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D
issecting the genetic architecture of complex traits is impor-
tant for understanding the genetic basis of phenotypic varia-
tion and evolution. For a fitness-related complex trait, natural 

selection plays an important role in shaping its genetic architecture1, 
which in turn provides information to infer the action of natural 
selection. Given that most traits are polygenic, natural selection is 
likely to act simultaneously on many trait-associated variants that 
have pleiotropic effects on fitness2,3. Unlike a selective sweep model4, 
in which there are often a limited number of mutations under rela-
tively strong selection, it is difficult to detect the selection signals in 
polygenic traits because the selection pressure is spread over many 
variants of small effect. However, evidence for natural selection can 
be inferred from the relationship between effect size and minor 
allele frequency (MAF) for all genome-wide variants. For example, 
mutations that are deleterious to fitness are selected against and thus 
kept at low frequencies by negative selection (also known as puri-
fying selection), resulting in a negative relationship between effect 
size and MAF5,6. The estimation of the joint distribution of effect size 
and MAF can be used to detect signatures of natural selection7 and 
thereby infer the relationship between a complex trait and fitness.

Genome-wide association studies (GWAS) have detected thou-
sands of SNPs associated with complex traits, which have helped 
to characterize the genetic architecture of these traits8. However, 
the genome-wide significant SNPs discovered in GWAS jointly 
explain only a fraction of the heritability, because many SNPs 
with small effects are yet to be detected9. Furthermore, a propor-
tion is missed due to the incomplete linkage disequilibrium (LD) 
between causal variants and SNP markers9. To address the ‘miss-
ing heritability’ problem9,10 in GWAS, mixed linear model (MLM) 
approaches have been used to estimate the variance explained by all 
SNPs used in a GWAS. GREML is a prevailing class of MLM-based 

approaches, in which all SNP effects are fitted together as random 
effects11. GREML analyses using common SNPs (MAF >  1%) have 
uncovered a large proportion of the missing heritability for height12, 
body mass index (BMI)12, and psychiatric disorders13. The GREML 
method assumes that all SNPs have an effect on the trait11 and thus 
does not allow us to estimate the degree of polygenicity (i.e., the  
proportion of SNPs with nonzero effects). Bayesian multiple regres-
sion is another class of MLM-based methods that enable us to make 
posterior inferences about polygenicity by assuming SNP effects 
are drawn from a mixture distribution of zero and nonzero com-
ponents14,15. Bayesian MLM methods have been widely used in live-
stock and plant breeding16 and have attracted increasing attention in 
humans for characterizing the genetic architecture of complex traits 
and diseases15,17,18. However, neither GREML nor Bayesian MLM 
explicitly models the relationship between effect size and MAF for 
complex traits.

In this study, we developed a Bayesian MLM method that can 
simultaneously estimate SNP-based heritability, polygenicity, and 
the joint distribution of effect size and MAF in conventionally unre-
lated individuals using GWAS data. We applied the method to 28 
complex traits in the UK Biobank (UKB) data19 and to 27,869 gene 
expression traits in the Consortium for the Architecture of Gene 
Expression (CAGE) data20.

Results
Method overview. Under the Bayesian MLM framework, we  mod-
eled the relationship between effect size and MAF using the follow-
ing mixture distribution as a prior for each SNP effect:

β σ π ϕ π~ − + −βN p p(0, [2 (1 )] ) (1 )
j j j
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where βj is the allelic substitution effect of an SNP j, pj is the MAF of 
the SNP, σβ

2 is a constant factor (i.e., variance of SNP effects under 
a neutral model), ϕ is a point mass at zero, and π is the proportion 
of SNPs with nonzero effects (i.e., polygenicity). The variance of βj 
when βj is nonzero, σ σ= − βp p[2 (1 )]j j j

S2 2, is defined over all possible 
values of S, which relates the variance of SNP effects to a MAF that 
is equivalent to a previous class of MLMs when S = 0 and S =  –121–23 
(see part 1 of the Supplementary Note for a proof of model equiva-
lence). When S = 0, the effect size is independent of MAF (neutral 
model). If there is selection, the effect size can be positively (S >  0) 
or negatively (S < 0) related to MAF. In this model (referred to as 
BayesS), we used a gradient-based sampling algorithm, Hamiltonian 
Monte Carlo24, to sample S from the posterior distribution and used 
Gibbs sampling for other parameters in the model by assuming con-
jugate priors (Methods). Furthermore, we used a parallel comput-
ing strategy following Fernando et al.25 to scale the analysis for very 
large sample sizes (N > 100,000). Details of the sampling scheme 
and the parallel computing strategy are given in parts 2 and 3 of 
the  Supplementary Note. In the hypothesis test against S = 0, two 
approaches were used to control false positives (Methods and part 4 
of the Supplementary Note), justified by simulation (Supplementary 
Figs. 1 and 2).

Assessing parameter estimation through simulations. We 
used simulations based on real GWAS genotype data from the 
Atherosclerosis Risk in Communities (ARIC) and GENEVA 
Diabetes study12 from dbGaP to assess the robustness of our method 
in estimating the parameters θ π= S h[ , , ]SNP

2 , where π is assessed by 
the number of SNPs with nonzero effects (i.e., mNZ = πm with m being 
the total number of SNPs; see Methods). The ARIC +  GENEVA data 
consisted of 12,942 unrelated individuals and 564,959 Affymetrix 
SNPs with MAF >  1% after quality controls. In our simulation, 
1,000 SNPs were chosen at random to be causal variants, with their 
effects related to MAF through an S value ranging from − 1 to +  1 in  
different scenarios.

Results showed that when both causal variants and SNP mark-
ers were fitted in the analysis, θ� from BayesS was unbiased with 
respect to the true parameters (Fig.  1). When the causal variants 

were not included in the analysis, both ĥSNP
2

 and the absolute value 
of Ŝ were slightly underestimated, due to imperfect tagging, an issue 
similar to that discussed in Yang et al.11. For polygenicity, �mNZ was 
an approximately unbiased estimate of the number of causal vari-
ants (mC) because the common causal variants (MAF >  1%) were 

well tagged by the common SNPs. Regardless of whether the causal 
variants were observed or masked, the standard error (s.e.) for Ŝ,  
ĥSNP
2

, and �mNZ were consistent with the standard deviation (s.d.) 
of the estimates from 100 simulation replicates (Supplementary 
Table  1). We also assessed the method under more extreme S 
values, as well as under different levels of heritability, numbers 
of causal variants, and sample sizes. The results were similar to 
those reported above, except that the mNZ estimate tended to be 
larger than mC when Nh2/mC was small, where N is the sample size  
and h2 is the trait heritability (Supplementary Fig.  3), likely due 
to the lack of power to distinguish between fitting a single causal 
variant and fitting multiple SNPs to capture the genetic variance 
in a genomic region. Thus, in practice, π� needs to be estimated in 
a large sample (e.g., N values in the tens of thousands or larger) 
and interpreted as the proportion of non-null SNPs. The extent 
to which it reflects the proportion of causal variants depends on 
how well the causal variants are tagged by the SNPs and the power. 
Nevertheless, the overestimation of mC did not inflate the estimate 
of S (Supplementary Fig. 3).

We also performed simulations based on whole-genome sequenc-
ing (WGS) data from the UK10K project26 (Methods) and showed 
that the estimates were unbiased in the presence of rare variants 
and that the estimates from downsampled array SNPs were shrunk 
towards zero due to the imperfect tagging of causal variants by array 
SNPs (Supplementary Fig.  4). When the S parameter increased 
from negative to positive, the proportion of genetic variance due 
to common causal variants also increased, resulting in increased 
tagging of causal genetic variation by array SNPs (Supplementary 
Fig. 4). Moreover, the method appeared to be robust to heteroge-
neity of LD in the genome (part 5 of the Supplementary Note and 
Supplementary Fig. 4).

Analysis of 28 complex traits in the UK Biobank data. We applied 
the BayesS method to 36 complex traits on 126,545 unrelated indi-
viduals of European ancestry in the UKB19 with 483,634 Affymetrix 
SNPs (MAF >  1%) after quality controls (Methods). Of the 36 traits, 
21 had N > 100,000. Two commonly used long-chain diagnostic tests 
were adopted to assess the convergence of the Markov chain Monte 
Carlo (MCMC) algorithm (part 6 of the Supplementary Note). Traits 
that did not pass our convergence tests were those with the smallest 

sample sizes, ĥSNP
2

 close to zero, or both (Supplementary Fig. 5). We 
focus on the results of 28 traits that passed both convergence tests for 
all of the three genetic architecture parameters (Supplementary Fig. 6).
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Comparison of genetic architectures between height and BMI. 
The genetic architectures of height and BMI have been relatively 
well studied compared to other complex traits23,27–31. Thus, it is 
revealing to compare our results for height and BMI (Fig. 2) with 
the previous findings. Both traits have a large sample size in the 
UKB: N =  126,545 for height and N =  126,389 for BMI. A nega-
tive S was detected with extremely high significance for both traits 
(P = 1.5 ×  10–106 for height and P = 3.2 ×  10–13 for BMI), meaning 
that lower-MAF variants tend to have larger effect sizes. Because 
our method models the relationship between MAF and variance of 
SNP effects, it cannot distinguish whether the negative estimate of 
S is due to an enrichment of trait-increasing or -decreasing alleles 
with larger effects at lower frequencies. Nevertheless, the estimated 
negative relationship between MAF and variance of SNP effects  
suggests that both height- and BMI-associated SNPs have been 
under negative selection, in line with the conclusions from recent 
studies23,30 (see part 7 of the Supplementary Note for more implica-
tions of the results).

Inference on natural selection. Of the 28 traits that passed our 
convergence tests, 23 traits (including reproductive, cardiovascu-
lar, and anthropometric traits, as well as educational attainment) 
had significant negative S estimates with posterior probability  
Pr(S <  0| data) =  1 and P < 0.05/28 (Supplementary Table 2), pro-
viding strong evidence that the genetic variants associated with 
these traits have been under selection. The estimates of S over traits 
ranged from − 0.609 (age at menopause) to 0.012 (fluid intelligence 
score) with mean − 0.355, median − 0.365, and s.d. 0.109. Notably, 
all the significant estimates of S were negative (see below for for-
ward simulation to infer the type of selection from the sign of S). 
The magnitude of Ŝ, i.e., ∣ ˆ∣S , reflects the strength of selection on 
the trait-associated SNPs. Traits with the largest ∣ ˆ∣S  are related to 
fertility and heart function (Fig.  3), including age at menopause 
(Ŝ =  –0.609, s.e. =  0.073), pulse rate (Ŝ =  –0.486, s.e. =  0.048), waist 
circumference adjusted for BMI (Ŝ =  –0.426, s.e. =  0.036), and 
waist–hip ratio adjusted for BMI (Ŝ =  –0.419, s.e. =  0.048). It has 
been reported that waist circumference and waist–hip ratio are 
associated with cardiovascular events32, and the latter is strongly 
correlated with pregnancy rate33. Age at menopause has a substan-
tial impact on lifetime fertility and a recent study has found molecu-
lar links between the onset and end of reproductive lifespan34. Other 
reproductive and cardiovascular traits, such as age at menarche, age 
at first live birth, and blood pressure, had relatively high ∣ ˆ∣S  values 
as well. Thus, our results suggest that reproductive and cardiovas-
cular traits are closely related to fitness and that the SNPs associated 
with these traits have been under relatively stronger selection than 
SNPs associated with other traits.

Height (Ŝ =  –0.422), handgrip strength (right: − 0.423,  
left: − 0.380), lung function–related traits (Ŝ values ranging from 
− 0.401 to − 0.328), heel bone mineral density (− 0.381), and basal 
metabolic rate (− 0.359) had moderate to high ∣ ˆ∣S  values (Fig. 3 and 
Supplementary Table 2). Two diseases or disorders, type 2 diabetes 
(T2D) and depression (DEP), had negative Ŝ values but the P values 
did not reach significance (0.05/28), although the posterior prob-
ability of S < 0 for T2D was as high as 0.983. However, the power to 
detect a significant Ŝ may be lower for these disease traits, given that 
the number of cases was less than 10,000 for each. A recent GWAS 
meta-analysis of ~110,000 individuals with SNP data imputed 
from a WGS sample of ~2,700 individuals did not find evidence 
of natural selection on T2D-associated variants35, which may also 
be due to insufficient power. Fluid intelligence (FI) score was the 
only trait with Ŝ at almost zero (Ŝ =  0.012, s.e. =  0.096); however, 
there was strong evidence of negative selection on the SNPs associ-
ated with educational attainment (Ŝ =  –0.335, s.e. =  0.055), which is 
thought to be a proxy of intelligence. Given that the genetic correla-
tion between educational attainment and FI was as high as 0.665 

(s.e. =  0.052), estimated from a bivariate LD score regression36, the 
fact that we did not detect a signal of selection for FI-associated 
SNPs may be due to the limited statistical power. It is also possible 
that both positive and negative selection pressures have acted on 
FI-associated SNPs, resulting in a flat relationship between MAF 
and effect size (see below for more discussion).

For traits with a significant estimate of S, we demonstrated the 
relationship between effect size and MAF by a plot of the cumulative 
proportion of genetic variance explained by SNPs (cGVE) against 
MAF (Fig. 4), where MCMC samples of SNP effects were used to 
compute cGVE for SNPs with MAF smaller than a threshold on the 
x axis (part 8 of the Supplementary Note). Under an evolutionarily 
neutral model and assuming a constant population size, cGVE is 
linearly proportional to MAF37,38 (i.e., the integral of per-SNP addi-
tive genetic variance over a MAF bin is a constant), and therefore 
the area under the curve (AUC) is expected to be 0.5. All traits with 
significant estimates of S had the curve of cGVE above the diagonal 
line, with ∣ ˆ∣S  highly correlated with the AUC (Pearson’s correla-
tion =  0.896). Demographic events such as population bottlenecks 
and rapid expansions could lead to changes in the distribution of 
cGVE39,40 but would not bias the estimate of S as demonstrated by 
a coalescent simulation41 (Methods and Supplementary Fig.  7). 
Nevertheless, our observation of high correlation between ∣ ˆ∣S  and 
the AUC (Fig. 4) implies that the impact of demographic events on 
the distribution of cGVE is likely to be modest.

Inference on SNP-based heritability. The 28 traits had low to 
moderate estimates of ĥSNP

2
, with mean 22.4%, median 21.5%, and 

s.d. 9.5% (Supplementary Table 3). Note that traits with ĥSNP
2

 close 
to zero had failed in MCMC convergence tests (Supplementary 

Fig. 5), and therefore the mean ĥSNP
2

 estimate across traits is likely 

to be inflated. Besides height (ĥSNP
2

 =  52.7%), traits with the highest 

ĥSNP
2

 (Supplementary Fig. 8) included basal metabolic rate (33.8%), 
which has been reported to lie between 0.2 and 0.4 in model 
animals42, and male pattern baldness (33.7%), which has been 
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reported to be a highly heritable trait in twin studies43. Traits with 

the lowest ĥSNP
2

 included mean time to correctly identify matches 
(8.0%), birth weight (11.1%), DEP (11.6%), and neuroticism score 

(12.5%), in line with the low estimates of ĥSNP
2

 from previous stud-
ies of DEP44 and neuroticism score45. Given that most published 
estimates were obtained using whole-genome imputed SNPs, they 
are likely to be slightly higher than our estimates based on array 
SNPs. For example, a recent study46 on educational attainment in 
UKB gave an estimate of 21% (s.e. =  0.6%), slightly higher than our 
estimate of 18.2% (s.e. =  0.4%). Our estimate of 52.7% (s.e. =  0.3%) 
for height was slightly but not substantially lower than that of 
56% (s.e. =  2.3%) in Yang et al.23. For BMI, our estimate of 27.6% 
(s.e. =  0.4%) was highly consistent with that of 27% (s.e. =  2.5%) in 
Yang et al.23. Across traits, ĥSNP

2
 seemed to be independent of either 

Ŝ or π�, but the s.e. values of Ŝ and π� decreased as ĥSNP
2

 increased 
(Supplementary Fig. 9).

Inference on polygenicity. The distribution of π� had mean 5.9%, 
median 5.4%, and s.d. 3.5% across traits, and ranged from 0.6% 
(s.e. =  0.1%) to 14.0% (s.e. =  1.3%; Supplementary Table  4). This 
suggests that all 28 complex traits are polygenic, with ~30,000 com-
mon SNPs with nonzero effects, on average. Notably, age at meno-
pause, the trait with highest magnitude of Ŝ (− 0.609), had the lowest 
estimate of polygenicity (π� =  0.6%, s.e. =  0.1%; Supplementary 
Fig. 8). Age at first live birth had the highest π� ( .14 0%) but with a 
relatively large s.e. ( .2 5%). It was followed by educational attainment 
(π� =  13.2%, s.e. =  1.3%), which is reasonable because it is likely to 
be made up of several subphenotypes so that many SNPs have an 
effect. We examined the robustness of results above by repeating the 
UKB analyses with smaller sample sizes (Supplementary Fig.  10) 

and by simulations with the estimated genetic architectures from 
the UKB traits (Supplementary Table 5, part 9 of the Supplementary 
Note, and Supplementary Figs. 10–12).

The signs of S under different types of natural selection. 
Besides detecting selection and quantifying its strength on the 
trait-associated SNPs, the sign of S allows us to further infer the 
type of selection. To demonstrate this, we used forward simula-
tions to simulate common types of natural selection for a quan-
titative trait by relating the normally distributed phenotype to 
fitness through a hypothetical function (Methods and part 10 
of the  Supplementary Note). In this setting, the trait itself was 
under selection, and the sign of S distinguished stabilizing selec-
tion (S <  0) from directional and disruptive selection (S >  0) on 
the trait (Fig.  5 and Supplementary Fig.  13); this property held 
under a demographic model47 (part 11 of the Supplementary Note 
and Supplementary Fig.  14). Our result also implied that when 
the trait-associated variants have pleiotropic effects on fitness, 
the sign of S distinguishes negative selection (S < 0) from positive 
selection (S > 0) on the variants (Fig. 5), confirmed by simulations 
with variants of direct deleterious or beneficial effects on fitness  
(Supplementary Fig. 15).

Analysis of gene expression traits. To demonstrate that our 
method can be applied to less polygenic traits, we analyzed gene 
expression data from CAGE20, which consisted of 36,778 gene 
expression probes in peripheral blood from 1,748 unrelated indi-
viduals of European ancestry and 1,066,738 HapMap348 SNPs with 
MAF >  1% (Methods). To facilitate the analysis of all 36,778 probes, 
we developed a nested version of the BayesS method (Methods 
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and parts 12− 15 of the  Supplementary Note) and evaluated its 
performance using both real and simulated data (Supplementary 
Figs. 16–18). We found that the estimates of hSNP

2  and π for most 
probes were lower than those for UKB traits (Supplementary 
Figs.  18–20). Applying a Bonferroni correction for the number 
of probes mapped to the genome, we observed significant Ŝ val-
ues for 32 probes (P < 0.05/21,303 =  2.3 ×  10–6; Supplementary 
Fig.  21 and Supplementary Table  6), all of which had a negative 
Ŝ value (mean =  –1.26, s.d. =  0.19), mapped to 30 unique genes 
(Supplementary Fig.  22). Of these 32 probes, 29 had   expres-
sion quantitative trait loci (eQTL) at P < 5 ×  10–8, and Ŝ for all 
29 probes became nonsignificant after removing SNPs within  
2 Mb around each probe (Supplementary Table  7), consistent 
with the result from forward simulation for traits with genetic 
architecture of ‘a large cis-eQTL +  polygenic effects’ (part 16 of 
the Supplementary Note and Supplementary Fig. 23). The forward 
simulation also showed that for gene expression traits with a large 
cis-eQTL, the S parameter for individual traits varied substantially 
under a neutral model, but the mean of S was still informative to 
infer the type of selection across traits (Supplementary Fig.  23). 
Thus, our observation that Ŝ was negative for all 32 detected probes 
is consistent with a model of negative selection on the genetic vari-
ants associated with gene expression traits. In addition, there was 
little correlation between selection on the regulatory and coding 
regions of a gene (Supplementary Fig. 24), consistent with the find-
ings in Torgerson et al.49.

Discussion
We introduced a method (called BayesS) to infer the action of natu-
ral selection on the genetic variants underlying a complex trait. By 
estimating the relationship between the variance of SNP effects and 
MAF (i.e., the parameter S) using genome-wide SNPs, we detected 
significant signatures of natural selection (S ≠  0) for 23 of 28 com-
plex traits in the UKB data, with the strongest selection signals 
from SNPs associated with reproductive and cardiovascular traits, 
followed by those associated with height, handgrip strength, lung 
function, and other anthropometric traits, as well as educational 
attainment (Fig. 3). Together with the high prevalence of selection 
signals across traits (23/28 =  82%), our observation of high degree 
of polygenicity (~6% on average) underlines the role of pleiotropy 
in the action of natural selection.

Our observation that all the significant estimates of S were nega-
tive (Fig. 3) is consistent with a model of negative selection (Fig. 5). 
Evidence of negative selection has been reported for height and 
BMI previously, from estimating the variance explained by variants 
stratified by MAF and LD scores (the GREML–LDMS approach)23. 
When we applied the GREML–LDMS approach to the UKB data 
imputed from Haplotype Reference Consortium50, we also found 
that variance explained by rare SNPs (MAF <  1%) was  larger than 
expected under a neutral model for height, BMI, waist-to-hip 
ratio, and diastolic blood pressure (Supplementary Table  8). The 
GREML–LDMS analysis, however, cannot distinguish whether the 
excess of variance explained by rare variants is a result of negative 
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selection or an excess of rare variants due to rapid population 
expansion39,40. Our BayesS approach, which models the variance of 
SNP effects conditional on MAF, is therefore expected to be robust 
to the abundance of rare variants, as confirmed by the coalescent 
simulation (Methods and Supplementary Fig.  7) and by an addi-
tional forward simulation under a commonly used demographic 
model47 (Supplementary Fig. 14).

There is an increasing body of literature supporting the hypoth-
esis of widespread signatures of polygenic selection on genetic vari-
ants associated with complex traits3,29,51–54. The metrics used in these 
studies, such as FST

52 and singleton density score54, are specialized 
to detect signals of positive selection, whereas our method uses 
the S parameter to infer the type of selection that has played a pre-
dominant role in shaping the relationship between MAF and effect 
size. Our conclusions of widespread negative selection are consis-
tent with findings of a recent study that used an extended LD score 
regression approach to estimate the effects of LD-based annotations 
on per-SNP heritability55. It is likely that both positive and negative 
selection have acted on the genetic variants associated with a com-
plex trait and that the former is weaker and/or less frequent than 
the latter so that the population evolves (slowly) in one direction  

by directional selection with a persistent constraint on extreme 
phenotypes by stabilizing selection. This hypothesis is supported by 
the results from an additional forward simulation in the presence of 
both positive and negative selection (part 17 of the Supplementary 
Note), which showed that S increased from negative to positive 
when the strength of positive selection increased relative to that of 
negative selection (Supplementary Fig. 25).

Because we only included the array SNPs in the UKB analy-
sis, our inference on natural selection is likely to be conservative 
due to the imperfect tagging of causal variants by array SNPs, as 
demonstrated by the simulation based on the UK10K WGS data 
(Supplementary Fig. 4). The median estimate of S of all the UKB 
traits was − 0.37 (s.d. =  0.11) with a minimum estimate of − 0.609 
(s.e. =  0.073) for age at menopause, which is not as low as the default 
value used in the GREML method implemented in the GCTA soft-
ware (i.e., S =  –1)11,56. These observations may be because most of 
the UKB traits are not strongly correlated with fitness; the strength 
of stabilizing selection on fitness has been limited in human popu-
lations; a substantial proportion of causal variation has not been 
captured by SNPs; and/or the signatures of negative and positive 
selection are cancelled out by each other (see the discussion above). 
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Given that most complex traits have negative estimates of the rela-
tionship between variance of SNP effects and MAF, future GWAS 
based on WGS or imputed data with large sample sizes are expected 
to discover an increasing number of rare variants with large effects.

We conclude with several caveats. First, the polygenicity esti-
mate (π�) only approximately reflects the actual fraction of causal 
variants, unless the sequence variants are observed and the sample 
size is sufficiently large. Nevertheless, π� can be used to compare the 
levels of polygenicity across traits if the proportion of variation at 
causal variants tagged by array SNPs and the S parameter are not too 
different between traits. Second, the power of detecting a signal of 
natural selection (i.e., testing against S = 0) may improve if WGS or 
imputed sequence data that include a large number of rare variants 
are used in the analysis. However, further computational optimi-
zation is needed to run BayesS on all the WGS variants in a large 
cohort like the UKB. Finally, it is important to note that our study 
detected signatures of natural selection on genetic variants associ-
ated with complex traits. Whether the traits themselves have been 
under selection is not known.

URLs. GCTA, http://cnsgenomics.com/software/gcta. GCTB, 
http://cnsgenomics.com/software/gctb. SLiM, https://messerlab.
org/slim.  msprime, https://github.com/jeromekelleher/msprime. 
PLINK, https://www.cog-genomics.org/plink2. ldsc, https://github.
com/bulik/ldsc. UK Biobank, http://www.ukbiobank.ac.uk.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0101-4.
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Methods
�e BayesS model. BayesS is a Bayesian MLM that simultaneously �ts all the SNP 
e�ects as random:

βμ= + +y e1 X

where y is the vector of phenotypes, µ is the fixed effect, X is the matrix of SNP 
genotype scores centered by the column means, β is the vector of SNP effects, 
and e is the residuals. The fixed effect has a flat prior: µ ∝  constant. In practice, 
we fitted principal components and other covariates in the model as fixed effects. 
It is common to standardize the SNP genotypes such that each column of X has 
variance 1. In BayesS, however, the SNP genotypes are not standardized, as the 
standardization implicitly assumes a strong negative relationship between effect 
size and MAF (S =  − 1)21–23,57. We assume that the SNP effect βj has a hierarchical 
mixture prior (see Method overview):

β σ π ϕ π~ − + −βN p p(0, [2 (1 )] ) (1 )
j j j

S 2

where ϕ is a point mass at zero and π, the proportion of SNPs with nonzero effects, 
reflects the polygenicity of a trait. We allow data to determine the polygenicity by 
assuming a uniform prior:

π ~U (0, 1)

The variance of SNP effects, which quantifies our prior belief on the effect size, is 
modeled to be related to MAF pj through S, which is assumed to have a normal 
prior:

σ~S N (0, )S
2

Namely, we a priori believe a neutral model with some certainty (quantified by the 
given variance) to allow the detection of selection from the data. We used σ = 1S

2  as 
the prior in the analysis of UKB traits, but used a more informative prior σ = .0 1S

2  
in the analysis of gene expression traits in CAGE to shrink the noise more heavily 
toward zero given the much smaller sample size of CAGE compared with that of 
UKB. The prior for the common variance factor is

σ ν τ χ~β β β ν

−

β

2 2 2

where ν =β 4 and τβ
2 is computed utilizing the characteristic of the distribution: if 

σ ~ ντ χ
ν

−2 2 2, then σ = ντ ∕ ν−E( ) ( 2)
2 2 . Rearranging the equation gives

τ
ν

ν
σ=

−

β

β

β

βE
2

( )
2 2

where

σ
π

=
∑ −

β +
E

V

p p
( )

[2 (1 )]

g

j j j

S

2

0
1 0

with Vg, π0 and S0 being the priors of the genetic variance, π and S, respectively. 
To remove the dependency of the hyper-parameter τβ

2 on the prior values of the 
genetic variance, π and S, we compute τβ

2 deterministically using the sampled values 
of these parameters for the first 2,000 MCMC cycles, and then set τβ

2 equal to the 
average value across these cycles. Likewise, the prior for the residual variance is

σ ν τ χ~

ν

−

e e e
2 2 2

e

where ν = 4e  and τ =

ν

ν

−

Ve e
2 2e

e
 with Ve being a prior of the residual variance. Note 

that when S = 0, our model becomes BayesCπ14, a method that has been widely 
used for genomic prediction in agriculture, or Bayesian variable selection 
regression (BVSR) in statistics literature58. The sampling scheme of the parameters 
is given in part 2 of the Supplementary Note. We used posterior mode, standard 
deviation (s.d.) or highest probability density (HPD) computed from the MCMC 
samples to estimate the parameter (θ), standard error (s.e.) or credible interval, 
respectively.

The nested BayesS model is developed based on a previously published 
method, BayesN59, to speed up computation when a large number of SNPs are 
included in the analysis. In the nested BayesS, the genome is partitioned into  
W-kb non-overlapping segments. Each window a priori has k SNPs with nonzero 
effects, where W and k are some given numbers. SNPs in the same window are 
individually modeled as in BayesS, as well as collectively considered as a window 
effect with a normal-zero mixture prior. Remarkable speedups are obtained by 
skipping over the windows with zero effect, focusing solely on the windows that 
harbor genetic signals. Thus, the reduction in computing time is inversely related 
to the polygenicity, which is defined here as the proportion of segments with 
nonzero effects. When the causal variants are not observed, choosing k >  1 may 

lead to better performance in parameter estimation than BayesS, as it refines the 
signal of causal variant by allowing the flanking SNPs to jointly capture its effect. In 
this study, the length of window was set at 200 kb with 2 SNPs a priori fitted in the 
model. See parts 13− 15 of the Supplementary Note for details on the nested BayesS 
and the comparison with the standard BayesS and see part 18 of the Supplementary 
Note for a discussion on computational efficiency.

Estimation of SNP-based heritability. We estimate the SNP-based heritability 
using the sampled values of SNP effects in MCMC60. By definition, the genetic 
variance is the variance of the genetic values across individuals. In each MCMC 
cycle, we estimate  the genetic value for each individual ∼g( )

i
 using SNPs with 

sampled nonzero effects β
∼

( )
j

:

∑ β=∼
∼
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Conditional on the sampled value of residual variance σ
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In this study, we used the mode of all cycles after burn-in as the estimate of SNP-
based heritability.

Hypothesis test against S = 0. The first approach is to control the family-wise type 
I error rate (FWER) using an asymptotic theory that the posterior distribution 
has a normal approximation centered at the true parameter value under certain 
assumptions61 (part 4 of the Supplementary Note). The asymptotic property of 
the posterior distribution for S was justified by simulation with the UKB cohort, 
where the type I error rate was well controlled (Supplementary Fig. 1). The 
second approach is to control the proportion of false positives62 (PFP) among 
rejections (also known as the marginal false discovery rate or mFDR63) based 
on the posterior probability given the data (D), e.g., < ∣DSPr( 0 ) . We showed 
by simulation that given a large sample size, rejecting S = 0 with < ∣DSPr( 0 )  or 

γ> ∣ ≥DSPr( 0 )  guarantees PFP to be less than 1 – γ (Supplementary Fig. 2). The 
former approach is more stringent but the advantage of the latter approach is that 
power is not inversely related to the number of traits tested62.

Simulation based on genotyped array SNPs. The simulation based on 
ARIC +  GENEVA12 was used for testing the methods. We used PLINK 1.964 to 
carry out standard quality control (QC) procedures on the dataset, including 
removal of SNPs with missingness >  5%, Hardy–Weinberg equilibrium test at 
P < 10–6, or MAF <  1%, and removal of individuals with missing genotypes <  1% 
and genetic relationship <  0.05 estimated from all SNPs after QC using GCTA–
GRM56. After QC, a total of 12,942 unrelated individuals and 564,959 SNPs 
remained. A quantitative trait was simulated by choosing 1,000 SNPs at random 
as causal variants with their effects sampled from N(0,1). To simulate a spectrum 
of relationships between MAF and effect size, the SNP effect was multiplied by 

− ∕p p[2 (1 )]
j j

S 2 where S = –1, –0.5, 0, 0.5, or 1, representing the negative-to-positive 
relationship between effect size and MAF, including the case of independence 
when S = 0. An individual phenotype specific to a given value of S was generated by 
adding a random normal residual with variance identical to the genetic variance, 
giving each simulated trait a heritability of 0.5. The simulation process was 
repeated 100 times. We analyzed the simulated data with and without the causal 
variants in the model. To evaluate the robustness of our method to the starting 
values of parameters, we used an arbitrary value of 0 for S, 0.2 for heritability, and 
0.05 for π, respectively, to start the MCMC.

Analysis of the UK Biobank data. We have access to 46 complex traits in the UK 
Biobank19, in which phenotype data were collected from over 500,000 individuals 
aged between 40 and 69 across the United Kingdom. The interim release contains 
genotypes for 152,736 samples at 806,466 SNPs on a customized Affymetrix Axiom 
array after QC procedures65. We selected a subset of 140,408 individuals that had 
a self-reported gender identical to the genetically inferred gender and a European 
ethnicity derived from a principal component analysis together with self-reported 
ethnicity. Furthermore, we removed individuals with genomic relatedness >  0.05 
estimated from all SNPs using GCTA–GRM56 and SNPs with genotype missing 
rate >  5%, Hardy–Weinberg equilibrium test P < 10–6, or MAF <  1%. The final 
dataset consisted of 126,752 individuals of European ancestry with 483,634 
common SNPs (MAF >  1%). After removal of five duplicated traits and five 
traits with sample size (N) <  20,000, 36 traits remained for analysis, including 32 
quantitative traits (anthropometric, cardiovascular and reproductive),  
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2 categorical traits (male pattern baldness (MPB) and years of schooling 
(educational attainment)) and 2 diseases or disorders (type 2 diabetes (T2D) and 
depression (DEP)). The sample size for each trait is shown in Supplementary 
Table 2; most traits had N >  100,000. The prevalence of T2D and DEP in the 
sample was 5.35% and 6.70%, respectively. For T2D and DEP, the estimates of 
SNP-based heritability were on the liability scale and were converted from the 
observed scale10, assuming population prevalences of 8%35 and 15%66, respectively. 
The phenotypes of quantitative traits were standardized within each sex group after 
regressing out the age effect. For educational attainment, the years of schooling are 
pre-adjusted by sex, a third order polynomial of year-of-birth, and year-of-birth 
by sex interactions. We used BayesS for the analysis, where the first 20 principal 
components (PC) of GRM were fitted as fixed effects to account for the effects 
due to population stratification. For the disease traits, sex and age were fitted as 
covariates in addition to PCs, and for MPB, only age was fitted as the additional 
covariate. The diagnostic results of MCMC convergence in BayesS are shown in 
Supplementary Fig. 26 and Supplementary Table 9.

Simulation study based on UK10K sequence data. We included 475,314 
sequence variants (51.4% are rare, MAF <  1%) from chromosomes 21 and 22 of the 
whole-genome sequencing (WGS) data from the UK10K project26. We randomly 
sampled 100 causal variants from all sequence variants or the variants at DNase 
I-hypersensitive sites (DHSs). We also simulated a more polygenic architecture 
with 1,000 causal variants. Furthermore, the sequence variants were downsampled 
to match the SNPs on the Affymetrix Axiom chip (14,631 SNPs with MAF >  1%). 
The effects of causal variants were generated given a spectrum of S values as in 
the ARIC +  GENEVA simulation (Methods). A heritability of 0.8 was used to 
compensate for the small sample size (N =  3,642).

Coalescent simulation of sequence variants with a large sample size. We used 
the coalescent simulation software msprime41 to efficiently generate genotypes 
of sequence variants on a 10-Mb segment for 100,000 individuals. Under the 
demographic model described in Gravel et al.47, we observed an excess of rare 
variants, as expected (Supplementary Fig. 7b). We randomly chose 100 sequence 
variants as the causal variants, the effects of which were sampled given a spectrum 
of S values as in the ARIC +  GENEVA simulation (Methods). Three levels of 
heritability (0.01, 0.05, and 0.1) were investigated in the simulation.

Forward simulation for different types of natural selection. We ran forward 
simulations using SLiM67 to confirm that the relationship between effect size and 
MAF is subject to different types of natural selection. We simulated a 10-Mb region 
where new mutations occurred with probability of 0.95 to be neutral and of 0.05 to 
be a causal variant with an effect sampled from N(0,1). The mutation rate was set 
at 1.65 ×  10–8 (ref. 68). The phenotype of an individual was simulated based on the 
genotypic values with a heritability of 0.1 at all segregating causal variants in the 
current generation. We simulated the evolution of a population of 1,000 individuals 
over 10,000 generations (this is equivalent to 100,000 generations in a population 
of 10,000 individuals69). The first 5,000 generations were used as a burn-in 
period, in which the phenotype did not affect fitness and all variants (including 
the causal variants) were under neutral variation. From generation 5,001, we 
related the standardized phenotype, with mean 0 and variance 1, to fitness 
through hypothetical functions that represent different types of selection (Fig. 5). 
For directional selection, the phenotype was positively or negatively correlated 
to fitness through a simple linear function. For stabilizing selection, we used a 
normal curve to model fitness achieving an optimum at at intermediate phenotype 
value. For disruptive selection, a reversed normal curve was used to model the 
phenotypes at the two tails producing the highest fitness. In the last generation 
of selection, we investigated the joint distribution of effects and frequencies of 
the derived alleles, the joint distribution of effects and frequencies of the coded 
alleles (arbitrarily chosen as in reality where derived alleles are unknown), and the 
relationship between the variance of the coded-allele effects and MAF. We collected 
results from 200 simulation replicates.

Consortium for the Architecture of Gene Expression (CAGE) dataset. We 
analyzed the mRNA levels for 36,778 transcript expression traits (probes) from 
the CAGE20 dataset using the nested BayesS method. The CAGE data comprised 
measurements from 36,778 gene expression probes in peripheral blood, with 

a subset of 1,748 unrelated (genomic relatedness <  0.05) European individuals 
from the total 2,765 individuals used for this analysis. Full details of the cohorts 
contributing to CAGE, and their sample preparation, normalization and genotype 
imputation are outlined in Lloyd-Jones et al.20. Briefly, the quantification of gene 
expression for each cohort was performed using the Illumina Whole-Genome 
Expression BeadChips. The gene expression levels in each cohort were initially 
normalized, followed by a quantile adjustment to standardize the distribution of 
expression levels across samples. We corrected for age, gender, cell counts, and 
batch effects as well as hidden heterogeneous sources of variability. The rank-based 
inverse-normal transformation was used to normalize the measurements for each 
probe to be normally distributed with mean 0 and variance 1. Probes measuring 
expression levels of genes located on chromosomes X and Y were removed from 
the analysis. The initial CAGE dataset consisted of seven unique cohorts that were 
genotyped on different SNP arrays. Therefore, genotype data were imputed to 
the 1,000 Genomes Phase 1 reference panel70, resulting in 7,763,174 SNPs passing 
quality control, of which 1,066,738 SNPs overlapped with HapMap3 and were used 
for analysis.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. This study makes use of data from dbGaP (accessions: 
phs000090 and phs000091), UK10K project (EGA accessions: EGAS00001000108 
and EGAS00001000090), and UK Biobank Resource (application number: 12514). 
As per the ethics agreement of the CAGE consortium, all raw and normalized 
genotype and expression data are available to consortium members. Consortium 
membership is open, but requires approval from the steering committee.

Code availability. BayesS has been implemented in a software tool called GCTB 
(genome-wide complex trait Bayesian analyses), the computer code for which is 
freely available at http://cnsgenomics.com/software/gctb.
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    Experimental design

1.   Sample size

Describe how sample size was determined. We applied our method to complex traits and gene expression traits. For 

the complex trait analyses, we chose traits with sample size greater than 

20,000, and most of the traits have sample size greater than 100,000. For 

the analyses of gene expression traits, the total sample size was 1,748. We 

have quantified the statistical power of our analysis  by simulations.

2.   Data exclusions

Describe any data exclusions. Our study was restricted to data sets of genetically unrelated individuals of 

European ancestry (genomic relationship < 0.05) and common SNPs 

(minor allele frequency > 1%). Traits for which there was evidence for lack 

of convergence for MCMC were excluded (based on the Geweke test and 

Heidelberger and Welch’s convergence diagnostic test).

3.   Replication

Describe whether the experimental findings were reliably reproduced. The experimental replication was not attempted.

4.   Randomization

Describe how samples/organisms/participants were allocated into 

experimental groups.

This is not relevant to our study because we do not have treatment/

control groups. 

5.   Blinding

Describe whether the investigators were blinded to group allocation 

during data collection and/or analysis.

This is not relevant to our study because we do not have treatment/

control groups. 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 

section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 

was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 

complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. We implemented our method in a software GCTB. The code is freely 

available at http://cnsgenomics.com/software/gctab. We also used PLINK 

v1.9 for data quality control, GCTA v1.26.0 for the GREML-LDMS analysis, 

LDSC v1.0.0 for the LD score regression analysis, SLiM v2.3 for the forward 

simulation, and msprime v0.5.0 for the coalescence simulation. We have 

provided the links to these software tools in the URLs section.

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 

request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 

materials or if these materials are only available for distribution by a 

for-profit company.

The use of UK Biobank data was in concordance with the UK Biobank 

policy. The genotype and expression data in CAGE data set are available to 

consortium members. Consortium membership is open, but requires 

approval from the steering committee.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 

the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for mycoplasma 

contamination.
No eukaryotic cell lines were used.

d.  If any of the cell lines used in the paper are listed in the database 

of commonly misidentified cell lines maintained by ICLAC, 

provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived materials used in 

the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population characteristics of the 

human research participants.

The human research participants in the UK Biobank have age between 40 

and 69 across the UK. The genotypic information are obtained with a 

customized Affymetrix Axiom array. We selected a subset of individuals 

with European ethnicity and negligible genomic relatedness for the 

analysis. The CAGE samples consisted of data from five cohorts, where the 

genotype data were obtained using different genotyping platforms and 

were imputed to the 1000 Genomes Phase 1 Version 3 reference panel. 

The same selection criteria on the ethnicity and genomic relationship as in 

UK Biobank samples were applied to the CAGE samples.
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