
Signed Distance Transform Using Graphics Hardware

Christian Sigg Ronald Peikert Markus Gross

ETH Zürich

Abstract

This paper presents a signed distance transform algorithm using
graphics hardware, which computes the scalar valued function of
the Euclidean distance to a given manifold of co-dimension one. If
this manifold is closed and orientable, the distance has a negative
sign on one side of the manifold and a positive sign on the other.
Triangle meshes are considered for the representation of a two-
dimensional manifold and the distance function is sampled on a
regular Cartesian grid. In order to achieve linear complexity in the
number of grid points, to each primitive we assign a simple poly-
hedron enclosing its Voronoi cell. Voronoi cells are known to
contain exactly all points that lay closest to its corresponding prim-
itive. Thus, the distance to the primitive only has to be computed
for grid points inside its polyhedron. Although Voronoi cells parti-
tion space, the polyhedrons enclosing these cells do overlap. In
regions where these overlaps occur, the minimum of all computed
distances is assigned to a grid point. In order to speed up computa-
tions, points inside each polyhedron are determined by scan
conversion of grid slices using graphics hardware. For this task, a
fragment program is used to perform the nonlinear interpolation
and minimization of distance values.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation - Bitmap and framebuffer opera-
tions; I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling - Curve, surface, solid, and object representa-
tions.

Additional Keywords: Distance field, distance transform,
Voronoi diagram, fragment program, scan conversion.

1. Introduction

Given a set of geometry objects in 2- or 3-space, a distance field is
defined at each point by the smallest Euclidean distance to a point
on one of the objects. Objects can be curves in 2-space and
surfaces in 3-space or, more generally, any compact subset. If an
orientable and closed n-1 dimensional manifold is chosen, the
distance field can be given a sign.

Signed or unsigned distance fields have many applications in
computer graphics, scientific visualization and related areas, such
as implicit surface representation [Frisken et al. 2000, Gibson
1988], object metamorphosis [Cohen-Or et al. 1998], collision
detection and robotics [Frisken et al. 2000], skeletonization [Wan
et al. 2001], accelerated volume raytracing [Sramek and Kaufman
2000], camera path planning and image registration [Cuisenaire
1999]. Depending on the application, the distance field is required
on a full pixel or voxel grid or only within a band of width d
around the objects.

The problem of computing a 3D Euclidean distance transform
exists in two varieties, distinguished by the type of object repre-
sentation. The object can either be given as data on a voxel grid or
in vector representation, typically a triangle mesh in the case
where the object is a surface. Both problems have been studied
extensively and fast methods have been developed for both of
them. It is reasonable to treat the two problems separately. If the
goal is to sample the exact distance to a triangle mesh, the problem
cannot be stated in voxel space. Likewise, there is usually no
advantage to transform the problem from voxel representation to
vector representation. For triangle meshes, time complexity must
depend on the number M of surface primitives (faces, edges, and
vertices). Therefore, algorithms for the two different problem
settings cannot be directly compared.

A method [Maruer et al. 2003] which has been recently presented,
finds the distance transform in voxel data in O(N) time, where N is
the number of voxels. In the same paper, a good overview of
earlier methods is given. Essentially, methods fall into two catego-
ries, propagation methods and methods based on Voronoi
diagrams.

In propagation methods, the distance information is carried over to
neighbor voxels, either by sweeping in all grid dimensions, or by
propagating a contour. A well-known example of the latter is the
Fast Marching Method (FMM) [Sethian 1996], an upwind scheme
which can solve the Eikonal Equation in a single iter-
ation and in O(N logN) operations. A signed distance field is
obtained by using a constant propagation function f. However, due
to the finite difference scheme, FMM is not an exact method.

Besides the distance, additional information can be stored in the
distance field. Such information can be the vector pointing to the
nearest object point, known as the vector distance transform
[Mullikin 1992]. Alternatively, the index of the nearest surface
primitive can be attributed to each point, the resulting field is
called a complete distance field representation [Huang et al. 2001].

By propagating this type of additional information, FMM and
similar propagation methods can be turned into exact distance
transform algorithms [Breen et al. 2000, Eggers 1998, Tsai 2000].

Another approach is to construct a Voronoi diagram, which leads
directly to a complete distance field representation. Voronoi-based
methods can be used for distance transform in voxel data and then
have a time complexity of O(N logN). The approach seems to be

∇u 1 f⁄=

Computer Graphics Laboratory, Computer Science Dept., ETH
Zürich, CH-8092 Zürich, Switzerland.

83

Administrator
IEEE Visualization 2003,October 19-24, 2003, Seattle, Washington, USA0-7803-8120-3/03/$17.00 ©2003 IEEE

more natural when the distance field to a triangle mesh is being
computed. In this case, the set of Voronoi sites consists of the
vertices, edges and faces. Since they are not isolated points, a
generalized Voronoi diagram (GVD) has to be computed. The time
for generating a diagram with M sites is O(M log M). Once a GVD
is computed, the distance field can easily be computed as the
distance to the respective site.

All methods mentioned thus far are image space methods. An
alternative are object space methods, i.e. methods based on scan
conversion. Here, the distance field is obtained by scan converting
a number of geometric objects related to the triangle mesh and by
conditionally overwriting the computed voxel values. The advan-
tage of object space methods is their sub-pixel accuracy. However,
it is obvious that the relative performance degrades if the average
triangle size shrinks to the size of a single voxel. It has been shown
that for distance fields of triangle meshes, methods based on scan
conversion are competitive. Such an algorithm was presented by
Mauch [2003].

Starting from Mauch’s algorithm, we derived a version where two-
dimensional grid slices are passed to the graphics hardware for
scan conversion. The challenge of getting the correct nonlinear
interpolation of the distance value in a grid slice was solved by a
fragment program. In addition, we revised the method such that it
correctly handles vertices where both convex and concave edges
are adjacent.

In order to further speed up computations, we propose a modified
method. By scan converting a different type of polyhedron, we
were able to reduce the number of triangles to be rendered to less
than a third. Our modified algorithm is significantly faster than the
original software algorithm.

In Section 2, the basic definitions of a distance field and related
concepts are given. In Section 3, two algorithms for computing
distance fields using a scan conversion process are summarized.
These two algorithms, one for graphics hardware and one for soft-
ware, are the basis for our improved algorithm. Implementation
issues are discussed in Section 4, and performance results are
given in Section 5.

2. Distance Fields

Given a manifold S of dimension n-1 in Rn, the distance field u is a
unique scalar function defined in Rn. At each point, u equals the
distance to the closest point on S. If the manifold S is closed and
orientable, the space is divided into inner and outer parts. There-
fore, a signed distance field can be defined. A positive sign is
chosen outside the surface and a negative sign inside. Thus, the
gradient of the distance field on the surface is equivalent to the
surface normal.

The type of distance metric which is chosen depends on the appli-
cation. Common choices are chessboard, chamfer and Euclidean
distance [Rosenfeld and Pfaltz 1968]. We will restrict ourselves to
the Euclidean distance, which is probably the most meaningful, but
it is also the most expensive to compute.

The signed distance field u is the solution to the Eikonal equation
 with boundary condition . The boundary

condition shows that the definition of S as a subset of Rn and the
signed distance function are equivalent descriptions. The manifold
corresponds to the zero-set of the signed distance function:

. Therefore, the signed distance transform
converts an explicit surface representation to an implicit one.

If S is the union of Si with i=1..n, the distance field of S is the
point-wise minimum of the distance fields ui of Si.

(1)

For signed distance fields, minimization must be carried out with
respect to absolute values. If S is a triangle mesh in 3-space, the Si
can be chosen to represent the triangle faces. It is also possible to
use a disjoint union. In the case of a triangle mesh, the Si become
the triangles (excluding the edges), the edges (excluding the
endpoints) and the vertices. Collectively, faces, vertices and edges
will be denoted as primitives.

In order to sample the distance field on a grid, a brute force algo-
rithm would compute the distance of each grid point to each primi-
tive. The distance at one grid point is chosen to be the distance to
the closest primitive, thus resulting in the shortest distance. If the
triangle mesh consists of a large number of triangles and the
sampling grid is large, this approach is impractical. For an efficient
algorithm, one needs to reduce the number of distances calculated
per grid point or alternatively, per primitive.

To achieve this goal, we use the fact that only one distance per grid
point is stored in the final distance field, namely the distance to the
closest primitive. When computing the distance field value for a
sample, a primitive can be excluded from the calculation if it is
known that a closer primitive exists. To quickly find a primitive
that is relatively close and exclude a large number of primitives
that are further away, one can store the primitives in a spatial data
structure such as a BSP tree. By using this structure, one can
quickly find the closest primitive to a point: While the tree is
scanned for the closest primitive, one can give an upper limit of the
final distance. At the same time, a lower bound of the distance can
be computed for any subtree. If the lower bound of a subtree is
larger than the current upper bound of the final distance, the
subtree can be excluded from the search. This leads to an algo-
rithm logarithmic in the number of primitives of the input mesh.

Alternatively, the loops can be reversed, by iterating over the prim-
itives instead of the grid points. For each primitive, we try to
reduce the computation of distances to grid points that lie closer to
a different primitive. Optimally, only distances to grid points
contained in the Voronoi cell of the corresponding primitive are
calculated. However, the computation of Voronoi diagrams is not
easier than the computation of distance fields. Nevertheless, if a
point is known to lie outside of a Voronoi cell, the distance to its
base primitive does not need to be calculated. An algorithm which
uses this approach will be presented in Section 3.2.

3. Scan Conversion Based Algorithms

Scan conversion refers to the process of sampling a geometric
shape on a pixel or voxel grid, interpolating color and other
attributes defined at the vertices. In computer graphics, scan
conversion is a key operation in the rendering pipeline and is effi-
ciently performed by standard graphics cards. By reading back the
frame buffer data, the computing power of graphics cards becomes
available for more purposes than just rendering. In recent years,
the programmability of graphics cards made it possible to adapt the
scan conversion operation. In particular, nonlinear interpolation
functions can be programmed.

In Sections 3.1 and 3.2, we explain two algorithms using scan
conversion for generalized Voronoi diagrams and for signed
distance transforms, respectively. The idea of combining their
strengths, the suitability for graphics hardware and the small
number of triangles, brought us to the algorithm described in
Sections 3.3 and 3.4.

u∇ 1= u
S

0=

S x u x() 0={ }=

u Si∪() min ui()=

84

3.1 The Generalized Voronoi Algorithm

A standard Voronoi diagram is a partitioning of a planar region
into cells based on a finite set of points, the Voronoi sites. Each cell
consists of the points which are closer to one particular site than to
all others. Thus, Voronoi diagrams can be constructed with a
graphical method by drawing the graphs of the sites’ distance
fields. For a single point site, the graph is a vertical circular cone
which opens downwards at a fixed angle. After drawing all graphs,
a view from the top shows their point-wise minimum which, by
definition, is the Voronoi diagram. For a rendering with graphics
hardware, cones must be clamped at some distance d and approxi-
mated by a set of triangles. If the graphs are drawn in distinct
colors, the frame buffer now contains the Voronoi diagram. The
depth buffer holds the distance field.

Based on this observation, Hoff et al. [1999] presented algorithms
for generalized Voronoi diagrams (GVD) in two and three dimen-
sions. In a general Voronoi diagram, the set of sites can contain
more geometric objects than just points, such as line segments or
triangles. In that case the cone must be replaced by the graph of
their distance field. For a line segment e.g. the graph is a “tent”
consisting of two rectangles and two half cones. Curved sites can
be treated by piece-wise linear approximations. As a special case
the sites can be the points, edges and faces of a triangle mesh.

The GVD algorithm produces unsigned distance fields. However,
in cases where a sign is defined, it can easily be computed in a
separate pass, by computing the vector to the nearest point on the
Voronoi site and comparing it with the outward normal.

In three dimensions, the same approach can be used to obtain the
distance field and the GVD. However, if done with graphics hard-
ware, the scan conversion has to be done slice by slice. On a slice,
the graphs of the distance field are again surfaces which can be
tessellated and rendered. However, these surfaces are more
complex than for the 2D method. In the case of a point site e.g., the
graph is a hyperboloid of revolution of two sheets.

In order to bound the errors introduced by the linear interpolation
performed by the graphics hardware, graphs must be finely tessel-
lated, with up to 100 triangles for a cone [Hoff et al. 1999] and
even more for the hyperboloids which are doubly curved surfaces.

Because the GVD algorithm does not restrict the configuration of
Voronoi sites, it is more general than needed for signed distance
transforms of triangle meshes. However, each primitive of the
input surface produces a large number of triangles to render. Thus,
the method becomes inefficient for large meshes.

3.2 The Characteristics/Scan-Conversion Algo-

rithm

A different approach to applying scan conversion to distance field
computations was presented by Mauch [2003]. His Characteristics/
Scan-Conversion (CSC) algorithm computes the signed distance
field for triangle meshes up to a given maximum distance d. Using
the connectivity of a triangle mesh, special polyhedra serving as
bounding volumes for the Voronoi cells can be computed. There-
fore, only a small part of the distance field has to be calculated for
each primitive.

The CSC algorithm does not try to find exact Voronoi cells, but
instead uses polyhedra which are easier to compute and are known
to contain the Voronoi cell as a subset.

The algorithm computes the signed distance field up to a given
maximum distance d, i.e. within a band of width 2d extending
from both sides of the surface. Since the triangle mesh is assumed

to be orientable, it is possible to classify all edges as either convex,
concave, or planar. Accordingly, vertices can be classified as
convex, concave, saddle or planar. The set of Voronoi sites is
chosen as the open faces (triangles), the open edges, and the
vertices of the mesh. According to the three types of sites, three
types of polyhedra are constructed such that they contain the
Voronoi cell as a subset.

� Polyhedra for the faces: 3-sided prisms (hereafter called towers)
built up orthogonally to the faces (Fig. 1, left).

� Polyhedra for the edges: 3-sided prisms (hereafter called wedges)
filling the space between towers (Fig. 1, right). Wedges contain an
edge and extend to one side of the mesh only.

� Polyhedra for the vertices: n-sided cones which fill the gaps left
by towers and wedges (Fig. 1, left). Cones contain the vertex and
extend to one side of the mesh. If the vertex is a saddle, the
polyhedron is no longer a cone and now has a more complex
shape. This case is not explicitly treated in [Mauch 2003].

In Fig. 1, one can see that each polyhedron contains at least the
generalized Voronoi cell of its primitive (i.e. face, edge or vertex).
Therefore, by scan converting each polyhedron, every voxel lying
within the band of width 2d will be assigned a distance value.
Regions of intersection are scan converted once for each inter-
secting polyhedron and the minimum value is taken at each voxel.
By this process, the intersection of two towers is divided along the
dihedral angle bisector.

The goal of scan converting a polyhedron is to calculate the local
distance field of a single mesh primitive. However, in the cases of
an edge or a vertex, this field is not trilinear thus it cannot be
obtained by a standard scan conversion as done by the graphics
hardware. For this reason, the authors of the CSC algorithm
proposed a software implementation.

3.3 A Hardware-Based Characteristics/Scan-Con-

version Algorithm

The computations for the Characteristics/Scan-Conversion algo-
rithm described in section 3.2 can be divided into two parts. First,
all polyhedra are constructed. The rest of the algorithm consists in
scan converting these polyhedra and calculating the distances for
each grid point inside the polyhedra. For standard mesh and grid
resolutions, scan conversion and distance calculation are much
more expensive than setting up the polyhedra.

Figure 1: Polyhedra constructed on one side of a (yellow) one-ring

of the mesh: (cyan) towers, (blue) wedges, and a (red) cone. The

polyhedra are moved away from the surface for better visibility.

85

There are two possible improvements which significantly speed up
the algorithm. First, one could reduce the amount of polyhedron
overlaps. Hence, also the number of points which are scan
converted and the number of distances calculated is reduced. This
approach will be discussed in Section 3.4. Second, one could
exploit parallelism, for example by distributing the polyhedra on a
cluster.

Instead, a version that transfers the main workload to the graphics
card was implemented. In order to display scenes with a large
number of triangles at interactive rates, today’s graphics hardware
permit SIMD parallelism for high-speed scan conversion of two-
dimensional polygons. The graphics processor unit (GPU) can
perform simple operations on a per-fragement basis. To reap the
benefits of this computational power, 3D scan conversion was
implemented as a series of 2D scan conversions. The programma-
bility of the GPU is crucial for a hardware-based implementation
of CSC because the necessary operations exceed standard bilinear
interpolation and texture lookup.

For each xy-slice of the grid, the cross sections of all polyhedra
intersected by that slice are computed. These cross sections are
sent to the graphics card, which handles the remainder of the algo-
rithm for that slice. That is, the graphics card computes the
distance to the primitive for all points inside its corresponding
polygon. If a point is inside more than one polygon, the minimum
distance value is chosen. Similar to the algorithm described in
Section 3.1, it is not possible to draw a planar polygon and use the
depth buffer for the minimization process. The reason is that the
distance function is not bilinear within one polygon if the base
primitive is a vertex or an edge (see Fig. 2). One possible remedy
would be to compute a tessellation of each polygon, approximating
the radial distance value. Because the number of edges and
vertices in the triangle mesh can be large, this approach leads to a
vast amount of geometry data that has to be transferred to the
graphics card for every slice. For a typical problem setup, this is
not practical. Instead, one can use the observation that the vector to
the closest point on the primitive is indeed a trilinear function
within one polyhedron.

The operations available in a fragment program include normaliza-
tion of vectors using cube maps and dot products. Therefore, it is
possible to compute the distance value for all grid points inside a
polyhedron slice without further tessellation. At each polygon
edge, the vector to the closest point on the primitive is passed to
the graphics card as a texture coordinate. The graphics card
performs a bilinear interpolation of the texture coordinates within
the polygon. For each pixel, the GPU computes the dot product of
the texture coordinate and its normalized version. This value is
used as the z-value for that pixel. The minimization process is
performed by using the depth buffer. Furthermore, the stencil
buffer is used to store the sign of the distance value. Because the
stencil function cannot be altered within one polygon, regions of
positive and negative signs are rendered one after the other. This is
achieved by splitting towers into two regions, one for each sign.
Distance values within wedges and cones have a constant sign.

The large number of polyhedra which need to be sliced and scan
converted significantly contribute to the overall computing time.
For each polyhedron slice that has to be processed, rendering calls
must be issued to define the geometric shape of the slice. The
amount of time required for this operation is independent of the
size of the slice. If the grid resolution is small in comparison to the
triangle size, only a few distance values are calculated per polyhe-
dron slice. Thus, sending the geometric information to the graphics
hardware becomes the bottle neck and parallelism of CPU and
GPU cannot be fully exploited. Therefore, the hardware version
proves to be faster than the original software algorithm only if the
number of triangles is relatively small in comparison to the voxel
size.

3.4 The Prism Scan Conversion Algorithm

To overcome this limitation, a modified algorithm based on fewer
polyhedra is proposed in this section. The key idea is to build a
three-sided pyramid frustum for each triangle that also encloses the
grid points that are closest to the edges and vertices of the triangle.
To explain the construction, we will start with tower of one
triangle from Section 3.2. This tower contains the region where the
closest point on the surface is inside that triangle, up to a
maximum distance. But it does not enclose any point where the
closest point is on an edge or a vertex of the triangle. As a result,
there is a gap on the convex side of the edge between two neigh-
boring triangles. This gap can be filled with a wedge as explained
in Section 3.3. By using the observation that the towers of the two
triangles overlap on the concave side of the edge, the gap can also
be filled by tilting the side of both towers to the half angle plane
between the two corresponding triangles. Because of the topology
and for ease of notation, this new shape will be denoted with
prism. The two prisms share one side, but do not necessarily end at
a common edge. This can result in overlaps around the vertex as
shown in Fig. 4. For vertices forming a saddle, it is even possible
that there is a gap between the neighboring prisms. In order to
ensure that the area around the surface is completely covered up to
a maximum distance d, each prism is made to contain the three
vertex normals of its base triangle, each scaled to the length d. This
is achieved by shifting the prism sides outwards.

With this new approach, the total number of polyhedra is greatly
reduced. Instead of computing one polyhedron per face, edge and
vertex, only one polyhedron per face is computed. Thus, the
overall number of polyhedra is reduced to less than one third,
thereby reducing the data transfer to the graphics card per slice.Figure 2: Distance field within a wedge type polyhedron.

Figure 3: Sample Generalized Voronoi cells and slices generated

by the HW-based CSC algorithm.

86

The drawback of this approach is that the information about the
closest primitive, i.e. face, edge, or vertex, is lost. Consequently,
generalized Voronoi diagrams are no longer computed. Addition-
ally, the vector to the closest point on the surface is no longer a
trilinear function within the polyhedron. Hence, the approach of
interpolating the distance vector within one polyhedron slice and
computing the vector length on the GPU fails. Instead, OpenGL’s
ARB (Architecture Review Board) fragment program is used to
calculate the distance to the triangle from a bilinearly interpolated
vector on a per-fragment basis. This 3-vector defines the position
of the fragment in the local coordinate frame of the triangle. There-
fore, the task of locating the closest point on the triangle can be
performed in two dimensions. The third coordinate holds the
signed distance to the triangle plane. After joining it to the differ-
ence vector of the two dimensional problem, the length of this
vector equals the distance to the triangle. The sign of the distance
equals the sign of the third coordinate.

The minimization process for regions of overlapping polyhedra is
achieved by using the depth buffer. In order to avoid read back of
more than one buffer, the signed distance is stored in a floating
point pixel buffer.

4. Implementation

In this section, implementation details of the algorithm will be
described. First, a short overview of the OpenGL implementation
is given. Then, the setup of one triangle’s non-orthogonal prism
that has to be scan converted is described. Finally, the process of
slice iteration is explained.

As explained in Section 3.4, OpenGL’s ARB fragment program is
used to calculate the distance to the triangle from a bilinearly inter-
polated vector on a per-fragment basis. This OpenGL extension is
supported by several types of graphics hardware, such as
NVIDIA’s GeForceFX and ATI’s Radeon 9000 chipsets.

In each polyhedron, a local coordinate system r, s and t is used,
defined by an axis frame aligned with the triangle. The r-axis is
laid through the longest triangle side such that the three triangle
vertices lie on the positive r-axis, the positive s-axis and the nega-
tive r-axis, respectively (see Fig. 5). Their distances from the
origin are denoted by a, h and b. For each vertex of a polyhedron
slice, the texture coordinate is used to define the position of the
vertex in this local coordinate system. Texture coordinates are
bilinearly interpolated within the polygon and therefore, the
texture coordinate of a fragment always holds the position of the
fragment in the local coordinate frame.

Given these texture coordinates r, s and t, the task of the fragment
program is to compute the unsigned distance D(r,s,t) to the
triangle. The triangle itself is uniquely described in the same coor-
dinate frame by the three constants a, h and b, as shown in Fig. 5.
These constants are passed to the fragment program as second

texture coordinates. This was found to be faster than passing the
values as fragment program environment variables, although it
involves unnecessary interpolation of constant values during
rasterization.

First, the distance calculation is split into a parallel and an orthog-
onal part of the triangle plane. Since

, (2)

the main task is to compute D(r,s,0) which is a 2-dimensional
problem. The fragment program performs this computation by
partitioning the triangle plane into several regions. If r is negative,
a reflection at the s-axis can be done. Thus, it is sufficient to treat
the six regions labeled I through VI in Fig. 5. For regions with a
positive s-coordinate, the problem is transformed to a second coor-
dinate frame to simplify the location of the closest point on the
triangle. Unfortunatly, branching is limited in fragment programs.
Therefore, the fragment program computes the distance in both
coordinate frames and then chooses the appropriate distance
depending on the values of r and s. This leads to the following
pseudo-code for the fragment program.

In order to achieve high-precision results, a floating point pixel
buffer is used to store the distance values calculated by the frag-
ment program. Both NVIDIA and ATI cards support floating point
buffers. Additionally, read backs from floating point buffers were

Figure 4: Polyhedra constucted by the modified algorithm for a

one-ring of the mesh.

Figure 5: Distance computation in the t=0 projection plane.

Figure 6: Fragment program pseudo-code which computes the

distance to a triangle in local coordinates on a per-fragment basis.

s

rab

h
r’

s’

I

II III

IV

V

VI

D r s t, ,() D r s 0, ,()
2

t
2

+=

// Reflect to half-space r>=0 if necessary

if (r<0) { r = -r; a = b; }

// Transform to a 2nd coordinate frame

lenSqr = a^2 + h^2;

r' = (a*r - h*s + h^2) / lenSqr;

s' = (h*r - a*s - a*h) / lenSqr;

// Clamp components of the distance vector

r' = max(-r',r'-1,0); // regions IV, V, VI

s' = max(s',0); // regions I, V

r = max(r-a, 0); // regions II, III

// Compute the distance

if(s<0) // regions II, III

dist = sqrt(r^2 + s^2 + t^2);

else // regions I, IV, V, VI

dist = sqrt((r’^2 + s’^2) * lenSqr + t^2);

// Place sign

dist = copysign(dist, t);

87

found to be much faster than two subsequent read backs of depth
buffer and stencil buffer, as proposed by the algorithm in
Section 3.3. Yet, for a typical problem setup, the read back of the
calculated distance field consumes 20-25% of the overall computa-
tional time.

The polyhedra which are sliced and then sent to the graphics card
are computed for all triangles in a setup step. First, an orthogonal
prism which entirely encloses all points that lie within the
requested maximal distance d is built for all triangles. Then, the
prism is clipped by the three half angle planes between the triangle
and one of its neighbors. During the clipping process, it is ensured
that the topology of the prism stays constant by possibly reducing
the clipped volume. This simplifies the computation of intersec-
tions during the slice iteration. As explained in Section 3.4, it is
also ensured that the vertex normal is contained in all prisms of
adjacent triangles.

After clipping the prism, the coordinates of the corner points in the
local coordinate frame of the triangle are computed. The edges and
vertices of the prism are stored in a graph. During slice iteration,
the graph is traversed along the z-coordinate of the vertices. An
active edge table stores all edges intersected by the current slice.
When a vertex is passed during slice iteration, all incoming edges
of the graph node are deleted from the active edge table and
replaced with the outgoing edges.

After sorting all prisms according to their first slice intersection,
the slice iteration process is initiated. All prisms that are inter-
sected by the first slice are copied to an active prism table. Only
prisms in this table need to be considered for the current slice.
After rendering all prism intersections, the distance field of the
slice stored in the pixel buffer is read from the graphics card
memory. Now, the slice can be advanced. For all active edges of all
active prisms, both local and world coordinates of the intersection
are incrementally updated. If a corner of a prism was passed when
advancing the slice, the active edge table of that prism needs to be
updated. All incoming edges of the graph node corresponding to
the prism corner are deleted and replaced by the outgoing edges,
where in and out is defined by the z-direction of the edge. Once the
active edge table of a prism is empty, the prism is deleted from the
active prism table. The distance field is computed by repeating
these steps until all slices are processed.

5. Results

For a performance evaluation, we compared computing times of
our hardware-assisted prism algorithm with the software CSC
algorithm. The CSC algorithm was downloaded from the URL
given in [Mauch 2003]. Both programs were run on a 2.4 GHz
Pentium 4 equipped with 2 GB of RAM and an ATI Radeon
9700 PRO graphics card.

As a first comparison, both programs were fed with the Stanford
bunny dataset, a mesh with 69,451 triangles, and a torus knot with
2880 triangles. As can be seen in Table 1, the two models of
different size and complexity result in a speed up greater than five
compared to the original software algorithm.

To analyze the performance of the two methods as a function of
problem size, we chose as a simple refinable model a tessellated
sphere obtained by repeatedly subdividing an octahedron. Table 2
shows a good speedup factor for coarse and medium fine meshes.
Performance remains reasonable even if the triangle size comes
close to the voxel size. In the mesh of 131,072 triangles, the
average area is only π/2 times the voxel size.

Figure 7: Three distance field slices of the Stanford Bunny

computed by the HW-based Prism algorithm.

Figure 8: Five translucent distance field slices of a knot computed

by the HW-based Prism algorithm.

Model Triangles
Software

Algorithm
(seconds)

Hardware
Algorithm
(seconds)

Speedup

Bunny 69,451 19.408 3.737 5.19

Knot 2,880 6.437 1.176 5.47

Table 1: Timings (in seconds) for Bunny and Knot data sets. The

band width is set to 10% of the model extent, the grid resolution is

set to 2563.

88

Table 3 demonstrates the effect of varying the width of the band,
i.e. the computational domain. For both programs, a linear depen-
dency is expected, plus a constant setup time. Although the hard-
ware method needs a longer setup time, it is efficient for thin
bands, too. With increasing domain size, the setup time becomes
less important and the speedup factor improves.

Finally, the usefulness of our method is shown by keeping the
mesh and the band constant but increasing the grid resolution. The
speedup factor is expectedly more or less constant up to the point
where the memory size becomes an issue. In contrast to the soft-
ware CSC algorithm, our Prism algorithm does not have to keep
the full grid in memory (see Table 4).

6. Conclusion

In this paper we have shown that today’s graphics hardware is suit-
able for supporting the computation of distance fields of triangle
meshes on a regular grid. The construction of simple polyhedra
containing the Voronoi cell of a single primitive of the input
surface was presented. An algorithm was proposed to scan convert
these polyhedra and compute a signed distance field up to a
maximum distance. In order to exploit parallelism, slices of the
polyhedra are computed by the CPU while scan conversion,
distance computation, and minimization is performed entirely on
the GPU. By using OpenGL’s ARB fragment program, it is
possible to achieve the nonlinear interpolation of distance values
within one polyhedron slice. This avoids fine tessellation of a
polyhedron slice and reduces the amount of geometry sent to the
graphics card, which raises the hardware assisted version to a
competitive level. Also, the slice-oriented calculation allows a
smaller memory footprint than the polyhedron-oriented software
version of [Mauch 2003]. To further reduce the CPU workload and
the amount of data being sent to the graphics card, polyhedra are
constructed for triangles only and are assured to completely cover
the area around the mesh up to a maximum distance. The calcula-
tion of the distance to the closest point on the triangle is simple
enough to be performed per-fragment on the GPU. Using full
computational power of both CPU and GPU, our algorithm turns
out to be significantly faster than the pure software version.

Acknowledgments

This work was partially funded by Schlumberger Cambridge
Research.

References

 BREEN, D.E., MAUCH, S., AND WHITAKER, R.T. 2000. 3D Scan

Conversion of CSG Models into Distance, Closest-Point and Colour

Volumes. In M. Chen, A.E. Kaufman, R. Yagel (eds.), Volume

Graphics, Springer, London, Chapter 8, 135-158.

 COHEN-OR, D., LEVIN, D., AND SOLOMOVICI, A. April 1998. Three-

dimensional distance field metamorphosis, ACM Transactions on

Graphics, 17(2), 116-141.

 CUISENAIRE, O. 1999. Distance Transformations: Fast Algorithm and

Applications to Medical Image Processing, P.h.D. thesis, Université

Catholique de Louvain, Dept. of Engineering, Louvain-la-Neuve,

France.

 EGGERS, H. January 1998. Two Fast Euclidean Distance Transformations

in Z^2 Based on Sufficient Propagation, Computer Vision and Image

Understanding 69(1), 106-116.

 FRISKEN, S.F., PERRY, R.N., ROCKWOOD, A.P., AND JONES, T.R.
July 2000. Adaptively sampled distance fields: a general

representation of shape for computer graphics, Proceedings of the

27th annual conference on Computer graphics and interactive

techniques.

 GIBSON, S.F.F. October 1998. Using distance maps for accurate surface

representation in sampled volumes, Proceedings of the 1998 IEEE

symposium on Volume visualization.

 HOFF, K.E., CULVER, T., KEYSER, J., LIN, M., AND MANOCHA, D.
1999. Fast Computation of Generalized Voronoi Diagrams Using

Graphics Hardware. SIGGRAPH 99, 277-285.

 HUANG, J., LI, Y., CRAWFIS, R., LU, S.C., AND LIOU, S.Y. 2001. A

complete distance field representation, Proc. 12th IEEE Visualization,

247-254.

 MAUCH, S. 2003. Effcient Algorithms for Solving Static Hamilton-Jacobi

Equations, Ph.D. Thesis, California Inst. of Techn., Perdue, CA.

Mesh Size
Software

Algorithm
Hardware
Algorithm

Speedup

2,048 5.506 0.796 6.92

8,192 5.177 0.918 5.64

32,768 6.162 1.346 4.58

131,072 10.387 3.151 3.30

Table 2: Timings (in seconds) with variable input mesh size for 0.1

band width and a 2563 grid.

Width
of band

Software
Algorithm

Hardware
Algorithm

Speedup

0.1 6.162 1.346 4.58

0.2 11.701 1.785 6.56

0.4 21.009 2.546 8.25

0.8 34.489 3.724 9.26

Table 3: Timings (in seconds) with variable band width for a tes-

sellated sphere with 32,768 triangles on a 2563 grid.

Grid
Resolution

Software
Algorithm
(seconds)

Hardware
Algorithm
(seconds)

Speedup

0.901 0.244 3.69

1.638 0.482 3.40

6.162 1.346 4.58

109.400 6.534 16.7

Table 4: Timings (in seconds) with variable grid resolution for a

tessellated sphere with 32,768 triangles and 0.1 band width.

64 64 64××

128 128 128××

256 256 256××

512 512 512××

89

 MAURER, C.R., QI, R., AND RAGHAVAN, V. February 2003. A Linear

Time Algorithm for Computing Exact Euclidean Distance Transforms

of Binary Images in Arbitrary Dimensions, IEEE Trans. Pattern

Analysis Mach. Intell., 25(2).

 MULLIKIN, J.C. November 1992. The vector distance transform in two

and three dimensions, CVGIP: Graphical Models and Image

Processing, 54(6).

 ROSENFELD, A., AND PFALTZ, J.L. 1968. Distance Functions on

Digital Pictures, Pattern Recognition, 1(1), 33-61.

 SETHIAN, J.A. 1996. A Fast Marching Level Set Method for Mono-

tonically Advancing Fronts. In Proc. Nat. Acad. Sci., vol. 94, 1591-

1595.

 SRAMEK, M. AND KAUFMAN, A. 2000. Fast Ray-Tracing of Rectilinear

Volume Data Using Distance Transforms, IEEE Trans. Visualization

Computer Graphics, 6, 236-252.

 TSAI, Y.R. 2000. Rapid and Accurate Computation of the Distance

Function Using Grids. Technical Report, Department of Mathematics,

University of California, Los Angeles.

 WAN, M., DACHILLE, F., AND KAUFMAN, A., 2001. Distance-Field-

Based Skeletons for Virtual Navigation, Proc. 12th IEEE

Visualization, 239-245.

90

