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Abstract. Recent breakthrough results by Brakerski et al and Dodis et
al have shown that signature schemes can be made secure even if the
adversary continually obtains information leakage from the secret key of
the scheme. However, the schemes currently do not allow leakage on the
secret key and randomness during signing, except in the random oracle
model. Further, the random oracle based schemes require updates to the
secret key in order to maintain security, even when no leakage during
computation is present.

We present the first signature scheme that is resilient to full continual
leakage: memory leakage as well as leakage from processing during signing
(both from the secret key and the randomness), in key generation, and
in update. Our scheme can tolerate leakage of a 1 − o(1) fraction of the
secret key between updates, and is proven secure in the standard model
based on the symmetric external DDH (SXDH) assumption in bilinear
groups. The time periods between updates are a function of the amount
of leakage in the period (and nothing more).

As an additional technical contribution, we introduce a new tool: inde-
pendent pre-image resistant hash functions, which may be of independent
interest.

1 Introduction

Cryptographic schemes have traditionally been modeled under the assumption
that the secret key is hidden completely within a device and attacks are of “black
box” nature. However, cryptographic engineering has taught us that devices are
not perfect and can leak information about the key, primarily via what is known
as “side channels.” These channels give the adversary some partial information
by observing physical leakage correlated with the secret key, such as timing or
radiation or power consumption associated with computations (either directly
by probing the circuit or via antennas probing unshielded devices), as well as
memory leakage that reveals information about the secret key (cf., [BB05,QS01,
KJJ99,HSH+08]).
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The threat of partial leakage of keys has not escaped cryptographers; perhaps
the earliestworks on the subject are Shamir’s secret sharing [S79], and laterRivest’s
all or nothing transform [R97]. In the last few years a large body of workon leakage-
resilient cryptography has emerged (cf., [ISW03,MR04,SMY09,AGV09, DKL09,
P09,NS09,ADW09,KV09,FKPR10,DGK+10,FRR+10,BG10,DP10,JV10,GR10,
DHLW10,BKKV10]), which provide different leakage models requiring that cryp-
tographic schemes be secure even if partial information about the secret key is
leaked to an adversary. In order to have an abstract model that is not directly
dependent upon the hardware architecture itself, but rather can produce some
general guidelines to systems and hardware designers regarding how much leak-
age can be tolerated overall (within a given setting), leakage was formally modeled
as functions associated with algorithmic steps and states. These leakage functions
f1(sk), . . . , fq(sk ) of the secret key sk , are from some given family of functions,
where the specific fi is selected by the adversary arbitrarily. The leakage (i.e., the
function result which contains only partial information about the key) is applied
to the relevant state or computation and is given to the adversary (in addition to
the black-box access it gets).

Wiki-Leakage: The variety of Leakage Models. There are many types
of leakage sub-models based on various parameters of leakage, which we briefly
review here. Adaptive leakage, where the function is chosen dynamically by the
adversary, obviously gives it more power than non-adaptive. Such adversaries
that rather than observing the device once execute side channel attacks repet-
itively, are stronger and require the schemes to be continuous leakage resilient.
Repeating (continual) adaptive leakage requires the scheme to have an update
procedure for the secret key. Otherwise, the adversary can eventually leak enough
information about the key to break the scheme, even if the amount of leakage
per time period is small. However, the public key should not be changed by the
secret key update. For example, a signature verification key should remain valid
throughout the lifetime of the scheme.

Next we note that leakage can be processing leakage (i.e., only computation
leaks) so that physical computations on the device are the only source of leakage.
Procedures such as key generation, key updates, and other kinds of processing
(i.e., signing, decryption, etc.) which involve random values may be allowed dif-
ferent amounts of leakage, but are all related to some physics of computations
(e.g., timing of operations). The influential works of Ishai, Sahai, and Wag-
ner [ISW03] and Micali and Reyzin [MR04] enable us to construct schemes under
the “any computation, and only computation, leak information,” model, which
has led to many recent achievements. In contrast, memory leakage [AGV09]
(which, in some sense, can be traced to the original works of Shamir and Rivest
mentioned above) are produced as a function of the memory state itself. This
type of leakage is orthogonal to computational leakage: an adversary can get
memory leakage by probing memories even if the memories are not currently
used in any computation (e.g., the cold-boot attacks [HSH+08]). For example,
the scheme of [DHLW10] is secure against memory attacks (even continual), but
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assumes that the signing process leaks no information. The most general model
allows full leakage which includes leakage both from processing and memory.

The most demanding case for designing digital signature schemes seems to be
the case of adaptive and continual full leakage that is available to the adversary
from both computational and memory sources (without protection of sub-steps
of computations). However, to date, there are no known schemes which achieve
a digital signature scheme in this adversarial setting in the standard model. All
known schemes with full (memory and processing) leakage either do not have
a key update algorithm and thus are not continual (cf., [KV09]), have a key
update algorithm but require some restrictions (e.g., [ADW09] which requires
an additional leakage-free master key), or are based on the random oracle model
(with a relaxation of the definition of a “time period”) [BKKV10].

1.1 Our Contributions

We propose the first signature scheme satisfying all of the above requirements,
whose security can be proven in the standard model and without further relax-
ation. Specifically, our scheme protects against (1) continual memory leakages
combined with (2) all types of continual processing (computational) leakages,
namely leakages from key generation, key updates, and signing.

Moreover, the amount of information that our scheme allows to leak in each
time period is optimal, in the sense that our scheme remains secure even if
1 − o(1) fraction of the secret key of each time period is leaked. Here “time
period” is the period between two consecutive updates of the secret key (the
time period is a function of the accumulated leakage itself and not a relaxed
notion which depends on other parameters). We stress that our scheme remains
secure even when the leakage during signing is a function f(sk , r) of both the
secret key and the randomness. Further, the function f can be adaptively chosen
by the adversary. Using standard techniques, our scheme also allows O(log κ)
leakage in the key generation and in each of the key updates, where κ is a
security parameter. (The secret key has O(κ) bit length. The fraction of leakage
is therefore O(log κ/κ)).

Comparison with Recent Schemes. Let us compare our scheme with the re-
centbreakthrough results ofDodis,Haralambiev,Lopez-Alt, andWichs [DHLW10]
andBrakerski,Kalai,Katz, andVaikuntanathan [BKKV10].The signature scheme
of [DHLW10], as noted above, has to assume that there is no leakage from the sign-
ing process. The work in [BKKV10] proposed two signature schemes. Their first
scheme is secure on if there is no leakage from the signing process. The second
scheme relies on random oracle to protect against leakage during signing, and fur-
ther requires signatures to be treated as leakage. That is, even if there is no actual
side-channel leakage during a certain timeperiod, the signing keymust be refreshed
to preserve security. In contrast, our signature scheme is proved secure in the stan-
dard model and the key needs to be refreshed only if leakage occurs (i.e. signatures
do not constitute leakage).
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Concurrent work. In a concurrent work, Boyle, Segev, and Wichs [BSW10]
construct a fully leakage resilient signature scheme using different techniques.
[BSW10] take a more generic approach than we do. On the other hand, our
scheme is somewhat more efficient.

Other related work. In the recent years a very rich body of research on leakage
resilient cryptography has been developed. Dziembowski and Pietrzak [DP08],
and Pietrzak [P09] describe the first stream ciphers resilient to continual leakage
in the only computation leaks model. Faust et al [FKPR10] construct signa-
ture schemes resilient to continual leakage in the only computation leaks model.
Faust et al [FRR+10] give a general compiler using secure hardware that pro-
tects an arbitrary circuit against continual leakage that can be modeled as a
shallow (AC0) boolean circuit. Juma and Vahlis [JV10], and separately Gold-
wasser and Rothblum [GR10], give compilers that protect any algorithm against
continual leakage (without complexity restrictions), using secure hardware. Re-
cently, Dodis and Pietrzak [DP10] show how to build continual leakage resilient
pseudorandom functions that are secure against non-adaptive leakage.

Discussion on processing leakage. Continual memory attacks are a very
powerful leakage model that allows the adversary to continuously obtain leakage
from the entire secret key. A natural question to ask is whether adding process-
ing leakage into the mix adds anything to adversarial power. Indeed, the only
additional information available to the adversary during processing leakage is
ephemeral randomness that is used in the computation. In many cases, such
as in the case of public key encryption or decryption (using the corresponding
private key), leakage on ephemeral randomness does not provide any useful in-
formation to the adversary about the secret key. In fact, in public key encryption
and decryption, the adversary can simulate the leakage from the randomness of
these algorithms on her own. However, this is not the case for signature schemes.

In a signature scheme, a signature is computed using the secret key, and made
public. Consequently, signatures can viewed as a very restricted type of leakage
on the secret key. A signature scheme is considered secure if such “signature leak-
age” is useless to any efficient adversary. When the adversary is given leakage
from the randomness of the signing process, she may be able obtain information
that will allow her to extract useful information from the accompanying signa-
ture. For example, each signature may contain an encryption of the secret key
under a random key that is generated during signing, and then forgotten. If the
adversary is able to leak this random key, she trivially breaks the security of the
scheme.

1.2 The Idea behind Our Construction

We are motivated in our construction by the (non-continual) memory-attack
resilient signature schemes of Alwen, Dodis, and Wichs [ADW09], and of Katz
and Vaikuntanathan [KV09]. Both [ADW09] and [KV09] use the following high
level approach, which is based on the Fiat-Shamir heuristic [FS86]: a signature
of a message M relative to a public key pk is an extractable proof of knowledge
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(in the random oracle model) of a value sk for which H(sk) = pk. Here is H is
a hash function.

The security proof of these signature schemes relies on the second preimage
resistance of the hash function H , and the witness extractability of the proofs
that are used. That is, they use the property that it is infeasible to find sk∗ �= sk
satisfying H(sk∗) = H(sk).

To prove security, they construct a simulator that generates a secret key sk
randomly and computes pk = H(sk). The simulator then can answer leakage
queries and signing queries using the secret key that it itself has generated. If an
adversary can forge a message/signature pair, the simulator extracts the witness
sk′. Now, if the fraction of leakage of sk is less than 1− o(1), the exact key sk
that is used by the simulator is information theoretically undetermined in the
view of the adversary (specifically, there are at least two possible keys, given
the leakage). Therefore, with probability at least 1/2, the witness sk′ is different
from sk, which breaks the second pre-image resistance of H .

We start with this basic approach, and enhance it along three dimensions.
Specifically, we:

1. Remove the requirement for a random oracle, and get a scheme secure in the
standard model.

2. Add a key update procedure that refreshes the secret key, while keeping the
public key fixed. This yields a signature scheme resilient against continual
memory attacks [BKKV10].

3. Develop a proof method that allows leakage of randomness used in signing
within a period (allowing optimal leakage).

Removing the Random Oracle. The simplest idea to remove the random
oracle from the scheme of [ADW09,KV09] is to prove the knowledge of the secret
key not by using Fiat-Shamir heuristic, but by using other known non-interactive
proof systems in the standard model.

This initial attempt fails for the following reason: the argument of [ADW09,
KV09] showing sk∗ �= sk is purely information theoretic. Hence, if we want to
use the argument of [ADW09, KV09], the proof systems should hide sk not in
a computational sense, but in an information theoretic sense. But if the proof
system hides sk information theoretically, the secret key sk∗ used by an adversary
is also hidden information theoretically (since no random oracle is available).
Hence, it is impossible for the simulator to get the second pre-image sk∗ from
the adversary’s forgery, and so we cannot rely on second pre-image resistance.

To overcome the above problem, we use the Waters’ function

h(H, M) = H0 +
∑

k

MkHk,

where Mk is the k-th bit of a message M and H = (H0, . . . , Hm) is a tuple
of group elements1. The function is introduced in [W05] in order to construct
1 Here we use additive notation to describe the function.
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an adaptively secure ID-based encryption scheme. The Waters’ function has the
property that a simulator can choose the parameters H0, . . . , Hm in a special
way that defines a subset M of the range of h. It can then be shown that
with non-negligible probability, all signing queries M of the adversary satisfy
h(H, M) ∈M, and the forgery M∗ satisfies h(H, M∗) �∈ M.

We construct a Waters-like function h′ such that M is a set of all non-DDH
tuples in the range of h′. Consequently, we get that with non-negligible probabil-
ity all signing queries of the adversary map to non-DDH tuples, and the forgery
maps to a DDH tuple.

We then combine the above hash function h′ with the Groth-Sahai [GS08]
proof system. Groth-Sahai is a proof system which uses a common reference
string (CRS). The proof system hides the witness information theoretically if
the CRS is a non-DDH tuple and hides it only computationally, and the witness
therefore is extractable, if the CRS is a DDH tuple.

Hence, by using Groth-Sahai proofs as signatures, and h′(M) as the CRS of the
Groth-Sahai proof, we get a proof system that hides the witness sk information
theoretically when the simulator generates proofs as answers to signing queries,
and allows the witness sk∗ to be extracted from the proof generated by an
adversary as a forged signature.

The scheme before adding key update. Our scheme therefore has the
following basic structure. The private key consists of a vector of group elements
W , and the public key consists of group elements A and T such that e(A, W ) =
T . The public key also contains the description of a Waters-like hash function h′.
To sign a message M , we first use h′ to compute a CRS h′(H, M) for the Groth-
Sahai proof system. Then, the signature is a proof, under the CRS h′(H, M),
that e(A, W ) = T .

Before proceeding to describe our key update procedure, we believe it is in-
structive to see why the above scheme, without update, is secure. Intuitively,
this follows from the second pre-image resistance of the hash function HA(X) :=
e(A, X). From the perfect witness indistinguishability of Groth-Sahai proofs we
know that the adversary learns about the specific witness W only from leak-
age. However, since the amount of leakage is bounded, the actual witness W in
the private key remains information theoretically undetermined. Finally, when
the adversary submits a successful forgery, we use the indistinguishability of
common reference strings technique discussed above to show that, with non-
negligible probability, a witness W ′ can be extracted from the forgery. This
witness is likely to be different from W , which would give the simulator two
inputs W and W ′ such that HA(W ) = HA(W ′). This in turn violates the
second pre-image resistance of HA.

We remark that the above technique is somewhat reminiscent of the Feige-
Lapidot-Shamir [FLS90] method for using witness indistinguishability to achieve
witness hiding.

Adding Key Updates. The approach of Section 1.2 allows us to move from the
random oracle to the standard model. However, the above scheme can still tolerate
only a bounded amount of leakage. We now describe a method for choosing the
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private keys of the scheme that allows us to randomize the key without having to
issue a new public key.

We start by observing that if our scheme relies for security on the second
pre-image resistance of the hash function H , then no key update algorithm can
exist. This is because otherwise we could use the key update algorithm itself to
break second pre-image resistance as follows:

If we can get new key sk [i+1] efficiently by updating sk [i], this means
that one can get two keys sk [i] and sk [i+1] satisfying of T = H(sk [i])
and T = H(sk [i+1]), where T is the public key. The function H therefore
cannot be second pre-image resistant.

Note that our model does not allow to update the public key for the conve-
nience of verifiers. The above collision of the function H is therefore unavoidable.

(n, k)-independent pre-image resistant (IPIR) hash functions. We over-
come the above problem by introducing the following new notion: (n, k)-
independent pre-image resistant hash function H , where n is an integer and
k ≤ n − 2. This is a linear function H from an n-dimensional vector space H

n

to a 1-dimensional vector space T, over Zp. We require that, given certain trap-
door information about H , one can find a tuple (Y 1, . . . , Y k+1, T ) satisfying
T = H(Yj) for all j ∈ [k + 1]. However, it must be infeasible to find Y ∗ ∈ H

n

satisfying T = H(Y ∗) and Y ∗ /∈ Aff(Y 1, . . . , Y k+1), where Aff(Y 1, . . . , Y k+1)
is the smallest affine space spanned by Y 1, . . . , Y k+1. We call the hardness prop-
erty (n, k)-independent preimage resistance.

We note that although in this paper we give a construction of an (n, k)-IPIR
hash function, we do not use it as a black box in our signature scheme. Indeed, the
Groth-Sahai proofs that are generated use the parameters of the hash function,
which are of a very specific form. However, the notion of IPIR seems useful in
itself, and we hope that other applications will be found for it. Furthermore,
abstracting the properties that we need from H allows us to present a modular
and structured proof of security for our signature scheme.

Generating and updating keys. Using the linearity of H , we can generate
any linear sum of Y 1, . . . , Y k+1 in polynomial time. We use this property to
perform key update. And we use the IPIR (instead of the second pre-image
resistance) when we show that no adversary can forge a signature.

In slightly greater detail, we construct the key generation algorithm and
the update algorithm of our scheme as follows. In the key generation, by us-
ing the trapdoor of the hash function H , we generate (Y 1, Y 2, T ) satisfying
T = H(Y 1) = H(Y 2). We then compute Q ← Y 1 − Y 2 and publish Q as
a part of the public key. The secret key is W [0] ← Y 2. Note that H(Q) =
H(Y 1)−H(Y 2) = 0 holds.

Key update then works as follows: in the (i + 1)-st round, we select s[i] $←
Zp randomly and compute W [i+1] ← W [i] + s[i]Q. Based on the linearity
of H , and the equality H(Q) = 0, one can easily show that H(W [i+1]) =
H(W [i]) = · · ·H(W [0]) = H(Y 2) = T holds, and that W [i] is an element
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of Aff(Y 1, Y 2). The latter holds because W [i] are linear sums of W [0] = Y 2

and Q = Y 1 − Y 2. We then use an adaptation of the “leakage resilient sub-
space” technique from [BKKV10] to show that the affine subspace Aff(Y 1, Y 2)
(or even Aff(Y 1, . . . , Y k+1)) is hidden from the adversary, even given continual
leakage (assuming the refresh procedure above is periodically performed). Given
the hiding property of the affine space, it follows that if the adversary forges
a signature σ∗ = PrfM∗(W ∗) for some message M∗, she likely uses a witness
W ∗ /∈ Aff(Y 1, Y 2). However, this violates the IPIR of H . The security of the
scheme follows.

Security Against Leakage in Signing. The main challenge in achieving
security under leakage from the signing process is that the signature and the
secret key are correlated through the randomness that was used to produce the
signature. When the adversary obtains leakage on the randomness, the signature
may become much more valuable, and potentially allow the adversary to break
the scheme (as we discussed in the introduction).

In the proof based signature schemes we described above, there is no guarantee
that leakage on the randomness of the prover does not break the zero-knowledge
or witness indistinguishability property of the proof system. We solve this prob-
lem through a combination of several tools: first, as described above, we rely
on Groth-Sahai proofs, which have a dual mode – witness hiding and witness
binding. When the proof is (perfectly) hiding, it is information theoretically in-
dependent from the witness, which is the secret key, if there is no leakage on the
randomness of the prover.

We use the above fact to “invert” the order in which components of the
signature are generated: first the GS proof σ in the signature is generated using
some globally fixed witness Y (note that this is only done by the simulator
in the analysis, and so there is no leakage on the witness Y). Then, given an
actual witness W for the proof, we “reverse engineer” the randomness R that
would yield the same proof σ, and compute leakage on (W , R). We use an
additional property of Groth-Sahai that for every pair of proof and witness
(σ, W ) there exists a unique randomness Rσ,W that causes the prover to output
σ given witness W . Moreover, since the proof is perfectly witness hiding, for all
witnesses W , the distribution on the tuple (σ, Rσ,W ) are identical whether we
first generate the proof using witness V and then determine the randomness, or
choose the randomness uniformly, and compute the proof directly.

The above approach, however, does not work as is, since the process of find-
ing R may not be efficiently computable! We therefore rely on an informa-
tion theoretic leakage resilience property of random subspaces that was shown
in [BKKV10] (in fact, we prove a slightly stronger version that suits our con-
struction). We combine both techniques together, simultaneously using the ran-
domness reverse engineering technique described above to handle leakage from
signing, and information theoretic indistinguishability of random subspaces un-
der leakage. Using these techniques together, we show that the adversary is
unable to gain information about the subspace from which we generate private
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keys during update, even if leakage on the signing process is available. We then
use independent pre-image resistance to conclude that our scheme is secure.

2 Preliminaries

Notations. Let [n] denote {1, . . . , n} and [k..n] denote {k, . . . , n}. For two ran-
dom variables X and Y , dist(X, Y ) denote the statistical distance between X
and Y .

Linear Algebra. Unless otherwise stated, vectors in this paper are column vec-
tors. We represent a row vector as a transpose of a column vector in this paper.
For natural numbers n and m, let Z

n×m
p denote the set of n×m matrices over Zp.

Let AT denote the transposed of a matrix A = (ai,j)i,j , that is, AT = (aj,i)i,j .
For two vectors u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Z

n
p , we let 〈u, v〉 denote

the inner product of them in Zp, that is, 〈u, v〉 = ∑
i uivi mod p.

For a vector v = (v1, . . . , vn) ∈ Z
n
p and an element W of the group G or H,

let vW denote the vector (v1W, . . . , vnW ).
For a vector space V and vectors Y 1, . . . , Y k+1 ∈ V , let Span(Y 1, . . . , Y k)

denote the smallest vector subspace of Vn which contains all of (Y j)j∈[k], that
is,

Span(Y 1, . . . , Y k) = {Y ∈ Vn | ∃s1, . . . , sk ∈ Zp : Y =
∑

j∈[k]

sjY j}.

Similarly, let Aff(Y 1, . . . , Y k+1) is the smallest affine subspace of Vn which con-
tains all of (Y j)j∈[k+1], that is,

Aff(Y 1, . . . , Y k+1)={Y ∈Vn | ∃s1, . . . , sk+1 ∈ Zp : Y =
∑

j∈[k+1]

sjY j ,
∑

j∈[k+1]

sj = 1}.

Note that the space Aff(Y 1, . . . , Y k+1) becomes k dimensional, when k + 1 vec-
tors Y 1, . . . , Y k+1 are linear independent.

2.1 Signature Schemes Resilient against Continual Leakage

A signature scheme with key update SGN consists of four algorithms Kg, Sig,
Ver, and Update. The inputs and outputs of Kg, Sig, and Ver are the same as in
standard signature schemes. Update takes as input a secret key and a public key
and outputs a new element of the secret key space. SGN = (Kg, Sig, Ver, Update)
has to satisfy the following property:

– (Correctness). For any integer n ≥ 0 and any message M , if we compute
(pk , sk0) ← Gen(1κ), sk1 ← Updatepk (sk0), . . ., skn ← Updatepk (skn−1),
and σ ← Sig(skn, M), Ver(pk , M, σ) = 1 always holds.

We follow the definition of [BKKV10] of leakage resilient signatures.
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Setup. A(1κ) sends to the challenger a function f satisfying |f(R)| ≤ ρG|R| for all

R. The challenger then selects R
$← Rnd[Gen] computes (pk , sk0) ← Gen(1κ; R)

sends (pk , f(R)) to A, and initializes i ← 0 and Li ← |f(R)|. Here i represents
the number of updates and Li denote the bit length of all leakages about the i-th
secret key.

Queries. A makes queries of the following three types polynomial number of times:
– Update queries (update, f) where f is a circuit satisfying |f(sk , R)| ≤ ρU (|sk |+
|R|) for any (sk , R). If Li + |f(sk i, R)| ≤ ρM |sk i| holds, the challenger chooses

R
$← Rnd[Update] randomly, computes sk i+1 ← Updatepk (sk i) and sends

f(sk i, R) back to A and resets i ← i + 1 and Li ← |f(sk i, R)|. Otherwise,
the challenger aborts.

– (Memory) leak queries (leak, f), where f is a circuit. If Li + |f(sk i)| ≤ ρM |sk i|
holds, the challenger sends f(sk i) to adversary and resets Li ← Li + |f(sk i)|.
Otherwise, the challenger aborts.

– Signing queries (sig, M, f) where f is a circuit with |f(sk , R)| ≤ ρS(|sk |+ |R|)
for any (sk , R). The challenger chooses R ← Rnd[Sig] randomly, computes
σ ← Sig(sk i, M ; R) and sends (σ, f(sk i, R)) back to A.

Challenge. Assuming the challenger did not aborts, A outputs (M∗, σ∗). It succeeds
if Ver(pk , M∗, σ∗) = 1 holds and A never made query (sig, M∗).

Fig. 1. Game of (ρG, ρU , ρM , ρS)-EU-CMA-CML secure

Definition 1 ( [BKKV10]). Let ρG, ρU , ρM , and ρS be elements of the real
range [0, 1]. We say that SGN = (Gen, Sig, Ver, Update) is (ρG, ρU , ρM , ρS)- EU-
CMA-CML secure (stand for existentially unforgeable under chosen message
attack in the CML model) if no PPT adversary A succeeds in the game of Fig.1
with non-negligible probability. Here Rnd[Algo] denote the set of randomnesses
for algorithm Algo.

2.2 Bilinear Pairings

In our paper, we are working on a bilinear pairing, e : G × H → T with prime
order p, where G �= H holds and there is no efficiently computable homomor-
phism between two groups G and H (Such a pairing is called Type III [GPS08]).
We denote by gk bilinear map parameters of the form (p, G, H, T, e). We will
occasionally refer to gk as group description.

Our proofs rely on basic properties of linear algebra. We therefore find
it convenient to use additive notation for pairings. For example, we write
e((a + b)A, W ) = a · e(A, W ) + b · e(A, W ). For two (column) vectors A =
(A1, . . . , An)T ∈ G and W = (W1, . . . , Wn)T ∈ H, we denote

e(AT, W ) =
∑

i∈[n]

e(Ai, Wi)

Assumption 2 (SXDH assumption [GS08]). We say that gk = (p, G, H, T,
e) satisfies the Symmetric external Diffie-Hellman (SXDH) assumption, if the
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DDH assumption holds both over G and H (note that this is possible in type III
pairings).

2.3 Groth-Sahai Proofs

Groth and Sahai [GS08] proposed efficient non-interactive witness indistinguish-
able proof systems for settings where a bilinear pairing is available. Their system
allows efficient proofs of various statements about the groups of the pairing, and
the pairing relation.

In this work we prove statements of the form e(AT, W ) = T , where an in-
stance (A, T ) ∈ G

n × T is the input to the verifier, and W is the witness used
by the prover.

Let gk = (p, G, H, T, e) be a group description and crs = (G, H) ∈ H
2. The

Groth-Sahai proof using crs as CRS (Common Reference String) is as follows.

– Prf(gk , crs , (T, A), W ) : Parse gk and crs as (p, G, H, T, e) and (G, H) re-

spectively. Select R
$← Z

n×2
p randomly, and compute

(C, D)← (R ·G, W + R ·H)

Π ← RTA

and output σ = (C, D, Π).
– Vrf(gk , crs , (A, T ), σ) : Parse gk , crs , and σ as (p, G, H, T, e), (G, H) and

(C, D, Π) respectively.
Output 1 iff the following equality holds.

(e(AT, C), e(AT, D)) ?= (e(ΠT, G), T + e(ΠT, H))

One can easily show that a correctly generated proof is always accepted by Vrf.
Groth and Sahai [GS08] gave the following two algorithms HideCRS and

BindCRS to generate two different types of CRS: hiding and binding. When
a hiding CRS is used for the proof, the witness is perfectly (information theo-
retically) hidden. When a binding CRS is used, BindCRS provides a trapdoor
along with the CRS, and the trapdoor can be used to extract the witness from
any proof. Finally, it is required that the two types of CRS are computationally
indistinguishable.

For the above proof system, let gk = (p, G, H, T, e). The algorithms HideCRS
and BindCRS are defined as follows:

– HideCRS(gk ) : Select G, H
$← H

2 randomly and output crs ← (G, H).
– BindCRS(gk) : Select G

$← H
2 and α

$← Zp randomly, compute H ← αG
and output crs ← (G, H) and the trapdoor α.

Groth-Sahai show that in the above proof system, a hiding CRS and a binding
CRS are indistinguishable under the SXDH assumption. Formally, the perfect
witness indistinguishability, and the witness extractability properties are defined
as follows [GS08]. Below, Setup(1κ) be an algorithm which generates a group
description gk = (p, G, H, T, e).
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– (Composable Perfect Witness Indistinguishability). For all (possibly
unbounded) adversaries A

Pr

[
gk ← Setup(1κ), crs ← HideCRS(gk),
(A, T, W 0, W 1, st)← A(gk , crs), σ ← Prf(gk, crs, (A, T ), W 0), b← A(σ, st)

: b = 1

]

= Pr

[
gk ← Setup(1κ), crs ← HideCRS(gk),
(A, T, W 0, W 1, st)← A(gk , crs), σ ← Prf(gk, crs, (A, T ), W 1), b← A(σ, st)

: b = 1

]

where we require e(A, W [0]) = e(A, W [1]) = T .
– (Perfect Extractability). For all possible output gk = (p, G, H, T, e) of

Setup(1κ), all possible output (crs , α) of BindCRS(gk), all (A, T ) ∈ G
n × T

and all σ = (C, D, Π) ∈ H
2×H

2×G
2 satisfying Vrf(gk , crs , (A, T ), σ) = 1,

if we set
W ∗ ←D − αC,

the equality e(A, W ∗) = T always holds.

3 Independent Preimage Resistant (IPIR) Hash
Functions

We introduce a new notion: independent pre-image resistance (IPIR), that we use
in the construction and analysis of our scheme. As we have already mentioned in
the introduction, our construction does not use the IPIR hash function described
below in a black box way. Nevertheless, we believe it to be instructive to define
this notion separately, both to conceptually isolate the properties of the hash
function that we use, and for potential future use.

Definition 3 (Independent Preimage Resistant Hash Function). Let
n be a positive number, and let H and T be cyclic groups of order p. Let
Gen, H, GenSim, Check be polynomial time algorithms whose inputs and outputs
are as follows. Below, k is the parameter representing the dimension. Note that
a k-dimensional affine (not linear) subspace contains k + 1 vectors and GenSim
of the below therefore outputs k + 1 vectors Yj .

– Gen(1κ) outputs some public information P .
– For any possible output P of Gen, HP is a deterministic linear function from

H
n to T.

– GenSim takes an integer k ∈ [n − 2] as an input and outputs a public in-
formation P , a trapdoor td , (T, Y 1, . . . , Y k+1) ∈ T × (Hn)k+1 satisfying
T = HP (Y i) for all i ∈ [k + 1].

– Check takes P , (T, Y 1, . . . , Y k+1), an element Y ′ of H
n, and a trapdoor td

as inputs and outputs 1 or 0.

For integers n and k ∈ [n−2], we say that H is (n, k)-independent pre-image resis-
tant with respect to (Gen, GenSim, Check) if it satisfies the following
properties.
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– (Correctness). For all outputs (P, td , (T, Y 1, . . . , Y k+1)) of GenSim and all
Y ′ ∈ H

n,
Check(P, td , (T, Y 1, . . . , Y k+1), Y ′) = 1 holds iff T = HP (Y ′) and Y ′ ∈

Aff(Y 1, . . . , Y k+1) holds.
Moreover, for an output (P, td , (T, Y 1, . . . , Y k+1)) of GenSim, P have the

same distribution as an output of Gen(1κ) and (Y 1, . . . , Y k+1) uniformly
distributed on {Y ∈ H

n | HP (Y ) = T }k+1.
– ((n, k)-Independent Preimage Resistance). For any polytime adversary
A,

Pr
[
(P, td , (T, Y 1, . . . , Y k+1))← GenSim(1κ),
Y ∗ ← A(P, T, Y 1, . . . , Y k+1)

:
T = HP (Y ∗)
Y ∗ /∈ Aff(Y 1, . . . , Y k+1)

]

is negligible.
Note that one can check whether Y ∗ /∈ Aff(Y 1, . . . , Y k+1) holds or not

in polytime by using Check and the a trapdoor td.

Construction of an independent pre-image resistant function. In our
signature scheme we use the function HA(Y ) = e(A, Y ). The algorithms Gen,
GenSim, and Check for the function H are as follows. Below, Setup(1κ) is an
algorithm which generates a group description gk = (p, G, H, T, e).

– Gen(1κ) : Compute gk ← Setup(1κ) and generates A
$← G

n randomly, and
output P ← (gk , A).

– GenSim(1κ) : Compute gk ← Setup(1κ), and choose randomly A
$← G, and

a
$← Z

n
p . Compute A← aA. Choose randomly Y

$← H, t
$← Zp, and yj ∈ Z

n
p

satisfying 〈a, yj〉 = t for j ∈ [k + 1]. Choose n − k linearly independent
vectors e1, . . . , en−k satisfying 〈ei, yj〉 = 0 for all i ∈ [n−k], j ∈ [k]. Output
P = (gk , A), td ← (ei)i∈[n−k], and Y j ← yjY for j ∈ [k], T ← tY .

– Check(P, td , (T, Y 1, . . . , Y k+1), Y ′) : Parse P and td as (gk , A) and
(ei)i∈[n−k] respectively. Output 1 iff e(A, Y ′) = T and 〈ei, Y

′〉 = 0 holds
for all i ∈ [n− k].

Proposition 4. For any n and k ≤ n−2, the scheme (Setup, H, GenSim, Check)
is (n, k)-independent pre-image resistant under the SXDH assumption.

Correctness is straightforward. We give the proof of independent pre-image re-
sistance in the full paper.

4 Proposed Scheme

Let n ≥ 3 and m be integers. Let Setup be a polytime algorithm that generates a
group description gk = (p, G, H, T, e), as discussed above, where e : G×H→ T.
For H = (H0, H1, . . . , Hm) ∈ (H2)m+1 and M ∈ {0, 1}m, we define a Water’s
hash function h as

hgk (H, M) = H0 +
∑

k∈[m]

MkHk,
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where Mk is the k-th bit of M . Let Prf and Vrf be the proof algorithm and the
verification algorithm of the Groth-Sahai proof system reviewed in Section 2.3.
Our signature scheme SGN = (Kg, Update, Sig, Ver) works as follows.

Key Generation Kg(1κ): gk ← (p, G, H, T, e) ← Setup(1κ), G ← H
2,H ←

(H0, H1, . . . , Hm)← (H2)m+1.

Randomly select A
$← G, Q

$← H, and a, q
$← Z

n
p satisfying 〈a, q〉 = 0

and compute A ← aA, Q ← qQ. Select W [0] $← H
n randomly, compute

T ← e(A, W [0]), and outputs pk ← (gk , G,H, A, T, Q) and sk [0] ←W [0].
Key Update Updatepk (sk [i]): Parse pk and sk [i] as (gk , G,H, A, T, Q) and

W [i] respectively, select s
$← Zp randomly, and output sk [i+1] ←W [i+1] ←

W [i] + sQ.
Signing Sig(sk [i], M) for M ∈ {0, 1}m: Parse pk and sk [i] as (gk , G,H, A, T,

Q) and W [i]. Compute HM ← hgk(H, M), set crsM ← (G, HM ), and
σ ← Prf(gk , crsM , (A, T ), W [i]) and output σ.

Verification Ver(pk , M, σ): Parse pk as (gk , G,H, A, T, Q), compute HM ←
hgk (H, M), and set crsM ← (G, HM ). If Ver(gk , crsM , (A, T ), σ) = 1, out-
put 1. Otherwise, output 0.

Theorem 5. For any constants c > 0 and any γ = Θ(1/
√

κ), the proposed
scheme SIG is (ρG, ρU , ρM , ρS)-EU-CMA-CML secure under the SXDH assump-
tion. Here

(ρG, ρU , ρM , ρS) =
(

c · log k

n log p
,
c · log k

n log p
, 1− 2 + γ

n
, 1− 2 + γ

n

)
.

We can achieve the fraction 1 − o(1) of leakage in signing and in memory by
setting n = κ.

4.1 Overview of Security Analysis

Our proof starts with a reduction that shows how to convert any adversary that
obtains leakage on key generation and updates, to an adversary that does not
require such leakage. This follows from the lemma of Brakerski et al [BKKV10].
(See our full paper for the proof.)

Lemma 1 (Informally given in [BKKV10]). Let SGN = (Kg, Sig, Ver,
Update) be a (0, 0, ρM , ρS)-EU-CMA-CML secure signature scheme. Then if
ρM = ω(log n), it is also (c log κ/m, c logκ/m, ρM , ρS)-EU-CMA-CML secure
for any c. Here m is the maximum of the length of secret key.

The proof of Theorem 5 then proceeds by a sequence of games (depicted in
Fig.2):

1. In games 1-3 we follow a standard argument about the properties of Waters’
hash. Specifically, we show that with non-negligible probability the common
reference strings determined by the messages that the adversary submits in
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leak. of key gen and

updates becomes 0
︷ ︸︸ ︷
Original--------Game

Waters hash︷ ︸︸ ︷
0--------Game 1--------Game 2--------Game

W [i] becomes

a random

element of W
︷ ︸︸ ︷
3--------Game

IPIR︷ ︸︸ ︷
4--------neg.

stat.

indis.

{∣∣∣

Game† 4 (W [i] $←Y)

Fig. 2. Games in the reduction

signing queries are hiding CRS (and therefore hide the witness perfectly),
and the CRS of the forgery is binding (and therefore the witness can be
extracted).

This part of discussion of the our proof is essentially the same as that
of [W05] (simplified by [BR09]).

2. In game 4, we change the way that secret keys are generated. Instead of being
generated by the update algorithm, the secret key is now randomly chosen
from an n-3 dimensional subspace W of the set Y = {W |e(A, W ) = T } of
valid secret keys (which is of dimension n− 1).

Indistinguishability with game 3 follows from the DDH assumption on the
group H.

3. Game† 4 is described only to prove a specific property of Game 4 that we
need. In Game† 4 the keys are chosen randomly from the space Y of all valid
secret keys.

We rely on the perfect witness hiding of Groth-Sahai proof and a lemma
from [BKKV10] to show that game 4 and Game† 4 are statistically indistin-
guishable.

We then obtain the property of Game† 4 that the subspaceW is informa-
tion theoretically hidden, and this property transfers to Game 4 due to the
indistinguishability of the two games.

4. Finally, in Game 4 we use the fact thatW is information theoretically hidden
from the adversary to argue that the witness W ∗ extracted from the forgery
the an adversary will almost certainly be an element of Y \W .

This allows us to violate the independent pre-image resistance of the hash
function HA(Y ) = e(A, Y ), because we can find a pre-image W ∗ of T under
HA, and that pre-image is independent from the set of known vectors W .

5 Conclusion

In this work, we propose a signature scheme that protects against (1) continual
memory leakage combined with (2) all types of continual processing (computa-
tional) leakage, namely leakage from key generation, key updates, and signing.
Our scheme remains secure even when the leakage during signing is a function
f(sk , r) of both the secret key and the randomness.



104 T. Malkin et al.

The security of our scheme is proven in the standard model. Moreover, the
amount of information that our scheme is allowed to leak during each time period
is optimal, in the sense that our scheme remains secure even if 1− o(1) fraction
of the secret key of each time period is leaked.
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