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Abstract: Signcryption aims to provide both confidentiality and authentication of messages more e�-

ciently than performing encryption and signing independently. The “Commit-then-Sign & Encrypt” (CtS&E)

method allows to perform encryption and signing in parallel. Parallel execution of cryptographic algorithms

decreases the computation time needed to signcrypt messages. CtS&E uses weaker cryptographic primitives

in a genericway to achieve a strong security notion of signcryption. Variousmessage pre-processing schemes,

also known as message padding, have been used in signcryption as a commitment scheme in CtS&E. Due

to its elegance and versatility, the sponge structure turns out to be a useful tool for designing new padding

schemes such as SpAEP [T. K. Bansal, D. Chang and S. K. Sanadhya, Sponge based CCA2 secure asymmetric

encryption for arbitrary length message, in: Information Security and Privacy – ACISP 2015, Lecture Notes

in Comput. Sci. 9144, Springer, Berlin (2015), 93–106], while o�ering further avenues for optimization and

parallelism in the context of signcryption. In this work, we design a generic and e�cient signcryption scheme

featuring parallel encryption and signature on top of a sponge-basedmessage-padding underlying structure.

Unlike other existing schemes, the proposed scheme also supports arbitrarily long messages. We prove the

construction securewhen instantiated fromweakly secure asymmetric primitives such as a trapdoor one-way

encryption and a universal unforgeable signature. With a careful analysis and simple tweaks, we demon-

strate how di�erent combinations of weakly secure probabilistic and deterministic encryption and signature

schemes can be used to construct a strongly secure signcryption scheme, further broadening the choices of

underlying primitives to cover essentially any combination thereof. To the best of our knowledge, this is the

first signcryption scheme based on the sponge structure that also o�ers strong security using weakly secure

underlying asymmetric primitives, even deterministic ones, along with the ability to handle long messages,

e�ciently.
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1 Introduction

The aim of signcryption is to provide both confidentiality and authentication of messages more e�ciently

than performing encryption and signing independently. The reduction of the computational cost makes sign-

cryption more practical and it is a preferred option for e-commerce and e-mail applications, where both
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confidentiality and authentication are required. Zheng [38] introduced the signcryption notion in 1997. He

proposes a signcryption solution that is based on the El-Gamal [25] encryption and signature, leaving the

design of generic signcryption schemes as an open problem, which has since then received considerable

attention.

The study of generic compositions of encryption and signature has been initiated by An, Dodis and

Rabin [2]. They considered di�erent methods for designing signcryption through a black-box composition

of secure signature and public-key encryption. In particular, they showed that both “encrypt-then-sign”

(EtS) and “sign-then-encrypt” (StE) lead to secure signcryption schemes. However, the parallel signcryp-

tion approach “sign-and-encrypt” (S&E) composition does not provide privacy since the signature may

reveal information about the encrypted messages. They introduced an alternative generic method termed

“commit-then-sign-and-encrypt” (CtS&E) that provides some security guarantee for S&E. Note that CtS&E

compositions lead to parallel signcryption.

An, Dodis and Rabin [2] also define two types of security for signcryption, namely, outsider and insider

security. The outsider security deals with an external adversary who knows the public keys of a sender and

a receiver. The insider security model attacks are coming from the other party that participates in the com-

munication. In other words, an insider adversary is either the sender who wants to compromise receiver

confidentiality or the receiver who tries to defeat sender unforgeability. Since security against an insider

adversary implies security against an outsider adversary, the former is preferred.

A di�erent security model for signcryption, which has been adopted in a few early papers [2, 20], is

the two-user setting. In this model, a single sender interacts with a single receiver. However, as pointed

out by Dent [20], security in the two-user model does not imply security in the multi-user model, in which

either several senders communicate with the same receiver or, alternatively, several receivers obtain mes-

sages from a single sender. Hence, to ensure a realistic security concept, a multi-user security model must be

adopted. The strongest security definitions,which captures both insider confidentiality andunforgeability for

the multi-user setting, have been defined in [29]. For an overview of di�erent security models, see [21, 31].

A recent paper by Badertsche, Banfi and Maurer [3] also supports the need for an insider secure multi-user

model for signcryption.

1.1 Background

In 2002, An, Dodis and Rabin [2] presented amethodology for parallel encryption and signing. A plaintextm

is first transformed into a pair (c, d), where c is a commitment and d is a de-commitment. The value c reveals

no information about m, while the pair (c, d) allows to recover m. Once the transformation m → (c, d) is
done, the sender signs c and encrypts d in parallel using appropriate encryption and signature algorithms.

On the receiver side, the signature on c is verified and d is recovered from its ciphertext. Both operations are

executed in parallel. Finally, the plaintextm is reconstructed from (c, d). Parallel execution of cryptographic
algorithms decreases the computation time needed to signcrypt a message. It is equal to the maximum of

either the time required to encrypt or the time needed to sign. Minimum security requirements required from

underlying encryption and signature algorithms are also discussed. In the two-user model, An, Dodis and

Rabin [2] claim that to provide a generic chosen-ciphertext (IND-gCCA) secure and existentially unforgeable

(UF-CMA) signcryption, it is enough to use any IND-CCA secure encryption, UF-CMA secure signature and

a secure commitment under the CtS&E composition. The IND-gCCA security is weaker than IND-CCA.

The work by An, Dodis and Rabin [2] has instigated investigation into newways to define signcryption in

more generic ways. Note that early works present signcryption whose security depends on intractable prob-

lems such as discrete logarithm [38] and integer factoring [30, 36]. The authors of earlier works left an open

question of designing signcryption underweaker security assumptions for encryption and signature schemes

that do not relate to any specific intractability assumption. For example, the generic trapdoor one-wayness

(OW) assumption is satisfied by the RSA encryption (when integer factorization is intractable) and the ElGa-

mal encryption (when the computational Di�e–Hellman (CDH) problem is intractable). In this paper, we

consider cryptographic primitives (encryption and signature), whose security assumptions are generic.
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Parallel signcryption is further investigated by Pieprzyk and Pointcheval [33]. They proposed to use

a (2, 2)-Shamir secret sharing (SSS) as a commitment scheme. A plaintext m is first split into two shares

(s1, s2), where any single share reveals no information about m. The first share s1 is used as a commitment

and signed, while the second s2 is encrypted. The authors of [33] proposed two version of their scheme.

The first version, called generic parallel signcryption, provides IND-CCA and UF-CMA security for signcryp-

tion using any IND-CCA secure encryption and UF-CMA secure signature. This result is the same as the one

obtained in [2]. The second version, called optimal parallel signcryption, applies an asymmetric padding

OAEP [7] as commitment scheme. This signcryption algorithm provides both IND-CCA and UF-CMA security

in the random oracle (RO) model assuming any deterministic OW encryption (such as basic RSA) and any

weakly secure deterministic signature (non-universally forgeable). The authors discuss the security of their

schemes for the insider security model in a multi-user setting [34].

Dodis et al. [22, 23] propose a di�erent approach to perform parallel signcryption. In their approach,

they use a Feistel probabilistic padding, which can be viewed as a generalization of other existing proba-

bilistic paddings such as OAEP [7], OAEP+ [35], PSS-R [8], etc. The authors argue that their signcryption

provides IND-CCA and strong existential unforgeability (sUF-CMA) security assuming trapdoor one-way per-

mutations only.

Hybrid signcryption is an attractive approach in the design of signcryption schemes. It follows the idea

of hybrid encryption discussed in many works [1, 5, 15, 17, 18, 24, 27, 28]. Hybrid encryption consists of an

asymmetric key encapsulation mechanism (KEM) and a symmetric data encapsulation mechanism (DEM). The

first formal treatment of security of signcryption has been done by Dent [19, 20]. Some other related works

are [14, 16, 31, 37]. Converting a hybrid encryption scheme to hybrid signcryption turns out to bemuch trick-

ier than it looks. Themain di�culty is an increase in complexity of analysis that results from amore complex

adversarial model. It is necessary to consider not only straightforward attacks against authenticity and confi-

dentiality ofmessages but alsomore intricate issues such as distinction between outsider and insider attacks.

Moreover, CtS&E-type compositions are always preferred as a base for constructing secure KEMs.

1.2 Limitation of existing schemes

Amajority of signcryption schemes follow the sequential designs StE or EtS. Note that all schemes for hybrid

signcryption with KEM/DEM [14, 16, 19, 20] follow the sequential design. The sequential design limits the

e�ciency of signcryption. This limitation can be lifted by using the CtS&E composition, which performs

encryption and signing in parallel and independently from each other. Many signcryption schemes are built

using some specific intractability assumptions (for example, intractability of discrete logarithm [4, 29, 38]).

These constructions are not generic as the assumptions limit the choice of underlying encryption and signa-

ture schemes. Constructions for hybrid signcryption are generic, but they require stronger security properties

from key and data encapsulation mechanisms. For example, a recent generic hybrid signcryption scheme

given by Chiba et al. [16] requires an IND-CCA secure KEM, a one-time secure symmetric-key encryption,

a one-time secure message authentication code and a strong existentially unforgeable signature scheme.

These requirements are much stronger than those needed in already available non-hybrid schemes [33].

To the best of our knowledge, there is no hybrid signcryption that claims IND-CCA security and exis-

tential unforgeability using weak security properties like one-wayness and universal unforgeability. Most of

the signcryption schemes require existential unforgeability for the underlying signature scheme, which is

a stronger assumption than universal unforgeability. A common method used to build CtS&E-type scheme

[22, 30, 33, 34] is an OAEP-type padding. The padding gives rise to some common limitations such as: (1) it

restricts message space, (2) it works with deterministic one-way encryption and deterministic signature only

and (3) it provides security in the random oracle (RO) model. Unavailability of di�erent types of padding

schemes limits the extension of work for the CtS&E composition. Table 1 gives a brief summary of generic

signcryption schemes based on CtS&E.
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Schemes Model Encryption Signature Message length # of other functions Signcryption

An, Dodis and

Rabin [2]

No specific IND-CCA UF-CMA Restricted Commitment scheme IND-gCCA/UF-CMA

Pieprzyk and

Pointcheval [33]

Random

oracle

OW-CPA suUF-RMA Restricted 3 hash,

1 secret share scheme

IND-CCA/sUF-CMA

Dodis et al.

[22, 23]

Random

oracle

OW-CPA sUF-CMA Restricted 1 hash,

1 commitment scheme

IND-CCA/sUF-CMA

Unrestricted 1 hash,

1 commitment scheme,

symmetric encryption

Our result Ideal

permutation

OW-CPA suUF-RMA Unrestricted 1 SpongeWrap,

1 sponge function

(≊ 2 hash)

IND-CCA/sUF-CMA

OW-PCA uUF-RMA IND-CCA/UF-CMA

Table 1: Generic signcryption schemes based on CtS&E-type composition, where IND stands for indistinguishability, OW for

one-wayness, CPA/CMA for chosen plaintext/message attack, CCA for chosen ciphertext attack, UF for existential unforgeability,

uUF for universal unforgeability, suUF for strong uUF, RMA for random message attack, gCCA for generic CCA, OW-CPA for

trapdoor one-way permutation and OW-PCA for one-wayness under plaintext-checking attack.

1.3 Motivation

A randomized padding, like OAEP, is a powerful tool, which converts weakly secure fixed trapdoor one-way

functions into public-key encryption that is secure against strong adaptive chosen ciphertext attacks. The

padding has been used in signcryption as a part of the commitment scheme in the CtS&E composition. It is

known that CtS&E allows the use of weak cryptographic primitives in a generic way to achieve a strong secu-

rity of signcryption. A good example of such composition is the results by Pieprzyk and Pointcheval [33, 34],

which integrate any one-way encryption system (such as the basic RSA) with a weakly secure signature (non-

universally forgeable signatures) into a strong chosen-ciphertext secure and existentially unforgeable sign-

cryption in the ROmodel. The limitation of functionality, like message space restriction or type of encryption

scheme, is inherited from the commitment or padding scheme used.

Recently, motivated by the OAEP design, Bansal, Chang and Sanadhya [6] proposed another type of

padding called SpAEP. SpAEP is based on the sponge permutation structure, where permutation is consid-

ered as an ideal permutation, and the resulting sponge has no restriction onmaximummessage space. Unlike

KEM-DEM, the SpAEP padding provides a pathway to combine symmetric and asymmetric primitives with-

out a strict delineation. In brief, SpAEP uses a versatile sponge function and SpongeWrap [11, 12, 26] in

pipelined fashion, and a portion of its output is used as input to the asymmetric encryption. The padding

provides similar security guarantees as OAEP, but it is more e�cient. The SpAEP padding can be used with

trapdoor one-way permutations only. The sponge-based padding SpAEP [6] is versatile and has been used in

a di�erent security model for asymmetric encryption based on an ideal permutation. The padding scheme

supports arbitrarily long messages, uses small domain permutations and applies “on the fly” encryption. Its

running time is equivalent to a hash function.

Motivated by versatility of the sponge-based padding and by amplification of security properties (as

demonstrated in [33, 34]), we would like to develop a generic signcryption scheme that is secure in the ideal

permutation model. We intend to use weak asymmetric primitives such as trapdoor one-way encryption and

universal unforgeable signature. The scheme is designed to support arbitrarily long messages. Experimental

comparisons of the proposed scheme with existing generic signcryption schemes based on implementa-

tion is beyond the scope of this paper. However, a structural comparative analysis is provided in the next

section.
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1.4 Structural comparison

Generally, runtime performance of any signcryption is determined by processing time of asymmetric prim-

itives, irrespective of underlying message-padding scheme, except perhaps for very long plaintexts (which

many existing signcryption schemes donot even support). Therefore, structural e�ciency improvement plays

a secondary role in overall performance of signcryption, with the primary role being played by the ability to

use weaker and faster asymmetric components. Nevertheless, simple and feature-rich message padding is

always required to widen the applicability and usability of signcryption.

The proposed scheme uses only one SpongeWrap function and one sponge function. From the e�ciency

point of view, the proposed scheme is optimal since only a single call of SpongeWrap (≊ one hash function) is
required before parallel encryption and signature. One call to the sponge function is required after asymmet-

ric encryption for a small amount of data. The reverse process features the same kind of optimality. Similar

optimality remainswhile processing arbitrarily longmessages.Moreover, the entiremessage padding scheme

is based on the iterative structure of a single forward permutation, which also saves implementation e�ort.

When compared to other generic schemes, Pieprzyk and Pointcheval [33] use a hash function, a secret

sharing and OAEP (2 hash functions). A similar overhead is seen in the construction proposed by Dodis

et al. [22, 23]. A simple practical generic signcryption scheme is proposed byDodis et al. [22, 23]. The authors

proposed apadding scheme called P-pad,which is equivalent toOAEP+ [35]. Adetailed comparison ofOAEP+

and sponge-based padding (SpAEP) is provided by Bansal, Chang and Sanadhya [6], which shows sponge-

based padding schemes are more e�cient and practical compared to OAEP-type padding schemes. In case

of arbitrarily long messages, the scheme of Dodis et al. [22, 23] requires an additional symmetric encryption

unlike our proposed scheme. These additional requirements of di�erent functionswith di�erent input-output

settings increase the implementation e�ort. Therefore, overall, our proposed schemeprovides a simple, better

and feature-rich message padding scheme for construction of generic signcryption scheme.

1.5 Contributions

In this paper, we make the following contributions.

(i) We present a signcryption scheme in the ideal permutation model using sponge structure. First we pro-

pose signcryption for messages of a fixed length. Then we show how to extend it for arbitrarily long

messages. With careful analysis, we demonstrate how di�erent combinations of weakly secure prob-

abilistic/deterministic encryption and signature schemes can be used to build strongly secure generic

signcryption. To the best of our knowledge, this is the first sponge-based signcryption. We also believe

that the proposed signcryption is the first scheme, which allows di�erent combination of weakly secure

encryption and signature schemes to yield strongly secure signcryption that supports arbitrarily long

messages.

(ii) The demands on component security aremerely one-wayness for encryption anduniversal unforgeability

for signature. These minimum security requirements are su�cient to achieve indistinguishability and

existential unforgeability security against adaptive attacks. Such weak requirements were only fulfilled

in [33, 34], but the scope of [33, 34] is limited to fixed message space and deterministic encryption and

signatures.

(iii) Apart from encryption and signature primitives, our scheme requires an ideal permutation only. The iter-

ative permutation model we use is based on the well-known iterative sponge structure. Note that, after

the success of KECCAK [13] in the SHA-3 competition [39], the sponge structure is becoming more and

more popular and can serve as a “Swiss army knife” in cryptography.

(iv) Flexibility of the sponge-based padding allows to scale the system from relatively short messages to

long ones while preserving security properties. Besides, the complexity of the security analysis does

not increase. Note that some extra redundant data is used in the proposed sponge padding that plays

an important role in supporting long messages.
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The sponge structure used for message padding resembles the padding proposed in [6] but di�ers in two

aspects. First, some extra redundant data is used to allow the usage of sponge padding with a signature

to provide both unforgeability and confidentiality. Second, while the padding in [6] applies for determin-

istic asymmetric encryption only, here we extend the sponge padding, so it also works with probabilistic

asymmetric primitives.

Some properties are naturally inherited from the sponge structure. Signcryption o�ers an “on the fly”

computation property during the signcryption and unsigncryption processes. An implementation does not

need to use the inverse permutation, which saves implementation e�ort and memory.

Streaming. Our signcryption strategy enables unbu�ered “on the fly” data processing (a.k.a. “streaming”,

“online”, “single-pass” operation) during both the signcryption and unsigncryption processes. This is of sig-

nificant interest when handling largemessages, and one of the di�erentiating features of our scheme. For the

avoidance of doubt, we note that single-pass unsigncryption necessarily requires that the recipient be able

to discard an already decrypted stream that ends up failing authentication, with no persistent side-e�ect, for

IND-CCA security. This operational limitation only applies to unsigncryption.

2 Preliminaries

Notations. In this work, we use k ∈ ℕ as a security parameter, where ℕ is the set of natural numbers. The

symbol ℘x℘ denotes the bit length of x, and x ‖ y is a concatenation of x and y. If n is a positive integer, then the
symbol {0, 1}n denotes the set of n-bit strings. We also use {0, 1}∗ to denote the set of binary strings of arbi-
trary length. ⌊X⌋r represents first r bits of the string X, where ℘X℘ ≥ r. Selecting a uniform and independently

distributed variable x from a set I is denoted by x $← I.

2.1 Ideal permutation

A permutation π is a bijective function on a finite domain D and range R, where D = R. An ideal permutation

is a permutation chosen uniformly at random from all the available permutations. Let D = R = {0, 1}b, then
π $← Perm(D, D), where Perm(D, D) is the collection of all permutations on D. More precisely, π : D → R is

a permutation if, for every y ∈ R, there is one and only one x ∈ D such that π(x) = y.

2.2 Public-key encryption

Description. A public-key encryption scheme Encrypt is defined by the following three algorithms:

∙ the key generation algorithm GenEnc(1k) that produces a pair (pk, sk) of public and private keys on

input 1k, where k is the security parameter,

∙ the encryption algorithm Encpk(m; g) = c that outputs a ciphertext c for a message m ∈M and a public

key pkusing randomcoins g ∈ COINS (themessage and coin spacesM and COINS are uniquely determined

by pk),

∙ the decryption algorithm Decsk(c) that recovers a message m from a ciphertext c using a secret key sk.

We require that an asymmetric encryption scheme should satisfy the following correctness condition.

For all k ∈ ℕ, for all (pk, sk) generated by GenEnc(1k) and every m ∈M and g ∈ COINS, we always have

Decsk(Encpk(m; g)) = m. We denote ℓ as a minimum input size and ℓ ⋇ cope as output size of Enc, where cope
is ciphertext overhead of Enc. The length of g ∈ COINS is denoted by λ, where λ ≥ k. Enc is a deterministic

encryption (trapdoor one-way permutation) if it does not require g ∈ COINS and cope = 0. If Enc depends
upon g ∈ COINS and cope > 0, then Enc is a probabilistic encryption (trapdoor one-way function).

Security notions. The simplest security notion for public-key encryption is one-wayness (OW). This is to

say that an adversary C cannot recover a plaintext m knowing a ciphertext c and a public key. We denote the
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maximumprobability of success that an adversary can invert the encryption of a randomplaintextm in time t

by SuccOW
C,Encrypt

. OW is a minimal security requirement for public-key encryption. A variant of one-wayness

is OW-PCA, which has been introduced in [32] for probabilistic encryption. For this notion, an adversary can

additionally access a plaintext checking oracle (OPC). The oracle OPC outputs 1 if a given (m, c) pair is a valid
message/ciphertext pair for Encrypt; otherwise, it returns 0. As shown in [32], the ElGamal [25] encryption

achieves OW-PCA under the GDH assumption. Clearly, for deterministic encryption, the OW and OW-PCA

notions are the same.

A stronger security notion has also been defined. It is the so-called semantic security (a.k.a. indistin-

guishability of encryptions, IND). This is to say that a ciphertext should not leak any information about the

encryptedmessage.More formally, knowing that a ciphertext is an encryption of one of two knownmessages,

an adversary cannot guess the message with a non-negligible advantage. An adversary is seen as a 2-stage

Turing machine (A1,A2), and the advantage Adv
IND
Encrypt(A) is negligible for any adversary, where

AdvINDEncrypt(A) = 2 × Pr[ (pk, sk)← GenEnc(1k), (m0,m1, s)← A1(pk),
b ∈ {0, 1}, c = Encpk(mb) : A2(m0,m1, s, c) = b

] − 1.

An adversary can try many di�erent attacks. Knowing a public key, the adversary can encrypt any plaintext

of its choice. This scenario is called the chosen-plaintext attack and denoted by CPA. Other attacks allow the

adversary a restricted or unrestricted access to various oracles. The strongest attack allows the adversary to

query the decryption oracle, which can be accessed adaptively in the chosen-ciphertext scenario (denoted

as CCA). There is a restriction for queries – any query to the oracle should be di�erent from the challenge

ciphertext.

2.3 Signatures

Description. A digital signature Sign consist of the following three algorithms:

∙ GenSign, the key generation algorithm,which, for a security parameter k, outputs a pair (pk, sk) of public
and private keys,

∙ Sign, the signing algorithm, which takes a message M and the secret key sk and outputs a signature

σ = Signsk(M),
∙ Ver, the verification algorithm,which accepts a signature σ, amessageM and a public key pk and returns

a binary answer Verpk(σ,M) (valid ⊤ or invalid ⊥).
We assume that the signing algorithm takes an input of maximum ℓsg bits and that it generates a signature of
length ℓσ.

Security notions. An adversary attempts to forge a signature. The probability of achieving this is assessed

via the following game between a probabilistic polynomial time (PPT) adversary and a challenger.

(i) The challenger generates a key pair (sk, pk)← GenSign(1k).
(ii) The adversary runs AO(1k , pk). They have access to an oracle O (which will be described below). The

adversary terminates by outputting a message m∗ and its signature σ∗.
In terms of resources, there are two types of attacks. The type of attack specifies the power that the adversary

has in the attack.

∙ In a no-message attack (NMA), the oracle gives no response. This is equivalent to an attack model in

which the adversary does not have access to the oracleO. The adversary knows only the public key pk of

the signer.

∙ In the second, a known-message attack, the adversary has access to a signature oracle providing a list

of valid message/signature pairs in addition to knowledge of the public key of the signer. If this list

contains random and uniformly chosen messages, then the attack is termed a random-message attack

(RMA). If this list contains messages chosen by an adversary, the attack is termed a chosen-message

attack (CMA). A chosen-message attack seeks to emulate the normal mode of use of a signature scheme,

inwhich anadversary canobserve signatures producedby a legitimate party, perhaps in someadversarial

chosen way.
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There are two ways, in which we can assess whether the adversary succeeds in forging a signature.

∙ Existential unforgeability (UF) – the adversarywins if it outputs a pair (m∗, σ∗), where Verpk(m∗, σ∗) = ⊤
and the adversary never queried the signature oracle with the message m∗.

∙ Strong existential unforgeability (sUF) – the adversary wins if it outputs a pair (m∗, σ∗), where the same

conditions as for UF hold and, additionally, the adversary never received the response σ∗.
In case of a finite message spaceM, we may consider a weaker security notion. For the success criteria, we

may ask the adversary to produce a forged signature for a randomly chosen message m∗ $←M. This leads us

to a new game played by a probabilistic and polynomial-time adversary.

(i) The challenger generates a key pair (sk, pk)← GenSign(1k) and a message m∗ $←M.

(ii) The adversary runsAO(1k , pk,m∗). It has access to an oracleO. The adversary terminates by outputting

a signature s∗.
We may define two success criteria for this security game.

∙ In the universal unforgeability (uUF) game, the adversary wins if Ver(pk,m∗, σ∗) = ⊤ and the adversary
never queried the signature oracle with the message m∗.

∙ In the strong universal unforgeability (suUF) game, the adversary wins if Ver(pk,m∗, σ∗) = ⊤ and the

adversary never queried the signature oracle with the message m∗ nor received the response σ∗.
We say a signature is deterministic if signing a message multiple times results in the same signature. We

say a signature is probabilistic if signing a message twice results in di�erent signatures with overwhelming

probability.

2.4 Signcryption: Joint encryption and signing

Description. A signcryption scheme SignCrypt is defined by the following three algorithms:

∙ Gen, the key generation algorithm, which outputs a pair of keys (SDK,VEK) for a security parameter k,

where SDK is the user’s sign/decrypt key, which is kept secret, and VEK is the user’s verify/encrypt key,

which is made public,

∙ SignEnc, the encryption and signing algorithm, which, for a message M, the public key of the receiver

VEKR and the private key of the sender SDKS, produces a signed ciphertext Y = SignEncSDKS ,VEKR
(M),

∙ VerDec, the decryption and verifying algorithm, which, for signed ciphertext Y, the private key SDKR of

the receiver and the public key VEKS of the sender, recovers the message M = VerDecSDKR ,VEKS
(Y). If this

algorithm fails either to recover the message or to verify its authenticity, it returns ⊥.

Security notions. We can combine classical security notions of signature and encryption to form a security

notion of signcryption under adaptive attacks. Given access to public information PUB = (VEKS ,VEKR) and
oracle access to the functionalities of both sender S and receiver R, the adversary attempts to break

(i) authenticity (UF): coming up with a valid signed ciphertext of a new message, and thus provide an

“existential forgery”,

(ii) privacy (IND): breaking the “indistinguishability” of signed ciphertexts.

In the security analysis, the adversarymay be one of S or R. So Smaywant to break the privacy, or Rmaywant

to break authenticity. If signcryption prevents existential forgeries and guarantees indistinguishability in the

above attack scenarios (with chosen-message attacks CMA, or adaptive attacks AdA), we say the scheme is

secure.

Deőnition 2.1. A signcryption scheme is secure if it achieves IND/UF under adaptive attacks.

3 Sponge-based padding

Description. Sponge-based padding consist two functions: SpWrap and Sponge. SpWrap and Sponge take

some of their length parameters from Encrypt and Sign used in SIGNCRYPT.
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Figure 1: SpWrapπ , or simply SpWrap, and Sponge function.

SpWrap. This function is based on an iterated ideal permutation π : {0, 1}(b=r⋇c) → {0, 1}b with an initial

value IV. It is a tuple of two algorithm SpWrap.Enc() and SpWrap.Dec().

On an input message M from message space Msg ⊂ {0, 1}∗, SpWrap.Enc() gives the output C ‖ T using

a random K from the keyspace Key ⊂ {0, 1}k. SpWrap.Enc() takes the input message M, IV = IV1 ‖ IV2, K

and some length parameters like k, r, ℓsg. The output of SpWrap.Enc() is C ‖ T, where ℘C℘ > ℘M℘ and ℘T℘ = k.
SpWrap.Dec() takes a ciphertext C ‖ T, IV = IV1 ‖ IV2, K and some length parameters like k, r, ℓsg as input.
The output of SpWrap.Dec() is M or ⊥.

SpWrapuses a structure similar to SpongeWrap [11], but itsmessage padding is a littlemore specific than

the general injective reversible padding used in SpongeWrap. After applying injective reversible padding to

the input message, which is required for smooth functioning of the sponge structure, we specifically add

a 0r-bit block before the specific length ℓsg. This addition of an extra block is required during parallel sign-

cryption to prevent some trivial forgery attack, which we will discuss later during the proof.

SpWrap.Enc(K,M, IV1 ‖ IV2, r, k, ℓsg)
1 x = IV1; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 x = IV1 ⊕ 0(r−k) ‖ K
4 for i = 1, . . . , n ⋇ 1 do
(x ‖ w) = π(x ‖ w); x = x ⊕ mi; ci = x

5 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
6 return C ‖ T = c1 ‖ c2 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 ‖ T

SpWrap.Dec(K, C ‖ T, IV1 ‖ IV2, r, k, ℓsg)
1 c1 ‖ c2 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 ‖ T = C ‖ T, where each ℘ci℘ = r
2 x = IV1 ⊕ 0(r−k) ‖ K; w = IV2

3 for i = 1, . . . , n ⋇ 1 do
(x ‖ w) = π(x ‖ w); mi = x ⊕ ci; x = ci

4 (x ‖ w) = π(x ‖ w); T� = ⌊x⌋k
5 X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
6 if T = T� then

if there exists M such that

M = checkout(X�, r, k, ℓsg) then
return M

else

return ⊥
else

return ⊥

checkin(M, r, k, ℓsg)
1 X1 ‖ X2 = pad(M, r), where ℘X2℘ = ℓsg − r
2 X1 ‖ 0r ‖ X2 = m1 ‖ m2 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1, where
℘mi℘ = r for 1 ≤ i ≤ (n ⋇ 1) and there exists
mi = 0r such that m1 ‖ ⋅ ⋅ ⋅ ‖ mi−1 = X1

3 return m1 ‖ m2 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1

checkout(X, r, k, ℓsg)
1 if there exist X1, X2 such that X1 ‖ 0r ‖ X2 = X,

where ℘X2℘ = ℓsg − r then
X� = X1 ‖ X2

else

return ⊥
2 return unpad(X�, r)

pad(x, r)
X = x ‖ 1 ‖ 0r−(|x|⋇1mod r)−1 ‖ 1
return X

unpad(y, r)
if there exists x ̸= 0 such that x ‖ 1 ‖ 0z ‖ 1 = y,
where 0 ≤ z ≤ r − 1, then

return x

else

return ⊥
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Sponge. This function works exactly like the sponge function in [26]. Sponge has fixed b-bit initial value IV,

which is di�erent from the IV of SpWrap. In Sponge, we take IV = IV1 ‖ IV3, where IV3 = IV2 ⊕ 1. Sponge takes
J ∈ {0, 1}∗ as input and outputs the k-bit tag value h. We define the Sponge function based on π as follows:

Sponge(IV1 ‖ IV3, J)
1 x ‖ w = IV1 ‖ IV3, where ℘x℘ = r
2 j1 ‖ j2 ‖ ⋅ ⋅ ⋅ ‖ jn = pad(J, r), where ℘ji℘ = r for 1 ≤ i ≤ n
3 for i = 1, . . . , n do

x = x ⊕ ji; x ‖ w = π(x ‖ w)
4 return ⌊x⌋k

Properties. One useful property of SpWrap is its bijection. Considering a fixed IV for SpWrap, each query to

SpWrap.Enc() has a fixed chain of internal variables because of the permutation π. Therefore, every querywill

have its unique set of state values. No two di�erent queries can have a similar whole set of state bits. The first

point of di�erence between two queries will create diversion in the set values because of the permutation π.

4 Parallel signcryption: SIGNCRYPT

In this section, we describe our proposal of parallel signcryption using sponge-based padding. To keep this

scheme simple, we start with a restricted message space and a deterministic signature scheme. We remove

these conditions in Section 5.

4.1 Description

Building blocks of parallel signcryption SIGNCRYPT are

∙ an encryption scheme Encrypt = (GenEnc, Enc, Dec),
∙ a signature scheme Sign = (GenSig, Sign, Ver),
∙ a permutation π : {0, 1}(b=r⋇c) → {0, 1}b (assumed to behave like an ideal permutation),

∙ for k-bit security of parallel signcryption, π having su�cient r > c > k such that it should provide at least
k-bit security,

∙ assuming ℓ = n ∗ r and ℓsg = m ∗ r for some positive integers n,m > 0,
∙ a public function ID, which maps the public key of any user A to a unique r−k

2
-bit string in a compatible

string format as IDA, the communicating parties are denoted as sender S and receiver R,

∙ the length of a message M is ℓ ⋇ ℓsg − 2(k ⋇ 1).

Algorithm (Key generation: Gen(1k)=GenSig×GenEnc(1k)). Sender S generates (sksig, pksig)←GenSigS(1k)
and receiver R generates (skenc, pkenc)← GenEncR(1k). The sender keys are (skS , pkS) = (sksig, pksig), and the
receiver keys are (skR , pkR) = (skenc, pkenc). Accordingly, SDK = (skS , skR) and VEK = (pkS , pkR). Using the
function ID, the unique identities of sender S and receiver R will be IDS and IDR, respectively.

Algorithm (Encrypt and sign: SignEncSDKS ,VEKR
(M)).

(1) Compute C ‖ T = SpWrap.Enc(K,M, IV1 ‖ IV2, r, k, ℓsg), where IV1 = IDS ‖ IDR, IV2 = 0c, K $← {0, 1}k,
℘K℘ = k and r is the input rate of π.

(2) Parse C ‖ T into S1 ‖ S2 ‖ T, i.e., C ‖ T = S1 ‖ S2 ‖ T, where ℘S1℘ = ℓ, ℘S2℘ = ℓsg.
(3) Calculate (in parallel) Y1 = EncpkR (S1), σ = SignskS (S2).
(4) Calculate Kh = K ⊕ Sponge(S1 ‖ Y1), Tk = T ⊕ K.
(5) The final output (Kh , Y1, Y2 = (S2, σ), Tk) is sent to the receiver R.
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Figure 2: Signcryption scheme SIGNCRYPT.

Algorithm (Decrypt and verify: VerDecSDKR ,VEKS
(Kh , Y1, Y2, Tk)).

(1) Calculate (in parallel) S1 = DecskR (Y1), ⊤/⊥ = VerpkS (Y2 = (S2, σ)). Ver returns either valid, ⊤, or ⊥ if the
signature is invalid. In case of returning ⊥, the decryption and verify algorithm VerDec returns ⊥ and
stops.

(2) If Ver returns ⊤, then calculate K = Kh ⊕ Sponge(S1 ‖ Y1) and T = Tk ⊕ K.
(3) Set C = Cf ‖ Ce = S1 ‖ S2, and set IV1 = IDS ‖ IDR, IV2 = 0c.
(4) Compute M� = SpWrap.Dec(K ‖ C ‖ T, IV1 ‖ IV2, r, k, ℓsg). Return M = M� if M� ̸= ⊥; else return ⊥.

SignEncskS ,pkR (M)
1 Initialization: x = IV1 = 0r; w = IV2 = 0c;

IV3 = IV2 ⊕ 1
2 Random key K $← {0, 1}k
3 checkin(M, r, k, ℓ) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
4 x = IDS ‖ IDR ‖ K
5 for i = 1, . . . , n ⋇ 1 do
(x ‖ w) = π(x ‖ w); x = x ⊕ mi; ci = x

6 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
7 (S1) ‖ (S2) = (c1 ‖ ⋅ ⋅ ⋅ ‖ ce) ‖ (ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1)
8 Y1 = EncpkR (S1); σ = SignskS (S2)
9 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

10 for i = 1, . . . , j do
(x ‖ w) = π((x ⊕ yi) ‖ w)

11 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
12 return (Kh , Y1, Y2 = (S2, σ), Tk)

VerDecskR ,pkS (Kh , Y1, Y2, Tk)
1 Initialization: IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1
2 S1 = DecskR (Y1); x = IV1; w = IV3

3 if VerpkS (Y2 = (S2, σ)) = ⊥ then
return ⊥

4 (c1 ‖ ⋅ ⋅ ⋅ ‖ ce) ‖ (ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1) = (S1) ‖ (S2)
5 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj
6 for i = 1, . . . , j do
(x ‖ w) = π((x ⊕ yi) ‖ w)

7 K = ⌊x⌋k ⊕ Kh; T = Tk ⊕ K
8 x = IDS ‖ IDR ‖ K; w = IV2

9 for i = 1, . . . , n ⋇ 1 do
(x ‖ w) = π(x ‖ w); mi = x ⊕ ci; x = ci

10 (x ‖ w) = π(x ‖ w); T� = ⌊x⌋k
11 X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
12 if T = T� then

if there exists M such that

M = checkout(X�, r, k, ℓ) then
return M

else

return ⊥
else

return ⊥

4.2 Security of parallel signcryption

Security of signcryption has two facets, namely, IND-CCA security and unforgeability under adaptive chosen

message attack (UF-AdA). Before proceeding to the details of our proofs of each part individually, we provide

a bird’s eye view of each proof.

Theorem 4.1. If the encryption scheme is OW-PCA and the signature scheme is deterministic uUF-RMA, then

the parallel signcryption scheme described in Section 4.1 is IND/UF-AdA secure.
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Unforgeability

The following lemma can be derived from Theorem 4.1.

Lemma 4.2. If there exists an adversaryA against theUF-AdA security of the parallel signcryption schemewith

advantage AdvUF-AdASignEnc(k) (whose running time is bounded by t and who makes at most qAπ queries to the permu-

tation π : {0, 1}b=r⋇c → {0, 1}b and qsc queries to the signcryption oracle and qusc queries to the unsigncryption
oracle), then there exists an adversaryB against the uUF-RMA security of the signature scheme with advantage

AdvuUF-RMA
Sign
(k) (whose running time is bounded by t� ≥ t ⋇ qsc(τ ⋇ O(1)), where τ denotes the maximal running

time of the encryption and signing algorithm) for which

AdvUF-AdASignEnc(k) ≤ AdvuUF-RMASign
(k) ⋇ (qπ − 1)qπ

2b⋇1
⋇ qπ(qπ ⋇ 1)

2c
⋇ qsc ⋅

qAπ
2k
⋇ qusc

2k
⋇ qsc

2r
,

where qπ is total number of π queries, including the queries by adversary, signcryption and unsigncryption

oracles.

Proof sketch. We are dealing with the insider security model; the adversary has a target sender ID∗S in mind

and it knows the sender’s public key pk∗S . The adversary has access to the signcryption oracle under sk
∗
S . In

the multi-user setting, many receivers with di�erent IDs are taken into consideration.

Wemake the subsequent changes in the permutation π such that π gives a permutation response for each

new query but r bits out of the b-bit output are random. Likewise, c bits out of the b bit output are always

di�erent for new input. The bound of these changeswill be (qπ−1)qπ
2b+1
⋇ qπ(qπ⋇1)

2c
, where qπ is the number of total

queries on π. In an abstract way, this bound includes collision over the b-bit and c-bit outputs of π.

We start making changes in the SignEnc oracle. We try to make the output of the SignEnc oracle random

by using a random output of π. We use the message/signature pair list Signlist having qH elements, where

messages are chosen at random and signatures are calculated based on skS∗ . Because we are working in

the multi-user security model, SignEnc accepts di�erent receiver’s IDs along with M. Finally, SignEnc can

respond with random output using a pre-computed Signlist, likewise independent of SignskS∗ . The bound

of changing the original response with a random response comes out to be qsc ⋅ q
A
π

2k
. This bound captures the

probability of guessing the randomness K used during the number of signcryption queries qsc.

We modify the VerDec oracle such that we detect an existential forgery on VerDec and show a reduction

to the universal forgery on Ver. Whenever we discuss a forgery, we consider IDR = ID∗R in VerDec given by an
adversarywith target sign-ciphertext y∗ and related pkR∗ and skR∗ for target sender IDS∗ . For detecting a valid

forgery, we cross-check the set Ivd consisting of the input/output of π during unsigncryption against a set I
A
π

and Iscπ consist of the input/output of πmaintained by the adversary and the signcryption oracle, respectively.

Let qusc be the number of unsigncryption queries, and let qsc be the number of signcryption queries.We show

that if Ivd ⊂ Iscπ , then this is not an existential forgery.We show that if (Ivd ̸⊂ Iscπ and Ivd ̸⊂ IAπ ) or Ivd ⊆ IAπ , then
the probability of having an existential forgery is negligible. The bound for these changes comes out to be
qusc
2k
⋇ qsc

2r
⋇ AdvuUF-RMA

Sign
(k). This bound captures the probability of producing a target collision on T or a target

collision on the input of Ver or creating a signature on random input of Sign.

During the unforgeability proof, it is natural to assume that the encryption scheme is following trapdoor

one-wayness and its correctness condition.

For a detailed proof, see Appendix A.

We canhave the following corollaries from the proof of Lemma4.2,which are also summarized in Table 2.

Corollary 4.3. If the encryption scheme follows OW-PCA and the signature scheme is uUF-RMA, then the par-

allel signcryption scheme is UF-AdA.

Corollary 4.3 is a direct implication of Lemma4.2. This corollary includes bothprobabilistic anddeterministic

signature schemes and also encryption schemes.

Corollary 4.4 is a sub-class result of Corollary 4.3, where the deterministic signature scheme follows

UF-AdA (or sUF-AdA). This corollary serves as a bridge for our next corollary, Corollary 4.5.
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Sign

Encrypt uUF-RMA suUF-RMA

Deterministic OW-CPA UF-AdA sUF-AdA

Probabilistic OW-PCA UF-AdA UF-AdA

Table 2: Unforgeability of SIGNCRYPT under di�erent assumptions on Sign and Encrypt.

Corollary 4.4. If the encryption scheme follows OW-PCA, and the signature scheme is suUF-RMA, then the

parallel signcryption scheme is UF-AdA.

Corollary 4.5. If the encryption scheme is deterministic and follows one-wayness, and the signature scheme is

suUF-RMA, then the parallel signcryption scheme is sUF-AdA.

Corollaries 4.4 and 4.5 have a di�erence in achieved security because of the probabilistic and determinis-

tic nature of the encryption scheme. This is mainly because the encryption scheme that follows OW-PCA

includes some probabilistic asymmetric encryption schemes, which have a re-randomization problem. In

re-randomization, for the same input to an asymmetric primitive, a di�erent output value could be gener-

ated. In such a case and because of the insider security model, an adversary attacking the unforgeability of

SIGNCRYPT can produce a di�erent sign-ciphertext for the same input message, which is queried earlier. For

example, for a queryM, IDR, the output is Kh , Y1, Y2, Tk for some K. Using insider knowledge and the prob-

abilistic nature of asymmetric encryption, a new, valid output could be K�h , Y
�
1, Y2, Tk for the same K and

M, IDR. Such a valid pair is allowed as part of forgery in sUF, but not in UF. Therefore, in Corollary 4.4, Sign

follows suUF-RMA, but overall SIGNCRYPT follows only UF-AdA. If the encryption scheme is deterministic,

then the above attack is not valid, and SIGNCRYPT can benefit from suUF-RMA. A summary of the above

discussed corollary is shown in Table 2.

Privacy

The following lemma can be derived from Theorem 4.1.

Lemma 4.6. Consider an adversary A against the IND-CCA security of the parallel signcryption scheme with

advantage AdvIND-CCASIGNCRYPT(k) whose running time is bounded by t and which makes at most qπ queries to the

permutation π : {0, 1}b=r⋇c → {0, 1}b oracle and qusc queries to the unsigncryption oracle. Then there exists an
adversary B against the OW-PCA security of the public-key encryption scheme with advantage AdvOW-PCA

Encrypt
(k)

and whose running time is bounded by t� ≤ t ⋇ qusc(τ ⋇ O(1)), where τ denotes the maximal running time of the
decryption and verification algorithms, for which

AdvIND-CCASIGNCRYPT(k) ≤ AdvOW-PCA
Encrypt
(k) ⋇ (qπ − 1)qπ

2b⋇1
⋇ qπ(qπ ⋇ 1)

2c
⋇ qusc

2k
⋇ q

A
π

2k
,

where qπ is the total number of π queries, including queries by the adversary (qAπ ), signcryption and unsign-

cryption oracles, and λ = k.

Proof sketch. Weare dealingwith the insider securitymodel in themulti-user setting; the adversary has a tar-

get receiver ID∗R in mind. The adversary knows the receiver’s public key pkR and has access to the VerDec

oracle under skR. Further, we assume that an adversaryA observed qusc queries to the VerDec oracle. Adver-

saryA1 has also chosen a pair ofmessagesM0 andM1 and a key pair (sk∗S , pk∗S ) for ID∗S . It receives a ciphertext
(y∗1 , y∗2 , y∗3) under (sk∗S , pk∗R) of either M0 or M1. The unknown message is denoted by Md, where d is the bit

that adversaryA2 wishes to find out.

Wemake the subsequent changes in the permutation π such that π gives a permutation response for each

new query, but r bits out of the b-bit output are random. Likewise, c bits out of the b-bit output are always

di�erent for new input. This part remains the same as for unforgeability.
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Encrypt

Sign OW-PCA

Deterministic uUF-RMA IND-CCA

suUF-RMA IND-CCA

Probabilistic uUF-RMA —

suUF-RMA IND-CCA

Table 3: Privacy of SIGNCRYPT under di�erent combinations of Sign and Encrypt.

We modify the unsigncryption oracle such that it nullifies those queries to the unsigncryption oracle

about which the adversary does not know an answer in advance with the help of the π query and which

can be simulated without using the private key of the receiver skR∗ . If Ivdπ ̸⊂ IAπ , then the probability that

the adversary can get an answer from the unsigncryption oracle is bounded by qusc
2k

, which includes target

collision on T for the number of unsigncryption queries qusc. Unlike unforgeability, the adversary is allowed

to generate a valid signcryptext, but only those will be valid about which the adversary already knows the

answer.

Wemodify the signcryption oracle using the random response of π. This will lead to simulating the sign-

cryption oracle returning a random response. This change will be bounded by the probability of guessing the

randomness K used by an adversary or the advantage of an OW-PCA adversary breaking the one-wayness

(OW).

The privacy proof of the scheme depends upon the probabilistic or deterministic nature of the underlying

signature scheme. During the proof, we assume that the signature scheme is deterministic and follows the

correctness condition. In subsequent sections, we showhowwe can remove this assumption on the signature

scheme.

For a detailed proof, see Appendix B. After the proof of Lemma 4.6, we can have the following corollaries.

Corollary 4.7. If the encryption scheme is OW-PCA and the signature scheme is deterministic, then the parallel

signcryption scheme is IND-CCA.

This corollary follows directly from Lemma 4.6.

Corollary 4.8. If the encryption scheme is deterministicOW-CPAand the signature scheme is deterministic, then

the parallel signcryption scheme is IND-CCA.

This corollary follows a sub-class result of Corollary 4.7, where the deterministic OW-CPA secure encryption

scheme also follows OW-PCA.

Next, Corollary 4.9 is another representation of Corollaries 4.7 and 4.8, where we say only suUF-RMA

signature schemes are valid for security because a deterministic uUF-RMA secure scheme also follows

suUF-RMA.

Corollary 4.9. If the encryption scheme is deterministicOW-CPA and the signature scheme suUF-RMA, then the

parallel signcryption scheme is IND-CCA.

Corollaries 4.4 and4.7 together give Theorem4.1. Corollaries 4.5 and4.9 together give the following theorem,

Theorem 4.10. A summary of the corollaries related to the privacy proof of SIGNCRYPT is shown in Table 3.

A gap in the results, where probabilistic Sign following uUF-RMA does not provide security to SIGNCRYPT

will be addressed in the next section.

Theorem 4.10. If the encryption scheme is deterministicOW-CPA and the signature scheme is suUF-RMA, then

the parallel signcryption scheme is IND/sUF-AdA secure.

The proof of this theorem exactly follows the proof of Theorem 4.1, except that we now assume that Sign is

suUF-RMA secure and Encrypt is also deterministic OW-CPA.
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5 Extension of parallel signcryption

In Section 4, we saw two limitations of SIGNCRYPT. First, it does not support probabilistic Sign, where the

same input can give two or more di�erent signatures. Second, there is a restriction on themaximummessage

length. In this section, we discuss how to extend the usage of the parallel signcryption SIGNCRYPT in case of

probabilistic Sign and in case of arbitrarily long messages.

5.1 Using probabilistic Sign

Probabilistic Signis not supported in the proposed schemebecausewe assumed Sign is deterministic and, for

the same input, two di�erent signatures are not considered. In caseswhere a probabilistic Sign schemeneeds

to be used, IND-CCA security of SIGNCRYPTwill no longer be valid under the proposed scenario because now

an insider adversary can simply produce another signature σ on S2∗ of the challenged signed ciphertext and
submit K∗h , Y

∗
1 , Y2 = (S2∗, σ), T∗k to VerDec. This will lead to knowing bit d of Md with probability 1 without

violating the IND-CCA experiment. This attack case can be handled easily in two ways.

Solution 1. Relaxing IND-CCA experiment to IND-gCCA [2]: Consider the challenged signed ciphertext

K∗h , Y
∗
1 , Y2 = (S2∗, σ∗), T∗k as two parts. The first one is the ciphertext (K∗h , Y∗1 , S2∗, T∗k ), and the second one

is the signature σ∗. Imposing a restriction on the adversary attacking the IND-CCA security, not only can

the challenged signed ciphertext not be queried to the decryption oracle, but those queries that result in

the same as the challenged ciphertext K∗h , Y
∗
1 , S

2∗, T∗k are also prohibited. A query to VerDec having the

challenged ciphertext K∗h , Y
∗
1 , S

2∗, T∗k could be easily determined by using the public key of the sender as

verification key.

This change in the IND-CCA experiment is similar to IND-gCCA proposed in [2]. An, Dodis and Rabin [2]

proposed this IND-gCCA notion specifically for signcryption in a more formal way to avoid the trivial attack

discussed above. By following the IND-gCCA security experiment in [2], we can propose another corollary

from Lemma 4.6.

Corollary 5.1. If the encryption scheme is OW-PCA and the signature scheme is unforgeable, then the parallel

signcryption scheme is IND-gCCA.

This corollary can be combined with corollaries from Lemma 4.2 and di�erent, new results can be achieved.

Solution 2. Include σ also as part of the input in Sponge. This inclusion of σ in Sponge will bind σ to a par-

ticular K, S2 like in the case of Y1. Now the above discussed attack will not work because a di�erent σ will

lead to a di�erent K. This change is more simple compared to the IND-gCCA security notion requirement.

This change is initially not included in the proposed scheme with the intention to keep the proof simple and

straight. Inclusion and reason of this proposed change helps in understanding about IND-gCCA and (Y1, σ)
as input to Sponge.

5.2 Arbitrarily long messages

An arbitrarily long message can be supported in SIGNCRYPT without any major structure modification. Ear-

lier, S1 ‖ S2 ‖ T = C ‖ T when ℘C ‖ T℘ = ℓ ⋇ ℓsg ⋇ k. If ℘C ‖ T℘ > ℓ ⋇ ℓsg ⋇ k, then S1 ‖ Ce ‖ S2 ‖ T = C ‖ T, where
℘S1℘ = ℓ, ℘S2℘ = ℓsg, and the final output of SIGNCRYPT is (Kh , Y1, C

e , Y2 = (S2, σ), Tk).
Caution. It is essential that if ℘C ‖ T℘ > ℓ ⋇ ℓsg ⋇ k, then S1 ‖ Ce ‖ S2 ‖ T = C ‖ T, not S1 ‖ S2 ‖ Ce ‖ T = C ‖ T,

where S1 is the input of Enc and S2 is the input of Sign. This requirement to perform signing on the last part

of the data arises in signcryption to prevent a trivial forgery attack by an insider adversary. In casewhere Sign

is performed on data subsequent to Enc data, like S1 ‖ S2 ‖ Ce ‖ T = C ‖ T, then the adversary can replace Ce
and accordingly T using πA, sk and pk of Enc. This modification will lead to a trivial forgery.
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Figure 3: Signcryption scheme SIGNCRYPTG. The input message is passed to SpWrap, which uses checkin and the SpongeWrap

function, along with random K. SpWrap outputs C ‖ T , and C ‖ T further splits into S1 ‖ Ce ‖ S2 ‖ T . The asymmetric encryption
scheme Enc takes S1 as input and outputs Y1. The signature scheme Sign takes S

2 as input and outputs Y2, which consists of

(S2 , σ), where σ is the signature. Sponge takes Y1 , S1 and σ as input and outputs h, which further gets xored with K to

produce Kh. The final output will be Kh , Y1 , C
e , Y2 , Tk, where Tk = T ⊕ K.

With this proposed change from solution 2 and support of longmessages, we call SIGNCRYPTG a generic

version of SIGNCRYPT. A graphical representation of generic signcryption is shown in Figure 3.

Theorem 4.1 can be modified for SIGNCRYPTG as follows:

Theorem 5.2. If the encryption scheme is OW-PCA and the signature scheme is (uUF,suUF)-RMA, then the

parallel signcryption SIGNCRYPTG scheme is IND-CCA/(UF,sUF)-AdA secure.

Proof sketch. If we follow the proof of Lemma4.2, after gameG5,we can clearly see that the output of π is ran-

dom. Following random π, the output h of Sponge is also random. Even if the adversary tries to use another σ

for the same S2, thiswill result in a change of h that leads to random K and Tk, and the adversary needs to pro-

duce a target collision over that T or K. This case is already included in the proof when Ivd ̸⊂ Isc and Ivd ̸⊂ IAπ .
For IND-CCA security of SIGNCRYPTG, we can follow the proof of Lemma 4.6 including extra cases when

Encrypt and Sign are probabilistic. In order to get information aboutMd, now the adversary tries to produce

di�erent Y�1 for the same S1∗ or di�erent σ for the same S2∗. Either of these cases will change the value of K∗,
which reduces the problem again of having a collision on T or having knowledge of S1. This results in the

same bound on IND-CCA2 as for SIGNCRYPT.

Therefore, regarding IND-CCA of SIGNCRYPTG, the addition of Sponge is a dummy operation compared

to SIGNCRYPT for outputting T, but its usage protects σ of Sign and outputs Y1 of Encrypt by making them

dependent on a particular K. This dependency provides IND-CCA security for SIGNCRYPTG in a similar way

for SIGNCRYPT.

6 Conclusion

The combination of an encryption and a signature scheme yields a signcryption scheme. The extra burden

of satisfying both privacy and unforgeability against insider adversaries increases the complexity of prov-

ing that the system is secure and e�cient. This complexity brings limitations on the signcryption scheme in

terms of the needed security assumptions, security achievement and e�ciency to balance each other. Mes-

sage pre-processing is found to be an attractiveway to build a secure and e�cient signcryption scheme. These

message pre-processing techniques are found to be inflexible, which disallows their improvement in di�erent

scenarios like long message length, di�erent types of underlying encryption and signature schemes, insider

security, e�cient computation in parallel, etc.

The versatile nature of the sponge structure enable us to modify message pre-processing e�ciently. This

e�cient message pre-processing helps us to build a secure signcryption scheme achieving a higher security

level using a weakly secure encryption and signature scheme.We also found that the probabilistic and deter-

ministic nature of the signature scheme plays an important role in the privacy of the signcryption scheme,

but the same is not true for unforgeability with respect to the encryption scheme. At the end, we were able
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to find a signcryption scheme that can perform e�ciently without compromising its security. The proposed

scheme is highly customizable as it allows to useweakly secure schemes and di�erent types of the underlying

encryption and signature schemes.

A Proof of Lemma 4.2

Proof. We consider an experiment similar to UF-AdA as described in Section 2.3. We follow the subsequent

experiment for UF-AdA security of SIGNCRYPT against adversaryA.

Experiment. ExpUF-AdASIGNCRYPT,A(k)
1 (skS∗ , pkS∗ )← GenSigS∗ (1k)
2 (y∗, IDR∗ )← A

SignEncskS∗
( ⋅ , ⋅ ),π( ⋅ )(pkS∗ )

3 Map pkR∗ using IDR∗ , where (skR∗, pkR∗)← GenEncR∗ (1k)
4 M∗ ← VerDec(pkR∗ , skS∗ , y

∗)
5 if M∗ ̸= ⊥ and the query (M∗, IDR∗ ) is never made to the SignEncskS∗ ( ⋅ , ⋅ ) oracle then

return 1

else

return 0

The advantage of adversaryA is given by

AdvUF-AdASIGNCRYPT(k) = Pr[ExpUF-AdASIGNCRYPT,A(k) = 1].

We use a game-based proof framework [10]. We are dealing with the insider security model; the adversary

has a target sender ID∗S in mind and it knows the sender’s public key pk∗S . The adversary has access to the
signcryption oracle under sk∗S . We denote the winning event of forging a signcryptext in game i by Gi.

Game G0 represents the original signcryption game for UF-AdA. The adversary issues qsc queries on the

signcryption oracle specifying the receiver IDR in each query using ID
∗
S . AdversaryA’s target is to give a target

ID∗R and a signed ciphertext (K∗h , Y∗1 , Y∗2 = (S2∗, σ∗), T∗k ) such that VerDecsk∗R ,pk
∗

S
(K∗h , Y∗1 , Y∗2 , T∗k ) = M∗ ̸= ⊥,

where (M∗, ID∗R) should not be queried by A to SignEnc. Adversary A might ask (M, ID∗R) or (M∗, IDR) to
SignEnc. Therefore,

Pr[G0] = Pr[ExpUF-AdAG0,A (k) = 1] = Pr[ExpUF-AdASIGNCRYPT,A(k) = 1].

From G0 to G4, we make successive changes in the permutation π. The modified π gives a permutation

response for each new query such that r bits out of the b-bit output are random. Likewise, c bits out of the

b-bit output are always di�erent for new input. This helps us to exploit the permutation property of Sponge

and make an output C deterministic for a specific input K, M and IV. Any change in either of the four values

(C,M, K, IV) will make at least one value random. Here “any change” implies, while establishing a relation

between (C,M, K, IV), if any input/output pair of π is not defined already, then essentially one of the parts is
new or randomly generated.

Games G1 and G2. We start making changes in the permutation π. In G1, we take the response of π randomly

and di�erently from the previous responses using the set Iπ. In G2, π queries are simulated as a random

function, that is, for every new input, the output is random, which does not need to be di�erent. So, in G2,

π gives a random response without cross-checking it in the previous input/output response list Iπ. G1 and G2

remain identical until the output of the π query collides with any of the previous outputs. This collision is

denoted as the event bad. The probability that a random response chosen as the output of π will collide with

any previous response is (qπ−1)qπ
2b+1

, where qπ is the total number of queries on π (and π−1), either from oracle

calls by a di�erent oracle or by the adversaryA. Therefore, ℘Pr[G2] − Pr[G1]℘ ≤ (qπ−1)qπ2b+1
.
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Game G0.

Initialization: Iπ = IAπ = 0; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; (skR , pkR)← GenEnc(1k), pk∗S , ID∗S ;
℘ID℘ ∈ {0, 1}(r−k)/2
Signlist: {(Si , σi) : σi = Signsk∗S (Si) for all 1 ≤ i ≤ qH and each Si chosen randomly}

On SignEnc-query M, IDR

1 K $← {0, 1}k; x = IV1; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 x = ID∗S ‖ IDR ‖ K
4 for i = 1, . . . , n ⋇ 1 do
(x ‖ w) = π(x ‖ w); x = x ⊕ mi; ci = x

5 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
6 S1 ‖ S2 ‖ T = c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 ‖ T
7 Y1 = EncpkR (S1); σ = Signsk∗S (S

2)
8 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

9 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

10 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
11 return (Kh , Y1, Y2 = (S2, σ), Tk)

On VerDec-query (Kh , Y1, Y2, Tk)
1 S1 = DecskR (Y1); x = IV1, w = IV3

2 if Verpk∗S (Y2 = (S2, σ)) = ⊥ then
return ⊥

3 c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 = S1 ‖ S2
4 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj
5 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

6 K = ⌊x⌋k ⊕ Kh; T = Tk ⊕ K
7 x = ID∗S ‖ IDR ‖ K; w = IV2

8 for i = 1, . . . , n ⋇ 1 do
(x ‖ w) = π(x ‖ w); mi = x ⊕ ci; x = ci

9 (x ‖ w) = π(x ‖ w); T� = ⌊x⌋k
10 X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
11 if T = T� then

if there exists M such that

M = checkout(X�, r, k, ℓsg) then
return M

else

return ⊥
else

return ⊥

On π-query m, where m ∈ {0, 1}b

1 let (x ‖ w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return v

3 v $← {0, 1}b
4 if there exists m� such that (m�, v) ∈ Iπ then

v $← {0, 1}b \ {v : (∗, v) ∈ Iπ},
where ∗ ∈ {0, 1}b

5 Iπ = Iπ ∪ {(m, v)}
6 return v

On π−1-query v, where v ∈ {0, 1}b

1 if (m, v) ∈ Iπ then
return m

2 m $← {0, 1}b
3 if there exists v� such that (m, v�) ∈ Iπ then

m $← {0, 1}b \ {m : (m, ∗) ∈ Iπ},
where ∗ ∈ {0, 1}b

4 Iπ = Iπ ∪ {(m, v)}
5 return m

On πA-query m, where m ∈ {0, 1}b

1 v = π(m)
2 IAπ = IAπ ∪ {(m, v)}
3 return v

On π−1A -query v, where v ∈ {0, 1}b

1 m = π−1(v)
2 IAπ = IAπ ∪ {(m, v)}
3 return m

Figure 4: Game G0

GamesG3andG4. G3 remains the sameasG2. InG3,we split up theoutput v of π in input rate v1 andcapacity

rate v2. We also have a set Lc, which initially consists of IV2 and IV3. The output v of π is chosen at random

from the previous outputs. Wemark an event as bad← true in case v2 is part of any previous output, v2 ∈ Lc.

In G4, π is converted back to a permutation from a random function. Now, in G4, if bad← true happens, then

v2 is chosen again randomly from its set, but rejecting the values already in the set Lc.
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Games G1 and G2.

Initialization: Iπ = IAπ = 0; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; (skR , pkR)← GenEnc(1k), pk∗S , ID∗S
Signlist: {(Si , σi) : σi = Signsk∗S (Si) for all 1 ≤ i ≤ qH and each Si chosen randomly}.

On π-query m, where m ∈ {0, 1}b

1 let (x ‖ w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return v

3 v $← {0, 1}b
4 if there exists m� such that (m�, v) ∈ Iπ then

bad← true; v $← {0, 1}b \ {v : (∗, v) ∈ Iπ} ,
where ∗ ∈ {0, 1}b

5 Iπ = Iπ ∪ {(m, v)}
6 return v

On π−1-query v, where v ∈ {0, 1}b

1 let (v1 ‖ v2) = m, where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return m

3 m $← {0, 1}b
4 if there exists v� such that (m, v�) ∈ Iπ then

bad← true; m $← {0, 1}b \ {m : (m, ∗) ∈ Iπ} ,
where ∗ ∈ {0, 1}b

5 Iπ = Iπ ∪ {(m, v)}
6 return m

The remaining oracles are the same as G0.

Figure 5: Games G1 and G2. The dashed box has a dummy line of code with respect to G0, added and shared with both

G1 and G2. G1 is with the solid box and G2 without the solid box.

Games G3 and G4 .

Initialization: Iπ = IAπ = 0; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3};
(skR , pkR)← GenEnc(1k), pk∗S , ID∗S
Signlist: {(Si , σi) : σi = SignskS (Si) for all 1 ≤ i ≤ qH and each Si chosen randomly}.

On π-query m, where m ∈ {0, 1}b

1 let (x ‖ w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return v

3 v1 ‖ v2 $← {0, 1}b, where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
4 if v2 ∈ Lc ∪ {w} then

bad← true; v2
$← {0, 1}c \ Lc ∪ {w}

5 Iπ = Iπ ∪ {(m, v1 ‖ v2)}; Lc = Lc ∪ {v2, w}
6 return v = v1 ‖ v2

On π−1-query v, where v ∈ {0, 1}b

1 let (v1 ‖ v2) = v, where v1 ∈ {0, 1}r , v2 ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return m

3 m� ‖ m�� $← {0, 1}b, where m� ∈ {0, 1}r,
m�� ∈ {0, 1}c,

4 if m�� ∈ Lc ∪ {v2} then
bad← true; m�� $← {0, 1}c \ Lc ∪ {v2}

5 Iπ = Iπ ∪ {(m� ‖ m��, v)}; Lc = Lc ∪ {m��, v2}
6 return m = m� ‖ m��

The remaining oracles are the same as G0.

Figure 6: Games G3 and G4. The dashed box shows a dummy line of code added in G3 with respect to G2. G3 is without the solid

box and G4 with the solid box.

So, in case of bad← true, the input rate part of π’s output is random and the capacity part is di�er-

ent from all previous capacity parts of the outputs. In G4, π works again as an ideal permutation, but the

permutation is happening over the capacity parts of the output. After every query, the sets Iπ and Lc are

updated according to the input/output response of π. The probability of bad← true will be qπ(qπ⋇1)
2c

. There-

fore, ℘Pr[G4] − Pr[G3]℘ ≤ qπ(qπ⋇1)
2c

.

From G5 to G9, we start making changes in the SignEnc oracle. We try to make the output of the SignEnc

oracle randombyusing a randomoutput of π.We use themessage/signature pair list Signlisthaving qH ele-

ments,wheremessages are chosenat randomandsignatures are calculatedbasedon skS∗ . In the lastSignEnc,

it can respond with random output using a pre-computed Signlist, likewise independent of SignskS∗ .



136 | T. K. Bansal et al., Signcryption schemes with insider security

Games G5 and G6 . Initialize as in G4.

On SignEnc-query M, IDR

1 K $← {0, 1}k; x = IV1 = ID∗S ‖ IDR ‖ 0k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 x = ID∗S ‖ IDR ‖ K
4 C∗ ‖ T∗ $← {0, 1}((n⋇1)∗r)⋇r

5 c∗1 ‖ c∗2 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = C∗; T∗ = ⌊T∗⌋k
6 for i = 1→ (n ⋇ 1) do
(x ‖ w) = π(x ‖ w); x = x ⊕ mi; ci = x

7 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
8 S1 ‖ S2 ‖ T = c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 ‖ T
9 Y1 = EncpkR (S1); σ = Signsk∗S (S

2)
10 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

11 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

12 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
13 return (Kh , Y1, Y2 = (S2, σ), Tk)

On π-query m, where m ∈ {0, 1}b

1 let (x ‖ w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c,
2 if (m, v) ∈ Iπ then

return v

3 v1 ‖ v2 $← {0, 1}b, where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c
4 if v2 ∈ Lc ∪ {w} then

v2
$← {0, 1}c \ Lc ∪ {w}

5 Iπ = Iπ ∪ {(m, v1 ‖ v2)}; Lc = Lc ∪ {v2, w}
6 return v = v1 ‖ v2

On π−1-query v, where v ∈ {0, 1}b

1 let (v1 ‖ v2) = v, where v1 ∈ {0, 1}r , v2 ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return m

3 m� ‖ m�� $← {0, 1}b, where m� ∈ {0, 1}r,
m�� ∈ {0, 1}c

4 if m�� ∈ Lc ∪ {v2} then
m�� $← {0, 1}c \ Lc ∪ {v2}

5 Iπ = Iπ ∪ {(m� ‖ m��, v)}; Lc = Lc ∪ {m��, v2}
6 return m = m� ‖ m��

The remaining oracles are the same as G0.

Figure 7: Games G5 and G6. The dashed box shows added dummy lines of code in G6 compared to G5. G5 has the same code

as G4.

GamesG5andG6. G5 is the sameasG6. InG6, inSignEnc, we addadummy randomstring C∗ ‖ T∗ equivalent
to the length of C ‖ T, shown as dashed box. G5 and G6 are the same except for some dummy lines that are

added in G6 at step 4 and 5 in SignEnc. In these dummy lines, C∗ ‖ T∗ is chosen at random, and C∗ is split
into c∗i , where 1 ≤ i ≤ n ⋇ 1 and each ℘c∗i ℘ = r.

Games G6 and G7. In G7, we change the response of π according to c∗i such that SpPad.Enc outputs C
∗ ‖ T∗

forM on K. Aswe already know, the r-bit part of the b-bit output of π is random. Therefore, we can replace the

random output x of π with another random value mi ⊕ ci. Such a change will produce C∗ ‖ T∗ as the output
responseof π from its “for” loop.Now S1 ‖ S2 ‖ T = C∗ ‖ T∗, and this is used for calculating encryptionand sig-
nature for the final output. Here C∗ = c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1, S1 = c1 ‖ ⋅ ⋅ ⋅ ‖ ce and S2 = ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1.
We store the input/output response of π, called in SignEnc, in a set Iscπ .

This change of response might fail if the response of the first π call using K in SignEnc is already defined

by the A query in IAπ using πA and publicly known IV2 and IDs. Because if the first response of π using K

in SignEnc goes collision free, then all successive responses will be new due to the permutation prop-

erty. Therefore, the probability of failure of this response change in G7 for qsc queries is
qAπ
2k
. Therefore,

℘Pr[G7] − Pr[G6]℘ ≤ qsc ⋅ q
A
π

2k
.

Games G7 and G8. In G8, we chose a new message/signature pair from Signlist at random. We replace

the chosen message Si from Signlist with S2 of π loop’s (SpPad) output. In G8, before starting to calculate

SpPad and after generating C∗ ‖ T∗, we set S1 ‖ S2 ‖ T = C∗ ‖ T∗. Then we replace S2 with Si of the (message/

signature) pair list, and then again set C∗ ‖ T∗ = S1 ‖ S2 ‖ T. The rest of the code remains the same as G7. Here

we replace a random S2 with a random Si of Signlist and calculate the rest as in G7. Because both Si and S
2

are random, no di�erence will arise in games G7 and G8.
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Games G6 and
✞

✝

☎

✆
G7 . Initialize as in G4.

On SignEnc-query M, IDR

1 K $← {0, 1}k; x = IV1 = 0k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 x = ID∗S ‖ IDR ‖ K
4 C∗ ‖ T∗x $← {0, 1}((n⋇1)∗r)⋇r
5 c∗1 ‖ c∗2 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = C∗; T∗ = ⌊T∗x ⌋k
6 for i = 1→ (n ⋇ 1) do

v = x ‖ w;
(x ‖ w) = π(x ‖ w);

✞

✝

☎

✆
((x = c∗i ⊕ mi) ‖ w) = π(x ‖ w);

v� = x ‖ w; Iscπ = Iscπ ∪ {v, v�}; x = x ⊕ mi; ci = x
7 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k

✞

✝

☎

✆
((T∗x ) ‖ w) = π(x ‖ w); T∗ = ⌊T∗x ⌋k

8 S1 ‖ S2 ‖ T = c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 ‖ T
9

✞

✝

☎

✆
S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗

10 Y1 = EncpkR (S1); σ = Signsk∗S (S
2)

11 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

12 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

13 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
14 return (Kh , Y1, Y2 = (S2, σ), Tk)

The remaining oracles are the same as G5.

Figure 8: Games G6 and G7. G6 follows the code without the rounded box. G7 follows the code without the solid box.

GamesG8 andG9. In G9, the code remains the same as in G8; instead of calculating σ = SignskS (S2 = Si), one
can simply replace this operation with a pre-calculated σi for Si from Signlist. Now SignEnc is independent

of skS of Sign and later available to adversaryB for a uUF-RMA attack on Sign.

From now on, we start making changes in the VerDec oracle.

Game G10. In G10, we add some dummy lines, which does not a�ect the UF-CMA experiment of the game,

and G10 remains the same as G9. In G10, we modify the VerDec oracle such that we detect an existential

forgery on VerDec and show a reduction to universal forgery on Ver. Whenever we discuss a forgery, we

consider IDR = ID∗R in VerDec and related pkR∗ and skR∗ for the target sender IDS∗ .

We set flag to a boolean value old initially, and set it to new in case the input/output response of π dur-

ing VerDec does not belong to (Iπsc and IAπ ). Here flag = old signifies that the input to VerDec is the output

of SignEnc for some i-th query in case Ivd ⊂ Iπsc, or all of π’s input/output responses are already known to

adversary A in IAπ if Ivd ⊂ IAπ . Similarly, if flag becomes new, then one of the values of π in VerDec is new

with regard to SignEnc. In case validation passed for flag = new, then essentially the answerM is not queried

before SignEnc, and one of the values from Kh , Y1, Y2, T is used di�erently compared to any value in the

output of SignEnc.

A forgery is assumed to be valid only when VerpkS (y2 = (S2, σ)) ̸= ⊥ and T = T� happens under flag = new
for ID∗R. We try to detect a forgery based on a randomly chosen known input of Ver.

GameG11. InG11,we return⊥ in caseflag = new. Here thedi�erencebetweenG10andG11 is theprobability
of T = T� in case flag = new.
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Games G8 and
✞

✝

☎

✆
G9 . Initialize as in G4.

On SignEnc-query M, IDR

1 K $← {0, 1}k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 C∗ ‖ T∗ $← {0, 1}((n⋇1)∗r)⋇k
4 c∗1 ‖ c∗2 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = C∗

5 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗

6 i $← {1 . . . qH}/I; S2 = Si; I = I ∪ i
7 c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = S1 ‖ S2
8 x = ID∗S ‖ IDR ‖ K
9 for i = 1, . . . , n ⋇ 1 do

v = x ‖ w; ((x = c∗i ⊕ mi) ‖ w) = π(x ‖ w); v� = x ‖ w; Iscπ = Iscπ ∪ {v, v�}; x = x ⊕ mi; ci = x
10 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
11 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗

12 Y1 = EncpkR (S1); σ = Signsk∗S (S
2);

✞

✝

☎

✆
Y1 = EncpkR (S1); σ = σi

13 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

14 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

15 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
16 return (Kh , Y1, Y2 = (S2, σ), Tk)

The remaining oracles are the same as G5.

Figure 9: Games G8 and G9. The dashed box shows dummy lines of codes added in G8 compared to G7. G8 follows the code

without the rounded box. G9 follows the code with the rounded box.

In case validation passed for flag = new, then essentially the answer M is not queried before SignEnc,

and one of the values from π is freshly defined. This leads to a target collision on the proposed T in the input

to VerDec. This happens with a probability of 1

2k
. Therefore, ℘Pr[G11] − Pr[G10]℘ ≤ qusc

2k
.

Game G12. G12 is the same as G11 except for some dummy lines of code added, shown in dashed boxes.

∙ Initially, a random Sj of length ℓsg is chosen. In case this Sj appears in SignEnc during answering a query,
we abort SignEnc from answering. The probability of such happening is qH

2ℓsg
, and this event is not helpful

in the forgery because such a query does not provide any information to adversaryA.

∙ We also mark a dummy event badsign as trueif, during the VerDec query, S
2 = Sj and VerpkS∗ (y2) = ⊤ for

IDR = ID∗R. This event signifies that the adversary has provided a valid signature on a randomly chosen S2

for a targeted ID of sender and receiver. Later, we show that the probability of such badsign being trueis

equivalent to AdvuUF-RMA
Sign,B (k).

∙ We also mark an event as bad← true in case VerDec returns M if Ivd ⊆ IAπ is true and flag is still old.

Game G13. In G13, we return ⊥ instead of M in case bad← true. We check the probability of this bad event

happening. This event is possible in either of two cases. We denote the first case as badπ and the second case

as badsign, e.g., Pr[bad← true] = Pr[badπ ← true] ⋇ Pr[badsign ← true].
The probability of badπ ← true is as follows. This is the case when the adversary has generated a valid

ciphertext using an individual query to πA with the help of a known message/signature pair. Adversary A

could use custom K, pk∗R and values of mi so that adaptive calls of πA will produce the desired S2 with

known σ and some random T. Here comes thepart of special additionof an0r stringblock inmessagepadding

during checkin and checkout. This block forces A to select a particular K and values of mi such that, after

producing S1, the next output of πA should be equivalent to the first r-bit of S2. This is essential to pass
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Games
✞

✝

☎

✆
G10 and G11 . Initialize as in G4.

On SignEnc-query M, IDR

1 K $← {0, 1}k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 C∗ ‖ T∗ $← {0, 1}((n⋇1)∗r)⋇k
4 c∗1 ‖ c∗2 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = C∗
5 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗
6 i $← {1 . . . qH}/I; S2 = Si; I = I ∪ i
7 c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = S1 ‖ S2
8 x = ID∗S ‖ IDR ‖ K
9 for i = 1, . . . , n ⋇ 1 do

v = x ‖ w; ((x = c∗i ⊕ mi) ‖ w) = π(x ‖ w);
v� = x ‖ w; Iscπ = Iscπ ∪ {v, v�}; x = x ⊕ mi; ci = x

10 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
11 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗
12 Y1 = EncpkR (S1); σ = σi
13 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

14 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

15 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
16 return (Kh , Y1, Y2 = (S2, σ), Tk)

On VerDec-query (Kh , Y1, Y2, Tk)
1 S1 = DecskR (Y1); x = IV1; w = IV3

2 if VerpkS∗ (Y2 = (S2, σ)) = ⊥ then
return ⊥

3 c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 = S1 ‖ S2
4 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; Ivd = 0
5 for i = 1, . . . , j do

v = x ‖ w; (x ‖ w) = π(x ‖ w); v� = x ‖ w;
Ivd = {v, v�} ∪ Ivd

6 K = ⌊x⌋k ⊕ Kh; T = Tk ⊕ K
7 x = ID∗S ‖ IDR ‖ K; w = IV2; flag← old

8 for i = 1→ (n ⋇ 1) do
v = x ‖ w; (x ‖ w) = π(x ‖ w); v� = x ‖ w;
mi = x ⊕ ci; x = ci; Ivd = {v, v�} ∪ Ivd

9 v = x ‖ w; (x ‖ w) = π(x ‖ w)
10 v� = x ‖ w; T� = ⌊x⌋r; Ivd = {v, v�} ∪ Ivd
11 X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
12 if Ivd ̸⊂ Isc and Ivd ̸⊂ IAπ then

flag← new

13 if T = T� and flag = new then

if there exists M such that

M = checkout(X�, r, k, ℓsg) then✞

✝

☎

✆
return M return ⊥

else

return ⊥
else

return ⊥
14 if T = T� and flag = old then

if there exists M such that

M = checkout(X�, r, k, ℓsg) then
return M

else

return ⊥
else

return ⊥
The remaining oracles are the same as G5.

Figure 10: Games G10 and G11. The dashed boxes show dummy lines of code added in G10 compared to G9. G10 follows the

code with the rounded box, without the solid box. G11 follows the code without the rounded box, with the solid box.
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Games
✞

✝

☎

✆
G12 and G13 . Initialize as in G4 and choose an Sj

$← {0, 1}ℓsg .

On SignEnc-query M, IDR

1 K $← {0, 1}k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 C∗ ‖ T∗ $← {0, 1}((n⋇1)∗r)⋇k
4 c∗1 ‖ c∗2 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = C∗
5 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗
6 i $← {1 . . . qH}/I;S2 = Si; I = I ∪ i
7 c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = S1 ‖ S2
8 x = ID∗S ‖ IDR ‖ K
9 for i = 1, . . . , n ⋇ 1 do

v = x ‖ w; ((x = c∗i ⊕ mi) ‖ w) = π(x ‖ w);
v� = x ‖ w; Iscπ = Iscπ ∪ {v, v�}; x = x ⊕ mi; ci = x

10 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
11 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗

12 if Si = Sj then abort

13 Y1 = EncpkR (S1); σ = σi
14 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

15 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

16 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
17 return (Kh , Y1, Y2 = (S2, σ), Tk)

On VerDec-query (Kh , Y1, Y2, Tk)
1 S1 = DecskR (Y1); x = IV1; w = IV3

2 if VerpkS∗ (Y2 = (S2, σ)) = ⊥ then
return ⊥

3 if S2 = Sj and IDR = ID∗R then
badsign ← true

4 c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 = S1 ‖ S2
5 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; Ivd = 0; flag← old

6 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

7 K = ⌊x⌋k ⊕ Kh; T = Tk ⊕ K
8 x = ID∗S ‖ IDR ‖ K; w = IV2

9 for i = 1→ (n ⋇ 1) do
v = x ‖ w; (x ‖ w) = π(x ‖ w); v� = x ‖ w;
mi = x ⊕ ci; x = ci; Ivd = {v, v�} ∪ Ivd

10 v = x ‖ w; (x ‖ w) = π(x ‖ w)
11 v� = x ‖ w; T� = ⌊x⌋r; Ivd = {v, v�} ∪ Ivd
12 X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
13 if Ivd ̸⊂ Isc and Ivd ̸⊂ IAπ then

flag← new

14 if T = T� and flag = old then
if Ivd ⊆ IAπ then

if there exists M such that

M = checkout(X�, r, k, ℓsg) then
bad← true;

return M ⊥
else

return ⊥
if there exist M such that

M = checkout(X�, r, k, ℓsg) then
return M

else

return ⊥
else

return ⊥
The remaining oracles are the same as G5.

Figure 11: Games G12 and G13. The dashed boxes show added dummy lines of code in G12 compared to G11. G12 follows the

code without the solid box, with the rounded box. G13 follows the code with the solid box, without the rounded box.

the checkout function. The probability of this happening is qsc
2r

for the available qsc message/signature pairs

through SignEnc queries.

The probability of badsign ← true is as follows. This case happens when the adversary has generated

a valid ciphertext using IAπ havingknownan individual query to πA andwithout thehelp of a knownmessage/

signature pair by generating a valid signature for random S2. This could happen as follows: The adversaryA

asks queries to π for some random K, pk∗R and custom mi’s according to the checkout function to generate
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Game G14.

Initialization: Iscπ = I = Iπ = IAπ = 0; IV1 = 0r; IV2 = 0c; (skR , pkR)← GenEnc(1k), pk∗S , ID∗S
Signlist: {(Si , σi) : σi = SignskS (Si) for all 1 ≤ i ≤ qH and each Si chosen randomly} and choose
an Sj

$← {0, 1}ℓsg

On SignEnc-query M, IDR

1 K $← {0, 1}k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 C∗ ‖ T∗ $← {0, 1}((n⋇1)∗r)⋇k
4 c∗1 ‖ c∗2 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = C∗
5 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗
6 i $← {1 . . . qH}/I; S2 = Si; I = I ∪ i
7 c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 = S1 ‖ S2
8 x = ID∗S ‖ IDR ‖ K
9 for i = 1, . . . , n ⋇ 1 do

v = x ‖ w; ((x = c∗i ⊕ mi) ‖ w) = π(x ‖ w);
v� = x ‖ w; Iscπ = Iscπ ∪ {v, v�}; x = x ⊕ mi; ci = x

10 (x ‖ w) = π(x ‖ w); T = ⌊x⌋k
11 S1 ‖ S2 ‖ T = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗
12 if Si = Sj then abort

13 Y1 = EncpkR (S1); σ = σi;
14 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; x = IV1; w = IV3

15 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

16 Kh = ⌊x⌋k ⊕ K; Tk = T ⊕ K
17 return (Kh , Y1, Y2 = (S2, σ), Tk)

On VerDec-query (Kh , Y1, Y2, Tk)
1 S1 = DecskR (Y1); x = IV1; w = IV3

2 if VerpkS (Y2 = (S2, σ)) = ⊥ then
return ⊥

3 if S2 = Sj and IDR = ID∗R then
badsign ← true; σ∗ = σ

4 c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 = S1 ‖ S2
5 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; Ivd = 0
6 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

7 K = ⌊x⌋k ⊕ Kh; T = Tk ⊕ K
8 x = ID∗S ‖ IDR ‖ K; flag← old

9 for i = 1→ (n ⋇ 1) do
v = x ‖ w; (x ‖ w) = π(x ‖ w); v� = x ‖ w;
mi = x ⊕ ci; x = ci; Ivd = {v, v�} ∪ Ivd

10 v = x ‖ w; (x ‖ w) = π(x ‖ w)
11 v� = x ‖ w; T� = ⌊x⌋r; Ivd = {v, v�} ∪ Ivd
12 X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
13 if (Ivd ̸⊂ Isc and Ivd ̸⊂ IAπ ) or Ivd ⊆ IAπ then

flag← new

14 if T = T�and flag = old then
if there exists M such that

M = checkout(X�, r, k, ℓsg) then
return M

else

return ⊥
else

return ⊥
The remaining oracles are the same as G5.

Figure 12: Game G14. This is the same as G13 with simplified code.

random Kh, S
1, S2 and Tk, which will also validate T = T� upon verification. Now, in order to pass the val-

idation of Sign, A needs to have a valid signature over Sign for random S2. Because A knows the targeted

message before generating the signature, this becomes equivalent to universal forgery for a randommessage.

Therefore, Pr[badsign] ≤ AdvuUF−RMASign
(k).

Therefore, the adversary needs to produce either a collision over the r-bit of S2 using a π query and known

(S2, σ) or, alternatively, produce a valid signature over random S2, which is the output of π queries. Therefore,

if the adversary passes the checkout function, then essentially A produces the collision. The probability of

such a collision happening is qsc
2r
⋇ Pr[badsign]. Therefore, ℘Pr[G13] − Pr[G12]℘ ≤ qsc

2r
⋇ AdvuUF−RMA

Sign
(k).

Games G14 and G13. G14 is the same as G13. G14 is the final ideal game, and we simplify the cases by

merging the bad event with the flag← new event because, in both events, VerDec is returning ⊥. Now flag

is set to newin case (Ivd ̸⊂ Isc and Ivd ̸⊂ IAπ ) or Ivd ⊆ IAπ , and VerDec returns ⊥ if flag is new. Return of M will

happen only if flag is oldand validation of T passed. Now, essentially, A will get ⊥ for all his queries unless
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AdversaryB.

Initialization: given ID∗S and ID
∗
R, public/private key pair of R

∗ as pkR∗ and skR∗ .

The public key of S∗ is pkS∗ and the target message is M∗. We also denote M∗ as μ or Sj.

AdversaryA.

Initialization: Iscπ = I = Iπ = IAπ = 0; IV1 = 0r; IV2 = 0c; (skR , pkR)← GenEnc(1k), pk∗S , ID∗S
Signlist: {(Si , σi) : σi = SignskS (Si) for all 1 ≤ i ≤ qH and each Si chosen randomly}

The remaining oracles are the same as G14.

Finalization: If VerDec return M and badsign ← true then return σ∗.

Figure 13: AdversaryB over uUF-RMA

either he produces a valid signature on any random S2 not queried before or he queries the output of SignEnc.

B Proof sketch of Lemma 4.6

Proof of Lemma 4.6. We consider the following experiment for IND-CCA security of SIGNCRYPT against

adversaryA.

Experiment. Exp
IND-CCA,d
SIGNCRYPT,A(k)

1 (skR∗ , pkR∗ )← GenEncR∗ (1k)
2 (M0,M1, IDS∗ )← A

VerDecskR∗ ( ⋅ , ⋅ ),π( ⋅ )(pkR∗ )
3 map to pkS∗ using IDS∗ , where (skS∗ , pkS∗ )← GenSigS(1k)
4 d $← {0, 1}
5 y∗ ← SignEncpkR∗ ,skS∗ (Md)
6 d� ← A

VerDecskR∗ ( ⋅ , ⋅ ),π( ⋅ )(pkR∗ , skS∗ , pkS∗ , y
∗)

7 if d = d� and the query (y∗, IDS∗ ) is never made to the VerDecskR∗ ( ⋅ , ⋅ ) oracle then
return 1

else

return 0

The advantage of adversaryA is given by the probability

AdvIND-CCASIGNCRYPT(k) = ℘Pr[Exp
IND-CCA,d
SIGNCRYPT,A(k) = 1 ℘ d

$← {0, 1}] − 1
2
℘.

Wearedealingwith the insider securitymodel in themulti-user setting; the adversary has a target receiver

ID∗R inmind. The adversary knows the receiver’s public key pkR andhas access to theVerDec oracle under skR.

Further, we assume that an adversaryA observed qusc queries to the VerDec oracle. AdversaryA has also cho-

sen a pair of messagesM0 andM1 and a key pair (skS , pkS) for IDS. It receives a ciphertext (y∗1 , y∗2 , y∗3) under
(skS , pkR) of eitherM0 orM1. The unknownmessage is denoted byMd, where d is the bit the adversarywishes

to find out. AdversaryA outputs a bit d�, which is equal to d with the advantage ϵ, i.e., Pr[d� = d] = 1
2
⋇ ϵ. In

the following, we use an asterisk for all internal values used in computing the challenged signcryption.

We will use game-playing techniques [9, 10]. We start from the original CCA game ExpSIGNCRYPT,A or

(ExpIND-CCA,dSIGNCRYPT,A(k) = 1 ℘ d
$← {0, 1}), which denotes the event that A outputs d� = d, where d $← {0, 1}. We

want to show that

℘Pr[ExpSIGNCRYPT,A]℘ = 1
2
⋇ negl(k),
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where negl( ⋅ ) is a negligible function and negl(k) ≤ AdvIND-CCASIGNCRYPT(k). In each game, the following set is main-

tained: I by π, IAπ by πA, and Y stores the capacity c-bit values upon each query to π.

We modify SIGNCRYPT into a sequence of games G0, G1, . . . , G12 such that

Pr[ExpF-SpAEP,A] = Pr[ExpG0,A],
Pr[ExpG(i − 1),A] = Pr[ExpGi,A] ⋇ negl(k) for all 1 ≤ i ≤ 11,

Pr[ExpG12,A] = 1
2
.

Games G0 to G5. From G0 to G5, exactly the same changes follow as in the proof of Lemma 4.2. Therefore,

℘Pr[ExpG0,A] − Pr[ExpG5,A]℘ ≤
(qπ − 1)qπ

2b⋇1
⋇ qπ(qπ ⋇ 1)

2c
.

In G5, the game maintains an extra set Ienc, which stores the input/output response of π (as πenc) during the

SignEnc challenge query.

Games G5 and G6. Both games are the same. In G6, a dummy operation of flag← new is added in the VerDec

oracle to denote a new query. The query is new in the sense that neither the query nor any part of the query

during internal calls to πwas queried earlier by the adversary. That is, flag← new if any π’s responses are not

in IAπ . Now the code of G6 can check the condition T = T� in the cases flag = new and flag = old separately. If
T = T� and flag = new, then we mark this event as badπ ← true because badπ is just a dummy event and the

return of VerDec in G6 is not a�ected. Therefore, ℘Pr[ExpG6,A]℘ = ℘Pr[ExpG5,A]℘.

Games G6 and G7. In G7, in VerDec, we return ⊥ instead of M in case badπ is true. Therefore,

℘Pr[ExpG7,A] − Pr[ExpG6,A]℘ ≤ Pr[badπ ← true].

Let (v1 ‖ v2) = π(x ‖ w), where x, v1 ∈ {0, 1}r and w, v2 ∈ {0, 1}c. In VerDec, an input is a new query to πwhen

((x ‖ w), (v1 ‖ v2)) ∉ IAπ and an old query when ((x ‖ w), (v1 ‖ v2)) ∈ IAπ . If a new query (x ‖ w) is input to π

during VerDec, then π outputs v1 ‖ v2, where v2 ∉ Lc. That is, v2 is also new. Since v2 is unseen so far, this

ensures that the input to the next call of π is certainly new. Further, since v2 is new, the next input x
� ‖ v2

satisfies the condition (x� ‖ v2, ∗) ∉ IAπ , where ∗ stands for any b-bit value. Therefore, one new query makes

all subsequent inputs to π( ⋅ )new.We already know that, for any new query, the r-bit response of π is random.

Therefore, in case flag = new, the probability of T = T� is equivalent to a collision over the k-bit T value.

Therefore, Pr[badπ ← true] = qusc
2k

for qusc VerDec queries. Therefore,

℘Pr[ExpG7,A] − Pr[ExpG6,A]℘ ≤
qusc

2k
.

Now if this bad event does not happen, then G7 will returnM only in case all π responses are already known

toA. Consecutively,A already knows the answer of VerDecwith the help of π queries and available Sign, Ver

and Enc functions.

GameG8. Both games are the same. G7 and G8 both return⊥when a new query is given to the VerDec oracle.

In G8, amessageM is returned only when all the input/output relations of π, whichwould be possible during

the encryption ofM, are already in IAπ . G8 iterates over all the possible input/output pairs of π ∈ IAπ , initially
using IV1 and IV3, and tries to find an S

1 such thatOPC(S1, Y1) = 1. In the positive case, it further calculates K
and then tries to findall pairs of input/output responses,which reach to T via K, S1, S2. If any of the responses

is missing, then VerDec simply rejects the query. Due to the insider model, a faithful assumption on the signing

algorithm is that, for the same input, two di�erent signatures cannot be generated. We will discuss the impact

of this assumption later, after the proof.

Games G8 and G9. We start incremental changes in the SIGNCRYPT oracle from G9. In G9, K∗ is chosen
before the signcryption query and after the “find” stage. In both cases, K∗ remains random, and therefore

℘Pr[ExpG9,A]℘ = Pr[ExpG8,A].

Some extra dummy variables S1∗, S2∗, T∗, along with K∗, are also chosen after the find stage but not used.

A dummy value Y∗1 is calculated on S1∗ using Enc.
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Game G5.

Initialization: Ienc = Iπ = IAπ = 0; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3};
(skS , pkS)← GenEnc(1k), pk∗R , ID∗R

On SignEnc-query Md for ID
∗
S

1 K∗ $← {0, 1}k; x = IV1 = ID∗S ‖ ID∗R ‖ 0k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 x = ID∗S ‖ ID∗R ‖ K
4 for i = 1→ (n ⋇ 1) do
(x ‖ w) = πenc(x ‖ w); x = x ⊕ mi; c

∗
i = x

5 (x ‖ w) = πenc(x ‖ w); T∗ = ⌊x⌋k
6 S1∗ ‖ S2∗ ‖ T∗ = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗
7 Y∗1 = Encpk∗R (S1); σ∗ = Signsk∗S (S

2∗)
8 pad(S1∗ ‖ Y∗1 ) = y∗1 ‖ ⋅ ⋅ ⋅ ‖ y∗j ; x = IV1; w = IV3

9 for i = 1, . . . , j do
(x ‖ w) = πenc(x ⊕ y∗i ‖ w)

10 K∗h = ⌊x⌋k ⊕ K∗; T∗k = T∗ ⊕ K∗
11 return (K∗h , Y∗1 , Y∗2 = (S2∗, σ∗), T∗k )

On VerDec-query (Kh , Y1, Y2, Tk)
1 S1 = DecskR∗ (y1); x = IV1; w = IV3

2 if VerpkS (Y2 = (S2, σ)) = ⊥ then
return ⊥

3 c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 = S1 ‖ S2
4 y1 ‖ ⋅ ⋅ ⋅ ‖ yj = pad(S1 ‖ Y1)
5 for i = 1, . . . , j do
(x ‖ w) = π(x ⊕ yi ‖ w)

6 K = ⌊x⌋k ⊕ Kh; T = Tk ⊕ K
7 x = IDS ‖ ID∗R ‖ K; w = IV2

8 for i = 1, . . . , n ⋇ 1 do
(x ‖ w) = π(x ‖ w); mi = x ⊕ ci; x = ci

9 (x ‖ w) = π(x ‖ w); T� = ⌊x⌋k
10 X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
11 if T = T� then

if there exists M such that

M = checkout(X�, r, k, ℓsg) then
return M

else

return ⊥
else

return ⊥

On π-query m, where m ∈ {0, 1}b

1 let (x ‖ w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return v

3 v1 ‖ v2 $← {0, 1}b, where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c
4 if v2 ∈ Y ∪ {w} then

v2
$← {0, 1}c \ Y ∪ {w}

5 Iπ = Iπ ∪ {(m, v1 ‖ v2)}; Y = Y ∪ {v2, w}
6 return v = v1 ‖ v2

On π−1-query v, where v ∈ {0, 1}b

1 let (v1 ‖ v2) = v, where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c
2 if (m, v) ∈ Iπ then

return m

3 m� ‖ m�� $← {0, 1}b, where m� ∈ {0, 1}r,
m�� ∈ {0, 1}c

4 if m�� ∈ Y ∪ {v2} then
m�� $← {0, 1}c \ Y ∪ {v2}

5 Iπ = Iπ ∪ {(m� ‖ m��, v)}; Y = Y ∪ {m��, v2}
6 return m = m� ‖ m��

On πenc-query m

1 v = π(m)
2 Ienc = Ienc ∪ (m, v)

On πA-query m

same as G0

On π−1A -query v

same as G0

Figure 14: Game G5
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Games
✞

✝

☎

✆
G6 and G7 .

Initialization: Ienc = Iπ = IAπ = 0; GenEnc(1k), pk∗R , ID∗R; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3};
flag ∈ {new, old}

On decryption query Kh , Y1, Y2, Tk

1 S1 = Decsk(Y1); x = IV1; w = IV3

2 if VerpkS (Y2 = (S2, σ)) = ⊥ then
return ⊥

3 c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn⋇1 = S1 ‖ S2
4 pad(S1 ‖ Y1) = y1 ‖ ⋅ ⋅ ⋅ ‖ yj; flag← old

5 for i = 1, . . . , j do

x = x ⊕ yi;
if {x ‖ w, ∗} ∉ IAπ then flag← new;

(x ‖ w) = π(x ‖ w)
6 h = ⌊x⌋k; K = h ⊕ Kh; T = Tk ⊕ K
7 x = IDS ‖ IDR ‖ K; w = IV2

8 for i = 1→ (n ⋇ 1) do
if {x ‖ w, ∗} ∉ IAπ then flag← new;

(x ‖ w) = π(x ‖ w); mi = x ⊕ ci; x = ci
9 if {x ‖ w, ∗} ∉ IAπ then flag← new

10 (x ‖ w) = π(x ‖ w); T� = ⌊x⌋k; X� = m1 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1
11 if T = T� and flag = new then

badπ ← true

if there exists M such that M = checkout(X�, r, k, ℓsg) then✞

✝

☎

✆
return M return ⊥

else

return ⊥
12 if T = T� and flag = old then

if there exists M such that M = checkout(X�, r, k, ℓsg) then
return M

else

return ⊥
else

return ⊥

The remaining oracles are the same as G5.

Figure 15: Games G6 and G7. G6 includes dummy lines, shown in dashed boxes, compared to G5 along with the rounded box.

G7 includes all code lines of G6 and also the solid box except for the rounded box.
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Game G8.

Initialization: Ienc = Iπ = IAπ = 0; GenEnc(1k), pk∗R , ID∗R; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3}

On decryption query Kh , Y1, Y2, Tk

1 if VerpkS (Y2 = (S2, σ)) = ⊥ then
return ⊥

2 if there exists checkin(M, r, k, ℓsg) = m1 ‖ m2 ‖ ⋅ ⋅ ⋅ ‖ mn⋇1 such that, after setting Y1 = ae⋇1 ‖ ⋅ ⋅ ⋅ ‖ aj,
u21 = IV3, z11 = IV1 then

if {(u1i ‖ u2i ), (z1i⋇1 ‖ z2i⋇1)} ∈ IAπ for i = 1, . . . , e, . . . , j such that ai = u1i ⊕ z1i , u2i = z2i
and OPC(S1, Y1) = 1, where S1 = a1 ‖ ⋅ ⋅ ⋅ ‖ ae then

for setting K = ⌊zj⌋r ⊕ Kh, S
1 ‖ S2 = c1 ‖ ⋅ ⋅ ⋅ ‖ ce ‖ ce⋇1 ‖ ⋅ ⋅ ⋅ ‖ cn, x0 = K ‖ 0r−k ⊕ IV1, T = Tk ⊕ K

and w0 = IV2

if (x0 ‖ w0, v11 ‖ v21 ) ∈ IAπ and {(xi ‖ wi), (v1i+1 ‖ v2i+1 )} ∈ IAπ for i = 1, . . . , e, . . . , n ⋇ 1
and ⌊v1n+2⌋r = T, where xi = ci = mi ⊕ v1i , wi = v2i then

return M

else

return ⊥
else

return ⊥

The remaining oracles are the same as G7.

The following special notations are being used during G8 and onwards in the decryption oracle:

(i) During the SpongeWrap part of SpPad, we represent the input/output relation of π’s subsequent calls

for pad(M) = m1 ‖ ⋅ ⋅ ⋅ ‖ mn by (v1i+1 ‖ v2i+1 ) = π(xi ‖ wi), where xi = v1i ⊕ {mi}, wi = v2i , 0 ≤ i ≤ n,
v10 = IV1, m0 = K, w0 = IV2, v1i , xi ∈ {0, 1}r and v2i , wi ∈ {0, 1}c. Then ci will represent mi ⊕ v1i , where
1 ≤ i ≤ n.

(ii) The input/output relation of π’s subsequent call during the sponge part of SpPad will be represented by

(z1i⋇1 ‖ z2i⋇1) = π(u1i ‖ u2i ), u1i = ci ⊕ z1i , u2i = z2i , where 1 ≤ i ≤ (j), u21 = IV3, z11 = IV1, zj = h.

Figure 16: Game G8. Output of the decryption oracle in G8 is the same as G7 but independent from sk.

Games G9 and G10. In G9, K∗ is generated randomly. In G10, K∗ is computed using the value of randomly

generated S1∗, K∗h and Y∗1 . The value of K∗ is calculated via Hπenc (IV1 ‖ IV2, y
∗
1 , y
∗
2 , . . . , y

∗
j ) ⊕ K∗h , where

y∗1 , y
∗
2 , . . . , y

∗
j = S1∗ ‖ Y∗1 . Here Hπenc (∗) represents the sponge function with IV = IV1 ‖ IV2 using the permu-

tation πenc. Since π is an ideal permutation and K∗h is a random value, K∗ will also be random. Therefore, G9

and G10 are the same,

℘Pr[ExpG10,A]℘ = ℘Pr[ExpG9,A]℘.

Game G11. In G10, during signcryption (K∗h , S1∗, S2∗, T∗) was calculated using K∗ and the r-bit ran-

dom output of π. In G11, we directly allocate random K∗h , S
1∗, S2∗, T∗k values to the signcryption oracle.

Earlier, in G10, during signcryption, (K∗h , S1∗, S2∗, T∗k ) has a relation with K∗, whereas, in G11, there is

no relation between (K∗h , S1∗, S2∗, T∗k ) and K∗. This gap can only be exploited if K∗ is known to adver-

sary A and queried ID∗S ‖ ID∗R ‖ K∗ ‖ IV2 to π. We mark this query by A to π as badK ← true. Therefore,

℘Pr[ExpG11,A] − Pr[ExpG10,A]℘ ≤ Pr[badK ← true]. If this badK event does not happen, then essentially K∗h ,
S1∗, S2∗, T∗k will be random and also independent from Md.

Game G12. This is the final game of adversaryA. It is the same as G11; if badK does not happen, then essen-

tially S1∗ remains unknown to the adversary along with K∗. The badK event in G11 is the same as bad1K
in G12 because the sign-ciphertext is random and independent of Md; therefore

℘Pr[ExpG12,A]℘ = ℘Pr[ExpG11,A]℘ = 1
2
.
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Games G9 and G10 .

Initialization: Ienc = Iπ = IAπ = 0; GenEnc(1k), pk∗R, ID∗R; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3}
After find stage (AFS): K∗h

$← {0, 1}k; S1∗ $← {0, 1}ℓ; S2∗ $← {0, 1}ℓsg
Y∗1 = Enc(S1∗); T∗ $← {0, 1}k
y1 ‖ ⋅ ⋅ ⋅ ‖ ye ‖ ye⋇1 ‖ ⋅ ⋅ ⋅ ‖ yj = S1∗ ‖ Y∗1
K∗ $← {0, 1}k

K∗ ‖ ∗ = πenc(. . . πenc(πenc(y1 ⊕ IV1 ‖ IV3) ⊕ y2 ‖ 0c) ⋅ ⋅ ⋅ ⊕ yj ‖ 0c) ⊕ K∗h ‖ 0b−k

On encryption query (Md)
1 K∗ $← {0, 1}k; x = IV1 = ID∗S ‖ ID∗R ‖ 0k; w = IV2

2 checkin(M, r, k, ℓsg) = m1 ‖ ⋅ ⋅ ⋅ ‖ m(n⋇1)
3 x = ID∗S ‖ ID∗R ‖ K
4 for i = 1, . . . , (n ⋇ 1) do
(x ‖ w) = πenc(x ‖ w); x = x ⊕ mi; c

∗
i = x

5 (x ‖ w) = πenc(x ‖ w); T∗ = ⌊x⌋k
6 S1∗ ‖ S2∗ ‖ T∗ = c∗1 ‖ ⋅ ⋅ ⋅ ‖ c∗e ‖ c∗e⋇1 ‖ ⋅ ⋅ ⋅ ‖ c∗n⋇1 ‖ T∗
7 Y∗1 = Encpk∗R (S1); σ∗ = Signsk∗S (S

2∗)
8 pad(S1∗ ‖ Y∗1 ) = y∗1 ‖ ⋅ ⋅ ⋅ ‖ y∗j ; x = IV1; w = IV3

9 for i = 1, . . . , j do
(x ‖ w) = πenc(x ⊕ y∗i ‖ w)

10 K∗h = ⌊x⌋k ⊕ K∗; T∗k = T ⊕ K
11 return (K∗h , Y∗1 , Y∗2 = (S2∗, σ∗), T∗k )

The remaining oracles are the same as G8.

Figure 17: Games G9 and G10. G9 includes some extra dummy variables, shown in the dashed box, during initialization after

find stage. G10 includes the solid-box code during initialization, in which K∗ is chosen from random C∗.

Game G11.

Initialization: Ienc = Iπ = IAπ = 0; GenEnc(1k), pk∗R, ID∗R; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3}
AFS: K∗h

$← {0, 1}k; S1∗ $← {0, 1}ℓ; S2∗ $← {0, 1}ℓsg
Y∗1 = Enc(S1∗); σ∗ = Signsk∗S (S

2∗); T∗k
$← {0, 1}k

y1 ‖ ⋅ ⋅ ⋅ ‖ ye ‖ ye⋇1 ‖ ⋅ ⋅ ⋅ ‖ yj = S1∗ ‖ Y∗1
K∗ ‖ ∗ = πenc(. . . πenc(πenc(y1 ⊕ IV1 ‖ IV3) ⊕ y2 ‖ 0c) ⋅ ⋅ ⋅ ⊕ yj ‖ 0c) ⊕ K∗h ‖ 0b−k

On encryption query (Md)
1 return (K∗h , Y∗1 , Y∗2 = (S2∗, σ∗), T∗k )

On πA-query m

1 if (m = ID∗S ‖ ID∗R ‖ K∗ ‖ IV2) then
badK ← true

2 v = π(m)
3 IAπ = IAπ ∪ {(m, v)}
4 return v

On π−1A -query v

1 m = π−1(v)
2 if (m = ID∗S ‖ ID∗R ‖ K∗ ‖ IV2) then

badK ← true

3 IAπ = IAπ ∪ {(m, v)}
4 return v

The remaining oracles are the same as G10.

Figure 18: Game G11. All values of the encryption oracle are replaced by random variables if the adversary does not query K∗

to πA.
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Game G12.

Initialization: Ienc = Iπ = IAπ = 0; GenEnc(1k), pk∗R, ID∗R; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3}
AFS: K∗h

$← {0, 1}k; S1∗ $← {0, 1}ℓ; S2∗ $← {0, 1}ℓsg
Y∗1 = Encpk(S1∗); σ∗ = Signsk∗S (S

2∗); T∗k
$← {0, 1}k

y1 ‖ ⋅ ⋅ ⋅ ‖ ye ‖ ye⋇1 ‖ ⋅ ⋅ ⋅ ‖ yj = S1∗ ‖ Y∗1 ;
K∗ ‖ ∗ = πenc(. . . πenc(πenc(y1 ⊕ IV1 ‖ IV3) ⊕ y2 ‖ 0c) ⋅ ⋅ ⋅ ⊕ yj ‖ 0c) ⊕ K∗h ‖ 0b−k

On encryption query (Md)
1 return (K∗h , Y∗1 , Y∗2 = (S2∗, σ∗), T∗k )

On πA-query m

1 if (m = ID∗S ‖ ID∗R ‖ K∗ ‖ IV2) then
badK ← true

2 v = π(m)
3 IAπ = IAπ ∪ {(m, v)}
4 return v

On π−1A -query v

1 m = π−1(v)
2 if (m = ID∗S ‖ ID∗R ‖ K∗ ‖ IV2) then

badK ← true

3 IAπ = IAπ ∪ {(m, v)}
4 return v

The remaining oracles are the same as G11.

Red color shows parts that are not detectable by the adversary.

Adversary C. Given random Y1
$← {0, 1}ℓ⋇cope , find S1 such that OPC(S1, Y1) = 1.

Game G12 as Adversary A.

Initialization: Ienc = Iπ = IAπ = 0, GenEnc(1k), pk∗R, ID∗R; IV1 = 0r; IV2 = 0c; IV3 = IV2 ⊕ 1; Lc = {IV2, IV3}
AFS: K∗h

$← {0, 1}k; σ∗ = Signsk∗S (S
2∗); T∗k

$← {0, 1}k; Y∗1 = Y1

The remaining oracles are the same as G12.

Finalization:

if {(u1i ‖ u2i ), (z1i⋇1 ‖ z2i⋇1)} ∈ IAπ for i = 1, . . . , e, . . . , j such that ai = u1i ⊕ z1i , u2i = z2i
and OPC(S1, Y1) = 1, where S1 = a1 ‖ ⋅ ⋅ ⋅ ‖ ae, Y1 = ae⋇1 ‖ ⋅ ⋅ ⋅ ‖ aj, u21 = IV3 and z11 = IV1 then

return S1

Figure 19: Game G12 as final game, and adversary C using G12 as adversary A

The probability of bad1K is

Pr[bad1K] = Pr[ID∗S ‖ ID∗R ‖ K∗ ‖ IV2 is queried to (πA or π−1
A
)]

= Pr[(ID∗S ‖ ID∗R ‖ K∗ ‖ IV2 is queried to (πA or π−1
A
)) ∧ (Ienc ⊂ IAπ )]

⋇ Pr[(ID∗S ‖ ID∗R ‖ K∗ ‖ IV2 is queried to (πA or π−1
A
)) ∧ (Ienc ̸⊂ IAπ )],

where (Ienc ⊂ IAπ ) implies that all the input/output relations of πenc are also known to the adversaryA via the

set IAπ . Therefore, A knows all y∗i for 1 ≤ i ≤ e and h∗. Moreover, the adversary A learns K∗ from K∗h of the
challenged ciphertext.

Given (K∗h , Y∗1 , Y∗2 = (S2∗, σ∗), T∗), if ID
∗
S ‖ ID∗R ‖ K∗ ‖ IV2 is queried to π, then it reveals S1∗ completely.

Therefore,

Pr[bad2] ≤ AdvOW-PCA
Encrypt
(BA) ⋇ Pr[(K∗ ‖ IV2 is queried to (πA or π−1

A
)) ∧ (Ienc ̸⊂ IAπ )],

where Ienc ̸⊂ IAπ implies that one of the inputs to Hπenc () is unknown to the adversary A. This results in an

unknown output value from Hπenc (). Since K∗h is already random, therefore K∗ remains unknown and random
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toA. Since ID∗ and IV2 are public, the query ID
∗
S ‖ ID∗R ‖ K∗ ‖ IV2 to πA is equivalent to randomguessing of K∗.

Pr[bad2] ≤ AdvOW-PCA
Encrypt
(BA) ⋇

(qπA
⋇ qπ−1 )

min(2k , 2c)
.

The last game G12 can be used to simulate adversaryB for simulating adversaryA’s queries. Here the adver-

sary tries to recover the first k bits from the input to Enc on given random y and other public information.
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