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D. Pekker,' B. Wunsch,>? T. Kitagawa,? E. Manousakis,* A. S. Sgrensen,” and E. Demler’
' Department of Physics, Caltech University, Pasadena, California 91125, USA
2ABB Switzerland Ltd., Corporate Research, Baden CH-5405, Switzerland
3Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
4Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
SQUANTOP, Danish Quantum Optics Center and Niels Bohr Institute, DK-2100 Copenhagen @, Denmark
(Received 12 June 2012; published 22 October 2012)

We investigate the equilibrium and dynamical properties of the Bose-Hubbard model and the related particle-
hole symmetric spin-1 model in the vicinity of the superfluid to Mott insulator quantum phase transition. We
employ the following methods: exact-diagonalization, mean-field (Gutzwiller), cluster mean-field, and mean-field
plus Gaussian fluctuations. In the first part of the paper we benchmark the four methods by analyzing the
equilibrium problem and give numerical estimates for observables such as the density of double occupancies and
their correlation function. In the second part, we study parametric ramps from the superfluid to the Mott insulator
and map out the crossover from the regime of fast ramps, which is dominated by local physics, to the regime of
slow ramps with a characteristic universal power law scaling, which is dominated by long wavelength excitations.
We calculate values of several relevant physical observables, characteristic time scales, and an optimal protocol

needed for observing universal scaling.
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I. INTRODUCTION

Recent experimental progress on trapping, control, and
imaging of ultracold atoms has advanced to a similar level
of accuracy as high-fidelity simulation of the Bose-Hubbard
model over a wide parameter regime. The most intriguing
aspect of experiments reported in Refs. 1-3 is the ability to
read out the state of the atoms with single-site resolution.
Although the static properties of the Bose-Hubbard model have
been studied extensively using various numerical techniques,
most significantly quantum Monte Carlo (QMC), the same is
not true regarding its dynamic properties. In particular, we are
interested in the time-dependent behavior of the Bose-Hubbard
model undergoing parametric drive (i.e., tuning of the hopping
matrix element and the on-site interaction in time).

One aspect of parametric drive that has received a lot
of theoretical attention is ramping a system across a phase
transition.*> The classical version of this problem was origi-
nally addressed by Kibble and Zurek, who observed that, for
a thermodynamic phase transition as a system is driven from
a disordered phase into an ordered phase, different regions of
the system order independently, thus entrapping topological
excitations (e.g., vortices or hedgehogs). Further, the density
of topological excitations that is entrapped depends on how
fast and how far into the ordered phase the system is driven.®’
Later, this analysis was extended to dynamical crossing of
a quantum phase transition.>"' There, it was observed that
dynamics becomes universal if one parametrically drives the
system in the vicinity of a quantum critical point. Moreover,
the signatures of this universal dynamics will appear as
universal power law behavior of observables like the number
of collective modes excited and the energy pumped into the
system as a function of how rapidly the system is ramped
across the phase transition.'!=1>

The Bose Hubbard-Model and the corresponding experi-
ments using ultracold bosons in optical lattices are a natural
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test bed for studying universal dynamics both theoretically and
experimentally. From the experimental perspective, studying
bosons in lattices is attractive for several reasons. First, it is
possible to prepare the atoms in very “cold” superfluid state,
thus allowing one to concentrate on studying the quantum
dynamics. Second, the time scales available in experiments are
favorable for observing dynamics: The extrinsic time scale for
atom loss is long compared to the intrinsic Bose-Hubbard time
scales, which are themselves long compared to the time needed
to tune the system parameters and make observations. Finally,
using the ultracold gas microscope,'-? it is possible to see the
occupation number (or at least its parity) of individual lattice
sites, thus obtaining a very sensitive probe of the dynamics.
The parity probe can be thought of as counting defects, that
is, sites with too many or too few bosons as compared to the
average occupation number. From the theoretical perspective,
the equilibrium properties of the superfluid-Mott transition are
well understood. However, there is a lack of tools that can be
used for studying the dynamics of interacting systems. The
Bose-Hubbard model thus provides theory with a challenge,
as well as a hope of future comparison with experiments.

In this paper, we apply a number of numerical approaches
to investigate the properties of the superfluid to Mott insulator
transition in 2D, at commensurate filling, both in and out
of equilibrium. In particular, we begin by investigating the
zero-temperature equilibrium properties such as density of
defects and their correlation functions. Next, we look at the
same properties in dynamic ramps across the phase transition
starting from the zero-temperature equilibrium state. We use
(1) exact diagonalization (ED), (2) mean-field (MF) theory,
(3) cluster-mean-field (CMF), and (4) mean-field theory
with Gaussian fluctuations (MF 4+ G) methods. The MF + G
method is an extension of the normal mode analysis of Refs. 16
and 17 to include time dependence of the MF on top of
which the normal modes are constructed. We apply these
methods to the Bose-Hubbard model, as well as the closely
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related spin-1 quantum rotor model. Our goals are twofold
(a) to model the current generation of experiments, which
take place on relatively short time scales and (b) to comment
on what is needed to observe universal scaling in dynamics
experiments at correspondingly longer time scales. We take
the strategy of first making the confidence-building measure
of comparing the results of these methods with QMC in equi-
librium at zero temperature. In building up our confidence, we
obtain relatively simple means for computing experimentally
measured quantities, including the defect densities and defect
correlation functions. Next, we employ these methods to study
the dynamics during parametric ramps to the Mott insulating
phase starting with equilibrium superfluid at zero temperature.

In order to study dynamics numerically, it is necessary to
make some approximations. Indeed, our first approximation
will be to simplify the Hamiltonian. We do this in two ways.
First, we truncate the Hilbert space to three states per site. That
is, given the average density of n( bosons per site, we truncate
the Hilbert space on each site to the three states corresponding
to occupation by {ng — 1,n9,n9 + 1} bosons. Second, for the
case of the MF 4 G method, we concentrate on the case of large
no, which reduces the Hubbard model to the quantum rotor
model and introduces an exact particle-hole symmetry. Making
these two approximations does not affect the universality class
of the phase transition, and thus should preserve the universal
dynamics. Moreover, as we show, these approximations do not
change the nonuniversal properties qualitatively. Finally we
remark that we focus on homogeneous systems, thus avoiding
the question of the redistributions of atoms (and energies) in
the trap.

Our main results are as follows. For understanding equilib-
rium properties, the methods we consider all have strengths and
weaknesses. All of the methods show qualitative agreement
for computing nonuniversal properties. The particular tests
we looked at were (1) the finding of the phase boundary
between superfluid and Mott insulator, (2) the computing
of the defect density, and (3) defect-defect, particle-hole,
and particle-particle correlation functions. The location of
the phase boundary can be computed using MF and CMF
methods. We find that both of these methods obtain a similar
phase boundary; however, the CMF method with large clusters
provides a significant improvement over the MF method
when compared to the exact QMC predictions. Likewise,
all of the methods do a reasonable job in calculating the
number of defects in equilibrium as a function of the tuning
parameter. However, they show quantitative difference among
themselves. These differences shrink as the cluster size (for
the CMF method) and system size (for the ED method)
increase. Finally, we can also apply these methods (CMF, ED,
MF + G) for calculating short-range equilibrium correlation
functions. Here, we again find quantitative differences, but
qualitatively similar results between the different methods.
Only the MF 4 G method can be used for computing long-
range correlations functions, and we use it to find the diverging
length scale at the transition and give some estimates on the
quantitative values of the g, function near the transition (which
could be used for comparison with experiment).

For understanding dynamics, we find that there are two
regimes: fast and slow. To define the time scales, we first
define the energy scales in the problem: J is the hopping
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matrix element and U is the on-site interaction matrix element
(see Sec. II for the exact definition of the models that we
study). For fast ramps, or short time scales as compared to
2mh/J [we operate near the phase transition where 27h/J ~
4z(2mh/U)], short-range physics dominates and all methods
produce qualitatively similar features. In particular, we see
a strong response on time scales of (2rh/U), followed by
prominent oscillations with period ~2(27%/U). This short
time scale is associated with the on-site repulsion energy scale
and appears naturally from the perspective of collective modes
as a strong peak in the density of states of both the phase and
the amplitude modes that occurs near the lines k, £k, = 7.
For slow ramps or long time scales, long wavelength modes
become important, although the corresponding density of
states is much smaller. We note that what we call the fast regime
was studied within the MF method in Ref. 14. The only method
that can capture nonlocal entanglement and correlations that
we have is the MF + G method, which shows significant
deviations from the other methods. Within the MF 4 G method
we find a crossover to the universal power law scaling regime
which is not seen by MF, CMF, or ED methods. We find that
for ramps that start in the superfluid and end deep in the Mott
insulator, the crossover to universal scaling occurs for ramps
of ~15% (2nh/J.), where J. is the hopping matrix element
at the phase transition. For the experimental conditions of
Ref. 2, 87Rb in 1360-nm lattice, the corresponding time scale
is ~1 s. It is possible to achieve crossover to the universal
scaling regimes for faster ramps by starting at the QCP, but
experimentally that is detrimental as it is difficult to prepare
the system at the QCP. Finally, we show that by ending the
ramp deep in the Mott insulator, the excitations created near
the QCP are converted into defects which can be detected
experimentally.

The paper is organized as follows. In Sec. II we define the
Bose-Hubbard and the quantum rotor models and truncate the
Hilbert space. We introduce the four methods, ED, MF, CMF,
and MF + G, in Sec. III. We study the equilibrium properties
of the Bose-Hubbard and quantum rotor models using these
methods in Sec. IV and dynamics properties in Sec. V. Finally,
we draw conclusions and discuss implications of our results
for future experiments in Sec. VI. The main body of the paper
is supplemented by three appendixes in which we describe the
details of the equilibrium and dynamics of the MF + G model
and the connection to experiment.

II. MODELS

The Bose-Hubbard Hamiltonian is
i U
H=—J, ;a;aj + Z”"(”" —1)- Zuini, (1)
ij i i

where aj and a; are the boson creation and annihilation

operators at site i, n; = aj a; is the boson number operator,
and p; is the site-dependent chemical potential that describes
the trap. In the homogeneous setting, this model supports
two types of ground states: superfluid and Mott insulator."
The phase diagram in the p/Ug-Jy /Up plane consists of a
number of Mott insulating lobes surrounded by a superfluid>°
(see Fig. 1). As we are ultimately interested in ramping
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FIG. 1. (Color online) Comparison of Mott insulator to superfluid
phase boundary for the (a) Bose-Hubbard model and the (b) spin-1
quantum rotor model, in the chemical potential-hopping matrix ele-
ment plane, obtained using MF (cluster size 1 x 1) and CMF methods
(cluster size ranging from 2 x 2 to 3 x 4) in 2D. The vertical black
line in (a) indicates the location of the tip of the n = 1 lobe obtained
from QMC.'3 In order to capture the N = 2 Mott lobe, we extended
the basis for the 1 x 1 and 2 x 2 calculations to include three particles
per site. Quantitatively, the extent of the tip of the n = 1 lobe for the
Bose-Hubbard modelis Jy /Uy = {0.043,0.047,0.052,0.054,0.061}
for the {1 x 1 MF, 2 x 2 CMF, 3 x 3 CMF, 3 x 4 CMF, QMC}
methods, respectively. For the spin-1 quantum rotor model the tip
extent is J/U = {0.0625,0.070,0.077,0.080} for the {1 x 1 MF,
2 x 2 CMF, 3 x 3 CMF, 3 x 4 CMF} methods, respectively.

between superfluid and Mott phases, we will mostly consider
systems with integer average density (however, we shall also
comment on the effects of the trap).

Although the properties of the Bose-Hubbard model are
the ultimate focus of this paper, it is difficult to obtain any
analytical results regarding dynamics for this model in its
original form. Therefore, in order to compare various methods,
we use both the Bose-Hubbard model and its simplified cousin,
the quantum-rotor-like model. The quantum rotor model is
described by the Hamiltonian

H=-JY 578 + % NS =Y wst @
(i.J) i i

and is closely related to the Bose-Hubbard model. In both
cases, we truncate Hilbert space to three states per site (with
the exception of the calculation of the Bose-Hubbard model
phase diagram, where we extend the basis in order to capture
the N = 2 Mott lobe in addition to the N = 1 Mott lobe). That
is, for the quantum rotor model the site basis corresponds to the
eigenstate of the S; operator {|—1);,]0);,|1);}. Similarly, for
the Bose-Hubbard case, we use the eigenstates of the number
operator {|ng — 1);,|n¢);,|no + 1);} as the site basis. The main
ingredient that differentiates the Hubbard and the rotor models
is that the later is symmetric between [ng — 1); and |ng + 1);.
However, we note that in the limit of large noy the two

PHYSICAL REVIEW B 86, 144527 (2012)

models become identical under the identification J = ngJy
and U = Upy. We shall ignore particle-hole asymmetric terms
on the basis that they will not effect the properties of the phase
transition. Furthermore, the asymmetric terms will be absent
at large fillings. Regardless of the issues of the Hilbert space
truncation and asymmetries, the low energy, long wavelength
theory which is essential for understanding the scaling in the
vicinity of the superfluid-Mott insulator transition is identical
in these two models. !

III. METHODS IN AND OUT OF EQUILIBRIUM

The goal of this section is to establish the various ap-
proximate methods that can be used for treating dynamics.
In particular, we investigate the use of ED on small lattices,
Weiss-type MF theory on single sites as well as on small
clusters (CMF), and MF + G.

A. Exact diagonalization

Exact diagonalization is perhaps the most straightforward
of the methods available for exploring dynamics. The main
disadvantage of ED is the exponential increase of its compu-
tational complexity as system size is increased.

We diagonalize both the quantum rotor model and the
Bose Hubbard model on small lattices with periodic boundary
conditions. For the case of the Bose-Hubbard model the total
particle number commutes with the Hamiltonian Eq. (1), and
therefore we work at a fixed total particle number. Similarly,
for the case of the rotor model, the conserved quantity that we
fix is the total S?. An additional consideration is the truncation
of the site basis. Although for the Hubbard model, at fixed total
particle number, the Hilbert space is already finite, we find that
reducing the size of the Hilbert space further by truncating the
site basis to three elements does not strongly influence the
observables such as the defect density (as we demonstrate in
the next section). On the other hand, for the case of the quantum
rotor model, fixing the total S* does not fix the size of the basis.
However, we again find that truncating the site basis to three
states does not significantly alter the computed observables as
compared to including more site-basis elements.

Using ED, it is possible to look at both static and dynamic
properties. The static properties are obtained by finding the
eigenstate with the smallest eigenvalue of the Hamiltonian in
the reduced Hilbert space,

Hieduced = Z |&1) (D1l H |Pim) (D] (3)
Im

where |¢;) are the basis vectors that make up the re-
duced Hilbert space. Dynamics are obtained by solving the
Schrodinger evolution equation for the wave function in the
reduced Hilbert space,

ih at | 1»”reduced (t)) = Hreduced (t) | 1»”reduced (I)) . (4)

As an initial condition, |Yequeea(f = 0)), we use the eigenstate
with the lowest eigenvalue obtained for the initial Hamiltonian
Hieducea(t = 0).

The properties that can be studied using ED are local
observables, as the range of correlation functions is limited
by system size. In particular, we look at the defect density
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TABLE I. Explicit list of operators that correspond to observables that we compute in the spin-1 and the Bose-Hubbard models. Pr is the
parity operator and is +1 if the number of bosons on site i is even, and —1 if it is odd and n, is the average filling; n,; = max(a;a; — no,0)

is the particle number operator that counts the excess in the number of bosons on site relative to ng, while n; ; = max(ny — a} a;,0) is the hole

number operator that counts the deficit in the number of bosons.

Model

Spin-1

Bose-Hubbard

Defect density P,

Defect correlation g, (1)

Particle-particle correlation g,_, »(!)
Particle-hole correlation g,,_; (1)

Hole-hole correlation g, »(])

(87

(SH*(S7,)?
ST+ 8D 75,0+ S5y
P+ 87 SE (1 =87y
387 = 8) 87, (1= Si)

1(1 + Pry)ng € odd
1(1 = Pry)ng € even
i(l + Pr;)(1 + Prj)ng € odd
1(1 —=Pr;)(1 = Pr; i )ng € even
Npillp iyl
Ny ifpitl

NpiMp i+

and next-nearest-neighbor correlations (i.e., particle-particle,
particle-hole, hole-hole); see Table I for an explicit list. It is
important to note that ED cannot shed light on long-range
correlations, and therefore phase boundaries.

B. Mean field and cluster mean field

We use both MF and CMF methods to investigate statics
and dynamics of both models. The key advantage of the MF
theories over ED is that they take some long-range correlations
into account in the form of the order parameter. Thus, CMF
forms a complimentary approach for probing all the local
observables that are available to ED, but in addition can be
used to locate phase boundaries and probe the dynamics of
the order parameter. As the cluster size increases, CMF should
become asymptotically exact, although this regime is difficult
to reach in practice.

To apply the CMF method, we begin by partitioning the
system into a set of clusters; for example, we split up the
grid of mx X ny sites into xy clusters of size m x n. We note
that MF can be thought of as a special case of CMF, with
a 1 x 1 cluster. The CMF Hamiltonian is similar to the ED
Hamiltonian, but with two important differences. First, the
particle number (S* for the quantum rotor case) inside the
cluster is not conserved, so we must include basis vectors
with different particle numbers in our truncated Hilbert space.
Second, instead of periodic boundary conditions we couple
the external sites of the cluster to the MF on neighboring
clusters, thus making the MF/CMF solutions consistent. For
the uniform case, the cluster being diagonalized must be
consistent with itself, thus making the theory self-consistent.

For the case of the quantum rotor model, the coupling to the
MF is obtained by supplementing the Hamiltonian of Eq. (2)
with the boundary condition

—t > SH(S;)+Hec., 5)

i€d,jex

where i runs over all sites at the boundary of the cluster being
diagonalized and j runs over all sites that are nearest neighbors
of i but are external to the clusters being diagonalized. We
remark that for the uniform case, in which the cluster must
be consistent with itself, we must be careful in counting the

number of j sites [e.g., corner sites still have two neighbors in
two dimensions (2D)]. Similarly, for the Bose-Hubbard case,
we supplement the Hamiltonian over the truncated Hilbert
space [Eq. (1)] with

—t Y bl(b;) +He. (6)
i€d,jex

To study dynamics, we evolve the wave functions and the
order parameters in a consistent way. Explicitly, consider a
pair of neighboring clusters, A and B. Each time step can be
broken down into two parts. In the first part, we advance the
wave function on each cluster in time using the corresponding

Schrodinger equation of motion,

8
Walt +8) = [Wa) + — Ha(Ws().D[Y4@), (7

8
Vst +8) = [¥s(1) + — Hp(Wa®).DlY51)),  (8)

where the Hamiltonian for cluster A depends on the order
parameter in cluster B and vice versa. In the second part, we
recompute the order parameters (corresponding to the operator
\il) in each cluster using the new wave functions,

WAt +8) = (Yalt + OV |Yal +9)), €))
Wit +8) = (Yp(t + &)W [yp(r +5)). (10)

Before proceeding to the MF 4+ G, we develop a useful
parametrization for the uniform MF solution of the quantum
rotor model with the site Hilbert space truncated to three states,
[—), 10), |[+). We begin by pointing out that the MF solution
corresponds to the product wave function

; 0
w©.0) =[]1ve.en =]] [e”" cos (5> 10);
L (9) (1) + 1) >] ()
—=sm| = i =1,
V2 2
where 6 and ¢ are variational parameters that determine
the wave function and cos(2¢) sin(0)/ V2 corresponds to the
superfluid order parameter. We have specifically not included
any parameters to tune the weight of the |4) state with respect
to the |—) state as we use this parametrization exclusively at
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the particle-hole symmetric point [ = 0in Eq. (2)]. The equa-
tions of motion [Egs. (7)-(10)] correspond to the extremum
of the effective Lagrangian Leg = (Y(6,¢)|id, — H|Y(0,¢))
with respect to the 6(¢) and ¢(¢). Carrying out the extremization
procedure, we obtain the equations of motion

b= % — Jzcos?(2¢) cos(H), (12)
0 = —2Jzsin(0) sin(2¢p) cos(2¢), (13)

where z is the coordination number (e.g., for 2D square
lattice z = 4). The stationary solutions of these equations of
motion correspond to the ground-state configurations. The
superfluid ground state occurs for 4Jz > U while the Mott
Insulator occurs in the complimentary regime 4Jz < U, and
the corresponding solutions are

U
0 = cos™! (ﬂ); p=0 for U<d4zJ, (14)
Z

0=0, ¢=U/4—Jzcos’(2p) for U >4zJ. (15)

6
bo,i fo,i cos (5)e’
bai | =M |t |s M =ex|sin(§)e
b¢, _; 0

so that bg corresponds to creating the “MF” state, while b]

and b}, correspond to creating the two states orthogonal to the
MF state. The labels « and ¢ have been chosen to indicate
amplitude and phase modes. In this coordinate transformation
matrix M, we have left the phases ¢ and x as free parameters,
although in equilibrium the phases ¢ and x can be set to zero.
We include them here in order to provide enough flexibility
for the dynamical solutions.

The operator b:; corresponds to an amplitude excitation,

while b; corresponds to a phase excitation, a fact that we can
demonstrate by considering the change in the order parameter
if we perturb the MF bg in the b! or b;& direction:

(bo + €*by|ST|b} + €b)

~ % sin(8) — v/2 cos(@)Re(€) + O(€?), 17)

(bo -+ €*by| STIb} + €bly)

_ 5in(9) — iv/Zcos(6/2)Im(e) (18)
~ — sin(f) — i~/2 cos m(e).
V2

Without applying the perturbations, the order parameter
in equilibrium has the value «/LE sin(f). Upon applying a
perturbation in the b:; direction, we see that the magnitude
of the order parameter changes, while a perturbation in the
b:; induces a change of the order parameter phase. Thus, we
identifying the nature of these operators. As we shall see, the
amplitude modes will be built up entirely from b, and b]’s
while the phase modes will be built up entirely from b4 and
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Although the evolution of ¢ is seemingly innocuous for the
MF Mott insulating ground state, we revisit it when obtaining
the Gaussian fluctuations on top of the Mott insulator.

C. Mean field with Gaussian fluctuations

Having obtained the MF, we look at Gaussian excitations
on top of it. Here, we follow Refs. 16 and 17 to set up the
spin-wave theory of the truncated quantum rotor model. We
focus on this model, as it is significantly more straightforward
than the Bose-Hubbard model due to the absence of the bosonic
factors. There is some additional simplification due to working
at (S%) = 0 (equivalent of one particle per site average filling),
which results in an explicit particle-hole symmetry.

We begin by 1ntr0du01ng the Schwinger-boson-like creation
operators {f_,, ,tgl, ;}, which create the states |—1);, |0);,
|+1); when acting on an “empty” site. A more convenient
representation can be obtained by rotating these operators
via

%sin %)e‘i‘é \}ESIH(Z) e i?

—%cos(%)e"d’ —J%cos(z) e |, (16)
it L ip
7 7

b;’s. This separation into amplitude and phase sectors, that
do not mix, is a feature of the quantum rotor model and is
not present in the Bose-Hubbard model (where the separation
occurs only at small momenta, and at high momenta the modes
become mixed).

Having defined the basis, our next goal is to obtain the
effective Hamiltonian up to second order in fluctuations b,, and
bg. Using the effective Hamiltonian, we can find the ground-
state wave function, as well as its time evolution.

Before proceeding to obtain the effective Hamiltonian, we
make the approximation that we avoid implementing feedback
of fluctuations of the amplitude and phase modes back onto the
MF in both statics and dynamics. That is, we obtain the “MF”
by, described by 6(¢) and ¢(¢) from the solution of Egs. (12)
and (13). For the case of static Hamiltonian 6(¢) and ¢(7)
remain fixed, while for the case of the parametrically tuned
Hamiltonian they evolve as a function of time. On top of the
MF solution, we construct the evolution of the fields b, and
by without any feedback to 6(¢) and ¢(¢). Our approximation
of not implementing feedback relies on the assumption that
fluctuations will only have a small effect on the MF. We
comment that implementing feedback must be done correctly
using additional machinery such as the Popov approximation
in order to ensure that the phase mode remains gapless in the
superfluid phase.

Our goal is to expand Hcg to second order in b, and
by operators. To do this we convert from the Schwinger-
boson-like formalism to the Holstein- anakof like formalism
via the replacement b jbo e b ba, j b b¢ j (see
Refs. 16 and 17). We continue by obtammg each term of the
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Hamiltonian Eq. (2), starting with the % term:

U U 1
> Z (Sf)Z = Z (5 (1 — cos (0)) + cos (e)b;jba,j

J

1
+ 5 (1+cos (0) b;jb,ﬁ,j). (19)

Next, we move on to the J term, which first requires us to
compute the operators S;—L:

VaSt = V20 1 + 1l 1)) (20)
= cos(2¢) sin(@)b;, ;bo.j — cos(2) sin(0)b), ;bu.;
+isinQe)(b), ;bo.; — b} jba;)
— c08(2¢) cos(@)(b), ;bo.j + b}, ba.)

0 ) -
+ sin (5> [672l¢b;’jba,.j - 32[¢bolz,jb¢,j]

0 ‘ Y
+cos (5) [€_2l¢b;’jb07j - ez"”b&jbtp,j], (21)

S;=(SH. (22)

In the Hamiltonian the spin raising and lowering operators
always appears in the symmetric form

SES; + 87 SF =cos’ ) sin*(0) + Su + Sy, (23)
where

Sy = [(cos(8) cos(2p) + i sin(2¢))*b}bibe.iba.j + H.c.]

+ [%(3 + cos(20) — 2 cos(4¢) sin*(0)b], ;b + H.c.i|
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x in transformation Eq. (16), which allows us to make the
substitution b£b$ — 1. We note that in obtaining Eqgs. (24)
and (25) we have dropped terms that are first order in b, and
by operators (and third order in by operators). The reason
for doing this is that these terms involve by operators at
finite momentum k, which vanish since we assume a spatially
uniform MF. On the other hand, when we consider dynamics
of the spatially uniform (k = 0) mode, the terms that are
first order in b, and by operators become important. Below
Eq. (40), we show that taking these terms into account we
recover the MF equations of motion Egs. (12) and (13).

Having obtained all parts of the Hamiltonian in real space,
we put them all together and Fourier transform to obtain the
complete Hamiltonian up to quadratic order

U J
Her = - (1 = cos(6) - 71 cos?(2¢) sin?(8) + Hyy + Hyo.
(26)
Here,
1 Aok Bok\ { Dok
H, =~ t b, ’ ' 27
=3 Xl b o . ) <bl k) @n

are the quadratic Hamiltonians that describe the amplitude
(0 = ) and the phase (o = ¢) modes. The coefficients o &
and B, x are explicitly given by

U
Fak = cos(0) 4 2Jz cos>(2¢) sin*(0)

— Z—k[3 + cos(20) — 2 cos(4¢) sinz(é)], (28)

Baik = € [cos(0) cos(2¢) — i sin(2¢)]* ¥, (29)

—2c0s>(2¢) Sin*(O)[b, ;ba.i + bl a1, (24) U

’ ’ Gk =7 (1 + cos(8)) + Jz cos>(2¢) sin*(9)
_ 1 4ig Tt
Sy = |:—§e (14 cos(8)) bybbs ibs j + H.c. _%k (1 + cos®)]. (30)
! i €k 2i¢

+ 5 (1 4 cos(9)) b¢’jb¢qi + H.c. Bk = _E [1+ cos(0)] e?, (€2))
— cos2(2) sin2(9)[b"—,ib¢,i T b;,]‘bq},j]- (25) where €, = 2J(cos(k,) + cos(k,)). The Hamiltonians for the

Here, we have explicitly left terms like bgbg in the expression
for the reason that although we know the amplitude of these
terms (which is unity at this level of approximation) we do not
know their phase. We shortly show that the phase associated
with these terms may be removed by a specific choice of

J/U = 1.1 (J/U).

J/U =1.0 J/U),

amplitude and phase modes are diagonalized by Bogoliubov
transformations, as described in Appendix Al, and the re-
sulting spectra are presented in Fig. 2. The general features
of these spectra are as follows. (1) The amplitude mode is
gapped everywhere in the phase diagram except at the QCP,
where it becomes gapless. (2) On the other hand, in the

J/U = 0.9 J/U),

=)

5 0.6 0.6

= 0507~ = 0.5 0.5

S 04 N ; 0.4 0.4}

203 A\ v 03 0.3}

: \ E

g 0.2 \ ,,' 0.2 0.2 — Amp.
= 0.1 AN / 0.1 0.1F = Phase
£ 00 Y 0.0 0.0 b E—————
& T3 -2-10 1 3 -3 -2 -1 0 1 -3 -2-10 1 2 3

ky

FIG. 2. (Color online) Equilibrium dispersion relations (A3) of the phase (dashed line) and amplitude (solid line) modes at three points in
the phase diagram (from left to right: superfluid, QCP, and Mott insulator). The position along the (J/U) axis in the phase diagram is measured
relative to the ratio (J/U), at the quantum critical point. In plotting these dispersions we set k, = 0 and varied k.
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superfluid phase the phase mode corresponds to the Goldstone
mode and is therefore gapless, while in the Mott phase the
phase mode also becomes gapped. Furthermore, the (phase)
amplitude mode becomes the (anti-)symmetric combination of
the particle and hole excitations in the Mott phase, and since we
are working in a particle-hole symmetric model their spectra
become identical. (3) For all spectra shown in Fig. 2, there is the
large density of states near U /2 coming from high momentum
modes, which play an important role in fast dynamics. We note
that the enumerated features of these spectra will be preserved
for the case of the Bose-Hubbard model, although the spectra
change quantitatively.

1. Wave function

For each mode o € {®,¢p} and momentum k, the corre-
sponding Hamiltonian is quadratic and can be solved by a
Bogoliubov transform. Therefore, in terms of b, operators
the ground state for each o and k is a squeezed coherent state.
Since the various modes and momenta are noninteracting,
we can write the total wave function (in terms of Holstein-
Primakoff operators) as a product of squeezed states:

)= [ o) (32)

oe{a, ¢}, k>0

Wok) = 1/ 1 — ok |2e750 eibribas|0), (33)

where ¢, is the squeezing parameter, ¢, is an additional
phase, and |0) corresponds to the vacuum of Holstein-
Primakoff (i.e., H b ;lempty)). The phase ¢, con-
tributes to the overall phase of the wave function and is
therefore unimportant. The equilibrium value for the wave-
function parameter ¢, is listed in Appendix A. In the same
Appendix, we obtain expressions for defect density and the
correlation functions in equilibrium, the properties of which
are the subject of the next section.

2. Schrodinger equation of motion

During parametric tuning, the Hamiltonian given by
Eq. (26) remains quadratic. As a result, the wave function
at all times may be written in the squeezed form of Eq. (33).
Therefore, to understand the evolution of the wave function,
we need to study the evolution of the parameters ¢, (f) and
Zs.x(t). The evolution of the wave function in each mode is
governed by the Schrodinger equation

iR[3, — 2A%  (B] 1bos + ) 1ol IWer) = Hop(O|Wok)-

(34)

Here, the second term in the square brackets is a Berry
phase term that is associated with the fact that the operator
b,y itself transforms in time as the MF evolves. The Berry
phase A(f) can be obtained by looking at the action of the
coordlnate transformation M(¢) from Eq. (16) on the vector
b (t) - (bo,(l) bal(t) b¢ l(t))

bi(t) — bi(t +8) = M(t +8) - 1;(¢) (35)
= M@t +38)-MYt) b1t (36)
= M)+ 80, M0]- M~ (1) - bi(1),  (37)

PHYSICAL REVIEW B 86, 144527 (2012)

where 7(1) = (1, is+.i,1— ;). Thus, we obtain the Berry phase,

A= M [0, M) - M~ (1) (38)
i(x +cos(0)p) —16 +isin(0)¢ 0
= | 160 +isin@)¢ i(x — cos(6)¢) 0
0 0 i(x— )
(39

Setting ¥ = — cos(6)¢, we remove the Berry phase for the by

operator, thus allowing us to set bébg — 1 in Egs. (24) and
(25). Next, by the assumption that the MF is uniform, we drop
the off-diagonal terms in A that involve modes with finite k.
Thus, for finite k, the nonzero terms of the Berry phase are
Ay = —2i cos(9)¢ and Ay s = —i(cos(9) + . Using this
Berry phase, we find the evolution equation for the squeezing
parameter,

i3 — 2A0.0)Cox = 200 kCo + Bok + BixCoy. (40)

In the above paragraph, we focused on the dynamics of finite
k modes. Now we reexamine the dynamics of the k = 0 mode,
described by the vector by ; of Eq. (16). The time evolution
of the direction of by ; is described by the MF equations of
motion [Egs. (12) and (13)]. As we now demonstrate, the MF
equations of motion can be expressed in terms of by ;, by ;, and
by, operators.

Consider the equation of motion [Eq. (34)] for the k =0
component of by ;. The right-hand side of Eq. (34) involves
the Hamiltonian. For the kK = 0 case, the most significant
contribution to the Hamiltonian comes from the terms that
are first order in b,; and by ; operators (which vanished for
the k£ # 0 case by the assumption of a uniform MF):

U .
Huniform = _E Z Sln(e)(b;ib(),i + b(Jg,,'bot,i)
+Jz Z[cos2(2¢) Sin(0)(b}, bo,; + b} ;bi)

+ i sin(4) sin(0)(b,, ;bo.i — b} ;ba), 1)
where we used bO ;bo.; — 1. On the left-hand side of Eq. (34),
we find that b ; is coupled with b, ; by a Berry phase Eq. (39).
This Berry phase is associated with the time evolution of the
direction of by ; and is precisely canceled by the Hamiltonian
on the right-hand side if the MF equations of motion [Egs. (12)
and (13)] are satisfied.

An alternative view of time evolution can be gained by
noting the fact that the Hamiltonian is always quadratic means
that the Heisenberg equations of motions for the quadratures
(b ibos + bl by ), (b B! ), and (by by i) close on
themselves (see also Refs. 21 and 22 for S = 1 superfluid
tuning). That is, the equations of motion do not involve
higher-order terms. This fact can be exploited to study the
evolution of any state that can be described by these three
quadratures, including not only the ground state but also the
thermal state. In fact, the evolution of the ground state using the
quadratures method exactly matches the Schrodinger equation
method [Eq. (34)]. We summarize the quadrature method in
Appendix B.
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3. Defect density operator
As we have already stated, one of the most experimentally
useful observables is the defect density. In the truncated
quantum rotor model, the defect density operator corresponds
to (S} )%, and its expectation value, up to quadratic order may
be written in the form

1
(P)) = 3 [1 — cos(8)] + cos(8) E (bikbwk)
X

1
+5 1+ cos(®)] ;w;,m,k). 42)

In terms of the squeezing parameter of Eq. (33), the defect
density is

1 |Cak|2
(Pa) = 5 [1 = cos@)] + cos(f?); 1= lcal?
n 1 [1 + cos(9)] Z M’ @
2 k 1= |C¢k|2

In Appendix A, we provide details on how to compute the
defect density, as well as the various correlation functions
from Table I in equilibrium. The results of the equilibrium
calculations are presented in Sec. IV. The expression for
the defect density is again used in conjunction with the
Schrodinger equation of motion of the previous subsection
to find the evolution of the number of defects following a
ramp of the Hamiltonian parameters. The results of dynamics
calculations are presented in Sec. V.

IV. RESULTS IN EQUILIBRIUM

All of the proposed methods (MF, MF + G, CMF, and
ED) have advantages and disadvantages. The goal of this
section is to establish these advantages and disadvantages in
the simple context of a homogeneous system in equilibrium.
As a confidence-building measure, we try out the various
approximate methods on both the Bose-Hubbard model as
well as the quantum rotor model. In particular, we compare
the location of the phase boundary obtained using the various
approximate methods to the one predicted by QMC.'®

In addition to building our confidence, we find some simple,
yet useful, expressions for experimentally measured quantities.
In particular, we obtain some expressions for defect density
as well as the correlation functions listed in Table 1. Defect
statistics are of particular interest because they are accessible in
current experiments.' = In addition, in Mott insulators defects,
that is, sites containing too many or too few bosons, roughly
correspond to quasiparticle and quasihole excitations of the
systems. One may expect (falsely) that upon crossing the phase
boundary from the superfluid (SF) to the Mott insulator (MI),
the density of defects must decrease sharply. However, defect
density is largely a local property of the system, and like
other local properties does not show any significant structure
near the phase transition. Using CMF and ED calculations we
show that nothing dramatic happens to the density of defects
or short-range correlation functions listed in Table I at the
transition point. However, the nonlocal physics must indeed
show a diverging length scale near the phase transition point,

PHYSICAL REVIEW B 86, 144527 (2012)

which we identify using the MF 4+ G method. Detection of
this diverging length scale could be a good way to locate the
phase transition experimentally; therefore, we derive simple
closed-form expressions for the correlation functions.

This section is organized as follows. First, we compare
the location of the SF-MI phase boundary obtained by
various methods with its true location as obtained by QMC
simulations. Next, we compute the defect density using the
various methods. Finally, we move on to compute the g,
correlation functions.

A. Phase boundary

A first test of the quality of the approximation is the location
of the SF-MI phase boundary. Among methods that we are
investigating, MF and CMF methods are able to find the phase
boundary. The location of the phase boundary that can be
found using the MF + G method will coincide with the MF
method, as we do not implement feedback of fluctuations onto
the order parameter. As a standard, we compare the results of
the various methods to those obtained from Monte Carlo. We
note that all MF methods will generically tend to overestimate
the importance of the ordered state, which in this case is the
SF state. The reason for this tendency is that MF methods do a
poor job of taking into account the effects of long wave-length
fluctuations that tend to destroy the emerging ordering. This
problem is especially exacerbated in lower dimensions, where
fluctuations are most important.

We start by looking at the Bose-Hubbard model in 2D. In
Fig. 1(a), we compare the QMC result'® with MF and CMF
results for various cluster sizes. We see that the CMF method
approaches the QMC result as clusters get larger. Next, we
plot the phase boundary for the spin-1 model [see Fig. 1(b)].
Again we see that the extent of the Mott phase increases as the
cluster size increases. However, in both cases the extent of the
Mott phase begins to saturate for 3 x 4 clusters, which are the
largest clusters that we simulated.

In conclusion, the CMF method provides reasonable, but
not quantitatively exact, estimates of the phase boundary.
These estimates are significantly better for larger clusters. On
the other hand, the qualitative features of the phase boundary
are quite reasonable. Therefore, we suggest that using the
CMF method (or the ED method with equivalent size) to study
dynamics cannot provide accurate answers, but it can be used
for qualitative answers. Further, as the location of the phase
boundary depends on cluster size, one should adjust J/U to
compensate, especially if one wishes to study dynamics in the
vicinity of the transition. That is, instead of using J/U as the
tuning parameter one should use j = (J/U)/(J/U)..

B. Defect density

Defect density, as defined in Table I, is especially interesting
as it is measured experimentally. Currently, experiments can
distinguish only whether the number of bosons on a particular
site is even or odd so, instead of the full counting statistics,
what is available is the density of “defects.”

In Fig. 3, we plot the defect density as a function of J/U
along the particle-hole symmetric line for the case of the
spin-1 model for the ED, MF, CMF, and MF + G methods.
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FIG. 3. (Color online) Defect density in the spin-1 model as a
function of J/U along the particle-hole symmetric line (1 = 0.5).
The CMF and ED methods converge away from the phase transition
as the system/cluster size is increased. On the other hand, close to the
phase transition the convergence is much worse. The MF + G method
seems to always overestimate the defect density (as compared to the
converged result which should lie between the 3 x 2 CMF and the
3 x 3 ED). The poor performance of the MF 4+ G method is likely
due to the lack of self-consistency.

Comparing CMF and ED results with different cluster/system
sizes, we see that the the ED and CMF results seem to converge
as the cluster/system size increases. The convergence is good
everywhere except in the vicinity of the phase transition. The
lack of convergence in the vicinity of the phase transition is re-
lated to the importance of long wavelength fluctuations which
cannot be captured by small cluster/systems size methods.

An important question is the qualitative behavior of the
defect density near the transition point. Here, the ED method
shows the defect density monotonically increasing with J/U
without any singular features in the vicinity of the phase
transition (since ED works on finite-sized systems, this lack
of singular behavior is expected). On the other hand, MF and
CMF methods also show the defect density monotonically
increasing with J/U but with a kink at the phase transition
point, while the MF + G shows a slight bump in the vicinity
of the phase transition. In the CMF method we see that
the kink becomes smoother as the size of the cluster is
increased. We argue that the defect density is mostly a
short wavelength phenomenon and therefore should be only
weakly sensitive to long wavelength fluctuations. On the
other hand, the kink/bump is associated with long wavelength
fluctuations, which are given excess importance within MF
theory description. Thus, we expect that a kink, but probably
not a bump, can be found in the vicinity of the phase transition.
However, as suggested by CMF with larger cluster sizes, this
feature could be rather subtle, and thus it is a poor way
of detecting the transition experimentally. The picture that
criticality is hard to detect by observing defect density is
consistent with more detailed QMC calculations, performed at
finite but low temperature, which show no sign of the normal
to SF transition.” In the refereeing process, one of the referees
pointed out that if one could resolve the transition, then one
would expect to see an infinite slope at criticality, which would
indeed be an interesting signature.

C. Correlation functions

In this section we investigate the short-range (nearest-
neighbor) correlation functions using the CMF, ED, and
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MF 4 G methods as well as long-range correlation functions
using the MF 4+ G method. Our goal is to benchmark these
methods as well as to establish some relatively simple results
which could be of use for experimental data fitting.

We begin by looking at the defect-defect correlation
function

PA1Y = (P + D Pa()) — (Pa(i + D) (Pa(i)).  (44)

Using ED, CMF, and MF + G methods we shall compute the
nearest-neighbor defect-defect correlation function fzd_d(l =
1) = (P;(i + )Py(i)) — (Py(i + 1))(Py(i)) and compare the
results. We expect that deep in the MI, there are no defects,
and therefore fzd_d(l = 1) — 0. On the other hand, as we
move into the SF the bosons become weakly interacting
and therefore the defect-defect correlations decrease (there
is a subtle point that for the case of the spin-1 model
particle-particle and particle-hole correlations persist, even in
the noninteracting case J/U — 00). In the vicinity of the
transition, the interactions are strong and the defect density
is large; thus, we expect a maximum in fzd _d(l = 1). Indeed,
plotting fzdfd(l = 1) [see Fig. 4(a)], we find that all methods
agree qualitatively. Quantitatively, we also find reasonable
agreement with two exceptions. First, the 2 x 2 ED method
does a particularly poor job, as nearest neighbors are doubly
connected to each other, once by the direct bond and a second
time by the periodic boundary condition. Second, the MF 4+ G
method shows a jump at the phase transition, the CMF method
shows a kink, and the ED shows a smooth curve. The origins
of the disagreement at the phase transition are similar to those
stated for the defect density, with one exception. The jump in
the MF 4+ G method is somewhat artificial, as we have used
quadratic order expression on the SF side but are forced to
resort to quartic order expression on the Mott side as quadratic
order expression becomes zero (see Appendix A3). Indeed, the
jump is replaced by a kink if we use quartic order expression
on both sides.

To gain better understanding of the defect-defect correlation
function, we look at its constituents:

2dfd — le’—l’ + f2l7—h +2f217—h’ (45)

the particle-particle (or equivalently, at the particle-hole
symmetric point, the hole-hole) correlation function f3 (I =
D) = (Pp(i + DPy(D)) — (Pp(i + ) (Py(i)) [Fig. 4(b)] and
the particle-hole correlation function fz" 7”(1 =1)=(P,(i +
DP,@@)) — (Py(i + 1)){Py(i)) [Fig.4(c)]. The particle-particle
correlation function captures the fact that particles tend to repel
each other, and thus we expect it to be negative (this remains
true even in the noninteracting case due to the hopping term
preferring particles next to holes). On the other hand, we expect
that the particle-hole correlation function remains positive
throughout the phase diagram, capturing the physics of the
tunneling term which tends to form particle-hole fluctuations
on nearest-neighbor sites. Using ED and CMF methods, we
find the expected trends in both f;”(I = 1) and f; 1 =1.
On the other hand, we find that the MF 4+ G method predicts
a region of J/U, where fy "(I =1) > 0. We attribute this
failure to the fact that the MF 4+ G method only captures
single quasiparticle physics and thus is unable to capture
quasiparticle-quasiparticle repulsion.
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FIG. 4. (Color online) (a) Correlation functions (a) fzd_d(l =1) = (Py(i + D)Py()) — (PuGi + D)(Pa(i)), ) 77U =1)= (P,(I +
DP,@)) — (Pp(i + 1))(P,(i)) and (c) fzpfh(l =1)=(P,(i +1)P,(i)) — (P,(i + 1))(Py(i)) as a function of J/U, computed using MF + G
fluctuations, ED, and CMF. For the curve labeled MF + G, we used quadratic order on the SF side and quartic on the Mott side; for MF + G’
we used quartic order on both sides. The MF + G curve shows a jump indicating the importance of quartic fluctuations for computing
nearest-neighbor correlations. Overall, we see that all methods show qualitative similarities and tend to converge as cluster size/system size is
increased. The biggest differences occur in the vicinity of the phase transition, where MF + G, MF + G’ and CMF methods show a kink and

ED does not.

Quantitatively, for both £ ”(I = 1) and f 0= 1) we
see that the CMF and the ED method seem to converge as
cluster/system size is increased. As in the case of defect-defect
correlations, 2 x 2 ED does a particularly poor job due
to the nearest neighbors being doubly connected. Near the
transition, the particle-hole correlations are largely responsible
defect-defect correlations; thus, fzp - (I =1) [Fig. 4(c)] is
very similar to fzd_d(l = 1) [Fig. 4(a)] (up to a factor of
two due to the definitions) and all three methods ED, CMF,
and MF + G give reasonable results. Finally, we mention that
we present the normalized versions of these correlation func-
tions, for example, gg_d(l =1)= fzd_d(l =1)/(P))*> +1,in
Appendix C.

We note that the nearest-neighbor defect-defect correlation
function in 2D has recently been measured experimentally.??
Experimental results show a characteristic peak in fzd ~ near
the transition, but shifted to the SF side. Quantitatively, our
calculations are consistent with the experimental data (after
we note the difference in the definition of the correlator).

Having verified that the MF + G method provides results
similar to ED and CMF for correlations on nearest-neighbor
sites, we move on to the question of how correlations decay
at large distances. This question we attack using only the
MF + G method, as the other two methods are not easily
extended to the long distances. Specifically, we look at the
decay of defect-defect correlations fzd_d(l) in the vicinity of
the transition, on both the SF and the Mott insulating side
(Fig. 5). To compute the correlator we have used both the
second-order (in fluctuations) term given by Eq. (A18) and the
fourth-order term given by Eq. (A20).

On the SF side, both the second- and the fourth-order terms
are nonzero. Naively, since the second-order term is nonzero,
we may consider stopping at this order. However, because
the second-order term comes from fluctuations of amplitude
modes only, while the fourth-order term has contributions
from both amplitude and phase modes, it is important to
include the fourth-order term. The reason why phase modes
become important is that their gap closes at small momenta,
while amplitude modes are always gapped. As a result, the
contributions from amplitude modes show exponential decay
with distance, as can be seen by plotting the second-order term:

fzd_d (2)(1) ~ exp(—I/&) [Eq. (A18); dotted traces in Fig. 5].

Moreover, as we approach the transition, the length scale &
diverges (dotted traces become flatter in Fig. 5). On the other
hand, contributions from phase modes show power law decay
with distance, which becomes dominant when plotting the sum
of second- and fourth-order terms: fzd_d(l) ~ fzd - (2)(1) +
£y ~ 172 [Eq. (A20), solid traces in Fig. 5]. We note
that if we were to proceeding to higher orders, we would expect
to find more negative power laws, and thus we stop at the fourth
order.
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FIG. 5. (Color online) Decay of the correlation function
A=Ay = (Py(i 4+ D) Py(i)) — (Py(i + 1)) {Py(i)) as a function of
separation distance / plotted on a semilog scale for various values
of J/U in the vicinity of the transition (//U). = 0.0625. On the SF
side, we plot all contributions to g,(/) — 1, including both second- and
fourth-order terms with solid lines, and the part from second-order
term only with dotted lines. On the Mott side, the second-order term
vanishes, and we only plot the contributions from the fourth-order
terms. See text for details.
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FIG. 6. (Color online) Diverging coherence length as a function
of distance to the phase transition on a log-log plot. The scaling is
consistent with MFT expectations of v = 0.5.

The Mott insulating side is more straightforward for two
reasons: (1) the second-order term vanishes, and (2) both
phase and amplitude modes become everywhere gapped; thus,

4=4(1) ~ exp(—1/£) [Eq. (A20)] (Fig. 5). Again, the length
scale & can be seen diverging as one approaches the transitions
as the traces in Fig. 5 become flatter.

We can extract the correlation length scale &, which diverges
at the phase transition, by fitting f; ¢ ®(l) [Eq. (A20)] on the
SF side and f3 ““(1) [Eq. (A18)] on the Mott side with
the form ~exp(—[/&) (Fig. 6). We find that the scaling of
& ~ |8]7" is consistent with MFT result v = 0.5, where § =
(J/U)/(J/U). — 1 is the detuning away from the QCP.

We can go further and obtain an approximate expression
for fzd_d by fitting Fig. 5 with a function that incorporates
both exponential and power law behaviors. Our goal here
is to provide an experimentally useful function in the range
of parameters where 0.5 < & < 10 latticespacings (0.0004 2>
|8] = 0.112) that does a good job of incorparating short-range
behavior rather than an asymptotic form of the crossover
function that is correct only for / > £. Due to the fact that
this fit was obtained from MFT + G theory, it should only be
used as a guide for order-of-magnitude estimates,

dedpn . 0.0127  0.01275  0.00422
Z,SF(Z) ~ 2 12 + 14
0.1598 s 0.0129 :
+ ;i 672.83~l~80 + 12 675.66~l~8°‘ , (46)
0.038 ,
OES ( ;7 +0.00875 |r|> e ST gy

In 2‘1 Eﬁ (1) the first three terms originate in the second (phase)

term of Eq. (A20), the fourth term originates from Eq. (A18),
and the final term originates in the first (amplitude) term of
Eq. (A20). In 2‘{;,,‘1,(1) there is only one term which originates
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from Eq. (A20) (the phase and amplitude parts become
identical on the Mott side due to particle-hole symmetry).

V. DYNAMICS OF PARAMETRICALLY
RAMPED SYSTEMS

The goal of this section is to understand the dynamics of
the homogeneous spin-1 quantum rotor model undergoing a
parametric ramp. Thatis, we consider the dynamics as we ramp
the parameters J and U in time in the vicinity of the quantum
critical point (QCP) separating the SF and the MI. We note
that the u term in Eq. (2) commutes with the other two terms,
and therefore the tuning of the chemical potential has no effect
on dynamics. We investigate dynamics across all time scales,
from very fast ramps (time scale 1/U) to very slow ramps
(time scale 1/J), with the goal of seeing the nonuniversal
dynamics for fast ramps crossover to critical scaling dynamics
for slow ramps. We focus on two types of ramps: (1) ramps that
start in the SF phase and stop in the Mott insulating phase and
(2) ramps that start on the QCP and stop in the Mott insulating
phase. The primary purpose of investigating the crossover into
the universal scaling is to gain quantitative understanding of
whether this regime can be observed experimentally. That is,
we want to obtain (1) a reasonable estimate for how slow one
needs to ramp in order to be in the universal regime; and (2) an
understanding of what observable to measure experimentally
and whether it is detectable. Indeed, we show that the universal
scaling regime sets in for ramps of time scale ~10/J and the
density of defects (i.e., density of doubly occupied and empty
sites) can be used as an experimental observable if the ramp
goes sufficiently deeply into the MI.

We remark that ramps we consider always go from the
ordered (i.e., SF) to the disordered (i.e., Mott insulating
phase) state and thus can be thought of as opposite of the
usual Kibble-Zurek process that describes the appearance of
excitations and long-range order®’ as the system is ramped
from the disordered phase into the ordered phase (i.e., MI —
SF). Ramps toward the disordered phase are technically easier
to describe because they do not require modeling spontaneous
symmetry breaking via Spinoidal decomposition, which falls
outside the realm of MF theories (i.e., MF, CMF, and MF + G).

Explicitly, in a ramp towards the ordered phase collective
modes of the system that are associated with ordering become
unstable. In the language of susceptibilities, the susceptibility
Xq(t) associated with ordering

A,(t) = / dt' x,(t — 1) Ay (1) (48)

acquires a pole with positive imaginary frequency. Although
these types of poles, with a positive imaginary frequency,
appear in MF theories, there are no fluctuations to seed their
growth. On the other hand, in the ramp towards the disordered
state, both the order parameter dynamics and the dynamics
of the other modes of the system are well defined within MF
theories (i.e., MF, CMF, and MF + G). The order parameter
starts out finite and its dynamics correspond to the decay of
its amplitude. Further, all of the normal modes of the system
remain stable and thus well described by the quadratic theory.

Before proceeding with the numerical calculations, we
argue that the dynamics in the vicinity of the SF-MI QCP
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TABLE II. Functional forms of the optic lattice intensity as a
function of time used for the various types of ramps. Note that in
the ramps originating at the QCP, the functional form depends on
the location of the QCP. For the case of ED, which lacks a QCP, the
location of the QCP from CMF was used.

Ramp type Functional form

SF — Shallow MI V() =114 (16 — 11)t/tmax

SF — Deep MI V() = 10 + (25 — 10)t/ tinax
QCP — Deep MI V(t) = 12.0315

(MF, MF + G) +(25 — 12.0315)¢ / tmax
(CMF, ED) V() = 11.5949

(CMF, ED) + (25 — 11.5949)¢ / tyna
SF — SF V(t) = 10 + (11 — 10)#/ timax

has two regimes: fast (nonuniversal) and slow (universal)
regime. The fast regime, which has been the focus of the recent
experiments,” is associated with time scales comparable to the
inverse of the bandwidth of the phase and amplitude modes;
that is, framp ~2/U ~ 1/2Jz. In this regime dynamics is
largely local and our CMF and ED approximations work well.
On the other hand, the slow regime is associated with universal
long-wavelength physics in the vicinity of the QCP and time
scales comparable to the inverse of the energy scale over which
the dispersion is linear, that is, famp ~ 1/J. Ramping through

Ramp Type MF

2x2 CMF

PHYSICAL REVIEW B 86, 144527 (2012)

the SF — Mott transition results in the creation of a number of
excitations (phase and amplitude modes) in the system having
a density ney. nex is controlled by the ramp rate and is believed
to exhibit a universal power law in the slow regime,

dv

Rex ~ 134T, (49)

where r = 1/#typ is the ramp rate, d is the dimensionality of
the system, v is the coherence length critical exponent, and z is
the dynamical critical exponent.’ Plugging in the values of the
critical exponents for the SF-Mott transition at integer filling of
the Bose-Hubbard model (i.e., at the particle-hole symmetric
point) d =2, z =1, and v = 1/2, we obtain nex ~ r23 (at
least using the MF exponents, which should correspond to our
MF description of the QCP). These arguments are made more
precise as we analyze the numerical data.

To study the creation of excitations and defects upon
ramping through a phase transition, we must specify the
protocol for parametrically tuning J and U. One important
consideration is that only the density of defects [i.e., ((SHM)],
but not the density of single quasiparticle excitation [i.e.,
phase and amplitude modes of Eq. (Al)], is experimentally
accessible. Therefore, we look at both the density of defects
and the density of quasiparticle excitations. We note that
the density of defects is not a constant of motion and will
fluctuate following the end of the ramp. Thus, for concreteness,

3x3 ED MF+G

SF »

ng

0.1 1 K s
Shatlow il "l 7 \M \W

0.25¢

0.2 1 1t
SF - 015} i il
0.1 1 1t
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=
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FIG. 7. (Color online) Defect density (immediately following the end of the ramp) as a function of the ramp time. The calculations were
performed for four different ramp types (as indicated by row headings), using the four different methods (as indicated by column headings).
The parameters used in calculations correspond to Rb atoms in an optical lattice; see Appendix D for details. Note that the value of the MF (for
the MF, CMF, and MF + G methods) for the QCP — deep MI ramp is identically zero throughout the ramp. As a result, for the MF method
there are no defects, while for the CMF and MF + G methods defects appear due to fluctuations.
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we choose to focus on the density of defects immediately
following the end of the ramp. One way to make a direct
connection between defects and excitations is to ramp the
system deep into the Mott regime, where defects indeed
correspond to excitations. Following this consideration, we
consider both (1) shallow ramps that end in the Mott phase but
close to the SF-Mott transition and (2) deep ramps that end
deep in the Mott phase (close to J = 0). Another important
consideration is the initial point for the start of the ramp.
As we show, starting right at the phase transition seems to
be advantageous for observing universal scaling behavior, as
there are fewer fluctuations and the scaling sets in for shortest
ramp times (~1/J). However, experimentally preparing the
system at the phase transition is a difficult task, due to the
long equilibration times. A summary of ramp profiles that we
investigate is provided in Table II, and the connection between
the optical lattice intensity and the Hubbard parameters is
provided in Appendix D.

We begin by looking at the number of defects that are
created by fast ramps with ramp times from 0 to 50 ms ~
2rh/J.. As we sweep through a range of values of J and
U, for definitiveness we always compare time scales to the
value of J and U at the critical point: 27f/J, = 62 ms and
2nh/U. = 3.88 ms. Naively, we would expect that in order
to create or remove a defect we must move an atom from
one site to another, which is associated with the tunneling
time 277/ J.. In Fig. 7 we plot the number of defects created
as a function of the ramp time, for various ramp profiles,
calculated using the four different methods (MF, CMF, ED,
and MF + G). Surprisingly, we see quite a lot of structure in
the number of defects created even for ramp times as short as
4 ms ~ 2nh/U,.. The emergence of defects for such short time
scales can be understood by considering a two-site quantum
rotor model with total S* = 0 (i.e., populated by two bosons).
The spectrum of this model, for small J, consists of a lower
branch (composed of mostly |0,0) state, with a small admixture
of |1,—1) and |—1,1) states) and a pair of upper branches
(composed mostly of |1,—1) and |—1,1) states with a small
admixture of |0,0) state). The gap between the upper and lower
branches is set by the on-site repulsion U . Hence, the important
time scale for characterizing adiabaticity of the process is set
by 27h/U,, and the dynamics will be nonadiabatic for ramps
that are fast compared to this time scale. In the many-site
system, there is no such gap, but there is a large density of
states in the vicinity of U/2 scale (see Fig. 8). The energy of
this maximum, as a function of (J/U)/(J/U). for both the
amplitude and the phase modes is plotted in Fig. 9, confirming
that in the vicinity of the QCP the maximum in the density
of states is always near U/2. This maximum results in the
appearance of oscillatory features at the corresponding time
scales.

One may wonder whether other features in the density of
states are reflected in the dynamics. A particularly interesting
feature is the gap that appears in the amplitude mode on either
side of the phase transition. In particular, on the SF side, the
amplitude mode is associated with the Higgs phenomenon,
and the gap is related to the Higgs mass. We remark that
we find no direct signatures of the Higgs mass (using all of
our methods) in ramps that go all the way across the phase
transition. However, the Higgs may be excited by performing
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FIG. 8. (Color online) Density of states of the phase (top panel)
and amplitude (bottom panel) modes, as a function of the energy
(measured in units of the interaction parameter U) for the spin-1
model (from the MF + G method). The density-of-state curves are
plotted for three values of (J/U)/(J/U)., as indicated by the number
next to the curve (consecutive curves were displaced vertically for
clarity). The values of (J/U)/(J/U). correspond to the SF phase
[(J/U)/(J/U), = 1.1], the QCP [(J/U)/(J/U). = 1.0], and the
Mott phase [(J/U)/(J/U). = 0.9]. The density-of-state curves have
several interesting features. First is the amplitude mode (bottom three
curves) shows the appearance of a gap on the SF side (small jump
in bottom curve labeled 1.1, at quasiparticle energy ~0.16) and on
the Mott side (small jump in bottom curve labeled 0.9, at quasiparticle
energy ~0.23). Second is the phase mode (top three curves) on
the Mott side but not the SF side shows a gap (small jump in top curve
labeled 0.9, at quasiparticle energy ~0.16). Third is the presence,
throughout the phase diagram, of a logarithmic singularity in the
density of states, associated with momenta near k, &k, = %, in
the vicinity of ~U /2 for both amplitude and phase modes. We note
that this singularity is associated with the fast periodic oscillations
seen in dynamics (Fig. 7).

small ramps or quenches on the SF side. Alternatively, the
Higgs strongly couples to lattice modulations and can be
studied via lattice modulation spectroscopy as suggested in
Refs. 17 and 24. Experimental and theoretical investigations
of the Higgs is the subject of several recent works.>>~2® Two
factors conspire to smear the Higgs excitation: (1) the decay
into lower-lying phase modes and (2) the inhomogeneity
due to the trap. The consensus of these studies is that the
Higgs excitation, while not sharply defined, is still clearly
visible in the lattice modulation spectroscopy as a step in the
spectral function (with very little weight below the Higgs mass
and large weight above the Higgs mass). Moreover, as one
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FIG. 9. (Color online) Quasiparticle energy at the bottom of the
phase and amplitude bands (k = {0,0}) and at the peak of the density
of states (k = {0,}; see Fig. 8) as a function of J/U across the MI
(LHS) to SF (RHS) phase transition for the spin-1 model (from the
MF + G method).
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FIG. 10. (Color online) Excitation density as a function of ramp rate (1/f,mp) on a log-log plot. (a) Starting in SF ending in shallow MIL.
(b) Starting in SF ending in deep MI. (c) Starting at the critical point and ending deep in the MI (here, the MF order parameter is zero
throughout). Note that starting at the QCP results in the observation of scaling at for shorter ramp times.

approaches the critical point, the Higgs mass decreases, and
the step in the spectral function moves to lower frequencies.

Thus far, our description of fast dynamics has not appealed
to the presence of a phase transition. Indeed, because we
are probing features at very short time scales and thus high
energies, the properties of the phase transition, and in fact its
very presence, are hard to see. As an example, we consider a
set of ramps that stay completely on the SF side; see the last
row of Fig. 7. We see that the time scales for the number of
defects created qualitatively show features similar to ramps
that cross the phase transition.

Having understood fast time scales, we move on to the
slow time scales. Here, we resort to using the MF + G method
which is able to capture the long wavelength fluctuations. Since
the MF + G method involves excitations of single-particle
modes, we can study both the number of excitation and the
number of defects created in the phase transition. In Fig. 10
we plot the number of single-particle excitations created
as a function of the ramp rate (inverse of ramp time), for
various protocols. We see that in all cases, for slow ramps,
the amplitude mode displays the expected 2/3 power law.
Furthermore, with the exception of the protocol in which we
start at the QCP, the majority of excitations are carried by the
amplitude mode. However, time scales at which the scaling
becomes easily discernible depend on the protocol. For the
two protocols starting in the SF, the excitation number exhibits
some oscillations (with the period ~2mh/J, at criticality)
before the power law can be observed. As a result, the power
law only becomes apparent for relatively slow ramp rates,

starting with ~0.01 ms™! ~ %(JC/erh). On the other hand,
for ramps that start at the QCP, the amplitude and phase
modes are identical (amplitude [phase] mode corresponds to
the symmetric [antisymmetric] combination of particle and
hole excitations of the MI), and the power law scaling sets in
for relatively faster ramp rates ~0.1 ms~!' ~ 6(J./27h). Both
of these time scales are comparable to what is possible in
present experiments.

To understand the feasibility of observing power law scaling
in experiments, we investigate the defect density. In Fig. 11 we
plot the components of the defect density due to the MF, the
amplitude modes, and the phase modes [i.e., corresponding
to the various terms of Eq. (A7)]. We begin by looking at
SF — shallow MI ramps. For these ramps the number of
defects created quickly saturates, the saturation values corre-
sponding to the background defect density in the MI [panel (a)
of Fig. 11]. In order to observe scaling within this protocol,
it is necessary to subtract this background defect density. An
alternative approach is to perform ramps that go deep into
the Mott insulating region and thereby convert excitations to
defects. The results of this approach are illustrated in panel
(b) of Fig. 11, which shows nice power law scaling in the
defect density down to extremely long ramp times (~3 s).
However, the 2/3 power law scaling associated with the
amplitude mode is partially obscured by the defects associated
with the decaying MF and becomes apparent only for time
scales 1 s ~ 15 % (2nh/J.) and defect densities of 0.1%. We
remark that all issues—(1) background defect density, (2) os-
cillations, (3) obscuring by defects associated with the MF, and
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— Phase — Phase e
- 0.035 023 0.1} 0.075 623 o 0.1
— MFT — MFT
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3| N g 00 S 001 g
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FIG. 11. (Color online) Defect density (immediately following the end of the ramp) as a function of the ramp rate (1/#;mp) on a log-log
plot. (a) Starting in SF and ending in shallow MI. (b) Starting in SF and ending in deep MI. (c) Starting at the critical point and ending deep in
the MI (here, the MF order parameter is zero throughout). Note that for trace (a), there is a large number of background defects in equilibrium
as the ramp only goes into the shallow Mott regime, resulting in the truncation of the power law. On the other hand, ending the ramps in the
deep Mott regime results in essentially the same trace as the number of excitations.
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(4) low defect density in the scaling regime—can be avoided
by starting the ramp at the QCP and going deep into the MI
[panel (c) of Fig. 11]. Using this protocol, the power law
scaling sets in at Né(Znh /J.) and defect density of 1%.

Due to convenience for the MF 4+ G method, we have
attacked the problem of dynamics in the setting of the quantum
rotor model. However, we expect that all the qualitative
features will transfer directly to the Bose-Hubbard model, as
was the case for equilibrium properties. Thus, in parametric
ramps of the Bose-Hubbard model we expect to find the fast
and slow regimes. In the fast regime, we again expect to see
response and oscillations on the time scale of 2 % 27/ Up ),
while in the slow regime we expect to see a crossover to
power law scaling at time scales of 15 x (21 /Jg ) and defect
densities of 0.05%—0.5%.

VI. DISCUSSION

In this paper, we have investigated the static and dynamic
properties of the Bose-Hubbard model, and the related spin-1
quantum rotor model using four types of methods: (1) MF,
(2) ED, (3) CMF, and (4) MF + G fluctuations. These methods
were chosen as they are suitable for studying both statics
and dynamics. We show that these methods are reasonably
consistent with each other and QMC calculations where
available. The main conclusions are as follows.

For the static case, we can compare these methods to
QMC simulations. We find that although the qualitative
features and trends displayed by these methods are very
good, it is difficult to achieve high quantitative accuracy as
it requires the use of large system/cluster sizes. In particular,
we have applied the methods to the calculation of several
observables. These calculations are much simpler than the
corresponding quantum Monte Carlo calculations and thus
could be of interest to experimentalist for data fitting. We
find the following properties. (1) The location of the phase
transitions is accessible to the various MF methods (MF, CMF,
and MF + G) but not to the ED. The single-site MF makes
errors of 30%, by going to a 3 x 4 cluster the error is reduced
to 11%. (2) The defect density in the vicinity of the phase
transition varies smoothly within ED, but shows a kink within
MF and CMF methods. As the defect density is associated
with a local observable, we believe that any singular behavior
at the phase transition should be strongly muted. Indeed, we
see the weakening of the kink within CMF theory as the size
of the cluster is increased. Further, the defect density obtained
by the CMF method approaches the one obtained by the ED
method as the size of the cluster (for CMF) and system (for
ED) is increased. (3) Particle-particle correlation functions
show signatures of repulsion on nearest-neighbor sites while
particle-hole correlation functions show attraction. However,
these correlation functions strongly depend on the method
being used. (4) Finally, at large distances, the particle-particle
correlation function shows a diverging correlation length,
described quantitatively by Eq. (47) in the vicinity of the QCP.

For dynamics, we find two regimes: a fast regime dominated
by nearest-neighbor physics, which is addressed quite well
by CMF/ED methods, and a slow regime dominated by long
wavelength excitations, which is addressed by the MF 4+ G
method. The methods we use, unlike QMC, are well suited
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for treating dynamics. Following the intuition gained by
comparing them in equilibrium with each other and with
QMC, we suspect that the methods can be used as a guide for
understanding experiments. Specifically, for properties like the
defect density, we expect the results to be accurate to within a
factor of two.

We find that the fast regime is dominated by the peak in the
density of states of single quasiparticle modes in the vicinity
of U/2, which correspond to short-wavelength excitations,
and results in time scales of ~2 x (2wh/U,.). As a result, the
short-time behavior can probably be accurately modeled, even
in inhomogeneous systems, using the CMF method. However,
one must keep in mind that in equilibrium, the CMF method
always underestimates the defect density on the Mott side, and
this should be taken into account in interpreting the results of
dynamics.

The slow regime is dominated by long wavelength am-
plitude modes, which are described by the MF + G method.
In this regime we find that universal power law scaling in the
number of excitations created as a function of the ramp rate sets
in for sufficiently slow ramps; that is, the number of excitations
(or defects for ramps that go deep into the MI) goes as r?/3
where r is the ramp rate. Quantitatively, the appearance of
scaling depends on the protocol being used. Scaling is easiest
to see for ramps that start at the QCP and go deep into the Mott
regime, as the scaling is not obscured by 277/ J,. oscillations
nor the decay of the order parameter. Indeed, in this protocol
the scaling sets in at the é(Znh /J.) time scale. On the other
hand, for ramps that start in the SF phase, longer time scales
of ~15% (2wh/J.) are required to observe 2/3 power law
scaling.

In conclusion, our calculations in equilibrium provide a
number of results that can be useful for interpreting experi-
ments, including an intuition for the behavior of defect density
near the QCP and a simple expression for the defect-defect
correlation function g»(!) in the vicinity of the QCP. Further,
understanding what our methods get right and what they get
wrong in equilibrium gives us an understanding of how to
apply them to dynamics. Our dynamical calculations provide
an understanding of short time scales dominated by the peak
in the density of states. Finally, we obtain the defect densities
and time scales needed to observe universal power law scaling.
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APPENDIX A: MF + G IN EQUILIBRIUM

The goal of this Appendix is to provide details of the
modifications to the MF ground state due to Gaussian
fluctuations. We begin by giving details of the Bogoliubov
transformations and then construct expressions for the defect
density and various correlation functions.

1. Bogoliubov transformations

The quadratic Hamiltonians H, ; are solved by the Bogoli-
ubov transformations

bl = VokVo—i + Uok¥ys (Al)
where the coherence factors are
1
1
. —T——

, (A2)

o k 1

Vok = —sgn(Bop) | ——=— =

2
2\/ “(Zx,k - g,k

and the Hamiltonian becomes

1 Ly
H, = 5 Xk: <E(,k + 5) VngVak, Eor = M'
(A3)

The ground state corresponds to the vacuum of y, x bosons or,
in terms of the b, ; operators, to the squeezed state of Eq. (33)
with

Cok = Ua,k/uo,k’é‘o,k =0. (A4)

2. Particle, hole, and defect density

To obtain an expression for the particle, hole, and defect
density operators in terms of the b operators, we use the same
procedure as we used with the Hamiltonian: We first write the
density operator in terms of the ¢ operators of Eq. (16); next we
replace the ¢ operators by b operators using the transformation
M from Eq. (16); finally we expand the result to second order
in by; and by ; keeping in mind that we must replace b&ibo, =

1-— b;i by — b;_’i by ;. Following this procedure we obtain the
operators for the particle, hole, and defect density P, (i), Py (i),
Pi(D),

. 1 1 .
Py(i) =1t ;t ;= 1 [1 —cos(9)] — 1 sin(0)[b); + byil
+ —sin 3 [b¢i + bgil + 3 cos(0)b,,; by
+— [1 + cos(©)] b}, by

(A5)

N = K= N =

0 s .
cos <§> [b(Lib(p,- + b;ibai],
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Py =11 ;= % [1 — cos()] — % sin(0)[b,., + bei]

sin (2 ) 1b), + bail + 5 cos(@b], b
—Zzsm| = i i = i Oai
25 ) i & 2COS i

1 , 1 0 _
+ 11+ cos(@)lby;byi+ cos (5> [blibgi+bhibail.

(A6)
Pyiy = (S5) =t jtas+ 101
= % [1 — cos(0)] — % sin(0)[b,., + bei]
+ cos()b) by + % [1 +cos@)] b;bgi.  (AT)

We note that the expressions we obtain for the density
operators satisfy the relation that P;(i) = P,(i) + P,(i). In
the following section, we use the operators P,(i), Pj(i),
P;(i) to compute their correlation functions. However, in
addition to the correlation functions we also need to compute
the expectation value of the defect density operator P; in
equilibrium in order to compare the result from MF 4 G
method with the other methods. Taking the expectation value
of the P;(i) operator in equilibrium, we obtain

(Py) = % [1 — cos(0)] + cos(8) Y vz,
k

1
+ 3 [1 + cos(8)] Xk: v;’k, (AB)

where the values for the coherence factors in equilibrium
are obtained from expressions Egs. (15), (28)-(31), (A2).
To complete the discussion, we give the explicit expression
for defect probability in terms of the quadratic Hamiltonian
parameters o x and By x:

PN = si 6 5 (0 ., (0 d*k

i = () o () o0 (2)) £
(0

+|:1—sm (2>]

(A9)

Uy k
X — .

1
2 ai,k - :32,1« 2
dzk Ol¢’k

1
27)? 2
2r) \ » /a¢2>,k _ ,342“(

3. Correlation functions

In this section our goal is to compute the correlation
functions

7P = (P (g ") — 1)

= (P,())P,(i + 1)) — (P,())(P,(i + 1)), (A10)
P70 = (P (g ) 1)
= (Py()Py(i + 1)) — (P, (D)) (PG + 1), (ALl
A = (Pa) (g5 () — 1)
= (Py(i)Pai + 1)) — (PaG))(Pali + 1), (A12)
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where we use (P;(1))? to normalize all of the g>’s so that they
can be directly compared with each other. In the following,
we suppress the dependence on position i since we have a
homogenous system.

We begin by obtaining expressions for the f>’s up to fourth
order in b operators. Although fourth order may seem to be
overkill, we see that the second-order terms disappear on the
Mott side due to sin(f) becoming zero, thus forcing us to go
to the next nonzero order.

On the SF side, since sin(f) # 0 the second-order term

£y = sin (9)<(bll + b )b 1+ baisn)  (A13)

is nonzero. Using the zero-temperature expressions

IBUk

(borbo i) = (bl b! ) = Ugrvor = " (Al%)
2\/ Ao — Pok
. 1
Bhibor) = V2 = ——Z——= =3, (AI5)
2\/ "‘gk - z%k
Oy 1
(bokbly) = u2y = E—+.. (Al

2 2
2 Olak_ ok
we obtain
d—d (2
£74P0

5 ) | "
- 51“4(9) / (;’711;2 cos(l - k)B4 + ba—)(BY,_ +bai)).
(A17)

_ sm2(9) d%k 0 Qg — Bk
- Uy k + ﬂa,k ’

Gy (A18)

On the Mott side, sin(8) = 0 and the second-order term
vanishes; therefore, we are forced to look to the fourth-order
term. Surprisingly, we also find that the contributions from the
fourth-order term are important on the SF side (see main text).
We note that the only interesting fourth-order term arises as
a consequence of the product of the two second-order terms
in Eq. (A7) [i.e, Pf)(i )Pf)(i + 1) is independent of / and
is therefore canceled by the regular part; P;l)(i )Pf)(i +1)
vanishes due to sin(f) = 0]. Applying Wick’s theorem, which
we are allowed to do since we are working within the quadratic
approximation to the Hamiltonian, we obtain

P ()
= cos*(O)(bl bl ;1)) (buibisi)

1+ cos(6) 2
+<bl,iba,i+l><b ibaivi)] + (T)
x [(b;,-b;iﬂ)(b(,,,,-b(,),,-ﬂ) + (bL,ibq'),iJrz)(bi,,ib¢,i+z)]

(A19)

= cos’(0) [F, + G| + % (1 + cos(9)* [F; + Gg].

(A20)
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where we have introduced the notation
d’k  Byx cos(l - k)

F =
o 2 )
(27) 2\/ “i,k - :33,1(
(A21)
G — d’k  agy cos(l - k)

5 .
(27) 2\/ a<27,k - ,33,1(

By going to fourth order in fluctuations for correlations but
only to second order in the Hamiltonian we miss another term
that is fourth order in fluctuations, namely fourth order on site
i and zeroth order on site j and vice versa. As we already
explained, this term does not contribute to f, and only enters
g» via a slight modification of the defect probability itself.
We can find similar expressions for the particle-particle,
particle-hole, and hole-hole correlation functions:
sm2(0) [Fy + Gol

70 = /0 =

1, (0
+§s1n 3 [Fy + Gyl, (A22)

AW = 700 = SO [, + Gl

1 .,(0
-5 sin? <5> [Fy + Ggl, (A23)

and

frreay = (0 = icosz(e)[F(f—FGi]

1
+ 1—6(1 + cos(0))*[F; + G ]

1 0
+3 cos? <§> [FoFy + GoGyl, (A24)

POy = Y0y = icosz(é)[Fj +G?Z]

1
+ B(l + cos(0))’[ F; + G ]

1 0
-5 cos’ <§> [FoFp+ GuGyl. (A25)

APPENDIX B: EVOLUTION VIA QUADRATURES

An alternative view to writing the Schrodinger equation for
the wave function [Eq. (34)] is to study directly the evolution
of operators of interest using the Heisenberg equations of
motion. Since the Hamiltonian is always quadratic, the
Heisenberg equations of motion for the quadratures (b; Do +

b;_kbaﬁ,k), (bj,’kbj,’_k), and (b, 1bs i) close on themselves.
Taking into account the Berry phase, the Heisenberg equations
of motion are

(bl bos + B! b

i
= 1By bk + D) _bo i Hoi)

0
= %(ﬂa,ka)(b;kb;,g — B 1 () (bobo—t)), (B1)
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FIG. 12. (Color online) Analogous to Fig. 4 in the main text, but with normalized correlation functions: (a) gg"l(l =)-1=
(Py(1)Pg(0))— (P (0))* (b) gpip(l =)—-1= (Pp(DPy(0) = (Py(0))? (©) gpih(l =)—1= (Pp )Py (0))—(Pp(0)(Py(0))
5 2 - = —— 35 b3 =

(Py(0))* (Pp(0))2

. i .
3 (bl bl ) = 5(—2aa,k<z)<bi,,kbi,_k> — B (D] 1bok

b b)) 24T (O] b)), (B2

i
O (boibo 1) = = (24O boba 1) + o) (B) b
+ b _bo,-1)) + 2464 (1) boibo,1). (B3)

The initial conditions for the quadratures at zero temperature
can be obtained from Eqs. (A14)—(A16). A useful remark is
that, due to the quadratic nature of the effective Hamiltonian,
the thermal as well as ground states of the system can be
expressed by specifying just the three quadratures appearing

- (Pp(0)){Py(0))

in the above equations. Moreover, the equations of motion for
the quadratures still hold for the thermal state. However, to
take finite temperature into account we must modify the MF
solution on top of which we develop the Gaussian fluctuations,
that is, 6(¢) and ¢(¢), as well as the initial conditions.

APPENDIX C: NORMALIZED CORRELATION
FUNCTIONS AND CORRELATION FUNCTIONS
IN DYNAMICS

In this Appendix we supplement the main text by (1)
plotting the normalized equilibrium correlation functions,
eg. gy = £/ (PaD)’ + 1 = (Pali)Pali + D)/ (Pai))?
(Fig. 12) and (2) plotting the correlation function fzd “1=1

3x3 ED MF+G'

e
N
\
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003t
o002}
SF - N
< 0.01—\
Shallow MI S o\ —ame
003t
o002}
SF -» NS
< 001f
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N\ a——
003t
o002}
QCP - 5 001
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003t
I 002t
I 00V
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FIG. 13. (Color online) Nearest-neighbor correlation function fzd ~4(1 = 1) (immediately following the end of the ramp) as a function of the
ramp time. The calculations were performed for four different ramp types (as indicated by row headings), using the three (applicable) methods
(as indicated by column headings). Parameters used in calculations are identical to those of Fig. 7.
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(obtained using ED, CMF, and MF + G’ methods) at the end
of the ramp (Fig. 13).

APPENDIX D: CONNECTION WITH QUANTUM GAS
MICROSCOPE EXPERIMENTS

The absolute time scales involved in experiments depend
on the details of the implementation. However, the use of
87Rb atoms is popular, and thus many setups will have similar
time scales. We have used the setup of Ref. 2 throughout the

PHYSICAL REVIEW B 86, 144527 (2012)

paper to compute typical time scales in terms of seconds. The
details, which we now provide, that are necessary to make the
connection are the dependence of the hopping matrix element
J and the on-site repulsion U on the optic lattice depth V.
Explicitly, we find

J(V) =244.5exp(—0.209V) Hz,
U(V)=(83.4+23.1V — 0.2985V?) Hz,

(D)
(D2)

where V is measured in units of recoil energy.
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