mutational signatures are displayed using a 96 substitution classification defined by the

substitution class and the sequence context immediately 3′ and 5′ to the mutated base.

Mutational signatures are displayed in the main text of the report and in Supplementary

Information based on the observed trinucleotide frequency of the human genome, i.e.,

representing the relative proportions of mutations generated in each signature based on the

actual trinucleotide frequencies of the reference human genome. However, in

Supplementary Information we also provide a visualization of mutational signatures based

on an equal frequency of each trinucleotide (Supplementary Figs 2 to 28). The equal

trinucleotide frequency representation results, in all mutational signatures, in a greater

degree of prominence of C>T substitutions at NpCpG trinucleotides as major features

compared to the plots based on the observed trinucleotides. This difference, may in some

cases, reflect the biological reality, i.e., a propensity of the particular mutational process to

be more active at NpCpG trinucleotides. However, please note, that it may also in some

cases, be due to incomplete extraction by the algorithm of the signature in question from

Signature 1A/B which is characterized by prominent features at NpCpG trinucleotides. This

is likely to happen because a) Signature 1A/B is ubiquitous and b) because even a small

probability of mutations at NpCpG trinucleotides will generate a prominent feature because

of the severe depletion of NpCpG trinucleotides in the reference genome. In future, with

larger numbers of sequences and large numbers of whole genome sequences it is anticipated

that the latter effect will be reduced.

Approaches for associating cancer etiology and exposures of validated mutational
signatures

Generalised linear models (GLMs) were used to fit signature exposures (i.e., number of

mutations assigned to a signature) and age of cancer diagnoses. For each cancer type, all

mutational signatures operative in it were evaluated using GLMs and the p-values were

corrected for multiple hypothesis testing using FDR. The resulting p-values indicate that age

strongly correlates with Signature 1A/B across 15 cancer types (Supplementary Table 2).

Exposure to Signature 4 also correlates with age of diagnosis in kidney papillary and thyroid

cancers. However, in both cancer types, we were not able to detect/extract Signature 1A/B
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due to low number of mutations in their samples and it is likely that Signature 1A/B is

currently mixed within Signature 4. Further studies, involving whole genome sequences,

will be needed to validate this hypothesis. Interestingly, in melanoma, age of diagnosis also

correlates with exposure to Signature 7, which we have associated with exposure to UV-

light.

Associations between all other etiologies and signature exposures were performed using

two-sample Kolmogorov-Smirnov tests between two sets of samples. The first set contains

the signature exposures of the samples with the “desired feature” (e.g., samples that contain

a hypermutation in the Ig gene) and the second set are the signature exposures of the

samples without the “desired feature” (e.g., samples that do NOT contain a hypermutation in

the Ig gene). Samples with unknown features status (e.g., not knowing the status of the Ig

gene) were ignored. Kolmogorov-Smirnov tests were performed for all signatures and all

examined “features” in a cancer type. P-values were FDR corrected based on the performed

tests in a particular cancer class.

A PCF-based algorithm for the detection of kataegis

Foci of localized hypermutation, termed kataegis, were sought in 507 whole-genome

sequenced cancers. High-quality variant calls that had been previously subjected to filtering

for mutational signature analysis were investigated using an algorithm developed to identify

foci of kataegis.

For each sample, all mutations were ordered by chromosomal position and the intermutation

distance, defined as the number of base pairs from each mutation to the next one, was

calculated. Intermutation distances were then segmented using the piecewise constant fitting

(PCF) method63 in order to find regions of constant intermutation distance. Parameters used

for PCF were gamma=25 and kmin=2 and were trained on the set of kataegis foci that had

been manually identified, curated and validated using orthogonal sequencing platforms6.

Putative regions of kataegis were identified as those segments containing 6 or more

consecutive mutations with an average intermutation distance of less than or equal to 1,000

bp.

Variation in number of foci of kataegis and relationship with genome-wide mutation
burden

In order to examine the likelihood of kataegis occurring for different mutation burdens, the

expected number of kataegis events that would be observed by chance was calculated for a

range of total number of mutations per cancer, n, between 1,000 and 2,000,000. The

probability that any one mutation will be followed by 5 other mutations within a distance of

5,000 bp, thereby triggering the identification of kataegis, is given by

where g is the length of the genome, in base pairs.

Supplementary Figure 97 shows the expected number of kataegis events identified in

genomes with between 100,000 and 500,000 mutations. For cancers with up to 200,000

mutations, the expected number of kataegis events is extremely small (0.16 for a total

mutation load of 200,000) making the detection of kataegic foci highly significant for each

sample. Supplementary Table 3 presents all the samples in which kataegic foci were

identified, the total mutation burden for each sample, the observed number of kataegic foci

and the expected number of foci.
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Post-processing: Specificity of variants in kataegis foci

Clusters of variant calls can easily occur in regions of low sequence complexity. These are

not true substitution mutations but represent systematic sequencing artefacts or mis-mapping

of short reads. The quality of variant calls depends on the quality of mutation-calling by

individual institutions. Additional filtering was applied in order to remove likely false

positive calls and then putative kataegic foci were individually curated.

1,436 kataegis foci were called by PCF, with 873 finalised as putative kataegis foci

(Supplementary Table 4) involving 9,219 substitution variants. Where possible, BAM files

were retrieved, inspected and substitution variants involved in kataegis foci were manually

curated to remove likely false positive calls. Where BAM files were not available to us,

substitution variants were strictly excluded if called in:

- Genomic features that generate mapping errors, e.g., regions of excessively high

coverage due to collapsed repeat sequences in the reference genome64.

- Highly repetitive regions with reads consistently demonstrating low mapping qualities

in 20 unrelated normal samples.

- Locations with known germline insertions/deletions within the sequencing reads

reporting the mutated base.

Reassuringly, several features were seen in the finalised putative kataegis foci, which

reinforced the conviction in the validity of these calls. Although clusters of mutations

identified by the PCF method were sought in an approach unbiased by mutation-type and

based exclusively on intermutation distances, we find that the 873 putative foci demonstrate:

first, a preponderance to C>T and C>G mutations (Supplementary Figure 97B); second, the

enrichment for a TpC sequence context as previously described6(Supplementary Figure

97B); third, processivity - where consecutive mutations within a cluster were on the same

strand (i.e., 6 C>T mutations in a row or 6 G>A mutations in a row) (Figure 6C); and fourth,

visual curation of reads carrying these processive variants showed that the variants were

usually in cis (i.e., mutations were on the same read (Supplementary Figure 97C) or on the

read mate of other affected alleles within the insert size) with respect to each other

indicating that they had arisen on the same allele. Finally, where data were available, we

found that clusters of substitution mutations within the same kataegis foci shared

approximately the same variant allele fraction indicating that they had likely arisen during a

single cell cycle event.

BAM files from some samples were not accessible and therefore a proportion of substitution

variants involved in kataegis foci were not visually curated. The application of the strict

criteria described above and the subsequent finding of the consistency of the mutation-type,

sequence context, processive nature of the mutations, with the majority in cis on individual

sequencing reads, suggests that the vast majority of these foci are likely to be genuine.

However, the possibility that some of the foci are not truly kataegis, particularly for the

cancers which have not been validated or visually curated, remains.

Sensitivity of kataegis detection

It is acknowledged that the likelihood of detection of kataegis foci rests on the sensitivity of

mutation detection. It is possible for foci to be missed because the mutations were not

detected by mutation-callers of the various institutions, prior to our analysis. This is

particularly relevant for subclonal mutations bearing a low variant allele fraction or for

mutations that occur on a single copy of a multi-copy locus. This is because the likelihood of

mutation detection is reduced when uncorrected for copy number and for aberrant cell

fraction of the tumour sample. Furthermore, our stringent post-processing criteria,
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particularly of samples that have not been visually curated, make it more likely that kataegis

is under-represented in this analysis.

Relationship between kataegis and large-scale genomic changes

Reinforcing our previous findings6, we found that some kataegic foci were very closely

associated with rearrangements. For example, a breast cancer sample with 1,534 point

mutations had only one focus of kataegis which contained 32 point mutations. The same

breast cancer sample also had 25 large-scale genomic structural variations (SV) scattered

throughout the genome. However, one tandem duplication coincided with this single locus

of kataegis in this cancer. Dramatically, no other mutations or SVs were seen for 2Mb

flanking this extraordinary event (Supplementary Figure 97B). Another breast cancer

(Figure 6A) that contained 22,454 mutations and had 292 rearrangements altogether, had

nine regions of kataegis, five of which coincided with large-scale SVs underscoring the co-

localization of kataegis foci with SVs. This also highlights that not all foci of kataegis co-

localized with SVs and not all SVs were associated with kataegis.

Sites of amplification represent a potential source of false variant calls. If the amplification

occurred early in the evolution of a cancer, then there is an increased likelihood of

substitutions accumulating randomly within the amplified genomic region. When mapped

back to the reference genome, these will appear as clustered variants.

A number of features allow us to distinguish such events from ‘true’ kataegis. These

mutations would not be expected to have features associated with kataegis, such as the

mutation-type, predilection for a TpC sequence context and the processivity. Furthermore, if

they have accumulated as random events in a multi-copy locus, then they would be less

likely to occur in cis (on the same sequencing read) with respect to each other. In contrast,

mutations which have occurred at the same time, during one moment of transient

hypermutability in a single cell cycle event, would be expected to cluster on one copy of a

multi-copy locus, to be in cis and to demonstrate approximately the same variant allele

fraction. Finally, to achieve the level of hypermutation required to be called as a focus of

kataegis (average intermutation distance of less than 1,000bp for six consecutive mutations

equivalent to ~1,000 substitutions per Mb), the degree of copy number amplification would

have to be considerable.

In order to examine this likelihood of false calls in regions of amplification, simulations

were performed assuming background mutation rates of 10 per Mb, 40 per Mb and 100 per

Mb for different copy number states and for different sizes of focal amplification. The

expected number of kataegic foci for these different states are provided in Supplementary

Table 5. For most of the samples in which kataegis was detected (all but twenty), a 10MB

region of amplification would require a copy number state of 36 or above to generate 1

cluster of 6 mutations with an average intermutation distance of less than 1,000bp. For 19 of

the remaining 20 samples, a 10MB region of amplification would require a copy number

state of 10 or above. For the single cancer with a mutation rate exceeding 40 per Mb, a copy

number state of 4 is required to generate a cluster of mutations. As mentioned previously,

these clusters would have to be processive, be in cis and have roughly the same variant allele

fraction in order to be called as a focus of kataegis.

Definition of kataegis

In summary, kataegis has been identified via a PCF-based method as 6 or more consecutive

mutations with an average intermutation distance of less than or equal to 1,000 bp. Other

salient features include a preponderance for C>T and C>G mutations, a predilection for a

TpC mutation context, processivity, evidence of having arisen on the same parental allele
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(being in cis) on sequencing reads and additionally (but not necessarily) co-localization with

large-scale genomic structural variation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The prevalence of somatic mutations across human cancer types
Every dot represents a sample while the red horizontal lines are the median numbers of

mutations in the respective cancer types. The vertical axis (log scaled) shows the number of

mutations per megabase while the different cancer types are ordered on the horizontal axis

based on their median numbers of somatic mutations. We would like to thank Gad Getz and

colleagues for the design of this figure26.
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Figure 2. Validated mutational signatures found in human cancer
Each signature is displayed according to the 96 substitution classification defined by the

substitution class and sequence context immediately 3′ and 5′ to the mutated base. The

probability bars for the six types of substitutions are displayed in different colors. The

mutation types are on the horizontal axes, while vertical axes depict the percentage of

mutations attributed to a specific mutation type. All mutational signatures are displayed

based on the trinucleotide frequency of the human genome. A higher resolution of each

panel is found respectively in Supplementary Figures 2 to 23.
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Figure 3. The presence of mutational signatures across human cancer types
Cancer types are ordered alphabetically as columns while mutational signatures are

displayed as rows. “Other” indicates mutational signatures for which we were not able to

perform validation or for which validation failed (Supplementary Figs 24 to 28). Prevalence

in cancer samples indicates the percentage of samples from our dataset of 7,042 cancers in

which the signature contributed significant number of somatic mutations. For most

signatures, significant number of mutations in a sample is defined as more than 100

substitutions or more than 25% of all mutations in that sample.
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Figure 4. The contributions of mutational signatures to individual cancers of selected cancer
types
Each bar represents a typical selected sample from the respective cancer type and the

vertical axis denotes the number of mutations per megabase. Contributions across all cancer

samples could be found in Supplementary Figures 29 to 58. Summary of the total

contributions for all operative mutational processes in a cancer type could be found in

Supplementary Figures 59 to 88. “Other” indicates mutational signatures for which we were

not able to perform validation or for which validation failed (Supplementary Figs 24 to 28).
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Figure 5. Mutational signatures with strong transcriptional strand bias
Mutations are shown according to the 192 mutation classification incorporating the

substitution type, the sequence context immediately 5′ and 3′ to the mutated base and

whether the mutated pyrimidine is on the transcribed or untranscribed strand. The mutation

types are displayed on the horizontal axis, while the vertical axis depicts the percentage of

mutations attributed to a specific mutation type. A higher resolution version of each panel is

found respectively in Supplementary Figures 89 to 95.
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Figure 6. Kataegis in three cancers
Each of these “rainfall” plots represents an individual cancer sample in which each dot

represents a single somatic mutation ordered on the horizontal axis according to its position

in the human genome. The vertical axis denotes the genomic distance of each mutation from

the previous mutation. Clusters of mutations in kataegis are arrowed.
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